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Abstract. In this paper, we introduce the concept of ex- query polygon. The problem arises in a cooperation with a
tended feature objects for similarity retrieval. Conventionalmajor supplier of parts for the German car manufacturing
approaches for similarity search in databases map each olndustry. The company produces parts called ‘clips’ which
ject in the database to a point in some high-dimensionakre used for holding and joining components in a car. The
feature space and define similarity as some distance meaumber of parts manufactured by the company is quite large,
sure in this space. For many similarity search problems, thisince many different parts are necessary for each car model.
feature-based approach is not sufficient. When retrieving parThe goal of the cooperation is to reduce the cost of produc-
tially similar polygons, for example, the search cannot being new parts by maximizing the reuse of parts. Important
restricted to edge sequences, since similar polygon sectiorfsr parts to be reusable is that the new part coincides in some
may start and end anywhere on the edges of the polygonsletail with previously designed parts which are stored in the
In general, inherently continuous problems such as the parparts database of the company. If partially similar parts can
tial similarity search cannot be solved by using point objectsbe found, the cost for designing and manufacturing a new
in feature space. In our solution, we therefore introduce expart can be reduced considerably, since the time for design-
tended feature objects consisting of an infinite set of featuréng the part is shortened and it is possible to partially reuse
points. For an efficient storage and retrieval of the extendedhe expensive machinery to manufacture it. Finding all par-
feature objects, we determine the minimal bounding boxedially similar parts for a given query part is therefore the
of the feature objects in multidimensional space and stor&ey to cost reduction. Although originating from a rather
these boxes using a spatial access structure. In our concrespecific application, the problem of finding all partially sim-
polygon problem, sets of polygon sections are mapped tdlar polygons from a database of 2D polygons is a general
2D feature objects in high-dimensional space which are themroblem which arises in many applications such as CAD,
approximated by minimal bounding boxes and stored in ampattern recognition, protein docking, computer tomography
R*-tree. The selectivity of the index is improved by using and others.
an adaptive decomposition of very large feature objects and The problem of finding all partially similar parts is a dif-
a dynamic joining of small feature objects. For the poly- ficult task. The state-of-the-art approach predominantly used
gon problem, translation, rotation, and scaling invariance isn industry is a search based on feature vectors. Feature vec-
achieved by using the Fourier-transformed curvature of theors consist of a fixed number of attributes describing impor-
normalized polygon sections. In contrast to vertex-based altant properties of the polygons. Experience shows, however,
gorithms, our algorithm guarantees that no false dismissalthat a search based on feature vectors is not sufficient, since
may occur and additionally provides fast search times foronly apriori defined features can be used in searching for
realistic database sizes. We evaluate our method using realmilar parts. What is needed to achieve better results is to
polygon data of a supplier for the car manufacturing indus-allow a similarity search based on the exact geometry of the
try. polygons given by the CAD system.
Unfortunately, the general problem of comparing two
Key words: Indexing and query processing of spatial ob- polygons under translation, rotation, and scaling invariance
jects — Partial similarity retrieval — CAD databases — Fourieris computationally difficult. The computational geometry al-
transformation gorithm given in [AB 92] solves a special case of the prob-
lem, namely testing two point sets witlh points each
for congruence under translation and rotation invariance, in
] O(m®) time. Note that this complexity neither includes scal-
1 Introduction ing invariance nor testing for similarity. Both, scaling in-
variance and similarity testing, however, are computationally

The problem we focus on is searching a database of 2[jjfficult problems. Similarity may, for example, be defined
polygons for polygons which are partially similar to a given



therefore determine the extended feature objects which cor-
respond to the polygon sections starting anywhere on the
first edge and ending anywhere on the last edge. Since we
have two continuous parameters, the extended feature ob-
jects are 2D objects in multidimensional feature space. The
2D feature objects are then approximated by minimal bound-
Fig. 1. Partial search problem ing boxes and stored in an‘Rree. Translation, rotation, and
scaling invariance are achieved by using a Fourier transfor-
mation of the curvature of the polygon. In contrast to vertex-
as Hausdorff distance, &het distance, percentage of sur- based algorithms, our method guarantees that no false dis-
face superposition, etc. of the two polygons. All those simi-missals may occur and provides fast search times for realistic
larity measures are useful for certain applications, but nonelatabase sizes.
of them is comparable to the human intuition of similarity. In the literature, there is a lot of work on similarity search
Human similarity includes some kind of semantic similarity of geometry data. In computational geometry, researchers fo-
which considers two parts to be similar if both parts havecus on the theoretical aspects of the 1 : 1 similarity problem.
certain characteristics. In most cases, the characteristics aiMost of the proposed algorithms are based on similarity mea-
partial similarities, which means that there exist portions ofsures inadequate for our application [AB 92]. Another area
the two polygons which are similar. Note that even a simplerelated to similarity retrieval is pattern matching. In pattern
vertex-based partial similarity algorithm which restricts the matching, the goal is to recognize objects in a scene from a
problem to decide whether there are similar portions of thegiven fixed set of identifiable objects [MG 93, MG 95]. Since
two polygons starting and ending at any vertex causes thé¢he set of identifiable objects is fixed a priori, it is possible to
above complexity to increase by a factor f (all edge  generate models for each of those objects, and try to match
sequences of arbitrary length). The ‘continuous’ problem ofthe objects in the search scene with those models. For this
finding similar portions of the two polygons starting and purpose, a detail with a high significance is sufficient in
ending at an arbitrary point (not necessarily a vertex) onorder to assign a search object to one of these models. In
any edge of the contour of the polygon is even more dif-pattern recognition, there are many specialized approaches
ficult and, to the authors’ knowledge, there is currently noproviding a high invariance against affine and shear trans-
algorithm solving the problem. Also, in our case, we haveformations (e.g. [WW 80]). Another related area is similarity
to solve the 1 n instead of the 1 : 1 problem, i.e. we have search in multimedia and pictorial databases. The problem is
to find all polygons from a database afparts which are related, since similarity search on images also involves sim-
partially similar to a given query polygon. ilarity retrieval of the objects in the image. However, there

For solving continuous problems such as the partial sim-are many differences to our application. The most obvious
ilarity problem of polygons, a mapping of the data objects todifference is that, in images, the structure and relation of
points in feature space is not sufficient. A polygon section,objects is more important than the polygonal shape of the
for example, may start and end at any point of the poly-objects and, therefore, most of the approaches only use sim-
gon contour, even between two vertices (cf. Fig. 1), and it isple similarity measures for comparing the objects [FBFH 94]
therefore not sufficient to map the polygon contour to a sin-and do not consider invariances due to a normalized position
gle point in feature space. In general, the objects which arise@f known objects [PF 94].
in continuous problems may be described as parametrized The area of research which is closely related to our
functions which depend on one or multiple continuous vari-approach is similarity search in time series databases. In
ables. Our new idea is to map the data objects to extendepAFS 93], an efficient method for similarity search in 1D
feature objects in high-dimensional space. Extended featureequence data has been proposed. The approach maps the
objects are infinite sets of feature points which are deterdata into Fourier space and determines the similarity of
mined by mapping the parametrized functions (correspondtwo sequences by their Euclidean distance in Fourier space.
ing to the data objects) into feature space. In some casefifRM 94] extends this idea to include searching for sub-
the data objects have some natural partitioning, which carsequences and [ALSS 95] also considers noise and scaling
be used to map a data object to a set of extended featuravariance. All approaches, however, are limited to 1D time
objects instead of a single one. For an efficient storage anderies databases. In contrast, our algorithms work for 2D
retrieval, we determine the minimal bounding boxes of thepolygon databases and use a distance measure which is com-
extended feature objects in multidimensional space and storgletely invariant against affine transformations. Furthermore,
these boxes using a spatial access structure. The selectivitpr partial similarity search is not limited to edge sequences
of the index is improved by using an adaptive decomposi-of the polygons but searches for any section of the polygons
tion of very large feature objects and a dynamic joining of starting and ending anywhere on the edges of the polygons,
small feature objects. even in between vertices.

