Edinburgh Research Explorer

UnQL: A Query Language and Algebra for Semistructured Data
Based on Structural Recursion

Citation for published version:

Buneman, P, Fernandez, M & Suciu, D 2000, 'UnQL: A Query Language and Algebra for Semistructured
Data Based on Structural Recursion’, VLDB Journal, vol. 9, no. 1, pp. 75-110.
https://doi.org/10.1007/s007780050084

Digital Object Identifier (DOI):
10.1007/s007780050084

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
VLDB Journal

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 27. Apr. 2024

https://doi.org/10.1007/s007780050084
https://doi.org/10.1007/s007780050084
https://www.research.ed.ac.uk/en/publications/a2caff70-dbf4-4c3e-8ef3-49da49cece50

The VLDB Journal manuscript No.
(will be inserted by the editor)

UnQL: A Query Language and Algebra for Semistructured Data
Based on Structural Recursion

Peter Buneman', Mary Fernandez?, Dan Suciu?
b b

! University of Pennsylvania
2 AT&T Labs

Received: date / Revised version: date

Abstract This paper presents structural recursion as the basis of the syntax and semantics of query
languages for semistructured data and XML. We describe a simple and powerful query language based on
pattern matching and show that it can be expressed using structural recursion, which is introduced as a
top-down, recursive function, similar to the way XSL is defined on XML trees. On cyclic data, structural
recursion can be defined in two equivalent ways: as a recursive function which evaluates the data top-down
and remembers all its calls to avoid infinite loops, or as a bulk evaluation which processes the entire data
in parallel using only traditional relational algebra operators. The latter makes it possible for optimization
techniques in relational queries to be applied to structural recursion. We show that the composition of
two structural recursion queries can be expressed as a single such query, and this is used as the basis
of an optimization method for mediator systems. Several other formal properties are established: structural
recursion can be expressed in first order logic extended with transitive closure; its data complexity is PTIME;
and over relational data it is a conservative extension of the relational calculus. The underlying data model
is based on value equality, formally defined with bisimulation. Structural recursion is shown to be invariant
with respect to value equality.

1 Introduction

The recent interest in semistructured data was sparked a few years ago with the development of the Object
Exchange Model (OEM) [PGMWO95], a data format that could be used to exchange arbitrary database
structures between applications. What was novel about OEM was its ability to accommodate irregular
(semistructured) data — data with no assigned schema. Because of this it found immediate application in
data integration and in modeling other forms of irregular data that are to be found in scientific data formats
and on the Web [AQM*97, BDHS96, FFK*+98].

In a parallel development XML has emerged as a standard format for data exchange on the Web [Con98].
However the roots of XML are not in data models but in document markup languages in which the markup is
used to convey the structure rather than the layout of a document. Despite the disparate origins and different
superficial appearance of OEM and XML, the two approaches are remarkably close in their underlying data
model; see, for example [ABS99]. The abstract model is extremely simple: it is nothing more than a labeled
graph.

A new data model immediately invites the development of a query language for that model. Relational
query languages are often taken as a yardstick for what is desirable in a query language: an underlying opti-
mizable algebra, a simple surface syntax such as SQL or OQL, the ability to define views and compose them
with queries, etc.!. Not surprisingly a number of languages have been developed or adapted for semistructured

! For a more extensive list of desiderata for an XML query language, see Maier’s paper in [QL98]

2 Peter Buneman et al.

data and XML: Graphlog [CM90], MSL [PAGM96], UnQL [BDHS96], Lorel [AQM*97], Strudel [FFK*98],
XSL [Cla99b, Cla99a], XQL [Rob99], and XML-QL [DFF*99]. There are two aspects to these languages that
set them apart from standard database query languages. They are all capable to some extent of treating
schema, information such as attribute names as data, and — because they need to perform searches over a
graph — they all incorporate some form of recursion. The first aspect is not unusual: it is clearly available in
relational database systems that present schema information in a table, and it is also available in complex
object languages such as F-logic[KW93] also present the schema in a way that it can be queried. It is the
second aspect that is challenging. It has yet to be established that recursive query optimization techniques
developed for deductive databases work well in the context of semistructured data. Allowing arbitrary re-
cursive programs makes optimization difficult and probably allows nonterminating programs. Some existing
systems adopt ad hoc rules to bound recursive searches.

In UnQL (Unstructured data Query Language) [BDHS96] a new approach to querying semistructured
data was introduced based on structural recursion. The idea is to limit the form of a recursive program
by tying it closely to the recursive structure of the data. UnQL was one of the first query languages for
semistructured data, and it met many of the criteria (an optimizable algebra, a simple query language,
compositionality etc.) for a database query language. In addition to exploiting structural recursion, UnQL
introduced the idea of using patterns and templates in a simple surface syntax. It also used a somewhat
different model to the OEM. Roughly speaking, UnQL’s model is, like the relational model, value based
and this allows analogous optimizations to those in relational databases. The purpose of this paper is to
explain in detail the various components of UnQL: its model, its query language, its internal algebra and
its optimizations. We believe that these are of quite general use in the design and implementation of query
languages for semistructured data.

Recent activity in the World Wide Web Consortium has brought structural recursion into the center of
discussion for XML query languages. XML is best explained to a database person as a syntax for semistruc-
tured data. The only XML languages adopted so far by the industry are XSL [Cla99a, Cla99b] and its relative
XQL [Rob99].

The original goal of XSL was to express transformations from XML to HTML?, called stylesheets. The
idea is for XML authors to associate a stylesheet with an XML document. A browser would execute the
stylesheet and obtain an HTML representation of the document that can be displayed. XSL however evolved
into a more general XML to XML transformation language. Being the first XML language to be shipped in
commercial products, it is likely to be used for a while as a substitute for an XML query language, and it
is likely to influence future XML languages. As a query language, XSL is nowhere close to any declarative
query language a database person might be familiar with. It consists of a collection of rules, each with a
pattern and a template. The input XML tree is processed top-down, by matching each pattern to the current
node. If a match occurs, the template in that rule is evaluated, possibly triggering the rules to be applied
recursively, on the node’s children. Thus XSL’s semantics is best understood in terms of recursive functions,
rather than declarative semantics. As we show in this paper, this follows the same programming paradigm
as structural recursion. We believe that structural recursion is in the position to bridge the gap between
the document and the database communities working on a XML query language. At the same time, the
optimization and evaluation techniques we show here for structural recursion also apply to XSL.

The use of patterns and templates in semistructured query languages was also pioneered in UnQL, and
these are also important in the context of XML. Both XSL and XML-QL (a query language specifically
designed for XML) have patterns and templates, those in XML-QL following UnQL’s style quite closely.

UnQL’s value-based data model is of general interest. In relational databases relations are treated as
equivalent if they are observably equivalent. That is, they cannot be distinguished by any query. For relations
queried with relational algebra, this means that the relations are sets, i.e. the order and multiplicity of the
tuples in a relation is unimportant. For graph-like databases queried with UnQL, the relevant notion is
bisimulation. Compared with graph isomorphism, which is the appropriate notion of observable equality
for OEM, bisimulation has certain advantages. For example one can efficiently check the existence of a
bisimulation, hence decide whether two graphs are observably equal. Also, duplicate elimination can be
efficiently performed and, moreover, it can be performed at any place in the query, without affecting its
semantics.

2 HTML 4.0 is a subset of XML.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 3

Again, interest in bisimulation for semistructured data goes beyond UnQL. A model based on bisimulation
is adopted in [DGM98] to describe the relationship between semistructured data and description logics. More
relevant to query languages is the fact that bisimulations are useful in building indexes. All languages for
semistructured data (including XSL) incorporate some form of regular path expression, to evaluate them
efficiently, researchers have investigated path indezes, i.e. data structures summarizing all paths in the data.
The first example of such a structure was the “data guide” [GW97]. Assuming the data to be a non-
deterministic automaton, the data guide is its deterministic powerset automaton. Data guides work well for
certain data instances, especially trees, but do not scale well on highly connected instances. It has been
shown however that bisimulation can successfully replace the powerset construct for the purpose of index
construction. T-indexes [MS99], for example, scale better than data guides on cyclic data.

This paper is a complete description of UnQL’s data model, query language, optimization techniques,
and formal properties. Some of these were announced previously in [BDS95,BDHS96], but most details
and proofs were never published before. Many techniques and properties transcend UnQL’s scope and are
applicable in other contexts too: for example the conservativity result (announced in [BDHS96] and proved
here) was already used to prove similar properties for StruQL “by reduction” to UnQL [FFLS97]. To put
these techniques to work, we show here how the optimizations for structural recursion can be used in a
mediator-based data integration system to do query rewriting. Finally, the paper reports, for the first time,
on UnQL’s implementation.

Specifically, the paper makes the following contributions:

— It describes structural recursion as a query language for trees and explains its relationship to XML.

— It describes a declarative syntax for a subset of the language; the subset uses a select-where syntax
with patterns and templates; a translation from this syntax into structural recursion is given.

— It describes an original semistructured data model based on labeled graphs. The model is value-based, as
opposed to object-based, and value equivalence is given by a certain notion of bisimulation. A large class
of results can be obtained for graphs (under bisimulation) simply by establishing them for finite trees.

— It shows how structural recursion can be lifted from trees to graphs, and defines a calculus for graphs,
based on structural recursion.

— It describes two different evaluation techniques for structural recursion (top-down, and bulk), and proves
that they are equivalent. Bulk evaluation can be implemented with traditional database operators, while
top-down evaluation, when restricted to trees, is typical for XSL processors.

— It describes an optimization for structural recursion, and shows how it can be applied in mediator systems.
The optimization relies on certain algebraic laws, whose validity is proved.

— It establishes and proves the following formal properties of the calculus: all queries are invariant under
bisimulation, the calculus can be expressed in first order logic extended with transitive closure, and the
calculus is a conservative extension of the relational calculus over relational data.

— it reports an implementation on UnQL in ML.

