
Data Partitioning and Load Balancing in
Parallel Disk Systems *

Peter Scheuermann 1, Gerhard Weikum 2, Peter Zabback 3

1Department of Electrical Engineering and Computer Science, Northwestern University,
Evanston, IL 60208, U.S.A., E-mail: peters@eecs.nwu.edu

2Department of Computer Science, University of the Saarland, P.O. Box 151150, D-66041
Saarbriicken, Germany, E-mail: weikum@cs.uni-sb.de

3 Tandem Computers Incorporated, 10100 North Tantau Avenue, Cupertino, CA 95014-2542,

U.S.A., E-maih zabback@patch.tandem.com .

Contents /-:: _ "' _

Introduction: Tuning Issues in Parallel Disk Systems 2

1.1 Tuning Issues in Data Partitioning 3

1.2 Tuning Issues in Data Allocation and Load Balancing 4

1.3 Contribution and Outline of the Paper 5

Data Partitioning 6

2.1 Phase A: Minimizing Service Time 7

2.2 Phase B: Minimizing Response Time by Considering Throughput and Queue-

ing Delay 10

2.3 Putting It All Together: the Algorithm for Data Partitioning 13

3 Load Balancing 14

3.1 Data Allocation 15

3.2 "Disk Cooling" 16

3.3 Heat Tracking 18

4 Experimental Results 19

4.1 Experiments With Synthetic Workload 19

4.1.1 Workload With Uniform Access Frequencies 20

4.1.2 Workload With Skewed Access Frequencies 24

4.2 Experiments With Application Traces 27

4.2.1 World-Wide-Web Server 27

4.2.2 Online Transaction Processing 28

5 Conclusion 29

5.1 Discussion of Achievements and Limitations 29

5.2 Future Work 31

"This research has been partially supported by NASA-Ames grit _ant, NSF grant IRI-

9303583, and the ESPRIT LTR project 9141 (HERMES). _ _¢/_

I,Q Vt b2

Abstract

Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible

ways, namely via inter-request and intra-request parallelism. In this paper we discuss the

main issues in performance tuning of such systems, namely striping and load balancing, and

show their relationship to response time and throughput. We outline the main components of

an intelligent, self-reliant file system that aims to optimize striping by taking into account the

requirements of the applications, and performs load balancing by judicious file allocation and

dynamic redistributions of the data when access patterns change. Our system uses simple

but effective heuristics that incur only little overhead. We present performance experiments

based on synthetic workloads and real-life traces.

Keywords: parallel disk systems, performance tuning, file striping, data allocation, load

balancing, disk cooling.

1 Introduction: Tuning Issues in Parallel Disk Systems

Parallel disk systems are of great importance to massively parallel computers since they are

scalable and they can ensure that I/O is not the limiting factor in achieving high speedup

[10, 55, 63]. However, to make effective use of the commercially available architectures, it is

necessary to develop intelligent software tools that allow automatic tuning of the parallel disk

system to varying workloads. The choice of a striping unit is an important parameter that

affects the response time and throughput of the system. Equally important is the decision of

how to allocate the data on the actual disks and how to perform redistribution of the data

when access patterns change, especially when the load becomes imbalanced across the disks

due to skewed access frequencies. These 'tuning options need to be performed dynamically,

using simple but effective heuristics that incur only little overhead.

This paper presents a set of performance tuning techniques for parallel disk systems.

These techniques are orthogonal to the techniques for high availabilitythat typically are

employed in parallel disk systems (e.g., RAID levels) and can be applied to a wide spec-

trum of applications ranging from conventional file systems and WWW servers to database

systems. Throughout the paper we assume that the underlying computer architecture is

that of a shared-memory multiprocessor; extensions to distributed-memory architectures are

conceivable but are not considered in this paper.

In order effectively to exploit the potential for I/O parallelism in parallel disk systems,

data must be partitioned and distributed across disks. The partitioning can be performed
at two levels:

°

.

The physical (block or byte) level. The term striping is used for this variant of par-

titioning schemes which divides a file into fixed-size runs of logically consecutive data

units that are assigned to disks in a round-robin manner [43, 51, 65, 68]. The striping

unit denotes the number of consecutive data bytes or blocks stored on a given disk.

The application level. The term declustering has been employed in relational database

systems to denote partitioning schemes that perform a horizontal division of a relation

2

into fragments based on the values of one or several attributes..\mon,_ the sch('nws

employed for single attribute partitioning are hashing and range partitioning [18, 27!,

while techniques based on Cartesian product files have been advocated for multiple

attribute declustering (e.g., [20, 21, 29, 44]).

Striping has an advantage over application-level methods in that it can be applied as

a generic low-level method for a wide spectrum of data types (all of which are ultimately

mapped into block-structured files). In this paper we therefore restrict our attention to data

partitioning via file striping. In the following, a file may denote a tablespace or indexspace

in a relational database, a logical object cluster in an object-oriented database, a document

such as WWW pages in a multimedia information system, or indeed simply a Unix-like

sequence-of-blocks file. We shall use the term striping width of a file to denote the number

of disks over which a file is spread. A logicallyconsecutive portion of the file that resides on

one disk and whose size is a striping unit is called a run. All runs of a file that are mapped

to the same disk are combined into a single allocation unit called an eztent.

Striping provides opportunities for exploiting I/O parallelism in two possible ways. Intra-

request (intra-operation) parallelism allows the parallel execution of a single request by

multiple disks. Inter-request (inter-operation) parallelism can be achieved if independent

requests are being served by the disksystem at the same time. The degree of parallelism in

serving a single data request is the number of different disks on which the requested data

resides.

1.1 Tuning Issues in Data Partitioning

The stripingunit is an important parameter that must be chosen judiciouslyin order to

reduce the servicetime of a singlerequest or to improve the throughput of multiple requests

[12,13,25, 33, 48, 80].A largestripingunit tends to clustera fileon one disk,which does not

allow any degree of intra-requestparallelism.In consequence, the servicetime of a request

isnot improved, but the throughput is increased ifthe requests are uniformly distributed

acrossalldisks.At the other end of the spectrum, a small stripingunit provides very good

response time for a light load, but severely limitsthe throughput, as the total amount of

device-busy time consumedin serving a singlerequest increases with a decreasing striping

unit.Consequently, forsmall stripingunits the response time may deteriorateunder a heavy

load due to queueing delays. In practice,itisnecessary to choose the stripingunit such that

a certainobjectivefunction isminimized. One such objective function aims at minimizing

the response time subject to a constraint on the achievable throughput.

In Ill,12, 48] heuristicmethods are proposed to determine the stripingunit of a disk

array based on the knowledge of the average request size and the application'sexpected

multiprogramming levelunder the assumption of a closed queueing model. While these

assumptions may be valid for relativelysmall multiprogramming levels,they do not scale

up to data management systems with large numbers of concurrent users,which translates

to high arrival rates with stochastic load fluctuation. For such systems, it is most crucial to

guarantee a certain level of performance during peak periods.

Most heuristic methods also advocate choosing a global striping unit, i.e., the same

striping unit for all files in the system [11, 12, 48]. However, many applications such as

multimedia information systems (e.g., in digital libraries or medical applications) exhibit

highly diverse file characteristics making it desirable to be able to tune the striping unit

individually for each file. Furthermore, file-specific striping allows incremental repartitioning

of files. Consider, for example, the case where a global striping unit may be appropriate at

some moment in time, but later on the overall load is increasing so that the response time

becomes critical. File-specific striping enables us incrementally to restripe only the most

frequently used files to a larger striping unit, thus reducing the disk utilization and thereby

decreasing the response time under a high load while leaving the other files with the (old)

global striping unit.

After the striping unit has been determined (globally or on a file-specific basis), the file

system must derive the striping width, i.e., the number of disks across which the file(s) is

(are) spread. In our model, a file is either spread across all disks, or, if the file is relatively

small, its width is obtained as the quotient of the file size and the striping unit. Similar

response-time constraints to the ones discussed above may justify that some files be stored

on a "dedicated" subset of disks in order to avoid contention,and hence their striping width

would be limited by the number of disks in this subset. This type of constraint is not pursued

in this paper.

•1.2 Tuning Issues in Data Allocation and Load Balancing

The striping unit(s) and striping width(s) are only some of the parameters that affect the

response time or throughput of a parallel disk system. The decision of how to allocate

the files on the actual disks is equally important in order to obtain good load balancing.

Load refers to the amount of work done by each disk and it affects both the response time

and throughput. Balancing the load contributes towards minimizing the average lengthof

the queues associated with the disks (minimizing the service time variance per disk could

be another optimization criterion [49], which is not considered in this paper). Very small

striping units lead to very good load balancing; in the extreme case each request involves all

the disks in the system so that the load is perfectly balanced. But throughput considerations

require for many applications that we choose large striping units (e.g., the size of a cylinder)

[11, 12, 13, 33, 48, 51, 80]. Thus, load balancing needs to be performed even if striping is

employed.

Load balancing is particularly challenging for evolving workloads, where the hot (i.e.,

frequently accessed) and cold (i.e., infrequently accessed) files (or portions of them) change

over time. Such situations only can be counteracted byreallocating some of the data, and such

reorganizations should be performed online without requiring the system to be quiescent. In

order to perform this desired form of adaptive disk load balancing ,it is necessary dynamically

to estimate the frequencies of the requests to the various files or data partitionsas well as

the request sizes. To account for these parameters, the file system must keep track of the

following related statistics:

• the heat of extents and disks, where the heat is defined as the sum of the number of

block accesses of an extent or disk per time unit, as determined by statistical observa-

tion over a certain period of time,

• and the remperat_lreof extents, which is definedas the ratio betweenheat and size
[14,i6, 421.

If the striping unit is a byte and all files are partitioned across all disks inthe system, then

we obtain a well balanced I/O load. While this approach may be adequate for supercomputer

applications characterized by very large request sizes [41] (i.e., a high data rate), it certainly

limits the throughput of transaction processing applications characterized by a high rate of

small random read and write requests [33] (i.e., a high I/O rate). As soon as the striping

unit is relatively large (e.g., a track or cylinder), the need for load balancing reappears

immediately, even if the files are partitioned across all disks. This is due to the fact that the

heat of the various blocks or extents is often distributed in a highly non-uniform manner.

1.3 Contribution and Outline of the Paper

This paper addresses several key issues in the automatic tuning of parallel storage systems.

Various aspects of earlier versions of our approach have been published in [79, 80, 71, 72],

and [78, 84] give an account of the COMFORT project where this work has been applied. In

this paper, we describe automatic tuning methods that are more advanced than the those

used earlier and we emphasize their interraction in an actual system. We provide guidelines

for potential system architects of self-reliant storage systems, and we give comprehensive

experimental evidence of the viability and benefits of our approach.

The specific contributions of this paper are the following:

°

.

We derive and evaluate an approximative, analytic model for choosing a near-optimal

global striping unit for all files in the system. Our model aims at minimizing the mean

response time of all file access requests under the assumption of a perfect load balance.

The optimization is performed for a given workload that is characterized by the aver-

age request arrival rate and themean request size over all files. This analytic model

determines a degree of parallelism that attempts to minimize the multi-user response

time; given this degree of parallelism, the striping unit and striping width easily can be

tuned. The model and the derived data partitioning method are significant extensions

to the method outlined in [79]. In particular, our new algorithm explicitly takes into

account queueing delavs by providing a computationally tractable analytical approxi-

mation for the underlying fork-join queueing model [62]. In contrast to the modeling

approach of [48] that uses a closed queueing model, our method is based on an open

queueing model that seems more appropriate for systems with many clients (e.g., Web

servers or database applications).

Our model for determining the performance impact of a global striping unit is com-

plemented by additional considerations that allow us to choose the striping unit on a

file-specific basis. In this case, we also consider the impact of the average request size

of a particular file on the mean service timeof requests to this file. While this exten-

sion has the potential for additional performance benefits, it turns out experimentally

that these extra gains are minor. However, we consider the capability of supporting

file-specific striping units an important benefit in dealing with files that need to be

reorganizedindividually when tile stationary load increasesor when the number _f

disks changes. For example, hot filesmay have a striping unit differentfrom that of

cold files(seealso [81]forsimilarconsiderationson flexibilityand dynamic adaptation

in paralleldisk systems).

, We present an online heuristic method for dynamic load balancing referred to as "disk

cooling". This method counteracts load imbalances that are due to skewed access fre-

quencies by performing online data migration steps from hot onto cold disks; hence the

name "disk cooling". As our experiments demonstrate, this method achieves signifi-

cant performance gains compared to methods that rely solely on static data placement

for load balancing (e.g., round-robin placement of track-sized striping units). Our disk

cooling method can cope with evolving workloads where the hot and cold portions of

the data change over time. This is achieved by employing a heat tracking method

based on moving-average values which is very responsive to sudden changes in heat.