In the main portion of the paper, we apply our general  The rest of this paper is organized as follows: In Sect. 2,
idea to the problem of searching a database of 2D polygonwe provide basic definitions and a formal statement of the
for partially similar polygon sections. We present algorithmsproblem. We further illustrate the problems of other ap-
which solve the continuous partial similarity problem under proaches and prove that, under scaling invariance, vertex-
translation, rotation, and scaling invariance. In our concretébased algorithms may not avoid false dismissals, even if one
polygon problem, the natural partitioning of the data objectsis only searching for partially identical parts. In Sect. 3, we
are the vertices of the polygons. For all edge sequences, wiaen describe our algorithm, including the analytic calcula-
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tion of the Fourier-transformed curvature of the normalized "3 = vousio
polygon sections, the mapping of sets of transformed poly- CLOY CLOCLE) (- CL& L)
gon sections to 2D feature objects and their storage in ¢ —— ! 'cubz@; ' —
spatial access method. We prove the correctness of our avj 0 2
gorithm, i.e. we show that false dismissals of partially iden-
tical parts may not occur. In Sect. 4, we provide an empir-
ical analysis of our method. For the experiments, we use
an R-tree-based implementation and real ‘clips’ data ob-being denoted by e;|. The lengths of the polygon con-
tained from our industrial partner. Section5 summarizes ourours are normalized tor2 which means thad_["; el
approach and describes directions for future work. = 27. The length of an edge sequence may be determined
as |es;;| = 3°7_; |ex|. According to Mumford [Mum 87],
the set of all possible polygon contours forms an infinite-
dimensional space. The reason is that polygon contours may
vary in an infinite number of independent ways, which is
also an indication for the complexity of the partial similarity
search problem of polygon contours.

In addition to the vertex/edge-based representation of
ﬁolygons we also need a functional definition of polygons.
"he functional view is necessary for calculating the Fourier

ansformation of the curvature of the polygon, and it is

Iso more adequate for solving the continuous partial sim-
ilarity problem. Furthermore, the functional representation
of polygons avoids the fundamental problem of the edge
representation that there is an infinite number of edge rep-
resentations which describe the same polygon contour (e.g.,
edge sequences with interpolated vertices). In the follow-
edges{cL,.. ., m .} with m, edges andm, vertices ![ng definition describing a polygon as a parametrized func-

» » ion, all edge-based polygon representations which describe
({vg, -+ -V, —1})- An edge Sequence is defined by, := 4 identical polygon contour are mapped to the same func-
{ef,....ef} if i < j and byesy; = {e,...,e;, _1,e5,  tional representation —in other words, they fall into a single

,ef} if i > j. This definition |mpI|es that the edges are equivalence class.
concatenated in a cyclic way. The set of all edge sequences

vy

Fig. 2. Example for a polygon as a parametrized function

2 Partial similarity

In this section, we introduce several notations which are nec:
essary for formalizing the partial similarity problem. Besides
defining our notion of polygon data and the partial similar-

|ty query, we also discuss essentlal properties of appropnat

the problems of other approaches. Furthermore, we provid

a formal proof that under scaling invariance vertex-base
algorithms may not avoid false dismissals.

2.1 Definition of the data

A polygon p may be defined as a cyclic sequence of.

for a given polygorp may be defined as Definition 1 (Polygon contour) A polygon contour is de-
ESP fined as a parametrized functipn R — RN x N
={es;|(0<i<m, —1)AQO<j<m, —1AGEF))} - EIM-1 A

‘ t) = |+t — CL(EIL®))) - , 0<t < 2m,
The number of edge sequence$AsS?| = my, - (m, — 1) = p(t) ( kz:; e | +( (ELO) - eprw, 0=t < 2

mg, since there aren, sequences of lengtm,, m, se- ) . . )
quences of lengthng, — 1), ..., m, sequences of length 2. WhereEI : it — No is the edge indexing function

In the following, we omit the indey from all symbols ifit  EI(a) := min{k ’Zféo le:| > a}

is obvious which polygon we refer to, i.e., we writg for With 0<a<2r.0<k<m—1

66),. Vo, fOI’ ’Ug, etc. The pr0b|em SiZéJ f0r the pal’tial Simi- and CLp —NO__) 5),% iS_the_CUl‘VG Iength fUnCt|0mL(Z) =
larity task is the set of all edge sequences fomgtlolygons il = }

in the databaseN may be determined as 2 j=0 el with 0 < i < m — 1.

n n n The two functionsEI and C'L are necessary to define the
N = Z |ESY| = Zmi ~(m; — 1) = me functional representation of the polygons from the given

; ; ; vertex-based representation. Given a curve lendibtween
with 0 and Zr, the functionE I determines the edge in which the

curve ends. The functiod’L determines the length of the
y = o n o, curve up to a given edgg which is the sum of the lengths
o Mimax = meax =2Nz=n- Zmi /n| =n-m%  of all edges from edge O to edge- 1 (cf. Fig. 2). Note that
=1 = the functional definition is a continuous description of poly-
wheremmay is the maximum number of edges of all poly- gon contours which is independent of the number of edges,
gons in the database amd is the average number of edges and therefore avoids the problem of multiple representations
per polygord. The inequality shows that polygons with a describing the same polygon. Note that the edges of the
high number of edges strongly influence the size of thepolygon are concatenated in a cyclic way, which means that
search space. Note that the edges of the polygons maie egact difinition of a polygon chontoltljr is a function Witlh
— T - period 2r. Therefore, we assume that all operations on poly-
also be seen as vectors; := viwg —v,, With their lengths gon contours are implicitly defined withmodulo 2r. For
1 The inequation may be proven by induction over the rest of the paper, we use the functional definition of
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Symbol Definition _ o 2.2 Definition of partial similarity
plp®)] polygon [parametrized polygon definition]
o ',“::]bgr of ?dgfs (= number of vertices) of polygen Before we formally define similarity and partial similarity,
6;[61] ’,'th © gte © fpo %gorp we introduce the important notions of congruence and par-
vilvil v-th vertex of polygorp . tial congruence. Congruence means that two polygon sec-
o angle between edge— 1 and edge ' tions are identical up to affine transformations, and partial
€54 edge sequence (set of all edges from edge edgey) congruence means that there are polygon sections which are
ES® set of all edge sequences pf identical up to affine transformations.
N problem size
L(i length functi . .
gl(z) C:We_edngt_ u: Ct'ot_n Definition 3 (Congruence, partial congruencejwo poly-
PS() © Ige " ex'rt',g untc 'S” gon section; andp, are calledcongruentiff there exists
ab g?gl?r‘\’/g T:rfg;torg Z:c; 'e”r? ing at curve length an affine transformatioff’ such thatZ'(p,) = p:.
s similarity measure Two polygon sectiong; andp, are calledpartially con-
) i gruentiff there exists a sectiodS!* of p; and an affine
T affine transformations . ab D1
, . transformatioril” such thatT'(p,) = P.S*;.
A polygon transformation function . ab .
(1) curvature function In contrast to (partial) congruence, which focuses on
c curvature transformation finding (partially) identical polygon sections, (partial) simi-
» Fourier transformati larity also includes all polygon sections which are (partially)
, fou,”er rar;f.s ormation similar. For the definition of partial similarity, we need a
k1 Ok ourier coefficients similarity measures : (P x P — $)? which determines the
d degree of the Fourier sum similarity of two polygon sections.
MBR minimum bounding rectangle
FO;; extended feature object corresponding L Lo . T
to edge sequences?, Deflnltlon 4 (e-similarity, partial s-smlle}nty). Two poly-
FOq,4,5,5, extended feature object corresponding to the set of all gon §eCtI0nSp1 ?‘nd b2 are, Ca”edE'SIm”ar_ with respect
edge sequences starting betweéemnd i, to ¢ iff there exists an affine transformatidii such that
and ending betweep andj, 6(T'(p2),p1) < e. _ .
Vinax maximum volume of the bounding boxes Two polygon sectiong; and p, are called partiallye-

of the extended feature objects

similar with respect td iff there exists a sectio®S?; of p;

and an affine transformatidh such that (7'(p-), Png) <e.
The similarity measure is a functioh: (P x P — &)

polygons — except for the description of shortcomings ofwhich has two polygon sections as input parameters and de-
edge-based partial similarity retrieval in Sect. 2.4.

