
The VLDB Journal (1997) 6: 333–348 The VLDB Journal
c© Springer-Verlag 1997

Using extended feature objects for partial similarity retrieval
Stefan Berchtold, Daniel A. Keim, Hans-Peter Kriegel

Institute for Computer Science, University of Munich, Oettingenstr. 67, D-80538 Munich, Germany;
{berchtol,keim,kriegel}@dbs.informatik.uni-muenchen.de

Edited by R. G̈uting. Received October 7, 1996 / Accepted March 28, 1997

Abstract. In this paper, we introduce the concept of ex-
tended feature objects for similarity retrieval. Conventional
approaches for similarity search in databases map each ob-
ject in the database to a point in some high-dimensional
feature space and define similarity as some distance mea-
sure in this space. For many similarity search problems, this
feature-based approach is not sufficient. When retrieving par-
tially similar polygons, for example, the search cannot be
restricted to edge sequences, since similar polygon sections
may start and end anywhere on the edges of the polygons.
In general, inherently continuous problems such as the par-
tial similarity search cannot be solved by using point objects
in feature space. In our solution, we therefore introduce ex-
tended feature objects consisting of an infinite set of feature
points. For an efficient storage and retrieval of the extended
feature objects, we determine the minimal bounding boxes
of the feature objects in multidimensional space and store
these boxes using a spatial access structure. In our concrete
polygon problem, sets of polygon sections are mapped to
2D feature objects in high-dimensional space which are then
approximated by minimal bounding boxes and stored in an
R∗-tree. The selectivity of the index is improved by using
an adaptive decomposition of very large feature objects and
a dynamic joining of small feature objects. For the poly-
gon problem, translation, rotation, and scaling invariance is
achieved by using the Fourier-transformed curvature of the
normalized polygon sections. In contrast to vertex-based al-
gorithms, our algorithm guarantees that no false dismissals
may occur and additionally provides fast search times for
realistic database sizes. We evaluate our method using real
polygon data of a supplier for the car manufacturing indus-
try.

Key words: Indexing and query processing of spatial ob-
jects – Partial similarity retrieval – CAD databases – Fourier
transformation

1 Introduction

The problem we focus on is searching a database of 2D
polygons for polygons which are partially similar to a given

query polygon. The problem arises in a cooperation with a
major supplier of parts for the German car manufacturing
industry. The company produces parts called ‘clips’ which
are used for holding and joining components in a car. The
number of parts manufactured by the company is quite large,
since many different parts are necessary for each car model.
The goal of the cooperation is to reduce the cost of produc-
ing new parts by maximizing the reuse of parts. Important
for parts to be reusable is that the new part coincides in some
detail with previously designed parts which are stored in the
parts database of the company. If partially similar parts can
be found, the cost for designing and manufacturing a new
part can be reduced considerably, since the time for design-
ing the part is shortened and it is possible to partially reuse
the expensive machinery to manufacture it. Finding all par-
tially similar parts for a given query part is therefore the
key to cost reduction. Although originating from a rather
specific application, the problem of finding all partially sim-
ilar polygons from a database of 2D polygons is a general
problem which arises in many applications such as CAD,
pattern recognition, protein docking, computer tomography
and others.

The problem of finding all partially similar parts is a dif-
ficult task. The state-of-the-art approach predominantly used
in industry is a search based on feature vectors. Feature vec-
tors consist of a fixed number of attributes describing impor-
tant properties of the polygons. Experience shows, however,
that a search based on feature vectors is not sufficient, since
only a priori defined features can be used in searching for
similar parts. What is needed to achieve better results is to
allow a similarity search based on the exact geometry of the
polygons given by the CAD system.

Unfortunately, the general problem of comparing two
polygons under translation, rotation, and scaling invariance
is computationally difficult. The computational geometry al-
gorithm given in [AB 92] solves a special case of the prob-
lem, namely testing two point sets withm points each
for congruence under translation and rotation invariance, in
O(m8) time. Note that this complexity neither includes scal-
ing invariance nor testing for similarity. Both, scaling in-
variance and similarity testing, however, are computationally
difficult problems. Similarity may, for example, be defined

334

Fig. 1. Partial search problem

as Hausdorff distance, Fréchet distance, percentage of sur-
face superposition, etc. of the two polygons. All those simi-
larity measures are useful for certain applications, but none
of them is comparable to the human intuition of similarity.
Human similarity includes some kind of semantic similarity
which considers two parts to be similar if both parts have
certain characteristics. In most cases, the characteristics are
partial similarities, which means that there exist portions of
the two polygons which are similar. Note that even a simple
vertex-based partial similarity algorithm which restricts the
problem to decide whether there are similar portions of the
two polygons starting and ending at any vertex causes the
above complexity to increase by a factor ofm2 (all edge
sequences of arbitrary length). The ‘continuous’ problem of
finding similar portions of the two polygons starting and
ending at an arbitrary point (not necessarily a vertex) on
any edge of the contour of the polygon is even more dif-
ficult and, to the authors’ knowledge, there is currently no
algorithm solving the problem. Also, in our case, we have
to solve the 1 :n instead of the 1 : 1 problem, i.e. we have
to find all polygons from a database ofn parts which are
partially similar to a given query polygon.

For solving continuous problems such as the partial sim-
ilarity problem of polygons, a mapping of the data objects to
points in feature space is not sufficient. A polygon section,
for example, may start and end at any point of the poly-
gon contour, even between two vertices (cf. Fig. 1), and it is
therefore not sufficient to map the polygon contour to a sin-
gle point in feature space. In general, the objects which arise
in continuous problems may be described as parametrized
functions which depend on one or multiple continuous vari-
ables. Our new idea is to map the data objects to extended
feature objects in high-dimensional space. Extended feature
objects are infinite sets of feature points which are deter-
mined by mapping the parametrized functions (correspond-
ing to the data objects) into feature space. In some cases,
the data objects have some natural partitioning, which can
be used to map a data object to a set of extended feature
objects instead of a single one. For an efficient storage and
retrieval, we determine the minimal bounding boxes of the
extended feature objects in multidimensional space and store
these boxes using a spatial access structure. The selectivity
of the index is improved by using an adaptive decomposi-
tion of very large feature objects and a dynamic joining of
small feature objects.

In the main portion of the paper, we apply our general
idea to the problem of searching a database of 2D polygons
for partially similar polygon sections. We present algorithms
which solve the continuous partial similarity problem under
translation, rotation, and scaling invariance. In our concrete
polygon problem, the natural partitioning of the data objects
are the vertices of the polygons. For all edge sequences, we

therefore determine the extended feature objects which cor-
respond to the polygon sections starting anywhere on the
first edge and ending anywhere on the last edge. Since we
have two continuous parameters, the extended feature ob-
jects are 2D objects in multidimensional feature space. The
2D feature objects are then approximated by minimal bound-
ing boxes and stored in an R∗-tree. Translation, rotation, and
scaling invariance are achieved by using a Fourier transfor-
mation of the curvature of the polygon. In contrast to vertex-
based algorithms, our method guarantees that no false dis-
missals may occur and provides fast search times for realistic
database sizes.

In the literature, there is a lot of work on similarity search
of geometry data. In computational geometry, researchers fo-
cus on the theoretical aspects of the 1 : 1 similarity problem.
Most of the proposed algorithms are based on similarity mea-
sures inadequate for our application [AB 92]. Another area
related to similarity retrieval is pattern matching. In pattern
matching, the goal is to recognize objects in a scene from a
given fixed set of identifiable objects [MG 93, MG 95]. Since
the set of identifiable objects is fixed a priori, it is possible to
generate models for each of those objects, and try to match
the objects in the search scene with those models. For this
purpose, a detail with a high significance is sufficient in
order to assign a search object to one of these models. In
pattern recognition, there are many specialized approaches
providing a high invariance against affine and shear trans-
formations (e.g. [WW 80]). Another related area is similarity
search in multimedia and pictorial databases. The problem is
related, since similarity search on images also involves sim-
ilarity retrieval of the objects in the image. However, there
are many differences to our application. The most obvious
difference is that, in images, the structure and relation of
objects is more important than the polygonal shape of the
objects and, therefore, most of the approaches only use sim-
ple similarity measures for comparing the objects [FBFH 94]
and do not consider invariances due to a normalized position
of known objects [PF 94].

The area of research which is closely related to our
approach is similarity search in time series databases. In
[AFS 93], an efficient method for similarity search in 1D
sequence data has been proposed. The approach maps the
data into Fourier space and determines the similarity of
two sequences by their Euclidean distance in Fourier space.
[FRM 94] extends this idea to include searching for sub-
sequences and [ALSS 95] also considers noise and scaling
invariance. All approaches, however, are limited to 1D time
series databases. In contrast, our algorithms work for 2D
polygon databases and use a distance measure which is com-
pletely invariant against affine transformations. Furthermore,
our partial similarity search is not limited to edge sequences
of the polygons but searches for any section of the polygons
starting and ending anywhere on the edges of the polygons,
even in between vertices.