Furthermore, our dynamic load balancing procedure is invoked automatically and the

reorganization requests are treated as lower priority requests that occur concurrently

with regular file access requests.

. We show through various performance experiments the synergetic effects of combining

our heuristic methods for data partitioning and disk cooling. Although the problems of

data partitioning and load balancing are orthogonal issues, they are not independent

since the near-optimal choice of the striping units is done under the assumption of

a perfectly balanced system. The performance experiments reported in this paper

clearly illustrate the combined effects of these two methods as well their advantages

over conventional striping methods based on physical device units (e.g, block, track).

The remainder of this paper is organized as follows. We describe in Sections 2 and 3

the main components of an intelligent file manager for parallel disk systems that performs

automatic data partitioning, data allocation, and load balancing by incremental reorgani-

zation steps. In Section 4, we report on performance studies of our file system based on

synthetic workloads and real-life traces. We conclude in Section 5 with a discussion on

future extensions to our work.

2 Data Partitioning

We have developed an approximative analytic model that aims at determining the optimal

striping unit and the striping width on an individual file basis or on a global basis. These

parameters can be chosen for each file individually, based upon the file's estimated average

request size R, or globally by using instead the average request size over all files, denoted

by R. In either case the optimization can be carried out in one or two phases, A and B,

depending upon the anticipated arrival rate of requests. For low arrival rates of requests,

where we can assume that no queueing delays occur, Phase A chooses a degree of parallelism

that aims at minimizing the service time of an average request of size R (or R) which is

equivalent to minimizing the response time if the system operates in single user mode. Phase

B chooses a degree of parallelism that aims at minimizing the (multi-user) response time

6

subject to theconstraint that the achievablethroughput is at least as high as the application's

average arrival rate of requests to all files, denoted by _. The degree of parallelism. P_/I.

chosen for an average request is then adjusted by choosing the minimum (normalized as

explained below) between the outcomes of Phases A and B. The striping unit and width are

then derived from the chosen near-optimal degree of parallelism, Pe/l.

Our Phase B optimization uses an open queueing model in order to take into account

explicitly the throughput considerations and queueing delays, and uses approximations to

find a near-optimal degree of parallelism. As mentioned before, the striping method proposed

by Chen et al. [12, 48] is based on a closed queueing model. There, a heuristic formula is

derived from experiments as well as approximative analytical treatment, which suggests a

global striping unit of

SU= (L X (M-l) n
D (1)

where L is the average latency (sum of seek and rotational delays) of a disk, X is the transfer

rate of a disk, M is the multiprogramming level of the application, R is the average request

size, and D is the number of disks. [11] further extends this approach by considering the

impact of parity writes in a RAID level 5 system. Chen et al. [12, 48] also discuss the

difficulty of estimating the multiprogramming level. As we pointed out earlier, we consider

an open queueing model to be more appropriate for a data management system with a large

number of users (as opposed, for example, to a file server in a LAN of workstations).

2.1 Phase A: Minimizing Service Time

Given a number of files to be allocated, Phase A determines the optimal partitioning on a

file-specific (global) basis based on the average request request size R (R). This estimate can

be derived in many cases from the file's type information. For example, in an OLTP system

such as airline reservation or phone call switching and accounting, one can typically expect

an average request size of a block. On the other hand, in a multimedia application such as

digital libraries or medical archiving, we can expect that all requests will require access to an

entire document (e.g., an image) and hence R would be the file size. A general discussion of

how to determine such workload parameters for arbitrary applications is beyond the scope

of this paper. Note, however, that it is trivial to determine the parameters in retrospect

after having observed the access patternsfor some time; then the presented tuning method

can always be used for reorganizing existing files.

Let P be the degree of parallelism involved in serving an average request of size R, i.e.,

the number of disks involved in serving this request. In the absence of queueing delays, the

expected service time, to be denoted by Tse,.v(R, P), is in fact equal to the expected response

time, to be denoted by Tre_p(R, P). The expected service time is given by:

T,_,,,(R,P) = max(t,_,k,, + trot,i) + ttr_ns(R,P) (2)

where ts_k,, and t_ot,, (i = 1, ..., P) denote the seek time and rotation time, respectively, of

disk i involved in serving the request. For tractability purposes, we replace the right hand

side by the following approximation:

7

T_e_v(R, P) = max(ts_ek._) + max(trot,_) + ttr_,_s(R, P) i3)
t I

Thus. we note that the solution to equation (3) provides in fact an upper bound for

T,e v(n, P).
In order to obtain approximate distributions for T_e_k = maxi(t_eek,z) and Trot = max_(trot,_)

we make the standard assumption that the delays at each disk, i.e., seek times and rotation

times are independent and identically distributed random variables [8, 45]. In addition, we

assume that the delay probabilities are unconditional, i.e., the probability of a delay does not

depend upon the probabilities of previous delays. In reality, there may be a certain degree

of correlation among these variables, for example in the case of a synchronized disk array

where all disks heads move in tandem. Also, in some applications, it is possible to have a

sequence of requests to successive blocks on a disk; in other words the probability of a seek

distance is conditional upon the probabilities of previous seek distances.

Let us denote by d,e_k,z and drot,i (i - 1, ...P) the dual random variables that give us the

distances traveled on disk i by the head or arm, respectively, from the current location to

the requested one. We shall compute first the expected values of Ds,_k = maxi(d_ek,z) and

Drot = maxi(d,.ot,,) and use these values to derive the expected values of T_k and Trot.

Under the assumptions given above, the cumulative distribution functions for Dseek and

Drot can be computed, respectively, as the product of P cumulative distribution functions

of tile random variables, d,_k,i and drot,i, corresponding to the P disks involved in serving

the request.

We compute first the probability mass function of d_,k,_:

Prob[d,_ej,,_ = z] - 2(C- z) (4)

where C denotes the number of cylinders on one disk. From here be obtain the cumulative
distribution function:

Prob[d,e_k,, _< z] = 1 - (1 - C)2

It was shown in [8] that the expected value E[D_k] is given by :

(5)

P 2/)
E[D_e_k] = C(1 - YI 2i + 1 (6)

i=1

The product in equation (6) can be approximated by the following expression, with
constants a = 0.577 and b = -0.118:

E[D_,_k] = C(1 - a - b In(P)) (7)

/,From here the expected value 5f T_ can be approximated by the following linear

equation with appropriate (disk-type-dependent) constants e and f:

(8)

8

\Ve note here that the equation which convertsseekdistance in cylinders to seek time
consistsin fact of two components,a non-linear one and a linear one [8, 67]. However. in
our model we are interestedonly in the expectedvaluesof the seekdistance and the seek
time, and the expectedvalueof the seekdistance lies in the linear part of the distance-time
equation.

The rotation distance on a given disk i, d,-ot,,, gives the fraction of a full rotation that

is necessary in order to position the arm on the first block of the current request. In order

to compute E[D',.ot], we make the common assumption that d,-ot,, is a uniformly distributed

variable in the range [0, 1], thus:

Prob[d,.oe,i <_ r] = r (9)

/From here we obtain the cumulative distribution function of D,.ot = maxi(drota) as •

P

Prob[Drot <_ r] = rI Prob[d_ot,, <_ r] = r e (10)
i=1

and furthermore E[D_ot] = P.._K_ It follows that the expected value of Trot is given bv:P+I "

P ROT (11)
E[T, ot] - p + 1

where ROT denotes the rotation time of a disk.

It can be seen from these equations that as the degree of parallelism, P, increases, both

the expected seek time, E[Tseek], and the expected rotation time, E[T, ot], increase also.

For small requests these two components of service time are the dominant ones, hence the

service time increases also. The only component of the service time that decreases with an

increased degree of parallelism is the transfer time tt,.an,(R, P). Each disk transfers _ blocks

(assuming, for simplicity, identical subrequest sizes on the disks)), and if we ignore cylinder

and head switches, the transfer time can be estimated as R ROT where B is the number ofP B '

n blocks span overblocks in a track. However, in order to account for the fact that these F

track and cylinder boundaries we add corresponding correction terms and obtain:

E[tt_=ns(R,P)] = (rths -- nc_)th_ + ncstc, + p-p_ROT (12)

where

rlhs

Ylcs

ths

tcs

is the number of head switches (including cylinder switches),

is the number of cylinder switches,

is the head switch delay, and

is the cylinder switch time (time for a seek of distance 1).

Using simple probability arguments we estimate

n 1
r--n/P1- -1+ B- (R/P- ([RB-_--] -- 1)B)- 1 P

_hs _ 'B" B B
n 1rR/P7_ TB- (R/P- - 1)B)- 1 -

n_ = "-T--B" - 1 + T B "_ T B

(13)

(14)

9

and weobtain:

-R 1 + _BR _ n i t' t_ ROTE[t,_ns(R, P)] = (P--- l p)ths + (15)
B TB TB

where T is the number of tracks in a cylinder.

Combining the above results we obtain the following formula for the expected service

time:

P

E[Tserv(R,P)] = eC(1 -a-bln(P))+ f + p +-----_ROT (16)

R 1 n 1 n-1 R

+(-P P)tas + --_ tc_ + -_-_ROTB TB

The trade-offs between increased seek and rotation time on one hand and reduced transfer

time on the other hand for various degrees of parallelism are illustrated also in Figure 1. This

example considers a file that is being striped across 4 disks with three different striping units

and resulting degrees of intra-request parallelism. The figure traces the execution of an I/O

request of size 4 blocks for the three configurations. For illustration purposes the seek and

rotation times are combined together into latency time.

The optimal degree of parallelism, Pore, can be determined by finding the minimum of

the function E[T_erv(R, P)], i.e., by solving the following cubic equation for P:

dE[T._r.(R,P)] ROT eCb PROT

dP P + 1 P (P + 1) 2

R R R

+(P2TB p21_)th" P2Tl_ tcs

= 0

RROT

p2B

(17)

2.2 Phase B: Minimizing Response Time by Considering Through-

put and Queueing Delay

An increased degree of parallelism leads not only to trade-offs between seek and rotation

time on one hand and reduced transfer time on the other hand, but also affects adversely

the device-busy time of a request, i.e., the sum of the times that the disks are involved

in the request and hence are not available for other requests. The relationship between

the device-busy time and the various components of the response time is also illustrated in

the executionof requests in Figure 1. The throughput, measured as the number of requests

completed per time unit, is inversely proportional to the average device-busy time of a

request. Thus, higher degrees of parallelism lead to "unproductive" positioning times and,

hence, to lower throughput.

The Phase A model for service time minimization has assumed that there are no interfer-

ences among the various requests and that no queueing delays occur. This is obviously not

10

the situation in a multiprogramming environment: especiallyunder heavv load. i.e.. a high
arrival rate, queueingdelaysplay an important role. The scenariowhereeach I/O request
is servedby a singledisk is well understoodand can be modeled via an M/G/1 queueing
model [39]. We observe, however, that no general analytical model is known for so called

fork-join queueing model [62, 52], i.e., for the case when I/O requests are served bv multiple

disks and the number of disks involved varies from request to request. An exception is the

case when exactly two disks are being involved in serving every request [23, 24].

We present in this section a simplified and computationally tractable analytic approxima-

tion to the fork-join model, under the assumption of perfect load balance. More specifically,

we compute first the mean response time on each disk, assuming that the requests are equally

distributed among the disks and that each disk can be represented as an M/G/1 system.

Then, we use an approximation method outlined in [45] in order to compute the expected

response time for requests with degree of parallelism P (averaged over the requests to all

files) as the maximum among the response times of the P participating disks.

Our analytic approximation to the queueing model requires that we provide an estimate

of the average arrival rate to all files in the system, denoted as A, in addition to the average

request size, across all files, denoted as R. Note that the value of R can be derived by

sampling, or, alternatively, it can be computed from the average request sizes R., to the

individual files and the access frequencies of the files. The objective of Phase B is to compute

the optimal value for P, the average degree of parallelism.

Given that requests in our system have an average arrival rate of h and an average degree

of parallelism of P, we obtain the overall arrival rate for the constituent subrequests as h • P.

Under the assumption of a perfectly balanced system where the subrequests are equally

distributed among the disks, the subrequest arrival rate to a given disk i (i = 1, ..., D), to

be denoted as hi, can be computed as:

AP

hi = --D--

with D standing for the number of disks in the system.