Since we are not only dealing with complete polygon gon sections. In the following, we define properties which

termines a real value denoting the similarity of the two poly-

contours but with arbitrary pqr}ions of polygon contours, we myst be satisfied by any useful similarity measure.
also need a functional definition of polygon sections. Note

that it is_not enough to _co_nsi_der edge sequences for SOIVin%efinition 5 (Properties of the similarity measurgl) iden-
the continuous partial similarity problem, since similar poly- tity preservation¥p : 8(p, p) = 0

gon sections may start at any point of a polygon contour — L . _ .
even in between vertices. We therefore need the following2) COMMUEAIVILY:-7p1¥p; : (p1, p2) = 6(p2, pa) (3) triangle

: o - Snequation:Vp;Vp2Vps : (8(p1. p2) + 8(p2.pa) > 6(p1, pa))
functional definition of a polygon section. (4) unboundedness: A similarity measufeis called un-

boundediff Vp,Ve > 0,3q : 6(p, q) > €.

Useful similarity measures must fulfill these four properties.
The first three properties are trivial, and the fourth prop-
erty (unboundedness) means that there is no most dissimilar
polygon section for any given query polygon.

Up to now, we have only defined the partial similarity of
two polygon sections. The next step is to define the partial
similarity query, which is searching a database of polygons
for partially similar polygon sections. Given a databdsB
of n polygonsp; with m; edges eachi(= 0..n — 1), the

artial similarity query is defined as follows.

Definition 2 (Polygon section)A polygon section of a poly-
gon p with start pointa and end poinb(0 < a < b < 27)
is defined as a parametrized functidiS,;, : R — R x R

PSab(t/):p(<t/' b_a> +a), o<t <2r.
2

According to our definition, any continuous portion of the
polygon is a polygon section. The start and end points ar
not limited to vertices and, in general, a polygon section is a
open-ended portion of the polygon contour. The arc length o .

of polygon sections is defined to be normalized to Rote  D€finition 6 (Partial similarity query) Given a query poly-
that there is an infinite number of polygon sections for 90N s, find all polygonsp; from DB which are partially
given polygonp. The complete contour of a polygon is the £-Similar to s, i.e., determine

specific polygon section which resultsif= b, in which case {pi € DBJ3PSY; AT : 6(T(s), PST) < €} .

PSq(t) = p(t). The definition of polygon sections is impor-
tant, since polygon sections may occur as query polygons 2 note thats may also be called a “dissimilarity measure”. We use
and result polygons. “similarity measure” since it is more intuitive.



337

Yo
P1 v esna
L
P2 W d(py, p)T v2
ps not similar to es,
P3 p .
V d(py. p3) | p contains ps w1
a. Surface superposition b. Hausdorff metric Fig. 4. The problem of edge-based algorithms
Fig. 3. Problems with different distance mesasures
€m_1 e,
—» _n
p Mp, 5)

Note that finding all partially congruent polygons is a
subtask of solving the partial similarity query. This means Fig. 5. Effect of the A-function
that any algorithm which solves the partial similarity query
must at least output all partially congruent polygons. A fur- the well-known Hausdorff distance, which determines simi-
ther observation is that the complexity of the query polygon|arity as the maximum of the minimal distances between the
strongly influences the result. The query polygon should neipoints of the two polygorfs The Hausdorff distance, how-
ther be too simple nor too complex, since simple searchever, completely ignores the shape of the edge sequence (cf.
polygons lead to low selectivities (ultimately to a selectiv- Fig. 3b) and is therefore inadequate for defining similarity.
ity of 100% for a single line) and complex query polygons A distance metric which considers the shape of the edge
prevent small substructures from having any impact on thesequence is the Echet distance. The &chet distance de-
result. Consequently, meaningful query polygons will usu-fines the distance of two polygons as the minimum of the
ally be of medium complexity. maximal distances between the points when walking along

the two contours Both the Hausdorff and Echet distance

are defined as some kind of maximum norm. The maximum
2.3 Problems norm provides good results for low distances, in which case

the distances correspond to the human intuition of similar-
In solving the partial similarity query, we have to deal ity rather well, but, for higher distance values, the distances
with several problems. One important problem of similar-may be the result of local effects and do not correspond to
ity search is that similarity should be largely invariant with the human intuition of similarity at all. As already indicated,
respect to translation, rotation and scaling of the polygonsour distance measure uses the Fourier transformation of the
This is true for a wide range of applications, including our polygons and determines the distance of two polygons as
application in the car manufacturing industry, which requiresEUClidean distance in Fourier space. As experimental results
complete translation, rotation, and scaling invariance. Theréhow, the distance in Fourier space is a good approximation
are several approaches to solving the invariance problen®f the human intuition of similarity [KM 95].
The most common solution is a normalization of the poly-  Another problem in solving the partial similarity query
gons to a specific position, orientation, and size. Transformis that similarity may be defined differently depending on
ing the polygons into a well-defined position and orienta-the user’s focus. One user may be interested in the overall
tion, however, is very difficult or even impossible for many contour of the polygons, another user may be interested in
applications. If there is no unique position and orientation,the details of the polygons, e.g., whether the contour is a
slight mistakes in the transformation may lead to false dis-zigzag line or a smooth line, and even another user may
missal. In general, the uniqueness may only be guarantedee interested in some level of detail in between. With all
if there is an application- and data-inherent position and ori-currently available approaches, it is impossible to handle
entation, which is only true for a limited number of ap- similarity being defined for different levels of details. In
plications. An obvious possibility to avoid this problem is contrast, our approach is able to deal with different levels
to use features of the polygons which are translation- andf detail and provides useful results over a wide range of
rotation-independent, such as the edge lengths and anglégvels of detail.
of the polygon or the curvature of the polygon. To achieve A last but serious problem is that all approaches which
scaling invariance, the traditional approach is to normalizeare based on the vertices of the polygons may not avoid
the size of the polygons to some specific size. In our ap.fa|Se dismissals. As already mentioned, any algorithm for
proach, we normalize the arc length of the polygon sectionspartial similarity must at least find all partially congruent
Using the curvature guarantees translation and rotation inPolygons. In the following, we show that any algorithm for
variance, and normalizing the arc length guarantees scalinfie partial similarity problem which does not consider the
invariance.

Another critical problem in solving the partial similarity _ _
problem is the choice of the similarity measure. In the litera-s,, (51, p2) = max( sup - inf gy, SUP it b)> 7
ture, several similarity measures for polygons have been pro- a€plbep? bep2zacypl
posed. Most of them, however, do not seem adequate for owith p1 andp2 being polygons in vertex-representation algl, p2) being
problem. For example, defining the distance of two polygonghe Euclidean distance in the plane.
as the relative percentage of the maximum surface superposi- # The Féchet distance is defined as
tion of the two polygons may yield a high similarity for quite _ ( inf  sub )
different polygons (cf. Fig. 3a). Furthermore, the maximum L p =0, 51 € o, P2 P20ON ]
surface superposition is only defined for complete polygonswith pi() and p2(t) being polygons in functional representation and
and not for polygon sections. Another similarity measure isd(p1, p2) being the Euclidean distance in the plane.

3 The Hausdorff distance is defined as
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Fig. 6. e-neighborhoods of;, es1, s, andes; I_I I_l
infinite number of all possible polygon sections but only I—I —l
sections starting and ending at the vertices may produce faIsI_I — I—| '—l ] —

dismissals, which means that it will miss partially congruent
polygon sections. I—l Lo
The basic idea of the proof is to show that, for any given I_ L

polygon sectionps, we are able to construct a polygen _ )
such thatp containsps, but none of the edge sequences in Fig. 7. Extended feature objects
p is similar to ps. Figure 4 illustrates the basic idea of the

proof. For our theoretical considerations, we require the defsequence:s, will be determined as a result for our query
inition of a A-function. Intumvely, theA-function transforms with p0|ygon sectiors, a|th0ugh8 is parﬂa”y congruent to
a polygonp into a polygong such that the polygons and  j,_ sinces = A(p., k). Because our construction pf may

q are identical on all vertices but the last vertex. The lasthe done for any, we are able to conclude that there is no
edge ofp is extended iny by a factork (cf. Fig.5). More  ypper bound foe. Q.E.D.

formally, the function) : P x ® — P, A(p, k) = ¢ trans-
forms a polygon sectiop into the polygon sectio using
an extension factok(k € [0, oo[) such that

Lemmal implies that for solving the partial similarity
problem it is not enough to consider just the edge sequences
of the polygons, since there exists a query polygamhich
is a polygon section of a polyggnsuch that(es, s) > ¢ for
all edge sequences of the polygonp and any constan.