The rest of this paper is organized as follows: In Sect. 2,
we provide basic definitions and a formal statement of the
problem. We further illustrate the problems of other ap-
proaches and prove that, under scaling invariance, vertex-
based algorithms may not avoid false dismissals, even if one
is only searching for partially identical parts. In Sect. 3, we
then describe our algorithm, including the analytic calcula-

335

tion of the Fourier-transformed curvature of the normalized
polygon sections, the mapping of sets of transformed poly-
gon sections to 2D feature objects and their storage in a
spatial access method. We prove the correctness of our al-
gorithm, i.e. we show that false dismissals of partially iden-
tical parts may not occur. In Sect. 4, we provide an empir-
ical analysis of our method. For the experiments, we use
an R∗-tree-based implementation and real ‘clips’ data ob-
tained from our industrial partner. Section 5 summarizes our
approach and describes directions for future work.

2 Partial similarity

In this section, we introduce several notations which are nec-
essary for formalizing the partial similarity problem. Besides
defining our notion of polygon data and the partial similar-
ity query, we also discuss essential properties of appropriate
distance measures, and we provide examples which show
the problems of other approaches. Furthermore, we provide
a formal proof that under scaling invariance vertex-based
algorithms may not avoid false dismissals.

2.1 Definition of the data

A polygon p may be defined as a cyclic sequence of
edges{ep0, . . . , epmp−1} with mp edges andmp vertices
({vp0 , . . . , vpmp−1}). An edge sequence is defined byespij :=
{epi , . . . , epj} if i ≤ j and by espij := {epi , . . . , epmp−1, e

p
0,

. . . , epj} if i > j. This definition implies that the edges are
concatenated in a cyclic way. The set of all edge sequences
for a given polygonp may be defined as

ESp

= {espij |(0≤ i ≤ mp − 1)∧ (0≤ j ≤ mp − 1)∧ (i 6= j)} .
The number of edge sequences is|ESp| = mp · (mp − 1)≈
m2

p, since there aremp sequences of lengthmp, mp se-
quences of length (mp − 1), . . . ,mp sequences of length 2.
In the following, we omit the indexp from all symbols if it
is obvious which polygon we refer to, i.e., we writee0 for
ep0, v0, for vp0 , etc. The problem sizeN for the partial simi-
larity task is the set of all edge sequences for alln polygons
in the database.N may be determined as

N =
n∑
i=1

|ESi| =
n∑
i=1

mi · (mi − 1)≈
n∑
i=1

m2
i

with

n ·m2
max =

n∑
i=1

m2
max≥ N ≥ n ·

((
n∑
i=1

mi

)
/n

)2

= n · m̄2,

wheremmax is the maximum number of edges of all poly-
gons in the database and ¯m is the average number of edges
per polygon1. The inequality shows that polygons with a
high number of edges strongly influence the size of the
search space. Note that the edges of the polygons may

also be seen as vectors
⇀
e i :=

−⇀
vi+1−⇀

v i, with their lengths

1 The inequation may be proven by induction overn.

Fig. 2. Example for a polygon as a parametrized function

being denoted by|⇀e i|. The lengths of the polygon con-
tours are normalized to 2π, which means that

∑m−1
i=0 |⇀ei|

= 2π. The length of an edge sequence may be determined
as |esij | :=

∑j
k=i |

⇀
ek|. According to Mumford [Mum 87],

the set of all possible polygon contours forms an infinite-
dimensional space. The reason is that polygon contours may
vary in an infinite number of independent ways, which is
also an indication for the complexity of the partial similarity
search problem of polygon contours.

In addition to the vertex/edge-based representation of
polygons, we also need a functional definition of polygons.
The functional view is necessary for calculating the Fourier
transformation of the curvature of the polygon, and it is
also more adequate for solving the continuous partial sim-
ilarity problem. Furthermore, the functional representation
of polygons avoids the fundamental problem of the edge
representation that there is an infinite number of edge rep-
resentations which describe the same polygon contour (e.g.,
edge sequences with interpolated vertices). In the follow-
ing definition describing a polygon as a parametrized func-
tion, all edge-based polygon representations which describe
an identical polygon contour are mapped to the same func-
tional representation – in other words, they fall into a single
equivalence class.

Definition 1 (Polygon contour). A polygon contour is de-
fined as a parametrized functionp : < → <×<

p(t) =

(
EI(t)−1∑
k=0

⇀
ek

)
+ (t− CL(EI(t))) · ⇀

eEI(t), 0≤ t ≤ 2π,

whereEI : < → N0 is the edge indexing function

EI(a) := min
{
k
∣∣∣∑k

i=0 |
⇀
ei| ≥ a

}
with 0≤ a ≤ 2π, 0≤ k ≤ m− 1
andCLp : N0 → < is the curve length functionCL(i) :=∑i−1

j=0 |
⇀
ej | with 0≤ i ≤ m− 1.

The two functionsEI andCL are necessary to define the
functional representation of the polygons from the given
vertex-based representation. Given a curve lengtha between
0 and 2π, the functionEI determines the edge in which the
curve ends. The functionCL determines the length of the
curve up to a given edgei, which is the sum of the lengths
of all edges from edge 0 to edgei− 1 (cf. Fig. 2). Note that
the functional definition is a continuous description of poly-
gon contours which is independent of the number of edges,
and therefore avoids the problem of multiple representations
describing the same polygon. Note that the edges of the
polygon are concatenated in a cyclic way, which means that
the exact definition of a polygon contour is a function with
period 2π. Therefore, we assume that all operations on poly-
gon contours are implicitly defined witht modulo 2π. For
the rest of the paper, we use the functional definition of

336

Symbol Definition
p[p(t)] polygon [parametrized polygon definition]

mp number of edges (= number of vertices) of polygonp

epi [ei] i-th edge of polygonp

vpi [vi] i-th vertex of polygonp

αi angle between edgei− 1 and edgei

espij edge sequence (set of all edges from edgei to edgej)

ESp set of all edge sequences ofp

N problem size

CL(i) curve length function

EI(t) edge indexing function

PSab polygon section starting
at curve lengtha and ending at curve lengthb

δ similarity measure

T affine transformations

λ polygon transformation function

c(t) curvature function

C curvature transformation

F Fourier transformation

ak, bk fourier coefficients

d degree of the Fourier sum

MBR minimum bounding rectangle

FOij extended feature object corresponding
to edge sequenceespij

FOi1i2j1j2 extended feature object corresponding to the set of all
edge sequences starting betweeni1 and i2
and ending betweenj1 andj2

Vmax maximum volume of the bounding boxes
of the extended feature objects

polygons – except for the description of shortcomings of
edge-based partial similarity retrieval in Sect. 2.4.

Since we are not only dealing with complete polygon
contours but with arbitrary portions of polygon contours, we
also need a functional definition of polygon sections. Note
that it is not enough to consider edge sequences for solving
the continuous partial similarity problem, since similar poly-
gon sections may start at any point of a polygon contour –
even in between vertices. We therefore need the following
functional definition of a polygon section.

Definition 2 (Polygon section).A polygon section of a poly-
gon p with start pointa and end pointb(0 ≤ a ≤ b ≤ 2π)
is defined as a parametrized function:PSab : < → <×<

PSab(t
′) = p

((
t′ · b− a

2π

)
+ a

)
, 0≤ t′ ≤ 2π .

According to our definition, any continuous portion of the
polygon is a polygon section. The start and end points are
not limited to vertices and, in general, a polygon section is an
open-ended portion of the polygon contour. The arc length
of polygon sections is defined to be normalized to 2π. Note
that there is an infinite number of polygon sections for a
given polygonp. The complete contour of a polygon is the
specific polygon section which results ifa = b, in which case
PSab(t) = p(t). The definition of polygon sections is impor-
tant, since polygon sections may occur as query polygons
and result polygons.

2.2 Definition of partial similarity

Before we formally define similarity and partial similarity,
we introduce the important notions of congruence and par-
tial congruence. Congruence means that two polygon sec-
tions are identical up to affine transformations, and partial
congruence means that there are polygon sections which are
identical up to affine transformations.

Definition 3 (Congruence, partial congruence).Two poly-
gon sectionsp1 andp2 are calledcongruentiff there exists
an affine transformationT such thatT (p2) = p1.