The average subrequest size, to be denoted as S, can be derived as:

(18)

m

R
= = (19)

P

The service time for an individual subrequest to disk i, to be denoted by tser,,a(S), can

be computed by using the standard formulae for the service time of a single disk. We can

express the utilization of disk i, pi, as:

p, = h, • t,er,,,(s) (20)

Using our assumption that each disk can be viewed as an M/G/1 queue, the expected

value of t_e,p,,(S), the response time of the subrequests served at disk i, is given as [39]:

= + p,.
1 + ci 2

2(1 - p,)
(21)

11

wherecf stands for the squaredcoefficient of variation of the service time of subrequestsat
disk i. c_ is defined as the ratio of the corresponding variance (_'AR) and expected service

time:

5= t"AR[t,erv., (S/] (.)._)

c, E[t,erv,,(g)]2 "-

Also from M/G/1 queueing theory we obtain the formula below which relates the variance

of the response time of individual subrequests on a disk i to the first three moments of their

service time:

/k/E[t'er'"(S)a] A_E[t'e''a (S)=]2 (23)
VAR[t,_,,,,(S)] = VAR[t,_a(S)] + 3(1 - p,) + 4(1 - p,)2

The response time for requests of size R served by P disks, to be denoted as T_,p(R, P),

satisfies the equality:

E[T_,p(-R, P)] = max(tr_p,,(S)) (24)

In order to derive an analytic expression for the above equation, we make use of an

approximation method presented in [45] which has been shown to be quite accurate if the

response times of the individual subrequests, i.e., t_,p.,, obey a normal distribution. This

approximation states that the expected response time for a request can be estimated as the

response time of an individual subrequest plus a "correction" factor, which accounts for the

slowest subrequest:

{ E[t,e,p,i(S)] + _/VAR[t_e,p,,(-S)] P-' for -fi < 3

yTy:;
E[T_,p(R, P)] ._ " (25)

E[t,_,p,i(-S)] + _/VAR[t,e,pa(S)]_logP for P > 3

We have conducted a series of experiments and these have shown that the assumption of

normally distributed response times for the individual subrequests is a valid one.

We observe that with an increase in the variance of the response time of individual

subrequests, the correction factor increases correspondingly. The impact of the degree of

parallelism P on the different components of the response time which we described informally

in Figure 1 is taken into account implicitly by the correction factor in equation (25).

In order to calculate E[Tr_,p] in equation (25) it is necessary to compute the first three

moments of the subrequests' service time distribution, namely, E[t,e_,a(S)], E[tsem,(-S)2],

and E[t,e,,.,(S)a]. For this calculation we need to derive the probability density function of

t_e_,,,(S). The probability density functions of the corresponding seek and rotation times,

i.e., f, eek., and frota, can be derived from equations (5) and (9), respectively; the probability

density function of the transfer time, i.e., ft_n,,, is a constant whose value is obtained by

setting P = 1 in equation (12). Finally, the probability density function for t,,_,,,,(S) can be

obtained by convoluting the probability density functions faeek,i, f, ot,i, and ft_,,,,i. The full

details of this derivation are given in [84].

The value P which minimizes equation (25) can be found iteratively, by going through

the range of possible values for P (this is obviously bounded by D, the number of disks in

12

the system). \Ve choosethis approachsinceequation (25) is not easily¢tifferentiable.unlike
its counterpart in PhaseA. namely,equation (16).

2.3 Putting It All Together: the Algorithm for Data Partitioning

The complete algorithm for data partitioning is outlined in Figure 2 below. If we anticipate

a low arrival rate of requests and desire to perform optimization only by using Phase A, then

Steps 2 and 3 are omitted. For file-specific partitioning Steps 1, 3, and 4 need to be iterated

over the number of files in the system. On the other hand, for global partitioning, the above

steps need to be executed only once, with one exception as explained below.

The effective degree of parallelism, Pc//, is computed in Step 3 by choosing the minimum

between the degrees of parallelism computed in Steps 1 and 2. The factor Ri/R is used_ to

normalize the outcome of Step 2. This is due to the fact that for requests larger than R, we

want the degree of parallelism of file i to exceed P, and if R/ is smaller than R, then PeIl,i

should be smaller than P.

The striping unit and striping width are then derived from PeH,i (or Per/, respectively)

in Step 4. If all I/O requests start at run boundaries then the striping unit of a file, SUi,

can be derived by using the formula r_]. This is also the case when the requests are for

individual blocks, i.e., Ri = 1, or for the entire file, i.e., R/= L,, with Li being the file size.

On the other hand, if the requests can start at any block inside a run, the formula above

yields a striping unit which cannot support in most cases the degree of parallelism P_ff,,;

this in fact increases P_//,i by one. In order to cover this case, the striping unit is derived

by the alternative formula F R_-I] which guarantees a degree of parallelism of Pell,i in
I Peff,L--1

all cases. In the case of PeH,i -- 1, the striping unit should be chosen as large as possible,

i.e., SU, = L,', with L_ being the file size. Finally, the striping width, denoted as SWi, is

chosen as high as possible in order to support inter-request parallelism also, in addition to

the intra-request parallelism considered by the above steps. Notice that the striping width

SWi needs to be computed individually also in the case of global partitioning since some

files may be too small to be spread over all the disks.

The algorithm outlined in Figure 2 accomplishes static partitioning, since all the files are

allocated at the same time. However, the algorithm can be extended easily to perform dy-

namic partitioning. Dynamic partitioning and the complementary procedure of incremental

repartitioning need to be performed when new files are added, old files are deleted, or.when

the access characteristics of some files change substantially. Let us discuss here the case

when a new file needs to be added to the system. We need to recompute first the access

characteristics specified in the input to the partitioning algorithm, i.e., to readjust R, S, and

in order to account for the addition of the new file. In order to perform these calculations

we need to estimate R/, the average file request size, as well as)_i, the average arrival rate of

requests to the new file. As discussed before, this information may be derived by sampling

existing files of the same type, or may be provided as a hint by the database administrator

(e.g., when we consider a large application). We then invoke the static partitioning algorithm

given above on the new file in order to determine its effective degree of parallelism, Pelf,i,

and its striping unit and width.

A companion incremental repartitioning procedure is invoked periodically. This proce-

13

dure checksfirst if a trigger condition is satisfied in order to warrant incremental repar:i-
tioning. The trigger condition consistsof two parts:

(1) Pn_, g: Potd and

(2) <

with e being a system determined hysteresis parameter. The new set of statistics is computed

by performing Steps 1 through 3 of the static partitioning algorithm; the old set of statistics

is the one computed at thelast invocation of this procedure. If the trigger condition is

satisfied then we proceed to do incremental repartitioning of a fixed number of files. The

procedure considers candidate files for reorganization by using a list in which the files are

sorted in descending order of heat. We use heat as an ordering criterion since this measures

the product of arrival rate and file size; an early repartitioning of the hottest files will make_

the biggest contribution to the average degree of parallelism Popt. Note that, although P,_e,,,

may be different from Pold, a particular file i may not need to be reorganized if the value

of Pe.LLi does not change. The number of files to considered for reorganization during one

period is a system parameter that is chosen in advance.

3 Load Balancing

The need for load balancing was mentioned already in Section 1 in the context of data

allocation. Recall that load balancing does not become obsolete when striping is employed.

Many applications require that we choose large striping units in order to achieve a certain

throughput with multi-block requests. For example, Gray et al. have proposed the parity

striping scheme [33], where the distribution of data blocks is based on a very large (possibly

infinite) striping unit, and similar results on the throughput limits of fine-grained striping

have been stated in [12, la, 48, 51, 59, 79, 80]. However, a coarser striping unit increases

the probability of load imbalance under a skewed workload [13, 51]. Addressing this tradeoff

solely by tuning the striping unit is only a (bad) compromise. Thus, additional methods for

load balancing are called for, regardless of whether data is partitioned or not.

Obviously, the load balance of a disk system depends on the placement of data, regardless

of whether the files are partitioned or not. The data placement problem is similar to the

file allocation problem in distributed systems [19] and falls in the class of NP-hard problems

(the simplest case is equivalent to the NP-complete problem of multiprocessor scheduling

-see problem [SS8] in [261). Hence, viable solutions must be based on heuristics. The worst-

case performance of these heuristics methods can be measured in terms of their competitive

ratio, which is defined as the ratio between the heat of the hottest disk under a given heuristic

placement and the heat of the hottest disk under an optimal placement. Good heuristics

based on greedy placement [32] or iterated bin-packing [17] are well understood for the

static file allocation problem with non-partitioned files, where the heat of each file is known in

advance. In the greedy algorithm,which was adopted in the Bubba parallel database machine

[14], the files are first so.rted by descending heat and then they are allocated in this order

where in each step the disk with the lowest accumulated heat is selected. Under this greedy

14

1 < 1.34. while for theheuristic, the competitive ratio is boundedby 5 - a×n_,_0erol d,sk,

iterated bin-packing algorithm of [17] the corresponding competitive ratio is approximately"
1.22. We observe here that these results are derived from specifically constructed "adversary'"

inputs, and there is experimental evidence that these heuristic allocation algorithms perform

better for most realistic inputs.

In practice, realistic algorithms for static allocation of non-partitioned files need to con-

sider additional parameters and system constraints such as controller contention and storage

space limitation. A comprehensive, heuristic optimization method which considers some of

these constrained is presented in [82], where a non-linear programming solution embedded

in a queueing network model is described. Moreover, in many application environments,
the files are not allocated all at the same time, but rather some files are allocated dynam-

ically. For this dynamic case, the following "canonical" extension of the greedy heuristic
mentioned above has been studied intensively in the theory of online algorithms: a new file

is placed on the disk with the currently lowest accumulated heat, and the heat of the target

disk is then incremented by the heat of the new file. It has been shown that this online

1 [32]; This worst-greedy method guarantees a competitive ratio of r = 2 - ,_,,,,_b_ of di,k,

case bound can be further improved, to a minor extent, by more sophisticated allocation

heuristics [5, 40]. However, it has also been shown that no online algorithm can achieve a

competitive ratio better than 1 + :_2 _ 1.7 [22]. When additional constraints on the set

of eligible disks are taken into account, the best possible competitive ratio is bounded (from

below) by 1 + [log=(number of disks)] [31.The problem of data allocation in parallel disk

systems has an additional constraint that is not considered in any of the works mentioned

above. Namely, in order to support intra-request parallelism it is necessary to allocate the

extents of a file on different disks.

Not only are files to be created or deleted dynamically, but files can grow or shrink. In

addition, the access characteristics of files can change over time, and what was originally

a good allocation under a certain workload may not be any longer the case later in time.

In order to deal with all these dynamics of change it is necessary to incorporate into a

file manager another tuning component that can redistribute the load by migrating data

from one disk to another at any time a certain imbalance in load is detected. Migration of

entire files has been considered in the context of replicated file systems. On the other hand,

migration of file portions has been considered for scalable, distributed hashing schemes but

with different objective functions [2, 6, 9, 50, 75, 76, 83]. The only work that considers data

migration in the context of disk load balancing is [38]; however, this work is restricted to

off-line and monolithic (i.e., non-incremental) reorganization.

The load balancing component of our intelligent file system consists of two independent

modules: one that performs file allocation and a second one that performs dynamic redistri-

bution of data. These components are described in Subsections 3.1 and 3.2. Subsection 3.3

explains how our system keeps track of the heat and temperature of extents and disks.

3.1 Data Allocation

We have extended the greedy algorithm of [32] in order to deal with (dynamic) allocation

of partitioned files [79]. In the static case where all files are given in advance, the algorithm

15

first sorts all extentsbv descendingheat and the extentsareallocated in sort order. For _mch
extent to beallocatedthe algorithm selectsthe disk with the lowestaccumulatedheatamong
the disks which have not yet been assignedanother extent of the same file. This method
is illustrated in Figure 3 and is contrastedwith a standard round-robin scheme.The figure
showsthe placementof three fileseachconsistingof threeextents with heat proportional to
the height of the correspondingboxes. We denoteby i.j the extent j of file i. Observethat
in Figure 3 extents2.2, 1.:2,and 3.1 are allocated in this order to the current disk with the
lowestaccumulatedheat; however,when extent a.a is to be allocated we do not choosedisk
3 sinceit holdsalreadyan extent of file 3, but instead of this allocate it on disk 2.

In the dynamic case, the sorting step is eliminated and the algorithm usesonly the
information about the heat of the fileswhich havebeenallocated and for which statistics are
collectedalready. Thus, as compared to the canonicalextensiondiscussedin the previous
section, the heat of the target disk remainsunchangedat the time of an extent allocation.
The heat will beadjustedcorrespondinglyonly after enoughaccessesto the newly allocated
extent have beenrecorded.