Our algorithm, which is described in the following section,
avoids this problem, since it is not based on edge sequences
but on the continuous representation of the polygons.

Lemma 1. Any algorithm which tries to solve the partial

similarity problem (cf. Definition 4) for a gives and for

a given similarity measure fulfilling the properties accord- 3 Our approach

ing to Definition 5 by only considering edge sequengk®’

(polygon sections starting and ending at vertices but not be3.1 Overview of our algorithm
tween vertices) produces false dismissals.

(mq =mp)A(Vi,0<i<my,—2:v! =)

a — P P
/\(vmq_1 = vy, otk emp_l).

Our algorithm solves the continuous partial similarity prob-
Proof (by contradiction)Let us assume Lemma 1 is false. lem and guarantees that at least all partially congruent poly-
Then there is an algorithm A which produces no false dis-gons will be found. The algorithm is designed to support
missals for a given fixed. If we are able to show that any similarity measure which defines similarity as Eu-
there is no upper bound far, we may conclude that A will  clidean distance in somé-dimensional feature space and
produce false dismissals and Lemma 1 is proved. fulfills the properties according to Definition 6. Since the

Fourier transformation has proven to be a good measure of
To show that there is no upper bound fgorwe show that, similarity, we determine the distance of two polygons as Eu-
for every givene, we are able to construct a polygpnand  clidean distance in Fourier space. To gain invariance against
choose a polygon sectionof p. such that(r, s) > ¢ Vr € translation, rotation, and scaling, we use the Fourier transfor-
ES. We chooses ass = A(pe, k),0 < k < 1, which means  mation of the differential geometric curvature of the polygon
that s starts exactly on vertexp of p. and does not end instead of the polygon itself and normalize the arc length of
on a vertex but anywhere on the edgg_; of p.. Sinceé the polygon sections ton2 Using the curvature guarantees
is form convergent, lengthening the edgg_; will cause translation and rotation invariance, and normalizing the arc
6(pe, g) to converge against 0 fdr — co. Remember thag length guarantees scaling invariance.
is the trivial polygon section consisting of one edge. Without  For solving the continuous partial similarity problem,
loss of generality, we assume that only the edge sequencesir algorithm maps adjacent sets of polygon sections to 2D
es1 = {eg...,em} = AMpe, 1) andesy = {eg...,em_1} = objects in multidimensional Fourier space. Let vertgxbe
Ape, 0) are relevant fos. Now we are able to construpt the starting vertex and, be the ending vertex of an edge
in a way such thaé(p., g) < € andé(A(pe,0),g9) > 5¢. The  sequence of polygop. If we consider all polygon sections
existence op. is guaranteed sinaeis unbounded. In Fig. 6, starting anywhere between vertex and vs.; terminating
we show thes-neighborhoods of;, ess, s, andes,. Since  at v, and transform all these polygon sections into Fourier
0(A(pe, 0),g) > be, it follows that there must be & such  space, we get a 1D object in tHedimensional Fourier space
that there is no intersection between theeighborhoods of (cf. Fig. 7 top). Analogously, if we consider all polygon sec-
s and es; and between the-neighborhoods ot and es,. tions starting between, andv,.; and ending between,
This, however, implies that(esi, s) > ¢ and é(esz, s) > and v., we get a 2D feature object in thédimensional
¢, which means that neither edge sequenge nor edge  Fourier space (cf. Fig. 6 bottom).
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Insertion of the MBRs
into Multidimensional Index

For an efficient storage and retrieval of the 2D featureane-neighborhood of the query point. In the refinement step,
objects in multidimensional space, we determine the mini-we finally have to compute the 2D feature object for every
mal bounding boxes of the objects ihdimensional space candidatec, determine the minimal distance of the query
and store these boxes using a spatial access method (SAMjoint to the feature object, and select all candidates whose
Basically, any SAM such as the R-tree [Gut 84] and its vari-minimal distance is less than After sorting the remaining
ants (R-tree [SRF 87], R-tree [BKSS 90], P-tree [Jag 90b]), candidates according to their distance, we output the result.
Buddy-tree [SK90], linear quadtrees [Gar82], z-ordering
[Ore 90] or other space-filling curves [Jag90a], and grid-
file-based methods [NHS 84, Fre 87] may be used for this3.2 Partial similarity search algorithm
purpose. By using SAMs, the problem of finding similar
polygon sections has been reduced to the problem of searctas indicated in the previous subsection, the creation of the
ing 2D extended feature objects drdimensional space. partial similarity search index is a crucial part of the al-

Two problems arise with this approach: on the one handgorithm. Note that certain steps of the index creation are
there is a number of rather large bounding boxes which realso used in the query algorithms, namely the determina-
duce the quality of the index and, on the other hand, there ision of the curvature and Fourier transformation (cf. Fig. 8).
a large number of quite small boxes which causes the sizén this section, we describe the important steps of our par-
of the index to increase unnecessarily. The big boxes are #al similarity search algorithm in more detail. In creating
result of the approximation of the feature objects by bound-the partial similarity index, the first step is to determine
ing boxes in high-dimensional space, where small varianceall possible edge sequencéss? for all polygonsp of the
in some dimension result in large extensions of the bounddatabaseD B. This can be done by successively determining
ing boxes, and the small boxes are a consequence of th&e m, sequences of length,,, them,, sequences of length
small changes of the Fourier transformation for certain poly-(m, —1),. .., and them, sequences of length 3. Length 3 is
gon sections. There are many possible solutions to thesenough, since smaller edge sequences may not define signif-
problems, including using better approximations instead oficant shapes under partial similarity and translation, rotation
the bounding boxes (e.g., rotated bounding boxes [BKS 93]and scaling invariance. The next step is to determine the 2D
polyhedra [Gue 89, Jag90b], etc.). The most practical andeature objects for each of the edge sequencdsSh.
effective approach for our application, however, is to use an
adaptive decomposition of the 2D objects recursively parti-
tioning the objects until the volume of each of the resulting3.2.1 Determining the feature objects in Fourier space
boxes is less than a constant valdg.x. To solve the prob-
lem of having too many small boxes, we join as many of The 2D feature objects id-dimensional Fourier space are a
these boxes as possible as long as the volume of the boungesult of varying the length of the first and the last edge of
ing box of the joined boxes remains less tHanx Figure8  the edge sequences and determining the Fourier transforma-
provides an overview of the index creation and querying oftion of the curvature of the resulting polygon sections. More
our partial similarity search algorithm. formally, the feature object corresponding to the set of poly-

After having created the index, querying for similar poly- gon sections created by varying the first and last edges of
gon sections is rather simple. We only have to transform thexdge sequences;; can be described as

curvature of the query polygon into a query point in the o os.
Fourier space (cf. Fig. 8). Using the SAM, we are then ablel" O (z,y) = F(C(PS(, .. y@r—y.|e; h D))
to determine all candidate bounding boxeaghich are within with
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whereC : (R — R?) — (R — R) is the transformation CiCirce)
determining the curvature functiarft) for a given polygon +ILIJ.I].IJ.D.I].I].ILI:I.[L|].[|
contour functionp(t) and F : (R — R) — R? is the Fourier

transformation determining the Fourier coefficients for a f pli __n_n_D_D_D_u_nip')