Two polygon sectionsp1 andp2 are calledpartially con-
gruent iff there exists a sectionPSP1

ab of p1 and an affine
transformationT such thatT (p2) = PSp1

ab.
In contrast to (partial) congruence, which focuses on

finding (partially) identical polygon sections, (partial) simi-
larity also includes all polygon sections which are (partially)
similar. For the definition of partial similarity, we need a
similarity measureδ : (P × P → <)2 which determines the
similarity of two polygon sections.

Definition 4 (ε-similarity, partial ε-similarity). Two poly-
gon sectionsp1 and p2 are calledε-similar with respect
to δ iff there exists an affine transformationT such that
δ(T (p2), p1) < ε.

Two polygon sectionsp1 and p2 are called partiallyε-
similar with respect toδ iff there exists a sectionPSp1

ab of p1

and an affine transformationT such thatδ(T (p2), PSP1
ab) < ε.

The similarity measure is a functionδ : (P × P → <)
which has two polygon sections as input parameters and de-
termines a real value denoting the similarity of the two poly-
gon sections. In the following, we define properties which
must be satisfied by any useful similarity measure.

Definition 5 (Properties of the similarity measure). (1) iden-
tity preservation:∀p : δ(p, p) = 0
(2) commutativity:∀p1∀p2 : δ(p1, p2) = δ(p2, p1) (3) triangle
inequation:∀p1∀p2∀p3 : (δ(p1, p2) + δ(p2, p3) ≥ δ(p1, p3))
(4) unboundedness: A similarity measureδ is called un-
boundediff ∀p, ∀ε ≥ 0, ∃q : δ(p, q) > ε.

Useful similarity measures must fulfill these four properties.
The first three properties are trivial, and the fourth prop-
erty (unboundedness) means that there is no most dissimilar
polygon section for any given query polygon.

Up to now, we have only defined the partial similarity of
two polygon sections. The next step is to define the partial
similarity query, which is searching a database of polygons
for partially similar polygon sections. Given a databaseDB
of n polygonspi with mi edges each (i = 0..n − 1), the
partial similarity query is defined as follows.

Definition 6 (Partial similarity query). Given a query poly-
gon s, find all polygonspi from DB which are partially
ε-similar to s, i.e., determine

{pi ∈ DB|∃PSpiab ∧ ∃T : δ(T (s), PSpiab) < ε} .
2 Note that δ may also be called a “dissimilarity measure”. We use

“similarity measure” since it is more intuitive.

337

Fig. 3. Problems with different distance mesasures

Note that finding all partially congruent polygons is a
subtask of solving the partial similarity query. This means
that any algorithm which solves the partial similarity query
must at least output all partially congruent polygons. A fur-
ther observation is that the complexity of the query polygon
strongly influences the result. The query polygon should nei-
ther be too simple nor too complex, since simple search
polygons lead to low selectivities (ultimately to a selectiv-
ity of 100% for a single line) and complex query polygons
prevent small substructures from having any impact on the
result. Consequently, meaningful query polygons will usu-
ally be of medium complexity.

2.3 Problems

In solving the partial similarity query, we have to deal
with several problems. One important problem of similar-
ity search is that similarity should be largely invariant with
respect to translation, rotation and scaling of the polygons.
This is true for a wide range of applications, including our
application in the car manufacturing industry, which requires
complete translation, rotation, and scaling invariance. There
are several approaches to solving the invariance problem.
The most common solution is a normalization of the poly-
gons to a specific position, orientation, and size. Transform-
ing the polygons into a well-defined position and orienta-
tion, however, is very difficult or even impossible for many
applications. If there is no unique position and orientation,
slight mistakes in the transformation may lead to false dis-
missal. In general, the uniqueness may only be guaranteed
if there is an application- and data-inherent position and ori-
entation, which is only true for a limited number of ap-
plications. An obvious possibility to avoid this problem is
to use features of the polygons which are translation- and
rotation-independent, such as the edge lengths and angles
of the polygon or the curvature of the polygon. To achieve
scaling invariance, the traditional approach is to normalize
the size of the polygons to some specific size. In our ap-
proach, we normalize the arc length of the polygon sections.
Using the curvature guarantees translation and rotation in-
variance, and normalizing the arc length guarantees scaling
invariance.

Another critical problem in solving the partial similarity
problem is the choice of the similarity measure. In the litera-
ture, several similarity measures for polygons have been pro-
posed. Most of them, however, do not seem adequate for our
problem. For example, defining the distance of two polygons
as the relative percentage of the maximum surface superposi-
tion of the two polygons may yield a high similarity for quite
different polygons (cf. Fig. 3a). Furthermore, the maximum
surface superposition is only defined for complete polygons
and not for polygon sections. Another similarity measure is

Fig. 4. The problem of edge-based algorithms

Fig. 5. Effect of theλ-function

the well-known Hausdorff distance, which determines simi-
larity as the maximum of the minimal distances between the
points of the two polygons3. The Hausdorff distance, how-
ever, completely ignores the shape of the edge sequence (cf.
Fig. 3b) and is therefore inadequate for defining similarity.
A distance metric which considers the shape of the edge
sequence is the Fréchet distance. The Fréchet distance de-
fines the distance of two polygons as the minimum of the
maximal distances between the points when walking along
the two contours4. Both the Hausdorff and Fréchet distance
are defined as some kind of maximum norm. The maximum
norm provides good results for low distances, in which case
the distances correspond to the human intuition of similar-
ity rather well, but, for higher distance values, the distances
may be the result of local effects and do not correspond to
the human intuition of similarity at all. As already indicated,
our distance measure uses the Fourier transformation of the
polygons and determines the distance of two polygons as
Euclidean distance in Fourier space. As experimental results
show, the distance in Fourier space is a good approximation
of the human intuition of similarity [KM 95].

Another problem in solving the partial similarity query
is that similarity may be defined differently depending on
the user’s focus. One user may be interested in the overall
contour of the polygons, another user may be interested in
the details of the polygons, e.g., whether the contour is a
zigzag line or a smooth line, and even another user may
be interested in some level of detail in between. With all
currently available approaches, it is impossible to handle
similarity being defined for different levels of details. In
contrast, our approach is able to deal with different levels
of detail and provides useful results over a wide range of
levels of detail.

A last but serious problem is that all approaches which
are based on the vertices of the polygons may not avoid
false dismissals. As already mentioned, any algorithm for
partial similarity must at least find all partially congruent
polygons. In the following, we show that any algorithm for
the partial similarity problem which does not consider the

3 The Hausdorff distance is defined as

δH (p1, p2) = max
(

sup inf
a ∈ p1 b ∈ p2

d(a, b),
sup inf

b ∈ p2 a ∈ p1
d(a, b)

)
,

with p1 andp2 being polygons in vertex-representation andd(p1, p2) being
the Euclidean distance in the plane.

4 The Fŕechet distance is defined as

δF (p1, p2) =
(

inf sub
α, β t ∈ [0, 1]

d(p1(α(t)), p2(β(t)))
)
,

with p1(t) and p2(t) being polygons in functional representation and
d(p1, p2) being the Euclidean distance in the plane.

338

Fig. 6. ε-neighborhoods ofg, es1, s, andes2

infinite number of all possible polygon sections but only
sections starting and ending at the vertices may produce false
dismissals, which means that it will miss partially congruent
polygon sections.

The basic idea of the proof is to show that, for any given
polygon sectionps, we are able to construct a polygonp
such thatp containsps, but none of the edge sequences in
p is similar to ps. Figure 4 illustrates the basic idea of the
proof. For our theoretical considerations, we require the def-
inition of aλ-function. Intuitively, theλ-function transforms
a polygonp into a polygonq such that the polygonsp and
q are identical on all vertices but the last vertex. The last
edge ofp is extended inq by a factork (cf. Fig. 5). More
formally, the functionλ : P × < → P , λ(p, k) = q trans-
forms a polygon sectionp into the polygon sectionq using
an extension factork(k ∈ [0,∞[) such that

(mq = mp)∧(∀i, 0≤ i ≤ mp − 2 :
⇀

vqi =
⇀

vpi)

∧(
−−⇀
vqmq−1 =

−−⇀
vpmp−1 + k ·

−−⇀
epmp−1).

Lemma 1. Any algorithm which tries to solve the partial
similarity problem (cf. Definition 4) for a givenε and for
a given similarity measure fulfilling the properties accord-
ing to Definition 5 by only considering edge sequencesESp

(polygon sections starting and ending at vertices but not be-
tween vertices) produces false dismissals.

Proof (by contradiction).Let us assume Lemma 1 is false.
Then there is an algorithm A which produces no false dis-
missals for a given fixedε. If we are able to show that
there is no upper bound forε, we may conclude that A will
produce false dismissals and Lemma 1 is proved.