Related Work As a graph query language, Graphlog [CM90] and GOOD [GPVdBVG94,GPVdBVG90)
deserve credit as possibly the first two languages for querying semistructured data. Graphlog is based on
datalog and makes use of recursive datalog queries for graph queries. GOOD uses a graph model of data that
conforms to a functional data model and has a query/transformation language that exploits pattern matching
of graphs. If one removes the distinction between two kinds of edge labels in GOOD and forgets the schema,
one arrives at a semistructured data model that is close to the model we describe in this paper. Several
more recent query languages have been considered for semistructured data. Lorel [AQM197] is the query
language in Lore, a semistructured data management system. Lorel adapts OQL to query semistructured
data, by extending it with regular path expressions and implicit coercions. Recently Lorel has been extended
to query XML and its implementation is described in [MW99]. MSL [PAGMO96] is a logic-based language for
semistructured data, extending datalog to semistructured data and is used in the Tsimmis data integration
project [PGMW95]. It was the first language to use Skolem functions in semistructured data. StruQL is the
query language in the Strudel project, a Web Site Management System [FFLS97, FFK198]. It was especially
designed to allow complex graphs to be easily constructed declaratively: for that it uses Skolem functions and
a block structure, a unique feature in StruQL. XML-QL [DFF199] is a query language for XML, combining
UnQL’s patterns and templates with StruQL’s Skolem functions and block structure.

4 Peter Buneman et al.

Structural recursion has been known to the functional programming community for many years and ap-
pears as the “reduce” or “fold” operators of languages such as Lisp, ML and Haskell. It was first proposed for
database languages in FAD [BBKV87] and Machiavelli [OBB89]. The semantics of recursive programming
constructs for collection types was first described by Tannen and Subrahmanyam in [BTS91]. Phil Wadler
first observed the connection between comprehension for collection types (lists, bags, sets) in [Wad92] and
structural recursion. A query language built around comprehension is described in [BLST94], and the prop-
erties of such languages are described in [BTBN91]. Structural recursion as it is described in this paper
extends those principles to trees and graphs.

Skolem functions where first discussed in the context of databases by Maier [Mai86]. They were later
used in [AK89], in F-logic [KW93] and in ILOG [HY90].

Courcelle [Cou90] considers hypergraphs with sources, i.e. distinguished nodes in the hypergraph. He
defines six hypergraph operators and proves that every hypergraph can be constructed using these operators.
This is related to our data model which consists of a graph with distinguished input nodes and output nodes,
on which we define nine constructors. Unlike Courcelle’s operators however, ours are directed: they distinguish
between the input and the output nodes.

Structural recursion is related to top-down tree transducers [RS97], but it is more powerful than these
because it can express joins and cartesian products which are not expressed by top-down transducers. Top-
down transducers are not closed under composition, in other words they do not enjoy an optimization similar
to Theorem 4. The reason for that is the top-down transducers can express non-terminating queries (a form
of side-effect), which structural recursion cannot.

Bisimulation was considered in process algebra [Mil89]. An efficient algorithm for computing a bisimu-
lation is described by Paige and Tarjan in [PT87]: the best known algorithm for computing a simulation is
in [HHK95]. Bisimulation was applied to indexes for semistructured data in [MS99)].

Organization The paper is organized as follows. Sec. 2 introduces the semistructured data model and struc-
tural recursion restricted to trees. Sec. 3 describes three applications of the structural recursion paradigm:
querying ordered trees, querying and transforming XML, and the usage in mediator systems. In Sec. 4 the
model is extended to arbitrary graphs, and a calculus for graphs, UnCAL, is presented in Sec. 5. Some
formal properties and optimization techniques are established in Sec. 6 and 7. Two evaluation strategies are
presented in 8, and an implementation is reported in 9. We conclude in Sec. 10.

2 Semistructured Data and Structural Recursion

We start by describing a simple tree model for semistructured data and show how structural recursion works
on trees. We also introduce the query language UnQL, which can traverse data to arbitrary depth with
regular path patterns, and describe its semantics on trees. Restricting the data to trees makes structural
recursion and UnQL queries much easier to define and understand. Of course, real data is often cyclic: we
will show in later sections how the operations extend naturally to arbitrary graphs.

2.1 Semistructured Data Modeled as Trees

Fig. 1 illustrates a typical example of semistructured data, adapted from
http://www.odci.gov/cia/publications/factbook/index.html, which contains information about coun-
tries, e.g., geography, people, government, etc®. The data can be viewed as a tree in which nodes correspond
to objects and leaves to atomic values. We use a simple syntax for a textual representation of semistructured
data; our example in text form appears in Fig. 2.

Atomic values include quoted strings such as "Ireland", numbers such as 70280, and possibly other

basic types. Structured values (the internal nodes of the tree) are denoted by {l; : ey,...,l, : ey} in which
the l; ...l, are labels such as country, name, etc., and the ej,...,e, are atomic values or other structured
values.

3 We apologize to the Central Intelligence Agency for the liberties we have taken in this excerpt from that most
useful database.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion

country country

nane geogr aphy

"Luxenbour g"

coordinates gieg

peopl e

popul at/i on

et hni ¢G oup

10174922 " Cel tic”

lay 1ong t ot al hand

"49 45N' " 10E" 2586

Fig. 1 An example of a semistructured data instance.

FactBook:
{ country: { name: "Ireland",

geography: { coordinates: {long: "53 OON", lat:

area: { total: 70280,
people: {population: 3619480,
ethnicGroup: "Celtic",
ethnicGroup: "English"},

2586

land: 68890:

country
gover nment
~ ethnicGoup execut/ive
et hni,.cGr oup
“ltalian"
" Port uguese”
chi ef/Of St at'e
"8 00W"},
water: 1390}},

government : {executive: {chiefOfState: "McAleese",
head0fGovernment: {name: "Ahern
function: "prime minister"}},

legislative: {...}}},
country: { name: "Luxembourg",

geography: { coordinates: {long: "49 45N", lat: "6 10E"},
area: { total: 2586, land: 2586}},

people: {population: 425017,
ethnicGroup: "Celtic",
ethnicGroup: "Portuguese",
ethnicGroup: "Italian"},

government: {executive: {chiefOfState: {name:
function:"Grand Duke"},

head0fGovernment: {name:

legislative: {...}}},
country: { name: "Belgium",

"Jean",

"Juncker",
function:"prime minister"}},

geography: { coordinates: {long: "50 50N", lat: "4 QOE"},
area: { total: 30510, land: 30230, water: 280}},

people: {population: 10174922,
ethnicGroup: "Fleming",
ethnicGroup: "Walloon"},

government: {executive: {chiefOfState: {name:

head0fGovernment: {name:
function:"prime minister"}},

legislative: {...}}},

}

Fig. 2 Textual representation of the semistructured data in Fig. 1

"Albert II",
function:"King"},

"Dehaene",

| &gi sl ative

6 Peter Buneman et al.

This is different from a syntax for tuples, because labels may be repeated; duplicate labels are used to
represent sets (as in the example above), without having to introduce a special set notation. Semistructured
data is often called “schema-less” or “self-describing”, because data attributes and data values are intermin-
gled, which permits representation of irregular data. For example, repeated attributes (e.g. ethnicGroup)
and missing attributes (e.g. water) are permitted, and attributes may have different types in different ob-
jects (chief0fState). More importantly, the structure of data may evolve over time, e.g., ethnicGroup
could occur at level 3 as well as level 4, and the data would still be valid. To summarize, the syntax for trees
in UnQL is given by:

tu=al|{l:t,...,1: t}

where a ranges over the atomic values and [ranges over labels.
As another example, the same syntax can describe regular data, such as a relation:

{ student: { id: 123, name: "L. Simpson", age: 19 },
student: { id: 345, name: "T. Quail", age: 22 1,
student: { id: 789, name: "E. Vader", age: 32 } }

in which we use a repeated label, student, to represent a set of subtrees.

The OEM [PGMW95] model defines semistructured data as a labeled graph, much like that in Fig. 1.
The fundamental distinction between the UnQL and OEM models is that in UnQL {l; : #1...,0, : tx}
denotes a set of label/tree pairs, not an object. By contrast OEM associates a separate object identifier with
each node in the tree. Thus the UnQL model, like the relational model, is “value based”. For example {a:
1, a: 1} and {a: 1} mean the same in UnQL but are different in OEM.

Since non-atomic values are sets of label/value pairs, they can be built from basic constructors for sets: the
empty set {}, the singleton set, {l : v} and the union of two sets s; Usy. The notation {l; : t1,...,l, : tp}is
shorthand for {l; : t;}U...U{l, : t,}. For example, {a: 5, b: {c: 8, d: 9, a: 7}, e: 4} is shorthand
for {a: 5} U {b: ({c: 8} U {d: 9} U {a: 7})} U {e: 4}. To summarize, there are four constructors
for trees:

to=tUt|{l:t}]{}]a

where a ranges over atomic values and [over labels. Obviously, the operation ¢; Ut only makes sense when
both ¢; and ¢, are sets, i.e. not atomic values.

2.2 Structural Recursion on Trees

Recursion is the usual programming idiom for tree-like data. We introduce a restricted form of recursion,
structural recursion, that is declarative and permits optimizations expected of a database query language.
The key idea of structural recursion is that the form of the program follows the structure of the data.
The restrictions, which are syntactic, ensure that the recursion always terminates. We introduce structural
recursion by example, then give a formal definition. Structural recursion is only one operator of a query
language, and may be combined with other operators.

Assume we want to retrieve all ethnic groups in our database. With structural recursion we write this
query as a recursive function:

fun £1(T1 U T2) £1(T1) U £1(T2)

| £1({L:T}) = if L = ethnicGroup then {result: T} else f1(T)
| £1({}) = {}
I £1(V) = {}

Uppercase symbols are variables. The left-hand sides of each equation are patterns. Note how the first
three patterns follow the constructors for sets. When this function is applied to a value, that value is matched
against each pattern in turn. If the set is constructed by a union operation, we bind the variables T1, T2 to its
two components and evaluate the right-hand side. If the set is a singleton label /value pair, bind the variables
L and T to the label and value respectively. For an empty set, no variables are bound. The last line has a
pattern consisting of the variable V. This is a “catch-all” clause, since the pattern V matches anything; in
particular it matches atomic values. Each of the constructors for semistructured data is therefore matched by

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 7

at least one pattern. When a value is matched by more than one pattern, we follow the convention of many
functional programming languages and take the first matching pattern. Thus the order of the equations is
significant.

Taken together these patterns define a function. Our syntax for pattern matching is borrowed from ML
from which we also borrow the keyword fun, as in fun £1 = ... for defining the function f1.