The disk selectioncanbemadein sucha wayasto consideralso, if sodesired,the costof
additional I/Os necessaryto perform partial disk reorganization. Partial disk reorganization
may haveto be performedif, due to file additions and deletions, there is room to store an
extent on a disk but the spaceis not contiguous. Evenmoreexpensiveis the situation when
disk i has the lowest heat and may appear as the obvious choice to store a new extent of

a file, but this disk does not have enough free space. In order to make room for the new

extent we have to migrate one or more extents to a different disk. In order to account for

these reorganization costs we associate with every disk a status variable with regard to the

extent chosen for allocation. The status variable can take the values FREE, FRAG, and FULL,

depending upon whether the disk (1) has enough free space for the extent, (2) has enough

space but the the space is fragmented, or (3) does not have enough free space. Our file

allocation algorithm has the option of selecting disks in increasing heat order without regard

to their status. Alternatively, we may select the disks in multiple passes, where in the first

pass we only choose those that have status FREE. More details and experimental studies on

this combined free-space management and data allocation method are given in [79]. In the

current paper, we do not further consider the impact of fragmented or full disks.

3.2 "Disk Cooling"

In order to perform dynamic heat redistribution we employ in our system a dynamic load

balancing step, called disk cooling. Basically, disk cooling is a greedy procedure which

tries to determine the best candidate, i.e., extent, to remove from the hottest disk in order

to minimize the amount of data that is moved while obtaining the maximal gain. The

temperature metric is used as the criterion for selecting the extents to be reallocated, because

temperature reflects the benefit/cost ratio of the reallocation since benefit is proportional

to heat (i.e., reduction of heat) and cost is proportional to size (of the reallocated extents).

This approach is illustrated in Figure 4; the basic disk cooling algorithm is given in Figure 5.

The extent to be moved, denoted by e, is reallocated on the coolest disk, denoted by t, such

that t does not hold already an extent of the corresponding file and t has enough contiguous

16

free space.

In our system the disk cooling procedure is implemented as a background demon which

is invoked at fixed intervals in time. The procedure checks first if the trigger condition is

satisfied or not (Steps 1 and 2 in Figure 5). If the trigger condition is false, the system

is considered load balanced and no cooling action is performed. In the basic disk cooling

procedure the system is not considered load balanced if the heat of the hottest disk exceeds

the average disk heat by a certain quantity _. It is important to observe that during each

invocation of the procedure different disks can be selected as candidates for cooling after

each cooling step.

Our procedure considers implicitly the cost/benefit ratio of a considered cooling action

and only schedules it for execution if is considered beneficial. These cost considerations are

reflected in Step 5 of the algorithm. The hottest disk is likely to have already a heavy share

of the load, which we can "measure" by observing if its queue is non-empty. A cooling action

would most likely increase the load imbalance if a queue is present at the source disk since

it implies additional I/Os for the reorganization process. Hence, we choose not to schedule

the cooling action if this condition is satisfied. We also consider the cooling move not to

be cost-beneficial if the heat of the target disk after sucha potential move would exceed the

heat of the source disk. Hence, although our background demon is invoked a fixed number

of times, only a fraction of these invocations result in data migration.

Our generic disk cooling procedure can be generalized in a number of ways. In [72] we

have shown how an explicit objective function based on disk heat variance (DHV) can be

used in a more general test for the cost/benefit of a cooling action. Thus, the benefit is

computed by comparing the DHV after the potential cooling step with the DHV before the

potential cooling step. In addition, we can consider also explicitly the cost of performing the

cooling. Thus, a more accurate calculation of benefit and cost would consider not only the

reduction in heat on the origin disk and the increase in heat on the target disk, but also the

additional heat caused by the reorganization process itself. The cooling process is executed

during two intervals of time, the first corresponding to the read phase of the action and

the second corresponding to the write phase of the action. The additional heat generated

during these phases can be computed by dividing the size of the extent to be moved by the

corresponding duration of the phase. The duration times of the read and write phase of a

cooling action can be estimated by using a queueing model, as shown in [72].

Our disk cooling procedure can be fine-tuned so that the unit of reallocation is chosen

dynamically in order to increase the potential of a positive cost/benefit ratio. In the basic

procedure given in Figure 5 the unit of redistribution is assumed to be an extent. However,

in the case of large extents that are very hot the cost of a redistribution may be prohibitive.

In this case, we can subdivide further an extent into a number of fixed-size fragments and

use a fragment as the unit of redistribution. Since all fragments of an extent are of the same

size we can now base the choice of the migration candidates (see Step 3 in Figure 5) on the

heat statistic instead of temperature. Note that an increase in the number of allocation units

of a file also requires that we remove the allocation constraint on the target disk, namely

we do not require anymore that the disk should hold only one fragment of a file. Hence, we

put here the objective of a balanced load above the requirement that the file partitioning is

optimal.

17

3.3 Heat Tracking

The dynamic tracking of the heat of blocks is implemented based on a moving average of

the interarrival time of requests to the same block. Conceptually, we keep track of the times

when the last k requests to each block occurred, where k is a fine-tuning parameter (in

the range from 5 to 50). To illustrate this bookkeeping procedure, assume that a block is

accessed at the points in time tl, t2, tn (n > k). Then the average interarrival time of

the k last requests is t,-t,_,+, and the estimated heat of the block is the corresponding
k

reciprocal k Upon the next access to this block, say at time tn+l, the block heat is
t_--tn_k+l "

kre-estimated as
tn+l --tn-k+2 "

One may conceive an alternative method for heat tracking that keeps a count of the

number of requests to a block within the last T seconds, where T would be a global tuning

parameter. The problem with such a global approach is that it cannot track the heat

of both hot and cold blocks in an equally responsive manner. Hot blocks would need a

relatively short value of T to ensure that we become aware of heat variations quickly enough.

Cold blocks, on the other hand, would need a large value of T to ensure that we see a

sufficient number of requests to smooth out stochastic fluctuations. The moving-average

method for the interarrival time does not have this problem since a fixed value of k actually

implies a short observation time window for hot blocks and a long window for cold blocks.

Moreover, extensive experimentation with traces from real applications with evolving access

patterns has shown that our tracking method works well for a wide spectrum of k values;

the heat estimation is fairly insensitive to the exact choice of k [84]. Furthermore, under

the assumption that requests to a block arrive according to a Poisson process (i.e., with

exponentially distributed interarrival time), the heat estimate would be Erlang-k distributed

and the minimum k for achieving a desired statistical confidence in the heat estimate can be

derived analytically [46].

The adopted heat tracking method is very responsive to sudden increases in a block's

heat; the new access frequency is fully reflected in the heat estimate after k requests, which

would take only a short while for hot blocks (and reasonable values of k). However, the

method adapts the heat estimate more slowly when a block exhibits a sudden drop of its

heat. In the extreme case, a hot block may suddenly cease to be accessed at all. In this case,

we would continue to keep the block's old heat estimate as there are no more new requests

to the block. To counteract this form of erroneous heat estimation, we employ an additional

"aging" method for the heat estimates. The aging is implemented by periodically invoking

a demon process that simulates "pseudo requests" to all blocks. Whenever such a pseudo

request would lead to a heat reduction, the block's heat estimate is updated; otherwise the

pseudo request is ignored. For example, assume that there is a pseudo request at time t'

and consider a block with heat H. We compute tentatively the new heat of the block as

H' = k but we update the heat bookkeeping only if H' < H. The complete heat
ff--in_k+ 2

tracking method is illustrated in Figure 6.

The described heat tracking method requires a space overhead of (k + 1) floating-point

numbers per block. Since we want to keep this bookkeeping information in memory for fast

cooling decisions, it is usually unacceptable to track the heat of each individual block. In

order to reduce the overhead involved in heat tracking, we actually apply the heat estimation

18

procedure to entire extents (or fragments of a specified size). \Ve keep track of the times

t,_,..., t_-k+l of the last k requests that involve any blocks of the extent in the manner

described above, and also we keep the number of accessed blocks within the extent for each

of the last k requests. Assume that the average number of accessed blocks is R. Then the heat

of the extent is estimated by kR Finally, we estimate the heat of a fraction of an extent
tn_tn_k+l "

by assuming that each block in the extent has the same heat (which is extent heat divided

by extent size). This extent-based heat tracking method reduces substantially the space

overhead of the block-based estimation procedure, t On the other hand, our experimental

studies (including studies with application traces) have shown that the loss in accuracy

versus block-based heat tracking is minimal.

4 Experimental Results

In this section we present an experimental performance evaluation of the file striping and

allocation and load balancing algorithms presented above. The testbed for these experiments

was built on top of the file system prototype FIVE [84]. FIVE runs on shared-memory

multiprocessors under Solaris and a few other Unix versions. It can manage either real data

on real disks (i.e., raw partitions), or it can interact with a simulated disk system to estimate

the impact the virtual resources. The disk simulation keeps track of exact arm positions as

well as rotational positions of the disk head. Our simulator considers head switch delays

and incorporates a realistic estimation of the seek time as a nonlinear function of the seek

distance, as well as other details of real disks [67]. In the simulation mode, FIVE makes

use of the process-oriented simulation library CSIM [73] which manages the bookkeeping for

the virtual disks (e.g., disk queues). For the experiments reported here we used a simulated

parallel disk system whose parameters are described in Table 1.

FIVE allows for the striping of files on an individual or global basis and incorporates

heuristic algorithms for file striping, allocation, and dynamic load balancing, as described

in Sections 2 and 3. These algorithms can be invoked online, i.e., concurrently with regular

requests to existing files. We have implemented a load generator that can generate synthetic

workloads according to specified parameter distributions, or analyze (and filter) existing

traces and feed them as input to FIVE. For the performance studies reported here we mostly

relied on synthetic workloads, for which we could control and systematically vary all relevant

parameters. A representative set of experiments with a synthetic workload is described in

Subsection 4.1. We also report on disk cooling studies using two trace-based experiments in

Subsection 4.2. Further trace-based performance studies with FIVE can be found in [84].

4.1 Experiments With Synthetic Workload

For these experiments we generated a set of 10000 files and two types of workloads, one with

a uniform access pattern and the second with a skewed access pattern, as we shall describe in

tAdditional approximation techniques to further decrease the space overhead axe described in [84]. When
memory consumption is extremely critical, one can even employ an approximation that requires only keeping
the values of tn and t,_-k+l and thus has constant space overhead independently of k.

19

i # disks 32 capacity of one disk < 539 MBytes

block size 1 KByte capacity of the disk system 17.2 GBytes

track size 35 blocks revolutions per minute 4400 rpm

tracks per cylinder 11 average seek time 12 ms

1435# cylinders per disk transfer rate per disk 2.44 MBytes/s

Table 1: Hardware characteristics of the simulated disk system

of files of class A 1000

of files of class B 1000

fraction of files of class A 0.5

fraction of files of class B 0.5

average size of file class A 20 KBytes

average size of file class B 500 KBytes

overall average request size

standard deviation of request size

260 KBytes

416 KBytes

read fraction 0.7

Table 2: Characteristics of the synthetic workload

more detail below. The files themselves were identical for both workloads, and in both cases

each (read or write) request accessed an entire file. The file sizes were hyperexponentiallv

distributed such that each file belongs to one of three different classes with certain mean

values (and exponential distribution of file sizes within each class). Files of class A had a

mean size of 20 KBytes, files of class B had a mean size of 500 KBytes, and files of class C

had a mean size of 1000 KBytes. Class C files were not accessed in the generated workload;

they represent "passive" data that occupies disk space and thus influence seek times. Class

A files represent relatively small data objects, e.g., simple HTML documents on the WWW.

Class B files, on the other hand, represent relatively large multimedia data objects. The

important point here is that the workload covered a wide spectrum of request sizes, which

we consider to be a particular challenge of advanced applications such as HTTP servers,

multimedia information systems, and object-oriented database systems. In both workloads,

we assigned the same probability of selection to files from the two classes A and B. Table 2

summarizes the common characteristics of both synthetic workloads.

4.1.1 Workload With Uniform Access Frequencies

In this subsection we consider a workload with uniform access frequencies: read and write

accesses are generated to file classes of type A or B, such that each file within a class has

the same probability of selection. We generated a sequence of 1 million file requests with

exponentially distributed interarrival times.