To show that there is no upper bound forε, we show that,
for every givenε, we are able to construct a polygonpε and
choose a polygon sections of pε such thatδ(r, s) > ε ∀r ∈
ES. We chooses ass = λ(pε, k), 0 ≤ k ≤ 1, which means
that s starts exactly on vertexv0 of pε and does not end
on a vertex but anywhere on the edgeem−1 of pε. Sinceδ
is form convergent, lengthening the edgeem−1 will cause
δ(pε, g) to converge against 0 fork →∞. Remember thatg
is the trivial polygon section consisting of one edge. Without
loss of generality, we assume that only the edge sequences
es1 = {e0 . . . , em} = λ(pε, 1) and es2 = {e0 . . . , em−1} =
λ(pε, 0) are relevant fors. Now we are able to constructpε
in a way such thatδ(pε, g) < ε andδ(λ(pε, 0), g) > 5ε. The
existence ofpε is guaranteed sinceδ is unbounded. In Fig. 6,
we show theε-neighborhoods ofg, es1, s, and es2. Since
δ(λ(pε, 0), g) > 5ε, it follows that there must be ak such
that there is no intersection between theε-neighborhoods of
s and es1 and between theε-neighborhoods ofs and es2.
This, however, implies thatδ(es1, s) > ε and δ(es2, s) >
ε, which means that neither edge sequencees1 nor edge

Fig. 7. Extended feature objects

sequencees2 will be determined as a result for our query
with polygon sections, althoughs is partially congruent to
pε sinces = λ(pε, k). Because our construction ofpε may
be done for anyε, we are able to conclude that there is no
upper bound forε. Q.E.D.

Lemma 1 implies that for solving the partial similarity
problem it is not enough to consider just the edge sequences
of the polygons, since there exists a query polygons which
is a polygon section of a polygonp such thatδ(es, s) > ε for
all edge sequenceses of the polygonp and any constantε.
Our algorithm, which is described in the following section,
avoids this problem, since it is not based on edge sequences
but on the continuous representation of the polygons.

3 Our approach

3.1 Overview of our algorithm

Our algorithm solves the continuous partial similarity prob-
lem and guarantees that at least all partially congruent poly-
gons will be found. The algorithm is designed to support
any similarity measureδ which defines similarity as Eu-
clidean distance in somed-dimensional feature space and
fulfills the properties according to Definition 6. Since the
Fourier transformation has proven to be a good measure of
similarity, we determine the distance of two polygons as Eu-
clidean distance in Fourier space. To gain invariance against
translation, rotation, and scaling, we use the Fourier transfor-
mation of the differential geometric curvature of the polygon
instead of the polygon itself and normalize the arc length of
the polygon sections to 2π. Using the curvature guarantees
translation and rotation invariance, and normalizing the arc
length guarantees scaling invariance.

For solving the continuous partial similarity problem,
our algorithm maps adjacent sets of polygon sections to 2D
objects in multidimensional Fourier space. Let vertexvs be
the starting vertex andve be the ending vertex of an edge
sequence of polygonp. If we consider all polygon sections
starting anywhere between vertexvs and vs+1 terminating
at ve and transform all these polygon sections into Fourier
space, we get a 1D object in thed-dimensional Fourier space
(cf. Fig. 7 top). Analogously, if we consider all polygon sec-
tions starting betweenvs andvs+1 and ending betweenve−1
and ve, we get a 2D feature object in thed-dimensional
Fourier space (cf. Fig. 6 bottom).

339

Fig. 8a,b. Overview of our partial similarity search method

For an efficient storage and retrieval of the 2D feature
objects in multidimensional space, we determine the mini-
mal bounding boxes of the objects ind-dimensional space
and store these boxes using a spatial access method (SAM).
Basically, any SAM such as the R-tree [Gut 84] and its vari-
ants (R+-tree [SRF 87], R∗-tree [BKSS 90], P-tree [Jag 90b]),
Buddy-tree [SK 90], linear quadtrees [Gar 82], z-ordering
[Ore 90] or other space-filling curves [Jag 90a], and grid-
file-based methods [NHS 84, Fre 87] may be used for this
purpose. By using SAMs, the problem of finding similar
polygon sections has been reduced to the problem of search-
ing 2D extended feature objects ind-dimensional space.

Two problems arise with this approach: on the one hand,
there is a number of rather large bounding boxes which re-
duce the quality of the index and, on the other hand, there is
a large number of quite small boxes which causes the size
of the index to increase unnecessarily. The big boxes are a
result of the approximation of the feature objects by bound-
ing boxes in high-dimensional space, where small variances
in some dimension result in large extensions of the bound-
ing boxes, and the small boxes are a consequence of the
small changes of the Fourier transformation for certain poly-
gon sections. There are many possible solutions to these
problems, including using better approximations instead of
the bounding boxes (e.g., rotated bounding boxes [BKS 93],
polyhedra [Gue 89, Jag 90b], etc.). The most practical and
effective approach for our application, however, is to use an
adaptive decomposition of the 2D objects recursively parti-
tioning the objects until the volume of each of the resulting
boxes is less than a constant valueVmax. To solve the prob-
lem of having too many small boxes, we join as many of
these boxes as possible as long as the volume of the bound-
ing box of the joined boxes remains less thanVmax. Figure 8
provides an overview of the index creation and querying of
our partial similarity search algorithm.

After having created the index, querying for similar poly-
gon sections is rather simple. We only have to transform the
curvature of the query polygon into a query point in the
Fourier space (cf. Fig. 8). Using the SAM, we are then able
to determine all candidate bounding boxesc which are within

anε-neighborhood of the query point. In the refinement step,
we finally have to compute the 2D feature object for every
candidatec, determine the minimal distance of the query
point to the feature object, and select all candidates whose
minimal distance is less thanε. After sorting the remaining
candidates according to their distance, we output the result.

3.2 Partial similarity search algorithm

As indicated in the previous subsection, the creation of the
partial similarity search index is a crucial part of the al-
gorithm. Note that certain steps of the index creation are
also used in the query algorithms, namely the determina-
tion of the curvature and Fourier transformation (cf. Fig. 8).
In this section, we describe the important steps of our par-
tial similarity search algorithm in more detail. In creating
the partial similarity index, the first step is to determine
all possible edge sequencesESp for all polygonsp of the
databaseDB. This can be done by successively determining
themp sequences of lengthmp, themp sequences of length
(mp−1), . . . , and themp sequences of length 3. Length 3 is
enough, since smaller edge sequences may not define signif-
icant shapes under partial similarity and translation, rotation
and scaling invariance. The next step is to determine the 2D
feature objects for each of the edge sequences inESp.

3.2.1 Determining the feature objects in Fourier space

The 2D feature objects ind-dimensional Fourier space are a
result of varying the length of the first and the last edge of
the edge sequences and determining the Fourier transforma-
tion of the curvature of the resulting polygon sections. More
formally, the feature object corresponding to the set of poly-
gon sections created by varying the first and last edges of
edge sequenceesij can be described as

FOesij (x, y) = F (C(PSesij(x·|ei|)(2π−y·|ej |)(t)))

with

340

Fig. 9a–c.Curvature of an approximated polygon

x, y ∈ <, 0≤ x ≤ 1, 0≤ y ≤ 1, 0≤ t ≤ 2π,

whereC : (< → <2) → (< → <) is the transformation
determining the curvature functionc(t) for a given polygon
contour functionp(t) andF : (< → <) → <d is the Fourier
transformation determining the Fourier coefficients for a
given curvature function ind-dimensional Fourier space.

The similarity measure of our approachδF (T (p1), p2) is
defined asdEuclid(F (C(ps1)), F (C(ps2))). Note that the nor-
malization of the polygon sections is implicitly contained
in the definition of polygon sectionsPSab (cf. Definition
2). In the rest of this paper, we simply writeFOij for
FOesij (x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. In the following,
we describe the curvature transformationC and the Fourier
transformationF .

Determining the curvature of polygon sections

As described in Sect. 2.1, a polygon section may be seen as
a parametrized function. The curvature of such a function
is mathematically undefined because the second derivative
is not continuous. A variety of approaches have been pro-
posed in the literature to overcome this mathematical prob-
lem ([HB 86], [KSP 95], [WW 80], etc.). These approaches
may be classified into two major groups: approaches which
determine an approximated curvature function in one step,
and approaches which approximate the polygon such that
the curvature function of the polygon’s shape is well defined
and determine the curvature of the approximated polygon in
a second step.

An example for an algorithm determining an approxi-
mated curvature function in one step is the turning angle
algorithm described in [HB 86]. Another possibility is to use
a function similar to a curvature plot such as the centroidal
profile [KSP 95], the super segments [SM 90], or geomet-
ric hashing [RH 92]. Another approach [Ber 97] is to ap-
proximate the polygon by a cubic spline function and then
analytically determine the curvature of the spline. All these
algorithms have certain advantages and disadvantages. Plots,
for example, such as the turning angle are a good choice if
the data is noisy as, for example, in computer vision ap-
plications. Furthermore, most techniques require the choice
of an appropriate sampling rate, which is difficult to choose
without any a priori knowledge of the data.