The result of this query, applied to the database in Figure 2 is

{ result: "Celtic", result: "English", result: "Portuguese",
result: "Italian", result: "Fleming", result: "Walloon", ...}

Duplicates are eliminated because we have a set-based semantics.
Note that recursion is used twice in the definition of £1. First, it is used on the horizontal structure of a
value in
f1(T1 U T2) = f1(T1) U £1(T2)

Second it is used on the wvertical structure of the tree in £1({L:T}) = if ... else £1(T). Unlike tradi-
tional (relational and object-oriented) query languages, query languages for semistructured data can operate
in the vertical dimension, i.e., search the tree to an arbitrary depth.

If we allow arbitrary expressions on the right-hand side of clauses in structural recursion it is easy
to construct programs that do not terminate or are nondeterministic (see [BTS91]). We therefore impose
additional restrictions:

1. The right-hand side of the clause with the union pattern should always have the form
f(T1 U T2) = £(T1) U £(T2).

2. The only recursive calls in the right hand side of a singleton clause, £ ({L:T}), are for the argument T.
Moreover, the results of the recursive calls can only be used in constructors, and not passed as arguments
to other functions or predicates. In particular recursive calls of the form f({a:{b:T}}) or g(£(T)) are
not allowed.

3. The result of £ ({}) should always be {}.

Restrictions 1 and 3 mean that lines 1 and 3 in the program above are always the same, therefore we may
omit them. These two restrictions deal with determinism: no matter how we decompose a set into a union
of smaller sets, including empty ones, we get the same result. Restriction 2 guarantees that every recursive
call will be on some argument strictly smaller than the input — hence the function terminates. As we will
show, all three constraints guarantee that structural recursion is deterministic and always terminates, even
on graphs with cycles.

Also, as a further syntactic abbreviation, if line 4 is missing, the empty set is returned by default. Our
example f1 above now reduces to

sfun f1({L:T}) = if L=ethnicGroup then {result: T} else f1(T)

where sfun indicates that we are defining a function with these defaults. We may also use constants in
patterns and use them in place of conditionals:

sfun f1({ethnicGroup:T}) = {result: T}
| £1({L:T}) £1(T)

This is the notation we use in this paper.

Examples of structural recursion Structural recursion allows us to express complex transformations on a
data structure. As a first simple example, structural recursion allows us to copy a tree:

sfun f2({L:T}) = {L:f2(T)}
| f2(V) =V

This example returns an isomorphic copy of an input tree, in which all labels are a:

sfun f3({L:T}) = {a:f3(T)}
| £3(V) =V

8 Peter Buneman et al.

n Joell " ‘Janell " Sal I yll " Bi | I n
Fig. 3 A data graph with cycles

The function below can double the children of each node giving a result that is apparently exponential in
the size of the input.:

sfun f4({L:T}) = {a:f4(T)} U {b:f4(D)}
| £4(WV) =V

For example, on the tree {a:{b:{c:1}}} the function returns
{a:{a:{a:1, b:1}, b:{a:1, b:1}},b:{a:{a:1, b:1}, b:{a:1, b:1}}}

We will show that such power does not result in expensive computation: an encoding of the result as a
directed acyclic graph guarantees that any structural recursion function can always be computed efficiently
(in PTIME).

In practice, it is useful to write multiple recursive functions that may call each other. In Fig. 2, we
construct a view that is an isomorphic copy of the data, but in which all numbers directly or indirectly
reachable from an area edge are converted from km? to mi®. This is achieved with a recursive function £5
that calls a recursive function gb.

sfun f5({area:T}) = {area:gb(T)}

| £5({L:T}) = {L:£5(T)}
| £5(V) =V
sfun g5(V) = if isInt(V) then 0.3861 *x V else V

| g5({L:T}) = {L:g5(T)}

£5(t) starts processing a tree t from the root, and copies it until it reaches area: here it calls gb on the
subtree, which copies the subtree and converts all numbers in that tree. On branches where £5 does not
encounter area, it simply leaves the numbers and all other atomic values unchanged.

Mutually recursive functions are also possible, as shown by the even/odd example in Sec. 5.1.1. In general,
any number of mutually recursive functions fi, fo,..., fr can be defined simultaneously. In such definitions,
restrictions 1 and 3 remain the same, hence, f;(t1 Ut2) = fi(t1) U fi(t2) and f;({}) = {}, for every function
fi- Restriction 2 is relaxed to allow in the right hand side of the clause f;({l : t}) any of the recursive calls
fi(@), f2(T), ..., fx(T) (or several of them).

Cyclic structures We digress with a brief discussion of why restrictions on recursion are needed. (A complete
explanation is deferred to later sections.) Consider the cyclic structure shown in figure 3.
Here is a query to extract all the names that occur in the figure:

fun £6(T1 U T2)

£6(T1) U £6(T2)

| £6({L: T}) = if L = name then {answer: T} else f(T)
| f6({}) = {3}
| £f6(V) = {}

If we view this definition as a program, then it will “loop infinitely”. Alternatively, we can view it as a
set of equations for which we must find an instance of the function £6 that satisfies both the left-hand side
and right-hand sides of each clause. One possible solution, in fact the minimal one, is

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 9

£f6(r)= {answer: "Joe", answer: "Jane", answer: "Sally", answer: "Bill"}.
y

Note that more complicated expressions in the right-hand side of the first clause could mean that there is
no finite solution to these equations. Suppose that the union in £6(T1) U £6(T2) were replaced by a list
append operation. Any solution to these equations now contains an “infinite” list.

The ability to deal with cyclic structures in a clean and principled manner is one advantage of the UnQL
model. In Lorel, cycles in a query are arbitrarily terminated when the query revisits a node it has already
visited. In XSL, as we shall see, certain queries do indeed cause an infinite loop, even on acyclic data.

2.3 A Query Language

In addition to structural recursion, UnQL has a simple select ...where ... surface syntax with pattern
matching:

query Q1 :=
select {result: E}
where {country: {name: "France", people: {ethnicGroup: E}}} in db

This query finds all the ethnic groups in France, but unlike the function f1, it assumes that the label
ethnicGroup will occur at a certain position in the database. The pattern

{country: {name: "France", people: {ethnicGroup: E}}}

can be viewed as a tree. It is matched in all possible ways (as a subtree) to the tree db. Each matching binds
the variable E to some node in the database. For each such binding, the result {result: E} is constructed
and the union of all such results is returned.

In general, patterns have a syntax similar to trees:

Pat ::= {PE; : Paty,..., PE, : Pat,}
Pat ::= Var | Const
PE ::= Label | LabelVar | RPP

Tree variables, Var, are bound to nodes in the tree, and denote the subtree dominated by that node. Const
denotes an atomic constant. PEy, ..., PE, are path patterns: each can be a label, a regular path pattern
(RPP), or a label variable (LabelVar). The example above contains labels (name, people). Regular path
patterns are described further in Sec. 2.4; an example is people.ethnicGroup. Finally, label variables are
variables that are bound to label constants, for example,

select { result: L } where { country: { L: X } } in db

The result consists of all labels used in country. Regular path patterns are described in detail later.

Conditions and Multiple Patterns The where clause may include conditions. For example,

query Q2 :=
select { result: N }
where { country: { name: N }, people: { population: P } } in db,
P > 50000000

The condition P > 50000000 evaluates to true only if P is bound to an atomic integer value greater
than 50000000. Comparison operators e.g. X =Y, and predefined or user defined unary predicates, e.g.,
isString(N), are supported. Predicates always return false if an argument is bound to a non-atomic value.
Therefore, the condition X =Y tests equality of atomic values, not of trees. For efficiency, UnQL has no
primitive to check tree equality, although it does provide the isEmpty (X) predicate, which tests whether X
is bound to a leaf node, i.e., an atomic value or {}.

Multiple patterns in the same where clause are permitted:

10 Peter Buneman et al.

query Q2’7 :=
select { result: {name: N, people: X }}
where { country: { name: N }, people: X } in db,
{ population: P } in X,
P > 50000000

The query returns both the country name N, and all information about its people, in X. Each tree variable
in the where clause is bound to a node in the tree. The predefined variable db is always bound to the root.
When a tree variable such as X occurs in the select clause the subtree it is bound to is substituted into the
result.

Joins Multiple patterns and variable equality are used to express joins. The following query is a self-join,
which returns all countries that have some ethnic group in common with France:

query Q3 :=
select {result: C}
where { country: {name: "France", people.ethnicGroup: E}} in db,
{ country: {name: C, people.ethnicGroup: F}} in db,
E=F

Nested Queries We can use nested queries in the select clause, to group results or to express outer joins.
The following query finds all ethnic groups and associates the set of countries in which that group occurs:

query Q4 :=
select { result: ({ ethnicGroup: E}
U
(select { country: C }
where { country: {name: C, people.ethnicGroup: E}} in db)
)
}

where { country.people.ethnicGroup: E} in db

Note that E occurs in both the inner and outer queries, which is an implicit join. The result contains:

{ result: { ethnic: "Celtic", country: "Ireland", country: "Luxembourg", ...}
result: { ethnic: "Portuguese", country: "Luxembourg", country: "Portugal", ...}
- ¥

Nested queries are also used to retrieve optional fields, a form of outer join. The following query retrieves all
land areas and, where available, the water area:

query Q4’ :=
select { result: { country: C, landarea: L,
(select { waterarea : W}
where { water: W} in X)}
}
where { country: { name: C, geography.area: X}} in db, { land: L} in X

General Syntax and Semantics The general syntax for UnQL queries is:

Query := select Template where BCh, ..., BC,

Template ::= {TE; : Template,, ..., TE,, : Template,,} | Var| (Query)
TE ::= Label | LabelVar

BC ::= BindCond | BoolCond

BindCond ::= Patin Var

A BoolCond can be any boolean combination of equality or inequality conditions and externally defined
predicates applied to variables.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 11

Each variable in an UnQL query has a scope. Given a query select Template where BCY, ..., BC,, let
BC; = Pat; in Var; be the first of of the BC}, ..., BC, in whose pattern the variable X occurs. The scope of
X is defined to be Pat;, BCjy1,...,BC, and Template. All occurrences of X in within this scope are taken
as the same variable. For example in select ...where {a: X} in db, {b: X} in db the two occurrences
of X denote the same variable, and the effect of this query is to bind X only to those values that occur
both under an a and a b edge. In contrast, in select {c: (select X where {a:X} in db), b: (select
X where {b: X} in db)} where ... the two X’s have disjoint scopes and they are different variables. There
exists a predefined variable db, bound to the database of interest, whose scope is the entire query. Finally,
a bind condition of the form Patin Var may occur only within the scope of Var. For the remainder of this
section we assume all queries to be written such that each variable X occurs at most once in a pattern. For
that we replace each subsequent occurrence of X with a fresh variable X', and add the condition X = X'.
For example the query above with two occurrences of the same variable X will be transformed into select
...where {a: X} in db, {b: X’} in db, X = X’.