2O

\Ve compared first the responsetime of five different striping strategies, namely a file-
specificone (Opt) and four globalstrategies(Gopt, Block, Track, Cylinder) under light load

(i.e.. an arrival rate of 1 request/second), so that queueing effects were negligible. These

striping strategies are:

1. Opt: files are partitioned based on the first step of the heuristic approach described in

Section 2 that minimizes response time in single-user mode.

2. Gopt: the striping unit for each file is set to 8 KBytes, which was determined by using

the first step of the heuristic method of Section 2 under the assumption that all files

have the same average request size R = 260 KBytes.

3. Gbest: the striping unit for each file is the best global value (5 KBytes) that we found

by exhaustive search of all possible values (i.e., this striping unit yielded the best

response time averaged over all requests).

4. Block: the striping unit for each file is a block (i.e., 1 KByte).

5. Track: the striping unit for each file is a track (i.e., 35 KBytes).

6. Cyl: the striping unit for each file is a cylinder (i.e., 385 KBytes).

Note that for this first set of experiments we assumed a light load, hence the striping unit

for Opt and Gopt was computed without regard to throughput and queueing delay consid-

erations. Table 3 shows the average response time for the five different striping methods;

these performance figures are further broken down into different categories of request sizes

in Table 4.

The Opt method outperforms all other methods, except Block striping (and the "hand-

tuned" Gbest), for almost all request size categories, although the improvements over Gopt

are minor. Block striping is competitive and even slightly superior for request sizes in

the 10 to 100 KBytes range. Even for larger requests, the latency of the "slowest" disk

rapidly approaches the maximum latency under both Opt and Block, so that the aggressive

intra-request parallelism of the Block method does not incur an additional penalty once the

degree of parallelism exceeds a certain number. However, as we will see below, the Block

method exhibits severe drawbacks when the request arrival rate is increased so that disk

arm contention and the resulting queueing delays become a factor, whereas the Opt method

scales much better with increasing load.

Compared to the Track and Cyl methods, Opt achieves significant improvements in the

order of 30 percent (in the case of Track) for medium to large requests between 50 and 500

KBytes. For very large requests, all methods (except Cyl) spread a file across all 32 disk,

so that the performance differences eventually become negligible when the request size is

further increased beyond 1 MByte.

The global striping method Gopt turned out to be very competitive to the file-specific

striping method Opt; the advantage of Opt is more or less negligible throughout the spectrum

of request sizes. We also compared these two methods with Gbest, the best possible global

striping strategy whose striping unit was found through exhaustive trials. For this particular

workload the Gbest method has a striping unit of 5 KBytes and its performance was almost

21

Table 3:
(A = i)

[Opt I Gopt (8KB) Gbest (5 KB) I Block Track Cvl i

[24.54 I 24.75 t 24.21 I 24.54 I 28'86181"841

Average response time in milliseconds of the synthetic workload under light load

request size [KB] [Opt

< 10 16.97

11-50 22.04

51-100 22.97

101-200 24.58

201-500 27.48

501-1000 33.83

> 1000 49.75

]Gopt (8KB) Gbest (5 KB) Block

17.06 17.05 19.18

21.26 20.77 21.22

23.81 22.73 22.28

25.91 24.71 24.42

28.45 27.69 27.35

34.66 34.05 33.79

50.01 49.63 49.65

Table 4: Average response time in milliseconds for different request

workload under light load (A = 1)

I Track Cyl

16.84 17.63

24.50 26.18

31.23 48.94

34.56 86.41

36.38 168.39

38.46 200.38

53.29 207.27

sizes of the synthetic

identical to that of Opt and Gopt. So, although file-specific striping did not prove to be

truly superior to global striping in these experiments, the positive conclusion from these

light-load experiments is that our heuristic optimization method did indeed approximate

the real optimum very well.

In order to take into account throughput requirements and queueing delays we performed

a second set of experiments in which we varied the request arrival rate. For this set of

experiments, we also considered two additional striping strategies, namely:

1. Opt-140: the file-specific striping unit is compute d with the additional constraint that

a request arrival rate of A = 140 must be supported. Accordingly, files are partitioned

subject to the constraint that the average degree of intra-request parallelism is bounded

by 3 (as computed by the heuristics described in Section 2).

2. Oopt-140: the global striping unit is computed for a request arrival rate of A = 140.

The corresponding striping unit size is [260/3] = 87 KBytes.

Furthermore, we replaced the Gbest method by the best striping unit for the given request

arrival rate of A = 140, denoted as Gbest-140, which was again found through exhaustive

search among all possible values and turned out to be 70 KBytes.

Table 5 shows the average response times of the various striping methods as a function of

the request arrival rate, which was varied from 20 up to 140 requests per second. Note that

although the figures show explicitly only response time, a fast growing curve for response

time implies that beyond a relatively small value for the arrival rate the throughput reaches

saturation. This also explains the oc entries in Table 5: they denote those experiments where

22

A

20
40
60
80
100
120
140

Opt Gopt
(8KB)

Block Track Cyl Optl40 Gopt140
(87KB)

Gbestl40
(70KB)

29.62 29.71 31.84 32.42 90.36 42.08 44.66 39.73
38.13 37.79 48.76 37.15 100.53 47.31 50.04 44.33
55.17 53.35 126.20 43.66 112.76 53.83 56.81 50.14
112.48 97.02 cx_ 53.16 128.00 62.31 65.59 57.66

cx_ 1033.67 _ 69.13 147.39 74.18 77.73 68.04

cx_ cx_ _ 102.86 173.50 91.64 96.21 83.61

cx) oc cx_ 206.71 211.29 121.26 127.49 110.04

Table 5: Average response time in milliseconds for the synthetic workload as a function of

the request arrival rate A

the arrival rate exceeded the sustainable throughput and thus led to excessive queueing and

a continuously growing backlog of requests.

As Table 5 shows, the Opt method scales up with increasing arrival rate much better than

Block striping. However, for sufficiently high arrival rate, Opt is clearly outperformed by

Track and Cyl striping, the reason being that the latter two methods employ lower degrees

of intra-request parallelism and can thus sustain higher load. The figures also show the trend

that Cyl will eventually pass Track, as it is even more conservative in terms of parallelism

and resource consumption.

The striping methods that are specifically tuned for a particular arrival rate outperform

both Track ar/d Cyl by almost a factor of two (in the case of A=140). This demonstrates very

nicely the need for application-specific tuning of striping units. We also determined through

exhaustive trials the best possible striping units for the Gbest method under different arrival

rates. For A=140 the response time of Gbest was approximately 110 ms, and this was

obtained for a global striping unit of 70 KBytes. We note, however, that such a tuning

method that is based on exhaustive trials is completely infeasible in practice. Thus, the fact

that both the Opt and the Gopt methods approached the real optima within approximately

10 to 15 percent is indeed a successful result and demonstrates the viability of our tuning
heuristics.

In the above experiment, the Opt methods achieved only very small improvements over

the corresponding Gopt methods. This almost negligible advantage of Opt over Gopt does

not seem to justify the increased software complexity of file-specific striping. However, file-

specific striping allows for incremental restriping of individual files when changing workload

characteristics require higher I/O rates or data rates for some crucial files. A global striping

unit strategy does not support this type of reconfiguration. Thus, for global striping, a

change of the striping unit requires unloading all files, re-initializing the disk system with

the new striping unit and reloading the data. This costly procedure leads to a significant

downtime of the system. For this reason, we still believe that file-specific striping is an

essential requirement for data management in parallel disk systems.

23

4.1.2 Workload With Skewed Access Frequencies

In order to study the influenceof data accessskewand the effectivenessof our "disk cooling'"
procedure,we havemodified the synthetic workload of the previoussubsectionso that the
distribution of file accessfrequenciesfollowed a Zipf-like curve (everything elsewas identical
to the previous setup). Thus, if the files are numbered from 1 to N, the probability of
accessinga file numberedi, with i < N, is given by the formula: [47]:

Prob[i < s] = (s_ _°g(x/l°°)/l°9(Y/l°°) (26)
-- kNi

where X and Y are parameters that were set to 70 and 30, respectively. The parameter

N denotes the number of active files, i.e. files in classes A and B, which is set to 2000

in our experiments. This probability distribution results in a self-similar, skewed access

pattern where a fraction X of the requests refers to a fraction Y of the files, and this skew

is recursively repeated within the fraction X of "hot" files. Such skew patterns are common

in many OLTP and database applications, and they have been observed for WWW servers

as well [7].

In order to study the effects of load balancing in isolation we did not perform any caching

of the data in these experiments. Note that load balancing is still a crucial problem even if

caching is used. Caching would keep the hottest blocks in main memory, but the remaining

blocks can still exhibit a significant access skew.

Table 6 shows the average response time results for this experiment as a function of the

arrival rate A. We considered three different striping strategies, namely, Goptl40, Track,

and Cyl. We do not show explicitly the results for the strategies Block and Optl40; the

Block strategy could sustain only a throughput of about 60 requests per second and started

thrashing at this point, while the performance of the Opt140 strategy was almost identical

to that of Goptl40. All files were pre-allocated based on a round-robin scheme, and we

compared the case without cooling against the case with cooling switched on. The latter case

is denoted by the "-C" suffix in Table 6. A cooling step was attempted every 100/)_ seconds

(i.e., equivalently, every 100 regular requests), the migration units were entire extents, and

the load imbalance threshold 6 was set to 5 percent (see Section 3.2).

The response time figures demonstrate that access skew does have a disastrous effect

on performance, unless it is counteracted by load balancing. For example, at an arrival

rate of 120 requests per second, the average response time of Track striping without cooling

degrades by a factor of 2 compared to the workload with uniform access frequencies. The

underlying reason is that under the skewed load the hottest disk had a much higher utilization

(and corresponding average queue length) than the overall disk system and thus formed a

premature bottleneck; at)_=120 the hottest disk had a utilization of 0.94 and an average

queue length of 10.3 while the average disk utilization and queue length (averaged over all

disks) were 0.79 and 3.5, respectively (under Track striping). The cooling procedure was able

to reduce the utilization and the average queue length of the hottest disk down to 0.89 and

5.5, respectively, at A=120 and could thus improve the average response time significantly.

All methods without cooling started thrashing at an arrival rate of 130 requests per

second or earlier. When approaching the thrashing region, the response times of any striping

strategy with cooling switched on are an order of magnitude lower compared with the same

24

A

20

40

60

80

100

110

120

125

130

Gopt140

(87KB) [

46.57

53.30

62.81

77.93

Track

33.38

38.92

47.05

60.39

Cyl

98.34

124.66

Goptl40-C

47.23

53.59

64.02

77.73

Track-C

34.23

39.98

48.09

61.68

Cyl-C

96.66

113.91

157.58

OQ (X?

111.87 87.52 _ 110.63 87.20

176.13 117.80 ¢x) 117.20 109.72 o¢

oc 203.30 c_ 152.74 163.72

cw 438.65 oc 188.88 221.42 cw

e_ _ 199.63 429.76 cx_

Table 6: Average response time in milliseconds for the skewed synthetic workload as a

function of the request arrival rate A

strategy with cooling turned off. Note that cooling does incur a certain overhead by migrating

extents between disks. This leads to a small increase of the overall disk utilization, and this

is why the cooling methods exhibit a slightly higher response time than the no-cooling

methods under light load. However, when the extra load due to cooling becomes a critical

factor, cooling is inactivated automatically, as described in Section 3.2. An analysis of the

invocation frequency distribution of cooling steps over the duration of an experiment shows

that the cooling frequency is high in the first tenth of the experiment, and as soon as the

load is sufficiently balanced (as estimated by the heat bookkeeping) cooling is invoked only

very infrequently due to occasional load fluctuations that exceed the imbalance threshold.

Among the three cooling variants that are shown in Table 6 the Gopt-A-C method showed

significant advantages over Track-C striping under high load, with response time improve-

ments up to a factor of two. This demonstrates that although load balancing and striping

are orthogonal strategies they are not independent; rather well tuned striping units and the

cooling procedure exhibit synergetic effects. Note that under the skewed load, the Gopt-A

method without cooling could not sustain a throughput of A, as all our heuristic calcula-

tions for the derivation of striping units are based on uniform access frequencies (i.e., overly

optimistic assumptions). Track striping, on the other hand, achieves a better load balance

because of its finer striping units, but is still much inferior to the case with both tuned

striping units and cooling.