In general, our technique of using extended feature ob-
jects is independent of the technique used to determine the
curvature function. In principle, any of the curvature func-
tions mentioned above may be used. Which approach is ac-
tually used depends on the application domain and its spe-
cial requirements. In case of CAD data, we decided to use
a rather simple curvature function. We substitute all ver-
tices of the polygon with tiny circle segments. From that

Fig. 10. Examples for the curvature of two polygons

we get a new geometric object of which at least the first
derivative is continuous. The curvature of this structure is
defined in sections; by concatenating these sections, we ob-
tain a non-continuous square wave function. Figure 9 shows
our approximation of a polygon section and the according
curvature function.

For describing our curvature transformation in more de-
tail, let us focus on two subsequent edgesei−1 andei. These
edges coincide in vertexvi with an angleαi. For the edge
sequencees(i−1)i containingvi, we may easily compute the
curvature functionci(t) describing the differential geomet-
ric curvature of the approximated edge sequence, because
the curvature of a circle segment with radiusr is a constant
function 1/r and the curvature of a straight line is a constant
zero function. We may calculate the arc length of the circle
segment substituting vertexvi by bi = |αi| · r. For ci(t), we
therefore obtain

ci(t) :=

{
1
r if (tνi − bi/2 > t > tνi + bi/2)
0 else

.

The curvature of an arbitrary polygon sectionesij is c(t) =∑j
k=i+1 ck(t). Figure 9c shows the graph of the curvature

function c(t) for the approximation of the polygon section
presented in Fig. 9a. Figure 10 shows the curvature functions
of a square and a circle. In addition, we show two polygons
(p1 andp2) which are similar under translation, rotation and
scaling invariance. Note that the curvature functions of the
two polygons have only minor differences in the width of
the square waves.

The approximation of the original polygon and in par-
ticular the choice ofr influences the curvature function. If
we reduce the radiusr of the circle segment, 1/r will be
increased, whilebi will be decreased. This causesc(t) to
become more narrow and the amplitude of square waves
to become higher, while the approximation of the polygon
converges against the polygon itself. On the other hand,c(t)
becomes difficult to handle numerically. An adequate value
for r which has proven useful for our applications isπ50 for
polygon sections with a normalized length of 2π. As our
experiments show, the remaining steps of our approach are
quite robust against a suboptimal choice ofr as long asr

341

is smaller than half of the length of the shortest edge in the
database, since otherwise individual square wave functions
may overlap.

Fourier transformation

The next step is the Fourier transformationF of the curva-
ture. The principle of the Fourier transformation is to ap-
proximate a function by summing up sin and cos functions
with adequate parameters. The quality of the approximation
is improved by increasing the degreed of the Fourier ap-
proximation, which means to successively sum up cos(x),
sin(x), cos(2x), sin(2x), . . ., cos(d2x), sin(d2x). Experimental
results show that the Fourier transformation provides a good
approximation of the polygons and their curvature function
even for rather smalld. In Fig. 11, we present a polygon
together with the Fourier approximations using 2, 4, 6, 32,
64 and 512 coefficients. Note that the polygon in Fig. 11 has
eight internal vertices and, therefore, we get eight spikes
in the curvature function. Our experiments show that six
Fourier coefficients are sufficient for our application.

In the appendix on the Fourier theory, we present the
formulas for analytically determining the Fourier coefficients
of a square wave function (cf. Eq. 1). For determining the
Fourier coefficients of our curvature functionc(t), we just
have to sum up the formula given in Eq. 1 for allci(t). We
obtain the following formulas for the Fourier coefficients of
a polygon:

ak=
1

πkr

m−2∑
i=0

αi
|αi|

(
sin

(
k

(
ti+1 +

|αir|
2

))
− sin

(
k

(
ti+1 − |αir|

2

)))
,

bk=− 1
πkr

m−2∑
i=0

αi
|αi|

(
cos

(
k

(
ti+1 +

|αir|
2

))
− cos

(
k

(
ti+1 − |αir|

2

)))
.

The calculation ofak andbk can be done inO(m) time, the
calculation of all coefficients can be done inO(m∗d), where
d is the degree of the Fourier sum. Note that we are able
to compute the coefficients of the Fourier sum analytically,
and therefore we do not run into numerical problems, such
as choosing the right sample rate. This fact is one of the
reasons for being able to use a rather small degree of the
Fourier sum without losing too much information.

The Fourier transformation as defined above fulfills the
necessary properties of a similarity measure (cf. Definition
6). The properties (1)–(3) are trivially fulfilled, since each
polygon is mapped to a specific point in Fourier space and
the distance of polygons is determined by the Euclidean dis-
tance of those points in Fourier space. The fourth property
(distance measure unbounded) is guaranteed, since it is al-
ways possible to construct a more dissimilar polygon, at least
for infinite d. The degree of the Fourier sum (d) has to be
chosen high enough such that this property is fulfilled for
all polygons in the database.

3.2.2 Enhancing index selectivity

In the last sections, we described the determination of the
2D feature objects. In the final step of the index creation, we
insert the bounding boxes of the feature objects into a mul-
tidimensional index structure. However, as indicated in the
overview, there are two practical problems that arise with
our approach of managing the bounding boxes of the fea-
ture objects using a spatial access method. On the one hand,
there is a number of rather large bounding boxes which re-
duce the quality of the index, and, on the other hand, there
is a large number of quite small boxes which causes the size
of the index to increase unnecessarily. We solve the prob-
lem of having large bounding boxes by using an adaptive
decomposition of the 2D feature objects, which recursively
partitions the feature objects until the volume of each of the
resulting boxes is less than a constant valueVmax; and we
solve the problem of having too many small boxes by join-
ing as many of these boxes as possible as long as the volume
of the bounding box of the joined boxes remains less than
Vmax. For determining the boxes which are to be decomposed
and those which should be joined, we need to calculate the
bounding box of the feature object ind-dimensional space.
Unfortunately, it is quite difficult to calculate the extremes
of a feature object ind-dimensional space analytically. For
calculating the extension of a feature object in every di-
mension of the Fourier space, we have to differentiate the
function FOesij (x, y) and calculate the null values of the
derivative. To the authors’ knowledge, there exists no ana-
lytical solution to this problem, and therefore, we have to
use numerical solutions. Unfortunately, the standard method
– a modified Newton algorithm – is rather slow in high-
dimensional space and requires an appropriate start value to
guarantee termination. As our experiments show, however,
a simple and very fast algorithm leads to approximately the
same results. We simply approximate the feature object by
a set of plane segments defined by some points chosen from
the feature object. The maximum search on this linearly de-
fined structure is very fast, while the inaccuracy of the ap-
proach is negligible.

Decomposition of feature objects

The decomposition of the feature objects is necessary, since
otherwise large bounding boxes will cause an insufficient
selectivity of our indexing method. The reason for the large
size of the bounding boxes is that bounding boxes are in
general bad approximations for low-dimensional objects lo-
cated in a high-dimensional space, because they usually in-
clude a large portion of dead space. Imagine a diagonal line
of length 2 in ad-dimensional hypercube. The volume of the
bounding box of the line is (2/

√
d)d. If we decompose the

original line into two equally sized segments, we obtain two
boxes of size (1/

√
d)d, which is a factor of 2d. The reduc-

tion of volume achieved by decomposing the line segment is
2d/2 = 2d−1. For d = 6, the volume of the bounding box is
reduced from (2

√
6)6 ≈ 0.30 to (1/

√
6)6 ≈ 0.005 yielding

a reduction factor of 25 = 32. This high reduction factor is
only true for a diagonal line. If the line is parallel to one of
the coordinate axes, there is no reduction. Our experiments

342

Fig. 11. Approximation of polygons by the Fourier transformation

Fig. 12. Algorithm for decomposing feature objects

show, however, that on the average there is a high reduction
potential when dealing with real data.

Decomposing a feature objectFOesij (x, y) is equiva-
lent to splitting the parameter spaces of x and y. If we
divide the parameter spaces into four equally sized sub-
spaces, we obtain four new feature objects. Note that the
union of these four feature objects is equal to the origi-
nal feature object. Our algorithm now recursively decom-
poses the feature object until the volume of the bounding
box of a feature object is lower than a constant valueVmax.
More formally, a feature objectFOesij ([ll, lh], [hl, hh]) is
recursively decomposed into the following four feature ob-
jectsFOesij ([ll, lm], [hl, hm]), FOesij ([lm, lh], [hl, hm]),
FOesij ([ll, lm], [hm, hh]) and FOesij ([lm, lh], [hm, hh]),
wherelm = (ll+ lh)/2 andhm = (hl+hh)/2. In Fig. 12, we
present the program code of the decomposition algorithm.