We define below the result of a query on some tree database, by defining the semantics for one query at
a time (i.e. sub-queries are defined independently). We say that a tree ¢ is included in a tree ¢’ if either both
are the same atomic value, or if ¢ = {ly 1 ¢1,..., Iy s}, ¢ = {I] : ¢},...,0, : ¢}, and foreach i =1,...,m
there exists j =1,...,n s.t. [; = [; and ¢; is included in /.

Let @ be a query select Template where ..., and let ¢ be an input tree. Consider V' to be the set of all
variables X for which Template is in the scope of X. An assignment, 8, is a mapping from V to the nodes
and the atomic values in ¢, such that the following three conditions hold. First, the distinguished variable db
is mapped to the root node in t. Next, all BindCond and all BoolCond in the query are satisfied, as follows. A
BindCond of the form Patin Varis satisfied if 6(Var) is a node, and the tree 6(Pat) is included in the subtree
of t whose root is 8(Var). A boolean condition BoolCond is satisfied if all variables occurring in the condition
are mapped to atomic values, and the boolean condition holds on those atomic values. Finally, we require
that 8(Template) not be an atomic value (this can only happen when Template is a single variable Var and
6(Var) is an atomic value). For such an assignment 6, we evaluate every subquery @' occurring in Template:
in doing so we only consider assignments which extend 6 to the new variables in Q'. Let 6(Template) denote
the tree obtained by replacing each subquery Q' with its value, and each variable Var with 6(Var). Now we
can define the result of @ on t. Let 6y,...,0; be all possible assignments for the variables in (). Then the
semantics of the query @ on the tree t is defined to be 6 (Template) U ... U 8 (Template).

2.4 Translating Queries into Structural Recursion

We can show that pattern matching can be translated into structural recursion. To simplify presentation,
we describe the case for queries without regular path patterns or sub-queries, using Q1 above. In the first
step, we transform the query into a query with only basic label/value patterns by repeatedly applying the
following two rules to the query’s where clause:

where {PE; : Paty, ..., PE, : Pat,} in Var — where { PE; : Pat;} in Var,...,{PE, : Pat,} in Var
where {PE : Pat} in Var — where {PE: NewVar} in Var, Patin NewVar

In the second rule, Pat is a pattern that is neither a variable nor a constant, and NewVar is a fresh variable
name. On Q1, the rules produce:

select { result: E }

where { country: C } in db,
{ name: "France" } in C,
{ people: P } in C,
{ ethnicGroup: E } in P

Next, we describe nested functions in UnQL, which follow ML’s syntax for introducing local names, as
in:

let fun hypot(x,y) = sqrt(x*x + yxy)
in hypot (hypot(3,4),12)

12 Peter Buneman et al.

Using this notation we can define a query on a database db by:

let sfun f1({ethnicGroup:T}) = {result: T}
| £1({L:T}) = f1(T)
in f1(db)

where we have created a local scope in which the function name f1 is defined so that we can apply it to db.
In the second translation step, we apply the following two rules repeatedly:

select e where ({PE : T} in €/, rest) — let sfun h({PE : T'}) = (select e where rest) in h(e')
select e where () —e

In these rules, rest is a syntactic meta-variable which stands for the remaining clauses in the where
component, and h is a new function name that is different from any other name in scope.
For example, the query:

select {result: N} where {country: { name: N } } in db
is translated into:

let sfun hi({ country: C }) =
let sfun h2({ name: N }) = { result: N }
in h2(C)

in hi(db)

When applied to Q1, the result is:

let sfun hi({ country : C }) =
let sfun h2({ Name: "France" })
let sfun h3({ people: P })
let h4 ({ ethnicGroup: E}) = { result: e }
in h4(P)
in h3(C)
in h2(C)
in hi1(db)

There are four functions defined by structural recursion, but none is recursive. Note that by our rules for
pattern matching, h2({Name : "France”}) returns the empty set when applied to a structure with no such
label /value pair.

Regular Path Patterns So far our examples of select ... where ... queries have all used only hori-
zontal structural recursion, i.e., when translated into structural recursion they produce non-recursive func-
tions. It is also possible to express certain “deep” queries in the select ... where ... with regular path

patterns. We have seen simple instances of regular path patterns. A regular path pattern is simply a reg-
ular expression on the alphabet of edge labels, including a “wild-card” label. For example the pattern
country: {geography: {coordinates: {long:X}}} is abbreviated to
country.geography.coordinates.long: X. In the following query,

select {vip: N}
where {country.government.executive._.name: N} in db

the underscore _ is a “wild card”. It matches any label, and is equivalent to introducing a new variable
that is not used anywhere else in the query. The following two queries illustrate the use of alternation and
optional labels:

select {vip: N}
where {country.government.executive.(chiefOfState|head0fGovernment).name: N} in db

select {vip: N}
where {country.government.executive.chiefOfState.name?: N} in db,
isString(N)

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 13

In this example name? means zero or one occurrence of the label name, and isString is a predicate that
tests whether its argument is a string. This query accounts for the irregular fashion in which names of chiefs
of state are represented.

With a Kleene star we may match paths in the data of unbounded depth:

select { name: N }
where { _*.name: N } in db

In summary, regular path patterns are given by:
RPP ::= Label | _| (RPP.RPP) | (RPP | RPP) | RPP? | RPPx

As usual, we omit parentheses when the operator’s precedence is clear.

Any regular path pattern can be translated into structural recursion, by expressing first the regular ex-
pression as an automaton (which may be non-deterministic) and associating a function with each state.
For example, consider the regular expression is a.((b| c¢).d)*.b? as used in the query select T where
{a.((blc) .d)*.b?: T} in db. An equivalent (nondeterministic) automaton has four states and the fol-
lowing transitions:

a, b, c, b, d
81 — 82,82 — 83,82 — 83,82 —> 84,83 — S2

The initial state is s1, and s2, s4 are terminal states. The query is equivalent to the function hl below:

sfun hi1({a:T}) = h2(T) U T

sfun h2({b:T}) = h3(T) U h4(T) U T
| h2({c:T}) = h3(T)

sfun h3({d:T}) = h2(T) U T

sfun h4({L:T}) = {}

Each function corresponds to a state, and has one pattern for each symbol occurring on some transition from
that state. Since sz, s4 are terminal states, whenever h2(T) or h4(T) occur in some right hand side their
result is unioned with T. This translation generalizes easily to any regular expression R whose language does
not include € (the empty string). When € € lang(R), then we first encode R — {e} as a structural recursive
function h', then we define h(t) = h'(t) Ut.

Summary of UnQL In summary UnQL consists of the following operators:

— the tree constructors {},{l: t}, 61 Uta, {l1 1 t1,..., 0, s tn}

— functions defined by structural recursion

— queries defined with select — where and pattern matching, which can be translated into structural recur-
sion.

2.5 Tree Equality

We have stated that values are sets of label/value pairs, and our brief discussion of cyclic structures shows
the importance of a set-based semantics interpretation of structural recursion on graphs.

One question is when are two structured values equal. For example, we interpret {1,2,3}, {1,3,2},
and {1,3,3,2} as the same set. Similarly, {Name: "Joe", Tel: 1234, Tel: 3251}, {Tel: 1234, Name:
"Joe", Tel: 3251} and {Name: "Joe", Tel: 1234, Tel: 1234, Tel: 3251} should denote the same
value, which means UnQL can discard duplicates. (In SQL, which allows both sets and bags, duplicates
are explicitly removed with unique.)

The definition of equality is less obvious when we deal with deeper trees. For example

{a: {c: 3, b: 2}, a: {b: 2, c: 3}}

is the same value as
{a: {b: 2, c: 3}}

This prompts the general inductive definition of value equality for trees.

14 Peter Buneman et al.

Definition 1 Value-equality for trees, t = t', is defined as follows. When t and t' are atomic values, t = t'
if those values are the same. If t = {ly : t1, ..., Iy st} and t' = {1} : t},... .0, : t).}, and if
— for each i € {1,...,m}, there exists j € {1,...,n} s.t. [; =1 and t; =t}.
— for each j € {1,...,n}, there exists i € {1,...,m} s.t. [; =1 and t; =t}.
thent =t':
It is this definition of tree equality that we will generalize to a definition of equality (bisimulation) on
graphs in Sec. 4.

3 Applications of UnQL

Before extending UnQL to cyclic data, we discuss three applications of UnQL.

3.1 Querying Ordered Trees

Throughout Sec. 2 we assumed that trees are sets: order and duplicates do not matter. However applications
such as XML are based on an ordered tree model, one in which the children of any node have a prescribed
order. The operations we have already discussed can be interpreted so that they make perfect sense on an
ordered tree data model, and many of the optimizations developed in later sections also work on ordered
trees. There are limitations on which techniques we can migrate from the unordered to the ordered model.
Some optimizations do not work (for example idempotence z U z = z fails), and we do not know how to
extended structural recursion to ordered graphs. The extension to unordered graphs is discussed in Sec. 4.
To change the syntax for ordered trees, a tree is now a list:

tu=al[l:t,...,1:1
The tree constructors have the same form, but append @ replaces union:
tu=tQt|[l:t]|[]a

Structural recursion is defined as before, but the clause for £(T1 U T2) is replaced by £(T1 @ T2). For
example, the ethnic groups are retrieved by:

fun £1°(T1 @ T2) = £1°(T1) @ £1’(T2)

| £1°([L : T]) = if L = ethnicGroup then [result: T] else f1’(T)
I £1°([1) =[]
| £1° (V) =[]

3.2 Querying and Transforming XML

XML. XML is a standard recently approved by the W3C as a data exchange format on the Web and can be
viewed (with some approximations) as a syntax for semistructured data. For example, the data in Figure 2
is written in XML as:

<FactBook>
<country> <name> Ireland </name>
<geography> <coordinates> <long> 53 OON </long> <lat> 8 OOW </lat>
</coordinates>
<area> <total> 70280 </total> <land> 68890 </land>
<water> 1390 </water>

</area>
<people> ... </people>
<government> ... </government>
</country>
<country> ... </country>