given curvature function im-dimensional Fourier space.
The similarity measure of our approaéh(7'(p1), p2) is é/ e
defined asig cid(F(C(ps1)), F(C(ps,))). Note that the nor- et
malization of the polygon sections is implicitly contained
in the definition of polygon section®S,; (cf. Definition
2). In the rest of this paper, we simply writtO,; for
FO®%i(2,y),0 < z < 1,0 < y < 1. In the following, we get a new geometric object of which at least the first
we describe the curvature transformatidrand the Fourier derivative is continuous. The curvature of this structure is
transformationf'. defined in sections; by concatenating these sections, we ob-
tain a non-continuous square wave function. Figure 9 shows
our approximation of a polygon section and the according
Determining the curvature of polygon sections curvature function.
For describing our curvature transformation in more de-
As described in Sect. 2.1, a polygon section may be seen dail, let us focus on two subsequent edges; ande;. These
a parametrized function. The curvature of such a functionedges coincide in vertex; with an anglea;. For the edge
is mathematically undefined because the second derivativeé@quence:s 1 containingv;, we may easily compute the
iS not continuous. A Variety of approaches have been pro.C.Urva.tUre fUnCtiOl’Ei(t) descrlblng the differential geomet-
posed in the literature to overcome this mathematical probtic curvature of the approximated edge sequence, because
lem ([HB 86], [KSP 95], [WW 80], etc.). These approaches the curvature of a circle segment with radiuss a constant
may be classified into two major groups: approaches WhicHUnCtlon ]/’I‘ and the curvature of a Stralght line is a constant
determine an approximated curvature function in one stepZero function. We may calculate the arc length of the circle
and approaches which approximate the polygon such thategment substituting vertex by b; = |c| - r. For¢;(t), we
the curvature function of the polygon’s shape is well definedtherefore obtain
and determine the curvature of the approximated polygon in ) = {i it (t, —bi/2>t>t, +b;/2)

Fig. 10. Examples for the curvature of two polygons

a second step. Gi 0 else

An example for an algorithm determining an approxi- ) ] .
mated curvature function in one step is the turning angleThe curvature of an arbitrary polygon sectiesy; is c(t) =
algorithm described in [HB 86]. Another possibility is to use 7 _..; cx(t). Figure9c shows the graph of the curvature
a function similar to a curvature plot such as the centroidalfunction ¢(t) for the approximation of the polygon section
profile [KSP 95], the super segments [SM 90], or geomet-presented in Fig. 9a. Figure 10 shows the curvature functions
ric hashing [RH92]. Another approach [Ber97] is to ap- of a square and a circle. In addition, we show two polygons
proximate the polygon by a cubic spline function and then(p1 andp,) which are similar under translation, rotation and
analytically determine the curvature of the spline. All thesescaling invariance. Note that the curvature functions of the
algorithms have certain advantages and disadvantages. Plotgjo polygons have only minor differences in the width of
for example, such as the turning angle are a good choice ithe square waves.
the data is noisy as, for example, in computer vision ap- The approximation of the original polygon and in par-
plications. Furthermore, most techniques require the choicgicular the choice of- influences the curvature function. If
of an appropriate sampling rate, which is difficult to choosewe reduce the radius of the circle segment, /& will be
without any a priori knowledge of the data. increased, whileh; will be decreased. This causeg) to

In general, our technique of using extended feature obbecome more narrow and the amplitude of square waves
jects is independent of the technique used to determine thto become higher, while the approximation of the polygon
curvature function. In principle, any of the curvature func- converges against the polygon itself. On the other hafty,
tions mentioned above may be used. Which approach is adsecomes difficult to handle numerically. An adequate value
tually used depends on the application domain and its spefor » which has proven useful for our applications/jsfor
cial requirements. In case of CAD data, we decided to usgolygon sections with a normalized length of.2As our
a rather simple curvature function. We substitute all ver-experiments show, the remaining steps of our approach are
tices of the polygon with tiny circle segments. From that quite robust against a suboptimal choiceroés long as-
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is smaller than half of the length of the shortest edge in the3.2.2 Enhancing index selectivity

database, since otherwise individual square wave functions
may overlap. In the last sections, we described the determination of the

2D feature objects. In the final step of the index creation, we
insert the bounding boxes of the feature objects into a mul-
tidimensional index structure. However, as indicated in the
overview, there are two practical problems that arise with
our approach of managing the bounding boxes of the fea-
The next step is the Fourier transformatiénof the curva-  ture objects using a spatial access method. On the one hand,
ture. The principle of the Fourier transformation is to ap- there is a number of rather large bounding boxes which re-
proximate a function by summing up sin and cos functionsduce the quality of the index, and, on the other hand, there
with adequate parameters. The quality of the approximations a large number of quite small boxes which causes the size
is improved by increasing the degreeof the Fourier ap-  of the index to increase unnecessarily. We solve the prob-
proximation, which means to successively sum up €ps( |em of having large bounding boxes by using an adaptive
sinz), cos(2), sin(2r), ..., cos3x), sin(§x). Experimental  decomposition of the 2D feature objects, which recursively
results show that the Fourier transformation provides a googartitions the feature objects until the volume of each of the
approximation of the pO|ngﬂS and their curvature fUﬂCtiOﬂresumng boxes is less than a constant VaMplﬁx; and we
even for rather smalil. In Fig.11, we present a polygon soplve the problem of having too many small boxes by join-
together with the Fourier approximations using 2, 4, 6, 32,ing as many of these boxes as possible as long as the volume
64 and 512 coefficients. Note that the polygon in Fig. 11 hasf the bounding box of the joined boxes remains less than
eight internal vertices and, therefore, we get eight spikes, ... For determining the boxes which are to be decomposed
in the curvature function. Our experiments show that sixand those which should be joined, we need to calculate the
Fourier coefficients are sufficient for our application. bounding box of the feature object ikdimensional space.

In the appendix on the Fourier theory, we present theunfortunately, it is quite difficult to calculate the extremes
formulas for analytically determining the Fourier coefficients of a feature Object inl-dimensional space ana|ytica||y_ For
of a square wave function (cf. Eq.1). For determining thecalculating the extension of a feature object in every di-
Fourier coefficients of our curvature functieftt), we just  mension of the Fourier space, we have to differentiate the
have to sum up the formula given in Eq.1 for al(t). We  function FO®i(z,y) and calculate the null values of the
obtain the following formulas for the Fourier coefficients of derivative. To the authors’ knowledge, there exists no ana-

Fourier transformation

a polygon: Iytical solution to this problem, and therefore, we have to
_— use numerical solutions. Unfortunately, the standard method
_1 Z a (. (. |ovir| — a modified Newton algorithm — is rather slow in high-
ap= sin| k|t + . . . .
wkr e v 2 dimensional space and requires an appropriate start value to
” guarantee termination. As our experiments show, however,
—sin <k (tm _ O‘ir|>)> , a simple and very fast algorithm leads to approximately the
2 same results. We simply approximate the feature object by
m—2 a set of plane segments defined by some points chosen from
1 a; |air] ; . >
br=— Z cos| k[t + the feature object. The maximum search on this linearly de-
mhr 4 |l 2 fined structure is very fast, while the inaccuracy of the ap-
|| proach is negligible.
—cCcoS| k|t — 5 .

The calculation ofi; andb, can be done iO(m) time, the ~ Decomposition of feature objects
calculation of all coefficients can be doneGi{m™*d), where . ) ) )
d is the degree of the Fourier sum. Note that we are ablel € décomposition of the feature objects is necessary, since
to compute the coefficients of the Fourier sum analytically,Otherwise large bounding boxes will cause an insufficient
and therefore we do not run into numerical problems, sucts€l€ctivity of our indexing method. The reason for the large
as choosing the right sample rate. This fact is one of thesi2€ Of the bounding boxes is that bounding boxes are in
reasons for being able to use a rather small degree of th@eneral bad approximations for low-dimensional objects lo-
Fourier sum without losing too much information. cated in a h|gh—d|men3|onal space, becau.se they usuaIIy_ in-
The Fourier transformation as defined above fulfills the!Ude @ large portion of dead space. Imagine a diagonal line
necessary properties of a similarity measure (cf. Definition®' 1€ngth 2 in ad-dimensional hypercube. The volume of the
6). The properties (1)—(3) are trivially fulfilled, since each bounding box of the line is (2/d)". If we decompose the
polygon is mapped to a specific point in Fourier space andriginal line into two equally sized segments, we obtain two
the distance of polygons is determined by the Euclidean disboxes of size (1v/d)?, which is a factor of 2. The reduc-
tance of those points in Fourier space. The fourth propertytion of volume achieved by decomposing the line segment is
(distance measure unbounded) is guaranteed, since it is a&'/2 = 2'~1. For d = 6, the volume of the bounding box is
ways possible to construct a more dissimilar polygon, at leasteduced from (2/6)° ~ 0.30 to (1/1/6)° ~ 0.005 yielding
for infinite d. The degree of the Fourier suni)(has to be a reduction factor of 2= 32. This high reduction factor is
chosen high enough such that this property is fulfilled foronly true for a diagonal line. If the line is parallel to one of
all polygons in the database. the coordinate axes, there is no reduction. Our experiments
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Fig. 11. Approximation of polygons by the Fourier transformation
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decompose_feat_obj(FO fo, int 11, int lh, int hl, int hh, set_of FO result)

int Im, hm;
if (volume(box(fo)) > Vmax)

Im = (11 + 1h) / 2; hm = (hl + hh) / 2;
decompose_feat_obj(fo, 11, Im, hl, hm, result);
decompose_feat_obj(fo, 11, Im, hm, hh, result);
decompose_feat_obj(fo, Im, lh, hl, hm, result);
decompose_feat_obj(fo, Im, lh, hm, hh, result);

else
result.insert(fo, 11, 1h, hl, hh);
}

Fig. 12. Algorithm for decomposing feature objects

show, however, that on the average there is a high reductio
potential when dealing with real data.