Joining feature objects

A problem of the index as described so far is that there is
a large number of quite small boxes which causes the size
of the index to increase considerably. The reason for the
large number of rather small boxes is that extending a poly-
gon section by one more edge will provide similar Fourier
coefficients if the overall shape of the polygon section fits
the Fourier approximation. This effect especially occurs for
segments of circular shapes. where the Fourier transforma-
tion remains approximately constant if the circle segment is
extended in both directions. As a consequence, the resulting
feature objects which are adjacent to each other have small
bounding volumes. Our approach of joining adjacent fea-
ture objects reduces the number of index entries (and thus

Fig. 13. Algorithm for joining feature objects

the search time) significantly without compromising index
selectivity.

For defining the join operation, we have to generalize the
definition of a feature object. In Sect. 3.2.1, a feature object
is defined by varying the length of the last and first edge of
a polygon section, which means that a feature objectFOij

corresponds to all polygon sections starting anywhere on
edgeei and ending on edgeej . If we join the feature object
FOij with the nearby feature objectFOi(j+1), the resulting
feature object corresponds to all sections starting anywhere
on edgeei and ending on the edge sequenceesj(j+1). In
the generalized definition of a feature object, the polygon
sections belonging to the feature object may start anywhere
on edge sequenceesi1i2 and end anywhere on edge sequence
esj1j2:

FOi1i2j1j2(x, y) = F (C(PS
esi1j2
(x·|esi1i2 |) (2π−y·|esj1j2 |)

(t)))

with

x, y ∈ <, 0≤ x ≤ 1, 0≤ y ≤ 1, 0≤ t ≤ 2π,

whereC is the curvature transformation andF is the Fourier
transformation as defined in Sect 3.2.1. Note that, for the spe-
cial case of (i1 = i2) ∧ (j1 = j2), this definition is equivalent
to the one in Sect. 3.2.1.

With this generalized definition of a feature object, join-
ing a set of feature objects may be defined as follows: Given
an initial setIS of feature objectsFOiijj , we are looking
for a minimal result setRS of feature objectsFOi1i2j1j2,

343

Fig. 14a,b.Example for joining feature objects

which fulfills the following conditions:

(1) ∀FOiijj ∈ IS, ∃FOu1u2v1v2

∈ RS : (u1 ≤ i ≤ u2) ∧ (v1 ≤ j ≤ v2) ,

(2) FOu1u2v1v2 ∈ RS ⇒ (∀i : u1 ≤ i ≤ u2

∀j : v1 ≤ j ≤ v2 ∃FOiijj ∈ IS) ,

(3) ∀FOu1u2v1v2 ∈ RS : VBBox(FOu1u2v1v2) ≤ Vmax .

The first condition guarantees that all feature objects ofIS
are fully contained inRS, the second condition guarantees
that there is no redundancy inRS, and the third condi-
tion guarantees that the bounding box volume of any feature
object of RS is smaller thanVmax, which is important to
guarantee a good selectivity of the index.

In Fig. 13, we present the program code of the joining al-
gorithm. The algorithm tries to enlarge the feature object al-
ternately to the right and to the bottom as long as conditions
(2) and (3) are fulfilled. Condition (1) is fulfilled implicitly
since the algorithm continues until all feature objects ofIS
have been considered. Let us explain the algorithm using the
following example. Assume, we have a matrix with an entry
for all feature objectsFOiijj of IS which have a bounding
box volume smaller thanVmax. Figure 14a shows an exam-
ple matrix for a real polygon from the database (Vmax = 1).
Everyx in position (i, j) of the matrix corresponds to a fea-
ture objectFOiijj of the initial setIS. A join of feature
objects may be seen as a union of rectangular regions in
the matrix under the above conditions. Figure 14b shows the
resulting set of joined feature objectsRS computed by our
algorithm. Initially, the algorithm chooses the first marked
position (i, j) in the matrix. Starting from this position, a test
region is enlarged first ini-direction, then inj-direction. The
enlargement stops if the new region (i, i + x, j, j + y) is not
totally filled (condition 2) with feature objects ofIS, or if
the volume of the bounding box ofFOi(i+x)j(j+y) exceeds
Vmax (condition 3). Finally, we insertFOi(i+x)j(j+y) into RS
and remove fromRS all elements ofIS which are con-
tained in the joined feature object. The whole procedure is
repeated until all feature objects have been removed from
IS. Note that our algorithm maximizes the product (x ·y) in
each step, and therefore removes as many entries fromIS
as possible. The resultingRS is a good approximation of
the overall minimalRS.

The last step in creating the index is to insert the bound-
ing boxes of the remaining feature objects into a SAM.
Any SAM which is able to index 2D feature objects in
d-dimensional space may be used. Examples for potential
SAMs include the R-tree [Gut 84] and its variants (R+-
tree [SRF 87], R∗-tree [BKSS 90], P-tree [Jag 90b]), linear

Fig. 15. Algorithm for creating the partial similarity index

Fig. 16. Partial similarity search algorithm

quadtrees [Gar 82], z-ordering [Ore 90] or other space-filling
curves [Jag 90a], and grid-file-based methods [NHS 84,
Fre 87]. In most SAMs, it is sufficient for the indexing step
to store the bounding boxes of the feature objects together
with pointers to the feature objects and their (i1, i2, j1, j2)-
values.

3.3 Correctness of our indexing technique

In Fig. 15, we present the complete algorithm for index
creation. The algorithm iterates over all polygons of the
database. The first step is to generate all edge sequences
of a polygonp. Then, for each of the edge sequences, the
algorithm determines the corresponding feature object. If the
volume of the bounding box of the feature object is larger
thanVmax, we call the decomposition algorithm; otherwise,
we insert the feature object into the set of feature objects
to be joined. After all edge sequences of polygonp have
been processed, we call the joining algorithm. Finally, we
insert the feature objects resulting from the decomposition
and joining step into the index.

The algorithm for searching partially similar polygons is
presented in Fig. 16. In querying for partially similar poly-
gons, we only have to transform the query polygon section

344

into a point in Fourier space. Using the SAM, we are then
able to determine all bounding boxesc which are within an
ε-neighborhood of the query point. In the refinement step,
we have to compute the 2D feature object for every candi-
date c, determine the minimal distance of the query point
to the feature object, and select all candidates whose mini-
mal distance is less thanε. In the following, we show the
correctness of our algorithm.

Lemma 2. Our algorithm guarantees to find allpartially
ε-similar polygon sections. In other words, our partial sim-
ilarity index search does not produce any false dismissals.

Proof (by contradiction).We assume that there is a polygon
sectionPSpiab of a database polygonpi, which is partially
similar to the search polygons, but is not in the result of
theε-neighborhood index search. We have to show that this
assumption leads to a contradiction. Note that we only have
to consider the filter step, since in the refinement step there
may not be any false dismissals. More formally, the assump-
tion may be expressed as follows

∃pi∃PSpiab∃T : δ(T (s), PSpiab) < ε ∧ PSpiab

not in ε-Neighborhood(T(s)).

The termPSpiab not in ε-Neighborhood(T(s)) is equivalent to

⇔ ∀fo ∈ index :δF (s,BBox(fo)) > ε

⇔ ∀fo ∈ index :dEuclid(F (C(s)), BBox(fo)) > ε.

The feature objects stored in the index are either decom-
posed or joined feature objects (Index = DecomposedFO:
∪ JoinedFO). Therefore, in the next step of our proof, we
have to show that we may not lose polygon sections by
the decomposition and joining algorithms. Since∀fo ∈
DecomposedFO: dEuclid(F (C(s)),BBox(fo)) > ε, it is clear
that the Euclidean distance ofF (C(s)) and the original un-
decomposed feature objects must be larger thanε. In case
of the joining algorithm, condition 2 guarantees that

∀FOu1u2v1v2∈JoinedFO: ∀i : u1 ≤ i ≤ u2

∀j : v1 ≤ j ≤ v2 : ∃FOiijj ∈ FOpi ,

which implies that

∀FOu1u2v1v2 ∈ JoinedFO:

∪
u1≤i≤u2,v1≤j≤v2

FOiijj ⊆ FOu1u2v1v2 .

Together with our assumption

∀fo ∈ JoinedFO: dEuclid(F (C(s)),BBox(fo)) > ε ,

we may conclude that the Euclidean distanceF (C(s)) and
each of the unjoined polygon sections must be larger thanε.