</FactBook>

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 15

XSL. Thereisno standard query language for XML. The only XML language supported by the W3C is XSL,
an Extensible Stylesheet Language [Cla99a,Cla99b]. It is available in several commercial products, including
Microsoft’s Internet Explorer. While originally designed to express XML to HTML transformations (hence
the name stylesheet language), XSL evolved into a general-purpose XML to XML transformation languages.
To some extent it can serve as a limited query language. For example, consider the XSL program below:

<xsl:template> <xsl:apply-templates/> </xsl:template>
<xsl:template match="ethnicGroup">

<result> <xsl:value-of/> </result>
</xsl:template>

This program consists of two template rules. Each rule has a match pattern, and a template: the match
pattern in the first rule is empty (i.e., it can be applied anywhere), and in the second, the pattern is
ethnicGroup. XSL proceeds recursively, from the root of the document and tries to match the current node
with the patterns in the rules, starting from the last rule. Whenever a match occurs, the corresponding
template is evaluated. When applied to the above XML data it returns:

<result> Celtic </result> <result> English </result>
<result> Celtic </result> <result> Portuguese </result>
<result> Italian </result> <result> Fleming </result>
<result> Walloon </result>

Without going into the details of XSL, we remark that this XSL program is equivalent to the structural
recursion function £1 (modulo the different syntax and duplicate elimination). In fact, a large fragment of
XSL can be rewritten in terms of structural recursion. For example:

<xsl:template>
<a> <xsl:apply-templates/>
 <xsl:apply-templates/>
</xsl:template>
<xsl:template match="c">
<result> <xsl:value-of/> </result>
</xsl:template>

is equivalent to (note the reversed order of the cases):

sfun £f({c:T})
| £({L:TH

T
{a: £(T), b: £(T)}

Note that, like the function £4 of Sec. 2.2, this can create an output that is exponentially larger than the
input.

XSL templates can also express mutually recursive functions, through execution modes. This suggests a
rather strong connection between XSL and structural recursion. However, there are important differences
too. One is that XSL does not restrict its form of recursion and, hence, can express nonterminating programs
even on trees. For example, consider the XSL program obtained by adding the following rule to the three
rules above:

<xsl:template match="b">
<xsl:apply-templates select="/"/>
</xsl:template>

When a b element is encountered, the templates are applied recursively to the root: the select="/" focuses
the scope of xsl:apply-templates to the root of the tree. This results in a non-terminating computation
on any input tree which has a b element.

A second difference is that XSL does not permit joins, which makes it inadequate for database applica-
tions.

16 Peter Buneman et al.

XML-QL. A proposal for a query language for XML can be found in [DFF*99]. XML-QL incorporates ideas
from UnQL and StruQL [FFLS97], such as pattern matching and Skolem functions. For example, query Q1
above is written in XML-QL:

where <FactBook> <country> <name> France </name>
<people> <ethnicGroup> $E </ethnicGroup> </people>
</country>
</FactBook> in db
construct <result> $E </result>

XML-QL has joins, nested queries, and regular path patterns, like UnQL. However, XML-QL does not
have a form of recursion, similar to structural recursion. While any function expressed with structural
recursion can be expressed in XML-QL too, this is done using a complicated encoding with Skolem functions:
such an encoding does not generalize to ordered data, like XML.

In summary UnQL, when applied to XML data, extends in a natural way both XSL and XML-QL.

3.8 UnQL Optimizations with Applications to Mediators

Structural recursion admits surprisingly powerful optimizations. A full description is in Sec. 7. Here, we give
a simple example.

Recall that for our example (Fig. 2), we can define a view (Sec. 2) in which all areas in km? are translated
into mi? (functions £5, g5). We assume the view to be virtual.

Assume now that a user wants to find France’s land area in mi?. The combined query (view plus query)
is:

let sfun f5({area:T}) = {area:g5(T)}

| £6({L:T}H) = {L:£5(T)}
| £5(V) =V

sfun g5(V) = if isInt(V) then 0.3861 * V else V
| g5({L:T}) = {L:g5(T)}

in query Q :=
select {result: A}
where { country: {name: "France", area.land: A}} in £5(db)

Of course, we don’t want to materialize the entire view just to retrieve one value; we want to compose
the two queries and obtain the simpler:

query Q’ :=
select {result: 0.3861 x A}
where { country: {name: "France", area.land: A}} in db

The optimization requires composing £5, gb with the query Q to obtain the query Q’. The more gen-
eral problem is to compose two queries expressed with structural recursion, and obtain a single structural-
recursion query (recall that select-where queries are non-recursive instances of structural recursion). Tradi-
tional optimization techniques for recursive queries (e.g. datalog) do not solve this problem. We will describe
in Sec. 7 the general optimization technique for structural recursion.

This example is typical for mediator systems. In such systems, a mediator offers a virtual view over one
or several data sources, e.g., an integrated view over several sources, or a restructuring of the data in one
source. In such systems, most or all of the data from the sources is copied and restructured into the mediated
view: when the sources are semistructured, this means that the mediator may need to traverse recursively
the entire data tree. Thus, mediators are recursive, like the function £5 above. User queries are in general
select-where queries and only retrieve a tiny fraction of the data, like the query Q above. Optimizing the
composed query (user query plus view definition) is critical for performance.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 17

people people

population ethnicGroup populatio

ethnicGroup ethnid

10174922 "Fleming" "Walloon"
10174922 "Fleming" “Wal|oon"

@ (b)

Fig. 4 Representing data values on leaves (a) and on edges (b).

4 The Graph Data Model

The simple data model defined in Sec. 2 supports finite trees, but in practice, we need arbitrary graphs. In
this section, we describe the graph data model and show that our language for trees extends to graphs as
well.

First we need some notation. We assume an infinite set Label of symbols that label edges. Labels are
typically strings, but for economy, we include all base types like integers, reals, etc., in Label. This eliminates

the need for a second domain for leaf values: like labels, values can now be placed on edges, see Fig. 4.

We allow an additional special symbol, ¢, on the edges, and denote Label. 4f Label U {e}. Marker is an

infinite set of symbols called markers. Each graph has certain nodes designated as inputs and certain nodes
designated as outputs, and these nodes are labeled with markers. We need both the distinguished nodes
and their markers in our model in order to describe the semantics of structural recursion on graphs. The
top-down definition we used for trees does not work on graphs with cycles, of course. In our new semantics
we split a graph into small cycle-free pieces, apply structural recursion independently on the pieces, then
glue together the results. Markers are used for gluing: output nodes in some piece are glued with input nodes
with the same marker in another piece. Markers are a unique feature of UnQL’s data model, and somewhat
related to object identifiers in object data models, like OEM. The difference is that not every node in a graph
must have a marker, but only those designated as input or output nodes, and the same marker may be used
in several graphs (this is useful, for example, when gluing nodes with the same marker). By contrast, in an
object model every node must have a unique object identifier. Markers can also be used in queries, e.g., as
entry points to the data. Markers are denoted &=z, &y, &z, There is a distinguished marker & € Marker,
typically used as the default input marker: an input node labeled & is called a root.
Let X,)Y be two finite sets of markers.

Definition 2 A labeled graph with input markers X and output markers Y is g = (V, E,I,0), where V is a
(possible infinite) set of nodes, E CV x Label. x V are the edges, [CX xV, and O CV x).

When (&z,v) € I, then v is called an input node; when (v,&y) € O, v is called an output node. I must
be a one-to-one mapping from input markers to input nodes, and we denote with I(&z) the unique node
associated with the marker &z. It is possible for I to be empty: in this case X is empty too, and the graph
has no input nodes. Since we observe labeled graphs only through their inputs, all graphs with no input
nodes (X = () are equivalent, and, hence, equivalent to the empty labeled graph (0,0,0,0) (we will make
this statement formal in Sec. 4.1). O does not need to be one-to-one, and a marker &y €) does not need
to occur in O. In particular, O may be empty. It also follows that every labeled graph with inputs X and
outputs Y is also a labeled graph with inputs X and outputs)’, for every)’ O V. Finally, to complete the
definition, input nodes must not have incoming edges, and output nodes must not have have outgoing edges,
i.e., they are leaves. Note that a labeled graph may be infinite.

As our graph data model we use finite graphs, called data graphs or databases. We denote by DB§ the
set of data graphs with inputs X and outputs Y. When X = {&}, then we abbreviate DB§ with DBy. The
set DBy is further abbreviated to DB.

18 Peter Buneman et al.

Trees Trees, as defined in Sec. 2, are particular cases of data graphs with input & and no outputs. For
example, the trees {a,b: {¢,d,d},b: {c,d}} and {a,a,b: {c,¢,d}} are shown in Fig. 6 (a), and have 9 and
7 nodes respectively. The roots are labeled with the marker & (not shown in the figure) and there are no
output markers. In this paper, we omit the input marker & when it is understood from the context. An
example of a tree with output markers is {a,b : &y, ¢ : {d}}. The tree grammar in Sec. 2 is extended now to:

to=a|&y|{l:¢t...,1:t}

From finite trees to graphs The guiding principle in UnQL is that concepts and properties are lifted from
finite trees to graphs. To do this we show how a certain class of functions, defined on finite trees, naturally
extend to work on graphs. To do this we first represent a graph as a certain type of infinite tree and then
show how to lift our definitions for finite trees to such infinite trees. Representing the graph as an infinite
tree is achieved through a process of unfolding.

Unfoldings Given some arbitrary data graph we unfold it, starting from each input node. We obtain a
forest (or a tree, when there is only one input node), which may be infinite, hence our need to consider
infinite graphs. For some data graph d, unfold(d) denotes its unfolding. Fig. 6 (b) illustrates a data graph
and its infinite unfolding. Note that the output marker &y occurs only once in d, but infinitely many times
in unfold(d). This is why we do not require O to be one to one in Def. 2.

Formally, given d € DB§, d=(V,E,I,Q), its unfolding is defined as unfold(d) = (V', E', I',O') where:

— V' ={p|pis apath in d starting at some I(&z), for &z € X'}.
E' ={(p,a,p") | p' = p.a where p,p' € V' and a € Label. }.

— I' = {(&=z,p) | p ends in v and (&z,v) € I}.

— 0" ={(p,&=z) | p ends in v and (v, &z) € O}.

We remark that whenever (&z,p) € I', p is a path of length 0, i.e. consisting only of the node I(&z): this is
because no edges enter any input node. In particular I’ is indeed a one-to-one mapping from X to the input
nodes in unfold(d).