Decomposing a feature objedtO%i(x,y) IS equiva-
lent to splitting the parameter spaces of x and y. If we
divide the parameter spaces into four equally sized sub

join_feat_obj(set_of_FO IS, set_of_FO RS)
Matrix mm;
inti, j, X, y:
bool enlargement_possible;
// initially set up matrix with elements of 1S
while (not mm.is_empty())

(i, j) = mm.choose_entry(); // choose first occupied position of the matrix
x=0y=1; // initialize test region

enlargement_possible = TRUE;
while (enlargement_possible)

enlargement_possible = FALSE;
if (mm.cond2(i, i+x, j, j+y) and mm.cond3(i, i+x, j, j+y))
enlargement_possible = TRUE;

// analogously test enlargement in j-direction

// reset x any y to the last successful values

for (u=1itoi+x)

for (v=jtoj+y)
mm.remove(u, v);

// remove joined entries from matrix

RS.insert(i, i+Xx, j, j+y):// insert new feature object into RS

}

)

Fig. 13. Algorithm for joining feature objects

spaces, we obtain four new feature objects. Note that théhe search time) significantly without compromising index

union of these four feature objects is equal to the origi-
nal feature object. Our algorithm now recursively decom-

selectivity.
For defining the join operation, we have to generalize the

poses the feature object until the volume of the boundingdefinition of a feature object. In Sect.3.2.1, a feature object

box of a feature object is lower than a constant valigy.
More formally, a feature objeck’O°*ii ([il, ], [hl, hh]) is
recursively decomposed into the following four feature ob-
jects FO*%u ([Il,Im], [hl, hm]), FO*%i([lm,[h],[hl, hm]),
FOe%i([ll,Im],[hm, hh]) and FO*i([Ilm,lh], [hm, hh]),
wherelm = (Il +1h)/2 andhm = (hl+hh)/2. In Fig. 12, we
present the program code of the decomposition algorithm.

Joining feature objects

A problem of the index as described so far is that there iSFO;;,;,;,(x,y) = F(C(PS,

a large number of quite small boxes which causes the siz

is defined by varying the length of the last and first edge of
a polygon section, which means that a feature ohjeéo;
corresponds to all polygon sections starting anywhere on
edgee; and ending on edge;. If we join the feature object
FO;; with the nearby feature objedtO;(;+1), the resulting
feature object corresponds to all sections starting anywhere
on edgee; and ending on the edge sequeneg;+y). In

the generalized definition of a feature object, the polygon
sections belonging to the feature object may start anywhere
on edge sequenes;, ;, and end anywhere on edge sequence
€Sy -

€Siyjp

@-|esiyi,|) @r—y-les;yj,)

®))

e

of the index to increase considerably. The reason for thevith

large number of rather small boxes is that extending a poly-

gon section by one more edge will provide similar Fourier
coefficients if the overall shape of the polygon section fits
the Fourier approximation. This effect especially occurs for

z,yeR, 0<zx<1 0<y<1 0<¢t<2n,

where(C is the curvature transformation ardis the Fourier
transformation as defined in Sect 3.2.1. Note that, for the spe-

segments of circular shapes. where the Fourier transformacial case of {1 = i2) A (j1 = j2), this definition is equivalent
tion remains approximately constant if the circle segment igo the one in Sect. 3.2.1.

extended in both directions. As a consequence, the resulting With this generalized definition of a feature object, join-
feature objects which are adjacent to each other have smailhg a set of feature objects may be defined as follows: Given
bounding volumes. Our approach of joining adjacent fea-an initial set/.S of feature objects'O;;;;, we are looking
ture objects reduces the number of index entries (and thufor a minimal result setRS of feature objectsF'O;,;, ;. j»,
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a. Initial set of feature objects (IS) b. Resulting set of feature objects (RS)

Fig. 14a,b.Example for joining feature objects

which fulfills the following conditions: index_creation (set_of_Polygons DB)
set_of_edge_sequences ESSet;
(1) VFO”QJ < IS’ HFOuluzylluz ]s:e(t)_gof:_FO DecomposedFO, JoinFO, JoinResultFO;
ERS:(Ulgiguz)/\(’Ulng’Uz), ?or(pinDB)
(@) FOuupore, € RS = (Vitus <0 < up ESSet penerste s seauencou D senrte sl g st of
V] i< HFOiijj € IS) s ?OI(CSinESSe[)
(3) VFOuluzvlvz c RS : VBBom(FOuluzvlvz) < Vmax . ?(:0?3:55&;?;:)}?{(/2;;) /I calculates the feat.-obj. corres. to es

decompose_feature_obj(fo,0,1,0,1,DecomposedFO) // all of decomp. algorithm
elst

The first condition guarantees that all feature object$f ® JoinFO.insert(fo);

are fully contained inR.S, the second condition guarantees 3 feature_obj IO, JomResultFO) 1 call of foinine aleorith
. . . . o1n_tleature_ol oln , Joinkesu: N call ol joining algort
that there is no redundancy iRS, and the third condi- Tndex. imserDecomposedFO.union(JoinResultFO); /insert feat by o ndex.

tion guarantees that the bounding box volume of any featurq , )
object of RS is smaller thanVax, Which is important to
guarantee a good selectivity of the index. Fig. 15. Algorithm for creating the partial similarity index

%0 rlltr;] rl;' gT::-]‘?e) , ;Ygeopr:tisne] r::ltehsetg rgr?ll;aarrgnecgldeefggis ree] (;|tr)]|ggt ill-_ ?arlia]_simi]arily_scarch(pol ygon_section SearchPolygon, set_of_Polygons ResSet)
ternately to the right and to the bottom as long as conditiong

CandidateSet CS;
FourierVector fv;

(2) and (3) are fulfilled. Condition (1) is fulfilled implicitly fv = fourier(curvature(SearchPolygon));
since the algorithm continues until all feature objectd 6f €S = index_neighborhood_search(fy. epsilon); /1 Tilter step
H H H H for (cin CS) 1/ refinement step
have been considered. Let us explain the algorithm using th if (distance(calc_feature_obj(c), f¥) < epsilon)
following example. Assume, we have a matrix with an entry ResSet.insert(c);

}

for all feature objectd"0;;;; of 1.5 which have a bounding
box volume smaller thai,ax. Figure 14a shows an exam- Fig. 16. Partial similarity search algorithm
ple matrix for a real polygon from the databadg{x = 1).