In addition, to stress-test the responsiveness of "disk cooling" to dynamically evolving

workloads, we generated a synthetic load where the hot fraction of the data gradually moves

across the entirety of files. This was implemented by dividing the total number of requests

in the experiment into K phases, each with the same number of requests, and shifting the

starting number of the heat-ranking list (i.e., the number of the hottest file) by N/K mod N

(where N is the number of active files). Thus, while the workload characteristics are stable

within each phase, a load shift occurs at each of the phase boundaries. In the experiments,

one simulation run comprised 1,000,000 requests and K was set to 10; so each phase comprised

25

A

2O
40
60
80
100
110
120
130

Goptl40 Goptl40-C
(87KB) (87KB)
44.75 45.15
50.39
57.95

50.83
58.37

69.11 68.97
90.91 85.83
120.68 101.65
921.66 133.50

_o 429.79

Table 7: Averageresponsetime in millisecondsfor the dynamically evolving, skewed,syn-
thetic workload asa function of the requestarrival rate A

100,000requestsand the heat ranking wasshifted by 200 files at the start of a new phase.
Table 7 shows the averageresponsetime results for this experiment as a function of

the arrival rate A for the Goptl40 striping unit (87 KBytes) without and with cooling. As
in the previousexperiment the performancefigures again indicate that the cooling method
can effectivelycounteract the load imbalance,whereasthe method without cooling suffers
thrashing effectswith responsetime approachinginfinity for arrival rates higher than 120.

Figure7 showsthe responsetime andthe cooling frequencyasthey vary over the duration
of the experiment. In the two charts the overall time period of the experiment is broken
down into 100equally sized intervals; eachof the bars correspondsto an interval of length
83.3seconds.The charts demonstratethat cooling is invokedparticularly at the points when
the hot files areshifted (namely,after every ten bars). At thesepoints the method without
cooling suffersfrom particularly long disk queuesas somediskscarry over their queue from
the previousphasewhile at the sametime other disks start forming queuesbecauseof the
shifted load imbalance. (Thesephenomenaare, however,superimposed,to someextent, by
the randomizednature of the synthetically generated load.) The cooling method, on the
other hand, is fairly successfulin eliminating the load imbalancesand thus achievesresponse
time improvementsof more than a factor of 5 in this experiment.

In summary, application-specifically tuned striping in combination with cooling shows
significant performanceadvantagesover conventionalmethods. Not surprisingly, load im-
balanceis only an issueunder high load whenqueueingdelaysstart becominga factor. One
may argue that an easycure against load imbalance thus is to keep disk utilization low.
However,for many applications, this implies unnecessarilyhigh costs as their performance
requirementscould be met with fewerdisks at higher utilization. Furthermore, although
systemadministration rules of thumb dictate that the disk utilization should generally be
kept below50percent, this is often impossibleduring load peaksor whenuserdemandsgrow
faster than one can purchaseadditional disks. In fact, it is often exactly during load peaks,
e.g., the Mondaymorning rush hour for retail banking or the hours right after an important
sports event for a WWW server,whengood responsetime matters most.

26

4.2 Experiments With Application Traces

To study the viability of the developedtuning proceduresin a realistic application setting, we
alsoconducted extensive experiments based on block access traces from a variety of applica-

tions including online transaction processing, file systems, office document management, and

WWW servers. Most of these experiments confirmed the results of the previous subsection.

However, while such traces capture several essential characteristics of real-life application

workloads (e.g., workload evolution over time, including transient load peaks), one has to

be extremely careful about generalizing trace-based results. Traces constitute short-term

snapshots with certain peculiarities that are not necessarily of fundamental nature. For this

reason, we preferred deriving our basic performance results from a precisely controllable

synthetic workload, as discussed in the previous subsection, and we restrict ourselves in this

subsection to two sample results that were obtained with a WWW server trace and a trace

from a bank's online transaction processing system.

4.2.1 World-Wide-Web Server

This study is based on a trace that was recorded with the httpd logging facility on the

WWW server ucmpl.berkeley.edu of the UC Museum of Paleontology at Berkeley over a

time period of 120 hours. Note that the fact that the requests were traced at the server site

automatically factors out (client) caching. The trace contains 181,914 read accesses to an

entirety of 9126 HTML and other files with heavily skewed access frequencies. The average

request size was 14 KBytes, and the standard deviation of the requests size distribution was

28 KBytes.

We studied this trace under a spectrum of load levels. This was done by "speeding up"

the arrivals in the original trace in the following way. Consider two requests ri and ri+t in

the original trace which have an interarrival time of 5i- Using a speed-up factor of a the

interarrival time between the requests becomes 5i/a. Thus, in more general terms, if the

original trace has an average interarrival time of l/A, a trace with speed-up factor a has

an average interarrival time of 1/(Aa). Note that this method of "speeding up" a trace,

albeit somewhat speculative, preserves all access characteristics of the original workload

other than its arrival rate; particularly, the relative interarrival times between requests are

preserved which is essential to capture load bursts. The only case where the "speed-up"

transformation would seriously distort the workload is when a large number of consecutive

requests are correlated and must have a certain interarrival time. But this case is rather

unlikely given that a WWW server trace is typically based on a high number of concurrent

users each of which exhibits relatively long "think times", and the trace that we used showed

this property.

Because of the small average request size and the moderate variance of request sizes,

tuning the striping unit was not really an issue for this workload. Rather the challenge

in this trace was to cope well with the access skew in combination with the dynamic load

fluctuations. So we concentrated ourselves on the impact of cooling, and compared a round-

robin allocation for a striping unit of one track (i.e., 35 KBytes) without cooling, labeled

"Track", versus the case with cooling, labeled "Track-C'. Neither of the two cases exploited

any a priori knowledge about the heat of files in the initial data allocation, hypothesizing

27

100
3OO
50O
70O
9OO
1000

Track Track-C
16.68 16.50
18.39 17.57
21.13 19.63
27.58 24.61
79.11 24.86

203.36 28.57

Table 8: Average response time in milliseconds for the WWW workload as a function of the

request arrival rate A

that WWW server workloads exhibit dynamically evolving access patterns that cannot be

statically predicted so that manual tuning is ruled out. Cooling was invoked every 100

seconds of the original time scale (or, equivalently, every 100/a seconds of the accelerated

trace), with entire extents as migration units and an imbalance threshold of 3 = 0.05. Table

8 shows the average response time of Track versus Track-C as a function of the acceleration

factor a.

Cooling exhibits noticeable performance even under medium load, and dramatically im-

proves response time by an order of magnitude for the highest measured load. For a=1000,

the average disk utilization was 24 percent and the utilization of the hottest disk was 67

percent without cooling. With cooling, the average utilization increased slightly up to 25

percent because of the additional load incurred by data migrations, but the utilization of the

hottest disk was reduced down to 39 percent, which accounted for the dramatic performance

gain. Note that an average utilization of 25 percent appears to be a very light load; however,

one has to take into account that the load fluctuates heavily over time with very long disk

queues built up during the load peaks. In terms of average disk queue lengths the improve-

ment by cooling was even more impressive: without cooling, the average queue length of the

hottest disk (averaged over all points of time when a request was enqueued) was 63, whereas

with cooling, this measure was 1.6 (i.e., 1 request in service and an expected value of 0.6

for the number of requests that wait in the queue). This effect is illustrated in Figure 8,

which shows the response time and the cooling frequency as they vary over the duration of

the experiment, for the case of a=1000. In the two charts the overall trace period is broken

down into 100 equally sized intervals; so each of the bars corresponds to an interval of length

4.32 seconds in the accelerated trace. The improvement of response time due to cooling even

exceeds a factor of 20 during the load peak.

4.2.2 Online Transaction Processing

A second study with real application workloads was based on an I/O trace from the OLTP

system of a large Swiss bank (Union Bank of Switzerland). The database for this study

consists of 166 files with a total size of 23 GBytes (but only a subset of these were accessed

in the trace period). The I/O trace contains approximately 550,000 I/O requests to these

28

lil_s, t_corded during one hour. It was recorded at the disk controller level: so database

caching is taken into account in this workload. As in a typical OLTP application, most

requests read or write a single block (of size 8 KBytes in this application); the average

request size is approximately 9 KBytes with low variance. Thus, this workload does not

warrant any specific tuning of the striping unit, so that we chose Track striping as the

partitioning method. All files were allocated using a round-robin scheme, by first selecting

a file's starting disk as the previous file's starting disk plus one modulo the number of disks,

and then placing the file's striping units across the disks in a round-robin manner. The

workload exhibits heavily skewed access frequencies both across files and within the hot

files. In addition, the trace contains significant fluctuations in the access frequencies and in

the overall arrival rate of requests.

We compared the performance of round-robin placement without cooling to round-robin

allocation augmented with the cooling procedure. The cooling method improved the average

response time of the requests by approximately a factor of 2 under high load.

As with the WWW experiment we measured response time versus different "speed-up"

factors of the arrival rate. The results in Figure 9 are based on an arrival rate "speed-up"

factor of 10. In the two charts the overall trace period is broken down into 50 equally

sized intervals; so each of the bars corresponds to an interval of length 7.2 seconds in the

accelerated trace. As Figure 9 shows, the cooling method could not improve response time

in the initial light-load phase, since the load imbalance of the vanilla method did not yet

incur any severe queueing. However, the cooling method did collect heat statistics during

this phase. This enabled the cooling method to rebalance the disk load by data migration.

Then during the load peak (represented in Figure 9 by the sharp increase of response time),

the cooling method achieved a response time improvement by a factor of 5.3. Note that

many OLTP applications have "soft" response time constraints such as ensuring a certain

response time for 95 percent of the transactions. Thus, it is crucial to guarantee acceptable

response time even during load peaks.

Figure 9 also shows the frequency of the data migration steps invoked by our cooling

method, varying over time. The figure shows that our algorithm was careful enough so as

not to initiate too many cooling steps during the high-load phases; rather the data migrations

were performed mostly during the low-load phases, thus improving the load balance for the

next high-load phase at low cost. This robustness is achieved by explicitly trading off the

benefit of cooling versus its additional cost, as discussed in Section 3.

5 Conclusion

5.1 Discussion of Achievements and Limitations

We have demonstrated the need for tuning the data placement in parallel disk systems,

and we have presented various tuning heuristics for data partitioning, data allocation, and

load balancing. The feasibility of the developed methods has been shown in a number of

performance experiments including simulations based on real-life traces.

We have developed an extended optimization procedure for file striping that explicitly

takes into account throughput requirements and queueing delays, and in the process we

29

havedevelopedan analytical approximation to the well known fork-join problem i62! in
the specific setting of parallel disk systems. We haveshown that our procedurefor tuning
the striping unit(s) of files is a very effective method for a wide spectrum of workloads
including multimedia information systemsand other advanceddatabaseapplications. Our
optimization heuristics outperformsall other striping methodsfor a specifictarget workload
or higher, while beingcompetitive alsofor loads lighter than the chosentarget.

\Ve believethat file-specificstriping is important asa prerequisite for incrementalrepar-
titioning of files, evenif at best it providesmarginal performancegains overglobal striping.
Incrementalrepartitioning is crucial in order to copewith evolvingperformancerequirements
and to support system scalability. For example, when the throughput requirementsof an
application increase,we can repartition merely the hottest files in order to meet the new
throughput goal, which is possiblesince our approach supports file-specific striping units.
Similarly, if more disks are addedto a system, restriping of the most crucial files allowsus
to take advantageof the additional resources.

The methods for data allocation and redistribution complement the data partitioning
objectiveof minimizing queueingdelaysat the disksunder heavyloadby distributing the load
acrossthe disksasevenly as possibleand by selectivelyredistributing the load dynamically
by meansof "disk cooling" steps. Sinceour optimization procedurefor data partitioning is
basedon uniform accessfrequencies,the combination of appropriately tuned striping and
diskcoolingis necessaryto dealwith skewsin data access.By couplingthesetwo procedures,
our experimentshaveshownthat at high loadswecanobtain substantial performancegains.
The dynamic load redistribution procedurehasbeenshownto beefficient and robust, i.e., it
performsdisk cooling at a small cost and very selectively,only during periodsof low activity.
Weobserveherethat our proceduresfor data allocation and redistribution canbe integrated
with techniquesfor clustering the hottest files (extents) on each disk in its center [4, 69]
and with disk schedulingalgorithms that reorder the requestsin a queue(e.g.,an "elevator"
algorithm).

Someof the limitations of our approachare due to the restrictions we imposedon the
workloadcharacterization. As discussedearlier, our analytic approximation to the fork-join
model is basedon the assumptionthat the subrequestsare uniformly distributed amongthe
disks. Realworkloadsexhibit skewedaccessfrequenciesand both spatial and temporal cor-
relations in the accesspatterns. An enhancedanalytical model that wouldcapture a broader
classof workloads,e.g., one basedon a Markov-chain traffic model, would clearly be very
desirable. Similarly, our file striping tuning method considersonly the meanrequest sizes
of the files and disregardsthe requestsizedistribution. Incorporating all theseadditional
workload aspectsis very challengingin terms of their analytical tractability, but webelieve
that our model providesa good frameworkof referencefor future work.