Our plan is to show that d is value equivalent with unfold(d), for any data graph d. We will define value
equivalence formally below. From this assumption it follows that any data graph d is value equivalent to its
accessible part (defined to be the set of nodes accessible by a path from some input node), because any data
graph has the same unfolding as its accessible part.

We then need to show how operations and properties can be lifted from finite trees to data graphs via
their unfoldings. For that we use the following fact, which will be proved in the Appendix. Let f be a function
from labeled graphs to labeled graphs. We call f compact if, for any labeled graph g, f(g) is determined by its
actions on finite trees (formal definition is in Appendix). We call f unfolding if unfold(f(g)) = f(unfold(g))
for any graph g. Then:

Fact 1 Let f,g be two compact, unfolding functions. If f(t) = g(t) for all finite forests t, then f(d) = g(d)
for all data graphs.

e-FEdges One should think of e-edges as of silent transitions in automata. They are necessary to define some
of the operators on data graphs, including structural recursion. The meaning of € edges is captured by the
following rule. Given a data graph d = (V, E,I,O) and an edge e = (u,&,v) € E, then d is value equivalent
with the data graph d. obtained by deleting this e-edge and adding the following:

— for each edge (v,a,w) in d, a new edge (u,a,w) is added in d;
— if v is labeled with some output marker &y in d, then u is labeled with that output marker in d,.

For example Fig. 6 (c) illustrates that the data graph d = {a,e : {c,d}, b} is value equivalent to the data
graph d, = {a,c,d,b}. All nodes and edges that are not accessible from the root have been deleted from d.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 19

4.1 Value Equivalence

We have discussed in Sec. 2 value equivalence for trees. The intuition was that two trees are value equivalent
if they are equal when viewed as sets. Here we extend this notion to arbitrary graphs, and define a notion
of value equivalence of two data graphs that satisfies three requirements. First, when both data graphs are
trees, then value equivalence coincides with that for trees in Def. 1. Second, each data graph d is value
equivalent to unfold(d). The latter may be infinite, hence it is not technically a data graph. For this reason
our definition of value equivalence will be stated in terms of possibly infinite labeled graphs. Third, if d, is
a data graph obtained by eliminating an ¢-edge e from d, as described above, then d is value equivalent to
d.. Under this requirement, a path labeled ¢.a in d is equivalent to an edge labeled a hence, repeating the
procedure, a path labeled ¢...e.a, in notation €*.a, is equivalent to an edge labeled a. Similarly, if there
exists an ¢* path from some node u to an output node with marker &y, then we may consider u to be labeled
with &y.

Such a definition for value equality can be obtained by extending a well known concept called graph
bisimulation. We start by reviewing the traditional notion of graph bisimulation, and the related notion of
graph simulation.

Review of Graph Simulation and Bisimulation Our review is based on [PT87, HHK95]. Given two graphs
G1,Gs, with G; = (V;, E;), E; CV; x Vi, 1 = 1,2, a simulation from G; to Gy is a relation S C E; x Es
satisfying the following property: if (z1,z2) € S and (x1,y1) € E, then there exists y2 s.t. (y1,¥2) € S and
(z2,y2) € E3. One can check that the empty relation is always a simulation, that the union S U S’ of two
simulations is a simulation, and that for any two graphs there exists a maximal simulation between them.

One way to understand a simulation is as a relaxation of the concept of a graph morphism from G; to G,
which is a function f : V; — V; s.t. for every edge (z1,y1) € Ei, its image is also an edge: (f(x1), f(y1)) € Es.
Namely a function f: V; — V5 is a graph morphism if and only if it is a simulation, when viewed as a binary
relation. Computationally, however, simulations and graph morphisms behave differently. Deciding whether
there exists a morphism from G; to G2 is an NP-complete problem [GJ79], while the maximal simulation
between them can be computed in PTIME, and quite efficiently [HHK95].

A bisimulation from Gy to G is a simulation S for which S~1 % {(z2,21) | (z1,22) € S} is also
a simulation. The empty relation is still a bisimulation, and there always exists a maximal bisimulation.
The most efficient algorithm for finding a maximal bisimulation from G to G is described by Paige and
Tarjan [PT87], and runs in O(mlogn) time and O(n) space, wheren =| Vi |+ | Vo |and m =| E; | + | Es |.

Both definitions (of simulation and bisimulation), and all properties stated above carry over to the case
when the graphs have labels on edges and/or nodes, by requiring that the relation S preserves the labels.
Specifically, when labels are on edges, then the definition of a simulation becomes: if (z1,z2) € S and
(z1,a,y1) € Ej, then there exists yo € V5 s.t. (y1,42) € S and (z2,a,y2) € Es (i.e. the edges (z1,a,y1),
(w2, a,y2) have the same label a). As before, S is a bisimulation if both S, S~! are simulations; this notion of
bisimulation can be found in process algebras [Mil89]. When the labels are on nodes, then one requires that
whenever (z1,z2) € S, and z; is labeled with a, then x5 be labeled with a too. The problem of computing
a bisimulation on labeled graphs reduces to that on unlabeled graphs. Paige and Tarjan’s algorithm already
handles the case when labels are placed on nodes. It does not mention labels explicitly, but instead, given
a graph G and an equivalence relation P, it computes the maximal bisimulation S from G to G which
is a subset of P; equivalently, the partition defined by S is a refinement of that defined by P. Given two
graphs G, G2 with labeled nodes, one can compute the maximal bisimulation by taking their disjoint union
G1 UG, defining P to be the equivalence relation on nodes given by the labels, applying Paige and Tarjan’s
algorithm, then retaining only those pairs (21, 3) in the bisimulation for which z; is in G; and x5 is in
G>. It is easy to check that this procedure computes the maximal bisimulation between graphs with labeled
nodes. When the graphs have labeled edges, then we need to reify them first. Namely we replace each edge
(u,a,v) labeled a with a new node v, 4, and two (unlabeled) edges: from u to vy, 4,5, and from v, 4, to v.
The new node v, 4, will be labeled with a. Applying this to G1 and G results in two new graphs with a
total of m + n nodes and 2m edges. These graphs have now labels on some of their nodes, and we can apply
the previous procedure to find a maximal bisimulation in time O(mlog(m + n)) and space O(m + n).

In the context of semistructured data we often deal with rooted graphs. A rooted graph has a distinguished
node, called the root. A rooted bisimulation is a bisimulation S between G; and G2 s.t. (r1,72) € S, where

20 Peter Buneman et al.

@ S @ &x &x @ - @

g / s g
¢ ‘e §/ /"
& / ¢ ‘e
. / &
1 (2
.S &y &y
@ (b) (©

Fig. 5 Illustration for the definition of extended simulations and bisimulations.

r1,ro are the two roots. The empty relation is no longer a rooted bisimulation, and, in general, a rooted
bisimulation may not exist. However it is still the case that if S, S’ are rooted bisimulations then S U S’ is
a rooted bisimulation, and, hence, whenever some rooted bisimulation exists, then there exists a maximal
one. It is easy to check if there exists some rooted bisimulation: compute the maximal bisimulation S, then
check if (r1,r2) € S.

Value Equivalence We extend now the notion of bisimulation to labeled graphs with inputs X and outputs
YV, and define value equivalence in terms of this bisimulation. Recall that such labeled graphs may be infinite.
We denote (u,e*,v) € E and (u,e*.a,v) € E whenever there exists a path from u to v labeled with ¢...¢,
or €...c.a respectively.

Definition 3 Let g1 = (V1,E1,11,01),92 = (Va, Es, I2,02) be two labeled graphs, both with inputs X and
outputs). An extended simulation from g1 to go is a relation S C Vi x Va such that:

(@) if (ur,us) € S A (u,e*.a,v1) € E1 with a # €, then there exists a node vs s.t. (uz,e*.a,v3) € Ey and
(01,1)2) e€s.

(b) if (u1,u2) € SA (&z,u1) € I then (&zx,us3) € Is.

(c) if (u1,u2) € SA(u1,*,v1) € E1A(v1,&y) € Oy then there exists a node vy s.t. (ug2,e*,v2) € EaA(va, &y) €
Os.

(d) (I1 (&), I>(&z)) € S, for every &z € X.

An extended bisimulation from g, to g» is an extended simulation S for which S~' is also an extended
simulation.

The first condition corresponds to the traditional definition of a simulation, but in our context in which
a path labeled €*.a is identified with an edge labeled a. The next two conditions treat both input and output
markers as symbols labeling the nodes. Fig. 5 offers a graphical illustration of these three conditions. It says
that if the top and left part hold, then so do the right and bottom. For example, in (a) if the top two nodes
are in S and the left path exists, then some path like that on the right exists and the bottom nodes are in
S. For extended bisimulations the implication from right to left must hold too.

Finally, the last condition in Def. 3 requires the (bi)simulation to be rooted. As a consequence the empty
relation is not an extended (bi)simulation any more.

We say that two labeled graphs g1, g2 are value equivalent, in notation g1 = g, if there exists an extended
bisimulation from g¢; to g». It is easy to check that if two graphs are value equivalent then there exists a
maximal extended bisimulation from ¢; to gs.

Note that if X = (), then condition (d) is true for any relation S: in this case the empty relation is a
(bi)simulation, and all graphs with X = () are value equivalent, and equivalent to the labeled graph (0,0, 0, 0),
which we denote ().

Figure 6 shows some instances of equivalent graphs, and their extended bisimulations. The figure illus-
trates the three requirements for value equivalence spelled out at the beginning of this section:

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 21

(a)
it
Y
. ’ b
&y’c-
b
~(b)

Fig. 6 Examples of extended bisimulations between two graphs.

— any two finite trees t1,t> are equivalent in the sense of Definition 1 iff they are equivalent in the sense
that there exists an extended bisimulation from ¢; to ts.
— any data graph d is bisimilar to its infinite unfolding unfold(d):

d = unfold(d)

— any data graph d is equivalent to d., where d. is obtained from d by eliminating some ¢ edge e, as
explained earlier.