Everyz in position ¢, j) of the matrix corresponds to a fea- q,aqtrees [Gar 82], z-ordering [Ore 90] or other space-filling
ture objectF’0;;;; of the initial set/.S. A join of feature e [Jag90a], and grid-file-based methods [NHS 84,
objects may be seen as a union of rectangular regions ige g7]. |n most SAMs, it is sufficient for the indexing step
the matrix under the above conditions. Figure 14b shows the, ciore the bounding boxes of the feature objects together

resulting set of joined feature objeckS computed by our |\ bointers to the feature obiects and thei TN
algorithm. Initially, the algorithm chooses the first marked value%. ) i, (2, j1, J2)

position ¢, j) in the matrix. Starting from this position, a test

region is enlarged first ifrdirection, then inj-direction. The

enlargement stops if the new regioni(+ z, j, j +y) is ot 3.3 Correctness of our indexing technique

totally filled (condition 2) with feature objects dfs, or if

the volume of the bounding box afOj;+s)j(;+y) €Xceeds In Fig. 15, we present the complete algorithm for index

Viax (condition 3). Finally, we inserf'O;+z)j(j+y) iNto RS creation. The algorithm iterates over all polygons of the

and remove fromRS all elements of/.S which are con- database. The first step is to generate all edge sequences

tained in the joined feature object. The whole procedure isof a polygonp. Then, for each of the edge sequences, the

repeated until all feature objects have been removed fronalgorithm determines the corresponding feature object. If the

1S5. Note that our algorithm maximizes the product ¢) in volume of the bounding box of the feature object is larger

each step, and therefore removes as many entries fitfm than V., We call the decomposition algorithm; otherwise,

as possible. The resulting.S is a good approximation of we insert the feature object into the set of feature objects

the overall minimalR.S. to be joined. After all edge sequences of polygomave
The last step in creating the index is to insert the bound-been processed, we call the joining algorithm. Finally, we

ing boxes of the remaining feature objects into a SAM.insert the feature objects resulting from the decomposition

Any SAM which is able to index 2D feature objects in and joining step into the index.

d-dimensional space may be used. Examples for potential The algorithm for searching partially similar polygons is

SAMs include the R-tree [Gut84] and its variants*{R presented in Fig. 16. In querying for partially similar poly-

tree [SRF87], R-tree [BKSS 90], P-tree [Jag90b]), linear gons, we only have to transform the query polygon section
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into a point in Fourier space. Using the SAM, we are then F(C(PSE;.T;”) (27r—b-|e,-|)))) > ¢
able to determine all bounding boxesvhich are within an .. ’ ;

e-neighborhood of the query point. In the refinement step, < VPS(fb ' dEUC'id(F(C(‘s))’F(C(PSSFJ))) - €

we have to compute the 2D feature object for every candi- = VPS; @ 6(T'(s), PSE;) > ¢

date ¢, determine the minimal distance of the query point (sinceC o F is invariant against affine transformations)
to the feature object, and select all candidates whose mini- , . . . - ) .
mal distance is less than In the following, we show the which is in contradiction to the first part of our assumption.

correctness of our algorithm. Q.E.D.

Lemma 2. Our algorithm guarantees to find gtlrtially
e-similar polygon sections. In other words, our partial sim-
ilarity index search does not produce any false dismissals. | this section, we provide an overview of the implementa-
tion of our approach. We further present the experimental re-
Proof (by contradiction)We assume that there is a polygon sults of applying our method on a large database of real data.
section PS?; of a database polygop;, which is partially ~ Our experimental results show that the maximum allowed
similar to the search polygos, but is not in the result of volume of any bounding box in the indeX sy strongly
the e-neighborhood index search. We have to show that thignfluences the search time and the space requirements of our
assumption leads to a contradiction. Note that we only havenethod. We show that there is an optimal value¥fgg, and
to consider the filter step, since in the refinement step theregetermine the optimal valught experimentally. We further
may not be any false dismissals. More formally, the assumpshow that our method scales well with increasing database

4 Implementation and analysis

tion may be expressed as follows size.

Ip;3PSPAT - §(T(s), PSPi) < e A PSP

not in e-Neighborhood(T(s)). 4.1 Implementation

The termP.S}; not ine-Neighborhood(T(s)) is equivalent to T test our partial similarity index, we integrated the algo-
& Vfo € index:8p(s, BBox(fo)) > & rithms into our prototype CAD database syst88(Similar-

. ] ity Search SystemB3is a database system for the manage-
& Vfo € index:deycig(F'(C(s)), BBox(fo)) > e. ment of industrial parts which are described by a polygonal
The feature objects stored in the index are either decomCAD model. The system stores polygon contours for each
posed or joined feature objectindex = DecomposedFO: part of the database and allows the user to create indexes
U JoinedFQ. Therefore, in the next step of our proof, we using different indexing methods, providing a testbed for
have to show that we may not lose polygon sections bycomparing the query performance of the different indexing
the decomposition and joining algorithms. Sindgo <  methodsS3 has been implemented in C++ using X11/OSF
DecomposedFO deugia(F(C(s)), BBOX(fo)) > ¢, itis clear ~ Motif, and runs under HP-UX as well as Linux. All exper-
that the Euclidean distance #f(C(s)) and the original un-  imental results presented in the next sections are computed
decomposed feature objects must be |arger thalm case on an HP 715/64 workstation with 64 MB of main memory

of the joining algorithm, condition 2 guarantees that and several gigabytes of secondary storage. The SAM used
, ) ) is an object-oriented version of the' ®ree which is imple-
VEOuyuz010,€J0INGAFO: Vit ug < i < up mented as a C++ template to support different data types.
Vi iv1 <j <wpi dF Oy € FOP', The R*-tree allows different types of queries such as partial

. range queries and nearest neighbor queries.
which implies that 9eq 9 q

VFOyyupviv, € JOiNnedFO:

U FO,;:; C FO )
w<i<ugmn<j<v, 07 T T T Hamann

4.2 Data, query polygons and results

As indicated in the introduction, our algorithms have been
designed to process real data from a major supplier of parts
Vfo € JoinedFO: deycia(F'(C(s)), BBoxX(f0)) > ¢, for the German car manufacturing industry. The data used in
) ) our experiments are the 2D contours of parts called ‘clips’

we may conclude that the Euclidean distafo’(s)) and  which are used in the car manufacturing industry for holding
each of the unjoined polygon sections must be larger than and joining components in a car. Since, in general, ‘clips’ are
Altogether, we have now shown made of plastic material and produced by injection molding,

Vfo € Index: deucia(F(C(s)), BBO > the variety of shap_es is nearly unlimited. The ‘clips’ Qata
fo E“f"]'d( () e _X(fo)) g used for our experiments result from real CAD drawings

= Vfo € FO® es;; € ESP  deycid(F(C(s)), from our industrial partner. In Fig.17, a small portion of

Together with our assumption

BBox(M F%4)) > ¢ our ‘clips’ database is presented.
& VYfo€ FO® es;j € ESP : deyeia(F(C(5)), The queries used to test our algorithms are a set of real
esij uery polygon sections provided by our industrial partner. In
BBOX(F(C(PS{ . pan—soie, ) > © Fig 18 we i f y

Fig. 18, we show an example of such a query together with
= Vfoe FO%* es;; € ESP" & deucid(F(C(s)), the corresponding result generated by our program. Note that
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log(Vmax) log(Vmax)
a. Effect of decomposition and joining b. Total number of feature objects
Fig. 20a,b.Index size depending OWmax
. 18.00 —
the leftmost of the retrieved polygons (polygon number 15) ] )
is partially congruent to the query polygon section, the others 7 /
are only partially similar, sorted with respect to increasing o /
distance. The similarity of the retrieved polygons turned out_ 200 -\
to correspond well with the human intuition of similarity. A 1000 :\ /

more objective study of the quality of our similarity mea-
sure is difficult, since it involves humans and their intuitive

time-space-product

understanding of similarity. e \ /
To show the advantage of a continuous solution of the  +0 ] AN e
partial similarity search problem in contrast to an edge- 20 ——
based solution, we also implemented one of the best ex ,, 3
isting methods — the well-known Gary-Mehrotra approach 200 -1.00 0.00 1.00 2.00 a.00
[MG 93, MG 95]. In Fig. 19, we show the result of query- fog(Vmax)

ing the same database by using the query polygon shownrig. 21. Time-space requirements
in Fig.18a. It is clear that the Gary-Mehrotra does induce

false dismissals, i.e., it does not find all partially congruentss|o\ys the curve describing the total effect of decomposition
polygons (e.g., result polygons 1, 2, and 3 in Fig. 18), sinc&yng joining (cf. Fig.20a). Note that we use a logarithmic
it does not consider polygon sections starting and endingcje fory/,.,, which means that the reduction of the index
between vertices. size is very high until,a reaches a value of 2pwhile the
increase of the index size is super-exponentiallfgy — 0.