Our approachalso assumesthat the relevant workload parametersapriori can be esti-
matedwith sufficientaccuracy.In the absenceof appropriate input from applicationexperts,
the systemitself must estimate theseparametersby collecting online statistics. This implies
that someparametervaluescan be determined only after the workload hasbeenmonitored
for sometime and only at that point can automatic tuning methods becomeeffective. In
such an environment our data partitioning method is limited to repartitioning of existing
fileswhich westill believeis a very important issue.

30

Finally, wedid not considerthe impact of cachingon disk load balancing. This simplifi-

cation is justified for workloads whose distributions of access frequencies exhibit substantial

skew even after eliminating the accesses to the files that reside in cache: this is the case.

for example, for the two application-trace workloads (WWW server and OLTP svstem) that

we used in our experiments. In other applications, however, it may well be the case that

caching also can alleviate, if not completely eliminate, the imbalance in the disk load. A

comprehensive treatment of such workloads requires an analytical understanding of how data

placement on disks, dynamic data migration between disks, and the dynamic behavior of a

cache interfere with each other, and is beyond the scope of this paper.

5.2 Future Work

Our future work will focus on the following two major issues: combining the developed data

placement methods with techniques for providing fault tolerance and high availability, and

generalizing our approach towards shared-nothing parallel database systems and systems

based on networks of workstations.

Our placement methods are orthogonal to the proposed fault tolerance techniques in

that they can be combined, in a straightforward manner, with arbitrary variants of either

mirroring (e.g., mirrored disks, interleaved declustering, or chained declustering [8, 15, 35,

64. 74]) or error-correcting codes (e.g., parity groups of some type [30. 31, 36, 37, 53. 54.

60, 61, 57, 56, 58, 66, 70]) or simply conventional logging [34]. However, the placement of

data replicas or error-correcting information itself provides additional degrees of freedom

that should be taken into account by an integrated approach in order to ensure the best

possible performance and availability for given system costs [81].

In order to' generalize our approach to a general shared-nothing parallel database system

we need to consider the impact of communication and CPU costs, in addition to the disk I/O

service time. For the partitioning problem, the optimal partition size (e.g., the interval width

in an interleaved range-partitioning scheme for relational data [28]) would again be derived

fromthe optimal degree of parallelism, in analogy to our approach for striping. However, the

operations under consideration are more complex (e.g., relational operators such as selection

or join), and, in addition to latency and transfer time, the performance for a given degree

of parallelism depends also on communication overhead and startup costs as well as on the

operations' CPU time consumption.

In all these considerations an underlying assumption is that the system consists of homo-

geneous processing nodes. A further, even more challenging step would be to consider also

heterogeneous systems where the processing nodes can differ in their performance character-

istics, i.e., processor speed, memory size,disk storage and performance capacity. Networks

of workstations, also known as NOW [1],are evolving as a paradigm for high performance

computing. In order to make NOW a viable approach for large-scale data management it is

crucial to develop appropriate self-tuning and self-reliant data placementand storage tech-

niques. A first approach along these lines, with specific consideration to load balancing, is

presented in [77].

31

References

[1] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW Team, A Case for NOW

(Networks of Workstations), IEEE Micro, Vol. 15, Febr. 1995,pp. 54-64

[2] B. Awerbuch, Y. Bartal, A. Fiat, Competitive Distributed File Allocation. ACM Sym-

posium on Theory of Computing, 1993, pp. 164-173

[3] Y. Azar, J..'_aor, R. Rom, The Competitiveness of Online Assignment, 3rd ACM/SIAM

Symposium on Discrete Algorithms, 1992

[4] S. Akyiirek, K. Salem, Adaptive Block Rearrangement, ACM Transactions on Computer

Systems Vol.13. No.2, 1995, pp. 89-121

[5] Y. Bartal, A. Fiat, H. Karloff, R. Vohra, New Algorithms for an Ancient Scheduling

Problem, Proceedings of the 24th ACM Symposium on Theory of Computing, 1992, pp.

51-58

[6] Y. Bartal, A. Fiat, Y. Rabani, Competitive Algorithms for Distributed Data Manage-

ment, ACM Symposium on Theory of Computing, 1992

[7] A. Bestavros, Demand-based Document Dissemination to Reduce Traffic and Balance

Load in Distributed Information Systems, Proceedings of the 7th IEEE Symposium on

Parallel and Distributed Processing, 1995

[8] D. Bitton and J.N. Gray, Disk Shadowing, Proceedings of the 14th International Con-

ference on Very Large Data Bases, 1988, pp. 331-338

[91D.D. Chamberlin, F.B. Schmuck, Dynamic Data Distribution (D a) in a Shared-Nothing

Multiprocessor Data Store, International Conference on Very Large Data Bases, Van-

couver, 1992, pp. 163-174

[10] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson, RAID: High-

Performance, Reliable Secondary Storage, ACM Computing Surveys, Vol. 26, No. 2,

1994, pp. 145-185

[11] P.M. Chen, E.K. Lee, Striping in a RAID Level 5 Disk Array, ACM SIGMETRICS

Conference, 1995, pp. 136-145

[12] P.M. Chen and D.A. Patterson, Maximizing Performance in a Striped Disk Array, Pro-

ceedings of the 17th International Symposium on Computer Architecture(SIGARCH),

1990, pp. 322-331

[13] S. Chen and D. Towsley, The Design and Evaluation of RAID 5 and Parity Striping

Disk Array Architectures, Journal of Parallel and Distributed Computing, Vol. 17, No.

1, 1993, pp. 58-74

32

14i G. Copeland, \V. Alexander. E. Boughter. and T. Keller. Data Placement in Bubba.
Proceedingsof the SIGMOD International Conference on Management of Data, 1988.

pp. 99-108

[15] G. Copeland and T. Keller, A Comparison of High-Availability Media Recovery Tech-

niques, Proceedings of the SIGMOD International Conference on Management of Data,

1989, pp. 98-109

[16] G. Copeland, T. Keller, and M. Smith, Database Buffer and Disk Configuring and the

Battle of the Bottlenecks, International _Vorkshop on High Performance Transaction

Systems, 1992

[17] E.G. Coffman Jr., M.R. Garey, D.S. Johnson, An Application of Bin-Packing to Multi-

processor Scheduling, SIAM Journal of Computing Vol.7 No.l, 1978, pp. 1-17

[18] D.J. DeWitt and J.N. Gray, Parallel Database Systems: The Future of High Perfor-

mance Database Systems, Communications of the ACM, Vol. 35, No. 6, 1992, pp. 85-98

[19] W. Dowdy and D.V. Foster, Comparative Models of the File Assignment Problem, ACM

Computing Surveys, Vol. 14, No. 2, 1982, pp. 287-313

I20] Du, H.C., Sobolewski, J.S., Disk Allocation for Cartesian Product Files on Multiple

Disk Systems, ACM Transactions on Database Systems Vol. 7 No.l, 1982, pp. 82-101

[21] C. Faloutsos and D. Metaxas, Disk Allocation Methods Using Error Correcting Codes,

IEEE Transactions on Computers, Vol. 40, No. 8, 1991, pp. 907-914

[221 U. Faigle, W. Kern, G. Turan, On the Performance of On-line Algorithms for Particular

Problems, Acta Cybernetica Vol.9, 1989, pp. 107-119

[23] L. Fatto, S. Hahn, Two Parallel Queues Created By Arrivals With Two Demands I,

SIAM Journal of Applied Mathematics Vol. 44, 1984, pp. 1041-1053

[24] L. Fatto, Two Parallel Queues Created By Arrivals With Two Demands II, SIAM

Journal of Applied Mathematics Vol. 45, 1985, pp. 861-878

[251 G.R. Ganger, B.L. Worthington, R.Y. Hou, Y.N. Patt, Disk Arrays: High-Performance,

High-Reliability Storage Subsystems, IEEE Computer Vol.27 No.3, 1994, pp.30-36

[26] M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman and Company,
1979

[27]

[28]

Ghandeharizadeh, S., DeWitt, D.J.: A Multiuser Performance Analysis of Alternative

Declustering Strategies, 6th IEEE International Conference on Data Engineering, Los

Angeles, 1990, pp. 466-475

Ghandeharizadeh, S., DeWitt, D.J.: Hybrid-range Partitioning Strategy: A New

Declustering Strategy for Multiprocessor Database Machines, 16th International Con-

ference on Very Large Data Bases, Brisbane, 1990, pp. 481-492

33

29i

[3o]

(;handeharizadeh. S., DeWitt, D.J.: MAGIC: A ._Iuhiattribute Declustering .kIechanisnl

for Multiprocessor Database Machines, IEEE Transactions on Parallel and Distributed

Systems Vol.5 No.5, 1994, pp. 509-524

G.A. Gibson. L. Hellerstein, R.M. Karp, R.H. Katz, and D.A. Patterson, Failure Correc-

tion Techniques for Large Disk Arrays, Proceedings of the 3rd International Conference

on Architectural Support for Programming Languages and Operating Systems, 1989,

pp. 123-132

[31] G.A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, MIT Press,

1992

[32]

[33]

[34]

[35]

[36]

[37]

R.L. Graham, Bounds on Certain Multiprocessing Anomalies, SIAM Journal of Applied

Mathematics Vol.17, 1969, pp. 416-429

J.N. Gray, B. Horst, and M. Walker, Parity Striping of Disk Arrays: Low-Cost Reliable

Storage with Acceptable Throughput, Proceedings of the 16th International Conference

on Very Large Data Bases, 1990, pp. 148-161

J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kauf-

mann Publ., 1993

H. Hsiao and D.J. DeWitt, A Performance Study of Three High-Availability Data Repli-

cation Strategies, International Journal on Distributed and Parallel Databases, 1993,

Vol. 1, No. 1, pp. 53-79

M. Holland and G.A. Gibson, Parity Declustering for Continuous Operation in Redun-

dant Disk Arrays, Proceedings of the 6th International Conference on Architectural

Support for Programming Languages and Operating Systems, 1992, pp. 23-35

M. Holland, G.A. Gibson, D.P. Siewiorek, Architectures and Algorithms for On-Line

Failure Recovery in Redundant Disk Arrays, Distributed and Parallel Databases Vol.2

No.3, 1994, pp. 295-335

[38] K.A. Hun, C. Lee, H.C. Young, Data Partitioning for Multicomputer Database Systems:

A Cell-based Approach, Information Systems Vol.18 No.5, 1993, pp. 329-342

[39] R. Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, 1991

[40] D.R. Karger, S.J. Phillips, E. Torng, A Better Algorithm for an Ancient Scheduling

Problem, 5th ACM/SIAM Symposium on Discrete Algorithms, 1994

[41] R.H. Katz, G.A. Gibson, and D.A. Patterson, Disk System Architectures for High Per-

formance Computing, Proceedings of the IEEE, Vol.77, No. 12, 1989, pp. 1842-1858

[42] R.H. Katz and W. Hong, The Performance of Disk Arrays in Shared Memory Database

Machines, Distributed and Parallel Databases, Vol. 1, No. 2, 1993, pp. 167-198

34

143!XI.Y. b:im. SynchronizedDisk Interleaving, IEEE Transactions _m Computers. \,,1. C-

35, No. l l. 1986, pp. 978-988

[44] M.Y. Kim and S. Pramanik, Optimal File Distribution for Partial Match Retrieval.

Proceedings of the SIGMOD International Conference on Management of Data. 1988.

pp. 173-182

[45] M.Y. Kim and A.N. Tantawi, Asynchronous Disk Interleaving: Approximating Access

Delays, IEEE Transactions on Computers, Vol. 40, No. 7, pp. 801-810, 1991

[46] L. Kleinrock, Queueing Systems, John Wiley, 1975.

[47] Knuth, D.E., The Art of Computer Programming. Vol. 3: Sorting and Searching,

Addison-Wesley, 1973.