Definition 4 A function f from labeled graphs to labeled graphs is called bisimulation generic, if, whenever
g=4d', then f(g) = f(g'). A function f with several arguments is called bisimulation generic if g1 = 91,92 =

g5, - - - tmplies f(g1,92,-..) = f(91,95,---)-

We end this sub-section explaining how value equivalence can be efficiently tested. The idea is to eliminate
€ edges first, then apply Paige and Tarjan’s algorithm for labeled graphs. Let d = (V, E, I, O) be a data graph.
We construct a value equivalent data graph d' = (V, E', I, 0') without € edges. Its set of nodes is the same
(V), and so are its input nodes (I). Edges E' are defined as follows: (u,a,w) € E' for a # ¢ if (u,e*.a,v) € E.
Outputs are defined as follows: (u,&y) € O' if there exists v s.t. (u,e*,v) € E and (v,&y) € O'. It is easily
checked that d = d' (the identity relation is an extended bisimulation). The computation time for d' is
dominated by the time needed to compute the transitive closure of e-edges (i.e. all e* paths). Finally, given
two data graphs di, d2, one can check if they are value equivalent by computing df, d, then checking whether
there exists a rooted bisimulation from d to d) with the procedure for labeled graphs.

22 Peter Buneman et al.

4.2 Data Constructors

There are three* constructors for trees: t; U ta, {I : t}, and {}. As we saw, the tree constructors played a
crucial role in the definition of structural recursion, and they are also useful operators in a query language
like UnQL. Here we extend the tree constructors to a set of graph constructors: while some of the new
constructors we introduce may find little use in the front syntax of a query language, they are useful both
in the definition of structural recursion, and in a query optimizer, as internal operators.

Constructors for graphs and hypergraphs have been studied by Courcelle [Cou90]. He defines hypergraphs
with sources and defines six constructors, proving that every hypergraph can be expressed using these
constructors. Both the constructors and the result immediately carry over from hypergraphs to graphs. The
sources in a graph are an ordered set of distinguished nodes, and resemble the inputs and outputs in our data
graphs. Unfortunately the constructors do not include the tree constructors t; Uty and {a : t} as primitives,
but one has to express them as derived operations; only {} is a primitive, denoted 1. This, together with the
mismatch between the data models, necessitated different collection of constructors from those in [Cou90].

The data graph constructors are the following.

{} empty tree
{l:d} singleton tree
diy Uds union of two trees

&z :=d label the root node with some input marker
&y data graph with one output marker

0 empty data graph

di ®ds disjoint union

d1Qdy append of two data graphs
cycle(d) data graph with cycles

We explain the constructors here, their formal definition is in Fig. 7. There is a certain type discipline
with respect to the input and output markers (similar to the profile in [Cou90]). Recall our convention by
which a tree has the “default” input marker &.

The first three are the tree operators: {}, {l : d}, di U dy. All three constructors expect d,d;,ds € DBy
and return results in D By,. They are not polymorphic, hence should be written as {}y, {l : d}y, and d; Uy d>
respectively; however we will always omit the subscript Y to avoid clutter. Note in Fig. 7 how union is defined
with the aid of e-edges. For example {a,b} U {c,d,e} = {€ : {a,b},e : {¢,d,e}} which is value equivalent to
{a,b,c,d,e}.

The next four constructors allow us to create and add input and output markers: &z := d takes d € DBy
and relabels the root with the input marker &z, hence the result is in DB%,&””}. The constructor &y returns
a tree with a single node labeled with the output marker &y and default input marker &: hence &y € DBy,
where &y € Y. This is like {}, but now we have an output marker on the unique node. The asymmetry
between the input marker constructor, &z := d, and the output marker constructor, &y, is due to the fact
that we want to construct trees bottom-up: we start with a single node, possibly labeled with one output
marker, but have to complete the entire tree before adding the input marker. The empty graph is denoted
by (): it has no nodes, no edges, and is, up to value equivalence, the unique data graph in DB%’,. Note the
distinction between the empty graph () and the empty tree {} which contains a single node. The disjoint
union d; @ dy requires d; and dy to have disjoint sets of input markers X, X2, and the same set of output
markers Y; then dy @ ds € DB/;IUXZ.

Finally, the last two constructors deal with the vertical structure of the data graphs. The append operator
d1Qds is defined when d; € DB§ and dy € DB%, and results in a graph in DB;. Append is essentially
performed by gluing each output node in dy with the input node in ds labeled with the same marker: formally,
however, this is achieved by adding e edges, see Fig. 7. It corresponds to list concatenation, if linear trees
are identified with lists: when di = {a1 : {a2 : ... {an : &2z}...}} and dy = (&2 := {by : {b2 : ...}}), then

4 There are four such constructors defined at the end of Sec. 2.1. The last one, a, is not needed any more, since we
model now atomic values as labels on edges.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 23

{} {l : d} di Ud>

&%, ... &X, &X; ... &x

m m

&X dl d2
A 8fy 0 &Y, ... &Y, &y;... &y,
&z :=d &y 0O di1 ®d2
&%, ... &Xy,
d
&X, &X, ... &X,
e € €
&Y, ... &y, R A A
! ! &X; &X, ... &X,
€€
v v d
&Y, &y, & > &
d, &x; &X%, ... &x,
&z, ... &z, &, &%, ... &%,
d1Qd> cycle(d)

Fig. 7 Definition of the constructors.

d1@Qdy = {a1 : {az : ... {an : {b1 : {b2:...}}}...}}. For another illustration, consider di = {a : &y1, b, c:
&yo} and dy = (&yl := {d}, &y2 := {e, f}). Then d;@d is value equivalent® to {a : {d}, b, c: {e, f}}. The
effect is that of simultaneously substituting each output marker in dy with the value of the corresponding
input marker in d,. The last operator allows us to introduce cycles: when d € DBﬁuy, then cycle(d) € DB§ .

Each operator has a certain “type” given by the combination of allowed input and output markers. As
said earlier, the operators are not polymorphic: we assume that each occurrence of an operator is subscripted
with the set of input/output markers it expects, such as {}y, or di@x y zds, but we drop the subscripts to
avoid clutter.

As a remark, recall that in Sec. 2 the union operator was undefined when one of the operands was an
atomic value: e.g. {a} U5 made no sense. In our definition here all constructors are well defined, as long as
the types are correct. As an illustration, {a} U &y is defined and equal to {a,e : &y} (recall that we do not
have atomic values any more in our model).

® When we apply the definition in Fig. 7, d1@d> results in {a: {e : {d}}, b, c: {e: {e, f}}}.

24 Peter Buneman et al.

We will use the following notations and abbreviations. As before, we abbreviate {l : {}} with {/}, and use
{li vdy,... 1y o dp)} for {Iy :di}U... {ln : dy}. We write (di,...,dy) for di ®...@d,. Finally, if d,d' € DB,
and

d= (&:L‘l = dl,...,&l'm = dm)
d =&z :=d,..., &2y :=d,),

we extend the meaning of U so that
dUdl = (&(L‘l = dl Udll,,&xm = ded,I’n)

That is, we take the union component-wise. This extends the union operator in a natural way from rooted
data graphs (with unique input marker &) to data graphs with arbitrary input markers.

We show next that the constructors are sufficient to enable us to express any data graph d, up to
value equivalence. Consider first the case of a rooted data graph, i.e. with a single input marker &, and
let d=(V,E,I,0),V = {vy,...,v,}. We use n distinct markers, &z1,...,&z,, one corresponding to each
vertex. For each vertex v;, ¢ € {1,...,n}, let e; be the union of the following expressions: {a : &z;}, for
every edge (v;, a,v;) with source v;, and &yy, for every output marker &y, labeling the vertex v;. Assuming
v1 to be the root of d, the data graph is value equivalent to:

&x1Qcycle(&xy = eq,..., &z, = ey,)

For an illustration, consider the graph in Fig. 6 (b), with three nodes and one output marker &y; it can be
expressed as:

&z1Qcycle(&z1 = {a: &z}, &za := {b: &xa,c: &u3}, &23 1= &Y)

Consider now the case when the data graph d has multiple input markers &1, ..., &2z, then it is value
equivalent to a graph of the form (&xzy :=dy, ..., &%y, := d,,) where dy, ..., d,, are rooted data graphs for
which we apply the previous construction.

Thus, for any data graph d we have a canonical expression denoting d. Of course, that expression is not
unique: in general there are many equivalent expressions denoting the same graph.

We show next that all constructors are bisimulation-generic, and that this result is not accidental, but a
consequence of a careful choice of both constructors and the definition of value-equivalence.

Proposition 1 All data constructors are bisimulation-generic.

Proof This is done by applying the definition directly. We illustrate only for the operator d; U d», others are
handled similarly. So let dy = d!, d» = d},. Denoting d % d; Uds and d' % d} U d} we have to prove that
d = d'. Let S be the extended bisimulation relation from d; to dj and S» the extended bisimulation relation
from ds to d}. Note that d’s nodes are those in d; union those in ds plus a new node (the root): call it u.
Similarly, the nodes of d' are those in d] union those in d), plus a new node, denoted u'. (We may safely
assume that di,ds,d},d), have disjoint sets of nodes: we can always rename.) Define the relation S to be
S1 U Sy U{(u,u’)}. Now we verify that S is an extended bisimulation. For that we need to check conditions
1-4 of Def. 3. Take condition 1. Consider a £*.a path in d = d; U ds. It can either (a) be entirely in dj, then
we use the fact that S; is an extended bisimulation; or, (b) be entirely in ds, then use the fact that Sy is an
extended bisimulation; or (c) start at the root and continue, say, in d; (the case when it continues in dy is
similar). Here we apply S; to the remainder of the path in d; and obtain a similar path in d;’ (for that we
use condition 4 on S;, which implies that the roots of d; and dj are in S;). Conditions 2 and 3 are checked
similarly. Condition 4 holds trivially, since (u,u’) € S. |

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 25

b{g} C m be 81 A . a C

(a) (b) (c)

Fig. 8 Relation between extended bisimulation and weak bisimulation.

E:={}|{L:E} | EUE|

&r:=E|&y|()|E®FE

| EQE | cycle(E) |

Var |if B then E else E | rec(A(LabelVar,Var).E)(E)
L ::= LabelVar | a a € Label
B :=isempty(E) | L=L

Fig. 9 UnCAL

Weak bisimulation Extended bisimulation is related to, but distinct from, the “weak bisimulation” used
in process algebra [Mil89], where the “silent transitions” (7) correspond to our € edges. Namely two graphs
dy,dy are “weakly bisimilar” [Mil89] if there exists some relation S as in Definition 3, but in which the path
€*.a in the first condition is replaced with a path £*.a.*. We cannot use weak bisimulation as our notion of
value equivalence, because the constructors would not preserve this equivalence. We illustrate this with the
singleton constructor {a : d}. Consider the two data graphs di, d» in Figure 8 (a): they are weakly bisimilar,
but {a : di1} and {a : d2} (Fig. 8 (b)) are not (in the left graph the root has a path a.e to a node that is
not weakly bisimilar to any node in the right graph). Weak bisimulations and extended bisimulations are
incomparable. The two graphs in Fig. 8 (b) are extended bisimilar but not weakly bisimilar, while the two
graphs in Figure 8 (c¢) are weakly bisimilar but not extended bisimilar.