For determining an optimal value df,. we have to
consider not only the space requirements but also the devel-

In this subsection, we present an experimental performancgﬁg]vs:ttr?; tggj?fﬂf%%ft'misﬁﬂgfi?gmgo‘gﬁ\}}xc;ugﬁur\f,fzit
evaluation of our algorithms. An important parameter of our P Y, 9

clgorims i he consant vy, wich ey - SIS 1er s 1 NI ST e 0en Sees e
ences the size of the generated index. In Fig. 20a, we sho '

" o . *-tree is not continuous, since there is a discontinuity each
the effect of the decomposition and joining algorithms for a_. ' . X
varying value offia. As expected, the joining algorithm re- time the depth of the Rtree is decreasing. Figure 22b shows

duces the number of index entries, while the decompositior} ' gmdetrequwed f(:r tt?]e freﬁpemeg_t sttep,f\%mch |sd.t2ett|me g
algorithm increases the number of index entries. The effec eesEé tﬁe gi;i};r?gguo(fe thg SSnEESz;ejsegsa?instetﬁsn de? esoalm_
of the decomposition algorithm dominates for small values on. The number of candidates is invgrsel o grtio?w/al? tg
of Vinax, Since many feature objects have to be decompose : y prop

For largerVmnax the number of feature objects which have he selectivity of the index. For a higher value Wgfax, the

: : ding boxes in the index become bigger, which means
to be decomposed decreases rapidly and converges agan%qun > ;
0. Inversely, the effect of the joining algorithm is rather low Rat the selectivity of the index decreases and the number

. - of candidates increases. Since the time curve for the filter
for small Vinax (only few feature objects may be joined), but ' : )
increases for largebmax, Since many feature objects may ﬁgg ;emﬁ?nirx]sfgeﬂe arebginwue)z:]|ra/29:rsled_tlf;eatr§)éall(s:efirgc)h time
be joined. For a/,ax of about 1(= 18), the two algorithms max

neutralize each other. Note that the decomposition algorithng(:f' Fig.22c). To determine the optimal value fie, we

: : : P : have to consider space and time requirements of our algo-
improves the quality of the filter step significantly, since the . S . ; :
volume of bounding boxes is decreased, and the joining alrrlthm. As shown in Fig. 20b, the index size decreases with

X . . . increasingVmax. Unfortunately, the search time explodes for
gorithm does not worsen the quality substantially, since the_. ) .
joined boxes remain rather small. emgh values ofVnax (cf. Fig.22c). To consider both space

_Figure 20b shows the development of the ind?X size With 5 Note that the search time of our method is mainly CPU-bound and
an increasing value dfiax. The decrease of the index size therefore the CPU-time directly corresponds to the elapsed time.

4.3 Experimental results
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a. Filter step b. Refinement step c. Total search time
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. . . .. 5 30.00 3
and time performance of our algorithm in determining the & 2500
optimal value forVhax, we use the weighted product of the § 20'00 3 y
two curves (cf. Fig. 21) with a higher weight for the time g 1 /
curve, since the search time is more important for our appli-¢ ;. 1 e
cation than the space requirements. The quadratic regressi¢ 1 /
of the product curve provides g oA
0.00 500000.00 1000000.00

f(x) =2.033- 22 — 1.282.- 2+ 1.971

The minimum of the regression curve is 0.315, which meang-ig. 23. Search time depending oW
that the optimal value foFmay is Viahx = 10P-315 ~ 2.07.

For the experiments reported so far, we used a database
of 800 polygons with about 50 edges on the average, re-
sulting in about 275,000 edge sequences (problem size
N =~ 275000). The generated extended feature object inneeded for determining the extended feature objects of the
dexes had a size of up to 70 MB (fdf,ax = 1072). In our ~ edge sequences. Both disadvantages, however, are the price
final experiments, we examined the scale-up of our algowhich has to be paid in exchange for obtaining a solution
rithm with increasingV (for Viax = rT?g)t()- Figure 23 shows of the computationally difficult continuous partial similarity
the resulting curve for the total search time. As expectedsearch problem. The parameters of our approach are impor-
the curve is sublinear with increasing. The undulations tant to adapt our techniques to the specific needs of different
of the curve are again due to the jumps in the height of theapplications. The maximum volumegnax may be used to
R*-tree. find the optimal trade-off between index size and filtering
selectivity, and the radius of our curvature approximation
may be used to increase the quality of the curvature approx-
imation. Both parameters may be varied, depending on the

In thi ted Hicient solution for th application.
n this paper, we presented an eficient solution for the con- =, f,tyre work includes a practical evaluation of the

tinupus partial similarity sea_rch problem of 2D polygons. system S3 by our industrial partner. The evaluation will
We introduced the new technique of extended feature ObJeCtﬁwclude a detailed comparison of different types of CAD

which —in contrast to Cor.“’e‘?tiona' algorithms — guaranteesy,ia and different types of queries. We also intend to apply
th?t thef:re ar$ no ';atlﬁe d|s|m|ssals. Ihe ”_‘etthOd tls zazefd Ye technique of extended feature objects in other applica-
? ransb_orTa_lon Oh' ﬁdpo ygon selc lons in (_)I_ex eﬂ e etz’[ion contexts, such as pattern recognition or protein docking.
uré ObJeCts In a high-dimensional space. 10 enhance g, ,yre work includes an examination of alternative in-

selectlw_ty of the mde_x, we develop_ed an algorlt_hm for de- dex structures on their suitability for high-dimensional data
composing objects with Iarg(_a boundlng volumes into smallerand their performance for large databases. Also interesting
ones, and to decrease the size of the index, we developed

! A . . ) ¥ be an examination of how an adaptive decomposition of
algorlth_m for joining adjacent objects. ".1 our experimental large objects into smaller ones may improve the performance
evaluation, we have determined the optimal valueVgsy,

the threshold value for the decomposition and joining algo-Of the indexing methods. Another area of future work will be
rithm. We have further shown that our method scales weIIthe partial similarity problem for contours of 3D polyhedra.

This, however, is a difficult problem, since there are many
even for large databases of polygons.

The advantages of our new approach are: it is provablyObStaCIes that arise in going from 2D to 3D.

correct (Cf_' ,SUbse_Ct' 3'3) and, itis efficient, S'nce itis k)aseq&cknowledgementsWe thank Rainer Urian for his support in developing
on a multidimensional indexing of the resulting extendedihe details of the Fourier theory. We are also thankful to Thomas Seidl,
feature objects. A disadvantage is the large number of edg&homas Schmidt, and the anonymous referees for their comments on pre-
sequencesd(>_;-, m?)] and the high preprocessing time vious versions of the paper.

N

5 Conclusions
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Appendix [FRM 94]
Mathematics of the Fourier transformation
Any periodic functionf :  — $ with period 2r can be  [gargz]
approximated by the sum
n [Gut84]
_ap .
FS@)=, > (ax cosx) + by sin(ka)) ,
k=1 [Gue 89]
where the coefficients;, andb,, are defined as
27
HB
ag = f(x) coskx)dx and [HB86]
T Jo [Jag 90a]
1 27
by = f(x)sin(kx)dx.
[Jag 90b]
The coefficientsa and b can be seen as vectors in an [Jag 91]

dimensional vector space. The base of the vector space
is build by cos{), sin@), cos(), sin(2r),..., cosfr),

sin(nx). In general, integrals of the fortfi f(z) sin(z)dz are  [KM95]
difficult to solve analytically. For the special case fifr)
being a square wave function howevérf(z) sin(x)dz can
be 1determir?ed easily. Let us assume tiiat) has a_value [KSP 95]
of . in the interval {:,v] and is zero elsewhere. Since the
value of the integral is zero outside af,fv], we just have
to integrate fromu to v. Therefore, we are able to calculate
ax andby, as: [MG 93]
1 /1 d = 1 " ik 1
a = - coskx)dx = 7TIW(sm( v) — sin(kuw)) (1a) [MG 95]
1 /71 1 [Mum 87]
by = sin(cx)dx = (cosv) — cosgu)) (1b)
TSy T wkr

. . . NHS 84
For a detailed treatment of the Fourier theory, see [Wei 80].[ !

[Ore 90]
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