Altogether, we have now shown

∀fo ∈ Index : dEuclid(F (C(s)),BBox(fo)) > ε

⇒ ∀fo ∈ FOesij , esij ∈ ESpi : dEuclid(F (C(s)),

BBox(MF esij)) > ε

⇔ ∀fo ∈ FOesij , esij ∈ ESpi : dEuclid(F (C(s)),

BBox(F (C(PSesij(a·|ei|)(2π−b·|ej |))))) > ε

⇒ ∀fo ∈ FOesij , esij ∈ ESpi : dEuclid(F (C(s)),

F (C(PSesij(a·|ei|) (2π−b·|ej |)))) > ε

⇔ ∀PSpiab : dEuclid(F (C(s)), F (C(PSpiab))) > ε

⇒ ∀PSpiab : δ(T (s), PSpiab) > ε

(sinceC ◦ F is invariant against affine transformations)

which is in contradiction to the first part of our assumption.
Q.E.D.

4 Implementation and analysis

In this section, we provide an overview of the implementa-
tion of our approach. We further present the experimental re-
sults of applying our method on a large database of real data.
Our experimental results show that the maximum allowed
volume of any bounding box in the index (Vmax) strongly
influences the search time and the space requirements of our
method. We show that there is an optimal value forVmax and
determine the optimal valueV opt

max experimentally. We further
show that our method scales well with increasing database
size.

4.1 Implementation

To test our partial similarity index, we integrated the algo-
rithms into our prototype CAD database systemS3(Similar-
ity Search System).S3 is a database system for the manage-
ment of industrial parts which are described by a polygonal
CAD model. The system stores polygon contours for each
part of the database and allows the user to create indexes
using different indexing methods, providing a testbed for
comparing the query performance of the different indexing
methods.S3 has been implemented in C++ using X11/OSF
Motif, and runs under HP-UX as well as Linux. All exper-
imental results presented in the next sections are computed
on an HP 715/64 workstation with 64 MB of main memory
and several gigabytes of secondary storage. The SAM used
is an object-oriented version of the R∗-tree which is imple-
mented as a C++ template to support different data types.
The R∗-tree allows different types of queries such as partial
range queries and nearest neighbor queries.

4.2 Data, query polygons and results

As indicated in the introduction, our algorithms have been
designed to process real data from a major supplier of parts
for the German car manufacturing industry. The data used in
our experiments are the 2D contours of parts called ‘clips’
which are used in the car manufacturing industry for holding
and joining components in a car. Since, in general, ‘clips’ are
made of plastic material and produced by injection molding,
the variety of shapes is nearly unlimited. The ‘clips’ data
used for our experiments result from real CAD drawings
from our industrial partner. In Fig. 17, a small portion of
our ‘clips’ database is presented.

The queries used to test our algorithms are a set of real
query polygon sections provided by our industrial partner. In
Fig. 18, we show an example of such a query together with
the corresponding result generated by our program. Note that

345

Fig. 17. Polygon database

Fig. 18. Example for a Query and the Result Produced by our index-search

Fig. 19. Result provided by the Gary-Mehrotra Approach [MG 93, MG 95]

346

Fig. 20a,b.Index size depending onVmax

the leftmost of the retrieved polygons (polygon number 15)
is partially congruent to the query polygon section, the others
are only partially similar, sorted with respect to increasing
distance. The similarity of the retrieved polygons turned out
to correspond well with the human intuition of similarity. A
more objective study of the quality of our similarity mea-
sure is difficult, since it involves humans and their intuitive
understanding of similarity.

To show the advantage of a continuous solution of the
partial similarity search problem in contrast to an edge-
based solution, we also implemented one of the best ex-
isting methods – the well-known Gary-Mehrotra approach
[MG 93, MG 95]. In Fig. 19, we show the result of query-
ing the same database by using the query polygon shown
in Fig. 18a. It is clear that the Gary-Mehrotra does induce
false dismissals, i.e., it does not find all partially congruent
polygons (e.g., result polygons 1, 2, and 3 in Fig. 18), since
it does not consider polygon sections starting and ending
between vertices.

4.3 Experimental results

In this subsection, we present an experimental performance
evaluation of our algorithms. An important parameter of our
algorithms is the constant valueVmax, which largely influ-
ences the size of the generated index. In Fig. 20a, we show
the effect of the decomposition and joining algorithms for a
varying value ofVmax. As expected, the joining algorithm re-
duces the number of index entries, while the decomposition
algorithm increases the number of index entries. The effect
of the decomposition algorithm dominates for small values
of Vmax, since many feature objects have to be decomposed.
For largerVmax, the number of feature objects which have
to be decomposed decreases rapidly and converges against
0. Inversely, the effect of the joining algorithm is rather low
for smallVmax (only few feature objects may be joined), but
increases for largerVmax, since many feature objects may
be joined. For aVmax of about 1(= 100), the two algorithms
neutralize each other. Note that the decomposition algorithm
improves the quality of the filter step significantly, since the
volume of bounding boxes is decreased, and the joining al-
gorithm does not worsen the quality substantially, since the
joined boxes remain rather small.

Figure 20b shows the development of the index size with
an increasing value ofVmax. The decrease of the index size

Fig. 21. Time-space requirements

follows the curve describing the total effect of decomposition
and joining (cf. Fig. 20a). Note that we use a logarithmic
scale forVmax, which means that the reduction of the index
size is very high untilVmax reaches a value of 101, while the
increase of the index size is super-exponential forVmax→ 0.

For determining an optimal value ofVmax, we have to
consider not only the space requirements but also the devel-
opment of the search times depending onVmax. Figure 22a
shows the CPU time5 of the filter step. Obviously, we get
shorter filter times for higherVmax, since the index sizes are
also smaller. Note that the decrease of the search time in an
R∗-tree is not continuous, since there is a discontinuity each
time the depth of the R∗-tree is decreasing. Figure 22b shows
the time required for the refinement step, which is the time
needed to recompute the feature objects of the candidates and
test the distances of the candidates against the query poly-
gon. The number of candidates is inversely proportional to
the selectivity of the index. For a higher value ofVmax, the
bounding boxes in the index become bigger, which means
that the selectivity of the index decreases and the number
of candidates increases. Since the time curve for the filter
and refinement step are almost inverse, the total search time
has a minimum forVmax between 0.1(= 10−1) and 1(= 100)
(cf. Fig. 22c). To determine the optimal value forVmax, we
have to consider space and time requirements of our algo-
rithm. As shown in Fig. 20b, the index size decreases with
increasingVmax. Unfortunately, the search time explodes for
high values ofVmax (cf. Fig. 22c). To consider both space

5 Note that the search time of our method is mainly CPU-bound and
therefore the CPU-time directly corresponds to the elapsed time.

347

Fig. 22a–c.Search time

and time performance of our algorithm in determining the
optimal value forVmax, we use the weighted product of the
two curves (cf. Fig. 21) with a higher weight for the time
curve, since the search time is more important for our appli-
cation than the space requirements. The quadratic regression
of the product curve provides

f (x) = 2.033· x2 − 1.282· x + 1.971.

The minimum of the regression curve is 0.315, which means
that the optimal value forVmax is V opt

max = 100.315≈ 2.07.
For the experiments reported so far, we used a database

of 800 polygons with about 50 edges on the average, re-
sulting in about 275,000 edge sequences (problem size
N ≈ 275000). The generated extended feature object in-
dexes had a size of up to 70 MB (forVmax = 10−2). In our
final experiments, we examined the scale-up of our algo-
rithm with increasingN (for Vmax = V opt

max). Figure 23 shows
the resulting curve for the total search time. As expected,
the curve is sublinear with increasingN . The undulations
of the curve are again due to the jumps in the height of the
R∗-tree.

5 Conclusions

In this paper, we presented an efficient solution for the con-
tinuous partial similarity search problem of 2D polygons.
We introduced the new technique of extended feature objects
which – in contrast to conventional algorithms – guarantees
that there are no false dismissals. The method is based on
a transformation of the polygon sections into extended fea-
ture objects in a high-dimensional space. To enhance the
selectivity of the index, we developed an algorithm for de-
composing objects with large bounding volumes into smaller
ones, and to decrease the size of the index, we developed an
algorithm for joining adjacent objects. In our experimental
evaluation, we have determined the optimal value forVmax,
the threshold value for the decomposition and joining algo-
rithm. We have further shown that our method scales well
even for large databases of polygons.

The advantages of our new approach are: it is provably
correct (cf. Subsect. 3.3) and it is efficient, since it is based
on a multidimensional indexing of the resulting extended
feature objects. A disadvantage is the large number of edge
sequences [O(

∑n
i=1m

2
i)] and the high preprocessing time

Fig. 23. Search time depending onN

needed for determining the extended feature objects of the
edge sequences. Both disadvantages, however, are the price
which has to be paid in exchange for obtaining a solution
of the computationally difficult continuous partial similarity
search problem. The parameters of our approach are impor-
tant to adapt our techniques to the specific needs of different
applications. The maximum volumeVmax may be used to
find the optimal trade-off between index size and filtering
selectivity, and the radiusr of our curvature approximation
may be used to increase the quality of the curvature approx-
imation. Both parameters may be varied, depending on the
application.