[48] E.K. Lee and R.H. Katz, An Analytic Performance Model of Disk Arrays, Proceedings
of the International Conference on Measurement and Modeling of Computer Systems

(ACM SIGMETRICS), 1993, pp. 98-109

[49] Lee, L.-W.: Optimization of Load-Balanced File Allocation, Doctoral Thesis. De-

partment of Electrical Engineering and Computer Science, Northwestern University,

Evanston. Illinois, 1994

[5o]

[51]

[52]

[53]

[54]

[55]

[56]

W. Litwin, M.-A. Neimat, D.A. Schneider, LH" - Linear Hashing for Distributed Files,

ACM SIGMOD Conference, Washington, 1993, pp. 327-335

M. Livny, S. Khoshafian, and H. Boral, Multi-Disk Management Algorithms, Proceed-

ings of the International Conference on Measurement and Modeling o£ Computer Sys-

tems (ACM SIGMETRICS), 1987, pp. 69-77

J.C.S. Lui, R.R. Muntz, D. Towsley, Computing Performance Bounds for Fork-Join

Queueing Models, Technical Report 940034, Computer Science Department, UCLA,

1994

J. Menon, Performance of RAID5 Disk Arrays with Read and Write Caching, Dis-

tributed and Parallel Databases Vol.2 No.3, 1994, pp. 261-293

J. Menon and J. Cortney, The Architecture of a Fault-Tolerant Cached RAID Controller,

Proceedings of the 20th Symposium on Computer Architecture (ACM SIGARCH), 1993,

pp. 76-86

C. Mohan, H. Pirahesh, W.G. Tang, Y. Wang, Parallelism in Relational Database Man-

agement Systems, IBM Systems Journal Vol.33 No.2, 1994, pp. 349-371

J. Menon, J. Roche, and J. Kasson, Floating Parity and Data Disk Arrays, Journal of

Parallel and Distributed Computing, Vol. 17, No. 1, 1993, pp.129-139

35

57_

[58]

[59]

[6o]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

R.R. Muntz and J.C.S. Lui, Performance Analysis of Disk Arrays Under Failure, Pro-

eeedings of the 16th International Conference on Very Large Data Ba._es. 1990. pp.

162-173

A. Merchant, P.S. Yu, Design and Modeling of Clustered RAID, Proceedings of the

22nd Annual Symposium on Fault-Tolerant Computing, 1992, pp. 140-149

A. Merchant, P.S. Yu, Analytic Modeling and Comparisons of Striping Strategies for

Replicated Disk Arrays, IEEE Transactions on Computers Vol.44 No.3, 1995, pp. 419-
433

K. Mogi, M. Kitsuregawa, Dynamic Parity Stripe Reorganizations for RAID5 Disk

Arrays, Proceedings of the 3rd International Conference on Parallel and Distributed

Information Systems, Austin, 1994, pp. 17-26

K. Mogi, M. Kitsuregawa, Hot Block Clustering for Disk Arrays with Dynamic Striping,

Proceedings of the 21st International Conference on Very Large Data Bases, Zurich.

1995, pp. 90-99

R. Nelson and A.N. Tantawi, Approximate Analysis of Fork/Join Synchronization in

Parallel Queues, IEEE Transactions on Computers, Vol.37, No. 6, 1988, pp. 739-743

Y.N. Patt (Guest Editor), The I/O Subsystem: A Candidate for Improvement, IEEE

Computer Vol.27 No.3, March 1994

C.A. Polyzois, A. Bhide, and D.M. Dias, Disk Mirroring with Alternating Deferred

Updates," Proceedings of the 19th International Conference on Very Large Data Bases,

1993, pp. 604-617

D.A. Patterson, G.A. Gibson, and R.H. Katz, A Case for Redundant Arrays of Inex-

pensive Disks (RAID), Proceedings of the SIGMOD International Conference on Man-

agement of Data, 1988, pp. 109-116

A.L.N. Reddy, J. Chandy, and P. Banerjee, Design and Evaluation of Gracefully Degrad-

able Disk Arrays, Journal of Parallel and Distributed Computing, Vol. 17, No. 1, 1993,

pp. 28-4O

C. Ruemmler, J. Wilkes, An Introduction to Disk Drive Modeling, IEEE Computer

Vol.27 No.3, 1994, pp. 17-28

K. Salem and H. Garcia-Molina, Disk Striping, Proceedings of the 2nd International

Conference on Data Engineering, 1986, pp. 336-342

C. Staelin, H. Garcia-Molina, Clustering Active Disk Data to Improve Disk Perfor-

mance, Technical Report CS-TR-283-90, Department of Computer Science, Princeton
University, 1990

36

70J

[71]

[r2]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

D. Stodolsky. G. Gibson. and M. Holland. Parity Logging: Ov(,rcoming the Small Write

Problem in Redundant Disk Arrays, Proceedings of the 20th Symposium on Computer

Architecture (ACM SIGARCH), 1993, pp. 64-75

P. Scheuermann, G. Weikum, and P. Zabback, Automatic Tuning of Data Placement

and Load Balancing in Disk Arrays, In Database Systems for Next-Generation Applica-

tions -- Principles and Practice, Advanced Database Research and Development Series,

World Scientific Publications, 1992, pp. 291-301

P. Scheuermann, G. Weikum, and P. Zabback, Adaptive Load Balancing in Disk Arrays,

Proceedings of the 4th International Conference on Foundations of Data Organization

and Algorithms (FODO), 1993, pp. 345-360

H. Schwetman, CSIM Reference Manual (Revision 16), MCC Technical Report ACT-

ST-252-87, Microelectronics and Computer Technology Corporation, Austin, 1992

J.A. Solworth and C.U. Orji, Distorted Mapping Techniques to Achieve High Perfor-

mance in Mirrored Disk Systems, International Journal on Distributed and Parallel

Databases, 1993, Vol. 1, No. 1, pp. 81-102

M. Stonebraker, P.M. Aoki, A. Pfeffer, A. Sah. J. Sidell, C. Staelin, A. Yu, Mariposa:

A Wide-Area Distributed Database System, The VLDB Journal Vol.5 No.l, 1996, pp.

48-63

R. Vingralek, Y. Breitbart, G. Weikum, Distributed File Organization with Scalable

Cost/Performance, ACM SIGMOD Conference, Minneapolis, 1994, pp. 253-264

R. Vingralek, Y. Breitbart, G. Weikum, SNOWBALL: Scalable Storage on Networks of

Workstations with Balanced Load, Technical Report, Department of Computer Scienoe,

University of Kentucky, 1995, accepted for publication in: Distributed and Parallel

Database Journal, Kluwer, 1997

G. Weikum, C. Hasse, A. M6nkeberg, P. Zabback, The COMFORT Automatic Tuning

Project, Information Systems Vol.19 No.5, 1994, pp. 381-432

G. Weikum, P. Zabback, and P. Scheuermann, Dynamic File Allocation in Disk Arrays,

Proceedings of the SIGMOD International Conference on Management of Data, 1991,

pp. 406-415, extended version available as: Technical Report No. 147, Computer Science

Dept., ETH Ziirich, 1990

G. Weikum and P. Zabback, Tuning of Striping Units in Disk-Array-Based File Systems,

Proceedings of the 2nd International Workshop on Research Issues on Data Engineering:

Transaction and Query Processing (RIDE-TQP), 1992, pp.80-87

J. Wilkes, R. Golding, C. Staelin, T. Sullivan, The HP AutoRAID Hierarchical Storage

System, Proceedings of the 15th ACM Symposium on Operating Systems Principles,
1995

37

7S2! J. Wolf, The Placement Optimization Program: A Practical Solution to the Disk File

Assignment Problem, Proceedings of the International Conference on Measurement and

.\fodeling of Computer Systems (AC.\I SIGMETRICS), 1989, pp. 1-10

[83} O. Wolfson and S. Jajodia, Distributed Algorithms for Dynamic Replication of Data.

Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (PODS), 1992, pp. 149-163

[84] P. Zabback, I/O Parallelism in Database Systems -- Design, Implementation, and Eval-

uation of a Storage System for Parallel Disks, (in German), Doctoral Thesis. Department

of Computer Science ETH Ziirich, ETH-NR.: 10629, 1994

38

a) Striping Unit: 4 Blocks = > Degree of Parallelism: 1

latency time

transfer time

response time device-busy time

Disk 1 _ _ _- _,

b) Striping Unit: 2 Blocks = > Degree of Parallelism: 2

Disk 2

Disk 1

c) Striping Unit: 1 Block = > Degree of Parallelism: 4

Disk 4

Disk 3

Disk 2 .

Disk 1

Figure 1: Striping with different striping units

39

Input:

Output:

Step 1:

Step 2 :

Step 3:

Step 4:

D = number of disks

= average request size over all files

RI = average request size of file i - for file-specific partitioning

= average file size

L, = size of file i - for file-specific partitioning

= average arrival rate of requests

SUi = near-optimal striping unit of file i - for file-specific partitioning

SU = near-optimal global striping unit

SWi = near-optimal striping width of file i

Apply Phase A optimization with respect to service time

a. File specific partitioning:

determine Pop_,,, the optimal degree of parallelism for file i,

by setting R = Ri in equation (16)

b. Global partitioning:

determine Popt, the approximately optimal average degree of parallelism,

by setting R = R in equation (16)

Apply Phase B optimization to determine P,

the approximately optimal (average) degree of parallelism for the requested throughput, A.

Determine the effective degree of parallelism

a. File specific partitioning:

P, l t,i = mind Popt,i , -PRi /-R)

b. Global partitioning:

Pell = min (Popt,P)

Determine near-optimal striping unit and width

a. File specific partitioning:

SU_= [(Ri-1)/(P_II,i-1)] for 1 <Ri <Li

[R_/ P_ I /,,] otherwise

SW, = min,(D, [LjSU,])

b. Global partitioning:
Compute SU as in step 4a by replacing R1 by R, L_ by L, and Pell.i by Fell

Compute SWI as in step 4a

Figure 2: Data partitioning algorithm

4O

Round-Robin Greedy heuristics for heat balancing

File 1 File 2 File3

:F_Dm mmmmm
1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3

L. J
v

3.1 3.3

2.1 2.3

File 1 File 2 File3

:_D- mmmmmn
I.i 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3,3

\ J
v

[_mm_c_mm-
2.2 1.2 3.1 a.a 1.1 1.3 2.3 3.2 2.1

k)
v

Figure 3: Illustration of static allocation heuristics

Figure 4: Illustration of "disk cooling"

41

Input:

Step 0:
Step 1:

Step 2:

Step 3:

Step 4:

Step 5 :

D - number of disks

H: - heat of extent j

HI - heat of disk /

H - average disk heat

E, - list of extents on disk i sorted in descending temperature order

D - list of disks sorted in ascending heat order

Initialization: target = not_found
Select the hottest disk s

Check trigger condition:

if H, >Hx (1+6) then
while (E, not exhausted) and (target == not_found) do

Select next extent e in Es

while (D not exhausted) and (target == not_found) do

Select next disk t in D in ascending heat order

if (t does not hold an extent of the file to which e belongs)

and STATUS(t) == FREE then

target = found
fi

endvhile

endwhile

if s has no queue then

H;' = H: - H,

H;' = H_' + He

if H i'< He then
reallocate extent e from disk s to disk t

update heat of disks s and t:

H; = H;'
HI--H i '

fi

fi
f±

Figure 5: Basic disk cooling algorithm

requests

to block

A I

. I

c I

L...
V'" Wl_

['-

pseudo requests
to all blocks

_l-- ._1 I

time

Figure 6: Illustration of the heat tracking method for k -- 3. The relevant interarrival times

are shown by the double-ended arrows.

42

$i

8

M

U

$1

30

25-

._ 20-_

i 15-

1o2

5:

0 time

0.00 100.00

,llll!l,I,,I,i,,h ,
20.00 40.00 60.00 80.00

Figure 7: Response time and cooling frequency for the dynamically evolving, skewed, syn-

thetic workload varying over time

43

0.40

0.30-

0.20-
0.10-

4

I

b

I

I

rI

I
I

I

without

cooling

with

cooling
i I

j

i _ t f i

i i

lit

0.00 , lime
0.00 80.00 100.00

i ' r i

20.00 40.00 60.00

50

40

lifttlllllt,t,tllllllitllll,,,, LIBt'IIBLIIlitllll,llilltllli '
. II, ., I, , .,,,!,, ,,,.°

0.00 20.00 40.00 60.00 80.00 100.00

Figure 8: Response time and cooling frequency for the WWW workload varying over time

44

0.8-

._ -

_ 0.6-

I: -
@
_' 0.4-

IU

¢_ 0.0

0

t
It

II

f t

I L

I I

......... _ T _ _ _" time
10 20 30 40 50

with cooling

.... without cooling

1t5

lilt t I : I II | I I time
0 i t i i l"

0 10 20 30 40 50

Figure 9: Average response time and cooling frequency for the OLTP workload varying over

time

45