Our future work includes a practical evaluation of the
systemS3 by our industrial partner. The evaluation will
include a detailed comparison of different types of CAD
data and different types of queries. We also intend to apply
the technique of extended feature objects in other applica-
tion contexts, such as pattern recognition or protein docking.
Our future work includes an examination of alternative in-
dex structures on their suitability for high-dimensional data
and their performance for large databases. Also interesting
will be an examination of how an adaptive decomposition of
large objects into smaller ones may improve the performance
of the indexing methods. Another area of future work will be
the partial similarity problem for contours of 3D polyhedra.
This, however, is a difficult problem, since there are many
obstacles that arise in going from 2D to 3D.

Acknowledgements.We thank Rainer Urian for his support in developing
the details of the Fourier theory. We are also thankful to Thomas Seidl,
Thomas Schmidt, and the anonymous referees for their comments on pre-
vious versions of the paper.

348

Appendix

Mathematics of the Fourier transformation

Any periodic functionf : < → < with period 2π can be
approximated by the sum

FS(x) =
a0

2

n∑
k=1

(ak cos(kx) + bk sin(kx)) ,

where the coefficientsak andbk are defined as

ak =
1
π

∫ 2π

0
f (x) cos(kx)dx and

bk =
1
π

∫ 2π

0
f (x) sin(kx)dx.

The coefficientsa and b can be seen as vectors in ann-
dimensional vector space. The base of the vector space
is build by cos(x), sin(x), cos(2x), sin(2x), ..., cos(nx),
sin(nx). In general, integrals of the form

∫
f (x) sin(x)dx are

difficult to solve analytically. For the special case off (x)
being a square wave function however,

∫
f (x) sin(x)dx can

be determined easily. Let us assume thatf (x) has a value
of 1

r in the interval [u, v] and is zero elsewhere. Since the
value of the integral is zero outside of [u, v], we just have
to integrate fromu to v. Therefore, we are able to calculate
ak andbk as:

ak =
1
π

∫ v

u

1
r

cos(kx)dx =
1

πkr
(sin(kv)− sin(ku)) (1a)

bk =
1
π

∫ v

u

1
r

sin(kx)dx =
1

πkr
(cos(kv)− cos(ku)) (1b)

For a detailed treatment of the Fourier theory, see [Wei 80].

References

[AB 92] Alt H, Bl ömer J (1992): Resemblance and Symmetries of Ge-
ometric Patterns. Data Structures and Efficient Algorithms, in:
LNCS, Vol. 594, Springer, pp 1–24

[AFS 93] Agrawal R, Faloutsos C, Swami A (1993): Efficient Similarity
Search in Sequence Databases. Proc. 4th Int. Conf. on Foun-
dations of Data Organization and Algorithms, LNCS, Vol. 730,
Springer, pp 69–84

[ALSS 95] Agrawal R, Lin K, Sawhney H, Shim K (1995): Fast Simi-
larity Search in the Presence of Noise, Scaling, and Transla-
tion in Time-Series Databases. Proc. 21st Conf. on Very Large
Databases, Z̈urich, Switzerland, pp 490–501

[Ber 97] Berchtold S (1997): Geometry based search of similar parts. (in
german), Ph.D. thesis, University of Munich

[BKS 93] Brinkhoff T, Kriegel H.-P, Schneider R (1993): Comparison of
Approximations of Complex Objects Used for Approximation-
based Query Processing in Spatial Database Systems. Proc. 9th
Int. Conf. on Data Engineering, Vienna, Austria, pp 40–49

[BKSS 90] Beckmann N, Kriegel H.-P, Schneider R, Seeger B (1990): The
R∗-tree: An Efficient and Robust Access Method for Points and
Rectangles. Proc. ACM SIGMOD Int. Conf. on Management
of Data, Atlantic City, NJ, pp 322–331

[FBFH 94] Faloutsos C, Barber R, Flickner M, Hafner J, et al (1994):
Efficient and Effective Querying by Image Content. J Intel Inf
Syst 3:231–262

[Fre 87] Freeston M (1987): The BANG file: A new kind of grid file.
Proc. ACM SIGMOD Int. Conf. on Management of Data, San
Francisco, CA, pp 260–269

[FRM 94] Faloutsos C, Ranganathan M, Manolopoulos Y (1994): Fast
Subsequence Matching in Time-Series Databases. Proc. ACM
SIGMOD Int. Conf. on Management of Data, Minneapolis,
MN, pp 419–429

[Gar 82] Gargantini I (1982): An Effective Way to Represent Quadtrees.
Commun ACM 25 (12) 905–910

[Gut 84] Guttman A (1984): R-trees: A Dynamic Index Structure for
Spatial Searching. Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, Boston, MA, pp 47–57

[Gue 89] G̈unther O (1989): The Design of the Cell Tree: An Object-
Oriented Index Structure for Geometric Databases. Proc. 5th
Int. Conf. on Data Engineering, Los Angeles, CA, pp 598–605

[HB 86] Horn P, Berthold K (1986): Robot vision. MIT Press, Cam-
bridge, MA

[Jag 90a] Jagadish HV (1990): Linear Clustering of Objects with Multiple
Attributes. Proc. ACM SIGMOD Int. Conf. on Management of
Data, Atlantic City, NJ, pp 332–342

[Jag 90b] Jagadish HV (1990): Spatial Search with Polyhedra. Proc. 6th
Int. Conf. on Data Engineering, Los Angeles, CA, pp 311–319

[Jag 91] Jagadish HV (1991): A Retrieval Technique for Similar Shapes.
Proc. ACM SIGMOD Int. Conf. on Management of Data, Den-
ver, CO, pp 208–217

[KM 95] Kehrer L, Meinecke, C (1995): Perceptual Organization of
Visual Patterns: The Segmentation of Textures. In Prinz W,
Bridgeman B, (Eds) Handbook of Perception and Action: Vol.
1: Perception, Chapter 2, Academic Press, London

[KSP 95] Kauppinen H, Seppänen T, Pietik̈ainen M (1995): An Exper-
imental Comparison of Autoregressive and Fourier-Based De-
scriptors in 2D Shape Classification. IEEE Trans. Pattern Anal
Mach Intell 17 (2)

[MG 93] Mehrotra R, Gary J (1993): Feature-Based Retrieval of Simi-
lar Shapes. Proc. 9th Int. Conf. on Data Engeneering, Vienna,
Austria

[MG 95] Mehrotra R, Gary J (1995): Feature-Index-Based Similar Shape
Retrieval. Proc. 3rd Working Conf. on Visual Database Sys-
tems, pp 46–65

[Mum 87] Mumford D (1987): The Problem of Robust Shape Descriptors.
Proc. IEEE 1st International Conf. on Computer Vision

[NHS 84] Nievergelt J, Hinterberger H, Sevcik KC (1984): The Grid File:
An Adaptable, Symmetric Multikey File Structure. ACM Trans
Database Syst 9(1):38–71

[Ore 90] Orenstein J, (1990): A Comparison of Spatial Query Process-
ing Techniques for Native and Parameter Spaces. Proc. ACM
SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ,
pp 343–352

[PF 94] Petrakis E, Faloutsos C (1994): Similarity Searching in Large
Image DataBases. Technical Report CS-TR-3388, University of
Maryland,

[RH 92] Rigoutsos I, Hummel R (1992): Massively Parallel Model
Matching: Geometric Hashing on the Connection Machine.
IEEE Computer 25(2):33–42,

[SK 90] Seeger B, Kriegel H-P (1990): The Buddy Tree: An Efficient
and Robust Access Method for Spatial Data Base Systems.
Proc. 16th Int. Conf. on Very Large Data Bases, Brisbane, Aus-
tralia, pp 590–601

[SM 90] Stein F, Medioni G (1990): Efficient Two Dimensional Object
Recognition. 10th. Int. Conf. on Pattern Recognition, Atlantic
City, NJ, pp 13–17

[SRF 87] Sellis T, Roussopoulos N, Faloutsos C (1987): The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects. Proc. 13th Int.
Conf. on Very Large Databases, Brighton, England, pp 507–518

[Wei 80] Weisstein N (1980): The Joy of Fourier Analysis. In Harris CS
(Ed) Visual coding and adaptability, Erlbaum, Hillsdale NJ

[WW 80] Wallace T, Wintz P (1980): An Efficient Three-Dimensional
Aircraft Recognition Algorithm Using Normalized Fourier De-
scriptors. Computer Graphics and Image Processing 13:99–126