5 UnCAL: a Query Language for Graphs

UnCAL (Unstructured Calculus) is UnQL’s internal algebra, and its syntax is depicted in Fig. 9. The name
“calculus” should be understood here in the sense of A-calculus, and not of relational calculus: UnCAL
is in fact closer in spirit to the relational algebra than to the relational calculus. It consists of the graph
constructors introduced earlier, variables, conditionals, and structural recursion. We have defined the data
constructors already, while variables and conditionals are self explanatory. Structural recursion in UnCAL,
in notation rec(e), will be described next.

5.1 Structural Recursion on Graphs

Extending structural recursion to arbitrary graphs seems impossible at first, since recursive functions run into
infinite loops when applied to graphs with cycles. We give two solutions to this problem. One is memoization:
remember all recursive calls and avoid entering infinite loops. We call this the recursive semantics. Another
is an entirely different view on structural recursion: apply the recursive functions in parallel, on all graph’s
edges. Hence each function will be applied only as many times as edges in the graph, and infinite loops
are avoided. We call this the bulk semantics. Moreover the two semantics turn out to be equivalent — an
evidence of the robustness of structural recursion. A third choice is to do an inductive definition based on a
constructor expression for the given data graph: such a definition is also possible (and we will show it to be
equivalent to the other two), however it can only be done under some technical restrictions.

Encoding Several Recursive Functions as One Before we define the semantics of structural recursion, we
argue that multiple recursive functions can always be encoded as a single recursive function. Let us start by
illustrating on the functions g, h below:

26 Peter Buneman et al.

sfun g({a:T}) = {a:h(T)} sfun h({b:T}) = {c:h(T)}
| g{L:T}H = g(T) | h({L:T}) = {L:h(T)}

On a tree T, g(T) erases all edges until it reaches an a. After that it copies the tree, but replaces every b

with a c. To rewrite the two functions as a single recursive function, we define an auxiliary function e(L),
where L is a label:

fun e(L) = case L of

a: (&z1 := {a: &z2}, &z2 := {a: &z2})
b: (&z1 := &=z1, &z2 := {c: &z2})
_ (&z1 := &z1, &z2 := {L: &=z2})

For a label L, e(L) returns a graph with two input markers, &z1, &z2, and the same two output markers.
Fig. 10 (a) illustrates the three possible shapes for e (L). Recall that when a graph has the same set of input
markers and output markers ({&z1, &z2} in our example), each marker occurrence is clearly distinguished
as either input or output.

Consider now the following structural recursion function.

fun £(T1 U T2)
| £({L:T}) e(L) @ £(T)
| £({P (&z1 := {}, &=z2 := {})

From the last line we read that the “type” of £(T) is a graph with input markers &z1 and z2. Technically
this definition is an extension of our syntax for structural recursion, in that it allows the function to return
a forest instead of a tree: a forest is a particular instance of a graph with multiple input nodes. We will
allow this extension of structural recursion in the sequel. In the first line we use our convention that a union
applied to two graphs with input markers &z1 and &z2 computes the union of the &z1 trees in both graphs,
and separately the union of the &z2 trees in both graphs (Sec 4.2). As before we write the definition of the
structural recursion function as:

sfun f({L:T}) = e(L) @ £(T)

£(T1) U £(T2)

The relationship between f on one hand and g, h on the other, is the following. For any finite tree T:
£(T) = (&z1 := g(T), &=z2 := h(T))

We sketch the proof by induction on T. For T = {}, both sides of the equation are (&z1:={}, &z2:={}). For
T = T1 U T2, the left hand side is £(T1) U £(T2) which, by induction hypothesis is:

(&z1 := g(T1), &z2 := h(T1)) U (&z1 := g(T2), &z2 := h(T2))
The right hand side of the equation is:
(&z1 := g(T1) U g(T2), &z2 := h(T1) U h(T2))

The two are equal. Finally, when T = {L : T'}, then one makes a case analysis on L. When L = a, then the
left hand side is e(a)@f(T'); since the induction hypothesis holds, after substituting® in the body of e(a),
the left hand side becomes (&z1:= {a: h(T')}, &z2 := {a: h(T')}), which, by the definitions of g and h is
equal to (&z1:=g({a:T'}),&z2 :=h({a: T'})). The other cases are similar.

It follows that we can replace the two mutually recursive functions g, h with a single recursive function
f. To obtain g(T), one computes &z1 @ £(T); for h(T) one computes &z2 @ £ (T).

This construction can be generalized to & mutually recursive functions g1, ..., gk, as follows. Let Z =
{&z1,...,&zr} be a set of k markers. Let each function g; be defined by sfun ¢;({l : t}) = e;. Recall

that the expression e; may contain [, ¢, and any of the recursive calls g (t), ..., gr(t): substitute the latter

with the markers &z1, . .., &z}, respectively, and call the resulting expression e}(l, t). Define e(l, t) def (&z1 :=

ei(l,t),..., &z, == e} (l,t)). Then the single structural recursive function expressing all k functions g1, ..., gk
is:

sfun f({1,}) = e(l,)@ () 1)

6 Recall that the @ operator is analogous to marker substitution.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 27

Note that, if any of the expressions e; used the argument ¢ explicitly, then e will also use ¢ explicitly; in our
previous example neither g nor h used t explicitly, hence it did not occur in e either.
One can easily establish the following equation, on all finite trees t, by induction on ¢:

f(t) = (&21 = gl(t), . ,&Zk = gk(t))

In particular we can obtain g1 (t) as &z1Qf(t).

Hence, from now on, we will only consider a single structural recursive function f, of the form (1). The
syntax for it in UnCAL (Fig. 9) is rec(A(l,t).e), or simply rec(e), when the label and tree variables [, t are
understood. As for other UnCAL operators, the set Z of markers used in e should normally be written as a
subscript to rec, but we drop it to avoid clutter.

Structural Recursion and Markers Before defining structural recursion on graphs, we need to be precise
about the “type”, i.e. the set of input and output markers in the result of structural recursion. It follows from
the discussion above that, if ¢ is a tree (i.e., a single input marker & and no output markers), then rec(e)(t)
is in DB, where Z is the set of markers used in e. The case of rec(e)(d), when d has an arbitrary set of
input markers X' and an arbitrary set of output markers) requires more care however. We will encounter
such uses of structural recursion later (Sec. 7), when we describe optimization techniques, and it is important
to define the semantics of structural recursion correctly, in order for those techniques to work.

Specifically, we need a way to generate new markers, and for that we introduce the following marker
constructor: given two markers &z, &y, &z - &y denotes a new marker. The operation - returns a different
marker for every pair &z, &y. One can think of - as a Skolem function on markers, but with the following
difference: we assume - to be associative, (&z - &y) - &z = &z - (&y - &=2) and & to be its identity: & - &z =
&x - & = &z. In other words, our universe of all markers, denoted Marker, is now a monoid, with & the
identity” Given two sets of markers X,), we denote X -) the set {&z - &y | &z € X, &y € V}.

We can now explain the types in structural recursion. Let e be a function e : Label x DBy — DB%.
Then the type of rec(e), is defined to be a function DB§ — DBS‘;,? . Normally we should have denoted
recx,y,z(e), but, as usual, we drop the subscripts. The type of rec(e)(t) when ¢ is a tree, follows from this
general rule: here X = {&}, Y = 0, hence the type of rec(e)(t) is DBg , because {&}-Z = Z and - Z = §.

5.1.1 Bulk Semantics of Structural Recursion Given f = rec(e) and an input data graph d, we want to
define the result f(d) of computing f on d. In the bulk semantics we apply the body e independently on all
edges in d, then join the results with ¢ edges (as in the @ operation). Continuing our example, the result of
the bulk semantics is illustrated in Fig. 10. The figure illustrates first the effect of applying the function e
on a single edge in (a), then the bulk semantics of £ (d) for the tree d = {b,c: {a: {b,d},b},a: {e}} in (b):
this result reads

£(d) = (&z1:={a: {c,d},a: {e}}, &zs := {c,c: {a: {c,d},c},a: {e}})

The reader may compute g(d) and h(d) separately, as recursive functions on the tree d, and check that
indeed £(d) = (&z1 := g(d), &z, := h(d)).

We define the bulk semantics in general. Fix a data graph d = (V, E,I,0),d € DB§. Givenanodev € V,
we denote d, to be “d with root v”,i.e.d, = (V, E, I,,, O), with I, = {(&,v)}; notice that d, € DBy. Consider
now a function defined by structural recursion, f = rec(e), where the body e is e : Label x DBy — DB%.
In the bulk semantics, the data graph d' = f(d) is constructed as follows. First make | Z | disjoint copies
of V: each such node will be identified as S1(u,&z), for u € V and &z € Z. Next apply e on each edge
(u,a,v) € E, where a # &, more precisely, compute the data graph e(a,d,), and take the disjoint union of
all these | E | data graphs. Their nodes will be uniquely identified as S2(u, a,v,w), where (u,a,v) € E and
w € e(a,d,).V: here and in the sequel we use the notation ¢.V, g.E, g.I,¢.0 for the vertices, edges, inputs,
and outputs of some graph g. Referring to Fig. 10, the S1 nodes are outside the boxes, while the S2 nodes
are inside the boxes. Finally we add edges connecting S1 nodes to S2 or to other S1 nodes, based on the

7 Associativity of “” is needed for Theorem 4 to hold. In particular, Theorem 4 (1) is related to a “associativity” law
in monads, see [Wad92]. If we don’t require “” to be associative, then we have to do some messy marker renamings
for Theorem 4 to hold.

28 Peter Buneman et al.

e &z, &z,

a —_— ajla
&zy &z,

e &z, &z,

b —= ¢ c
&vzl &z,

e &‘zl &z,

Ll —= ¢ |L
&z &2z

(a)

//////

1

&z, &z,
y
C
b a i I PR -
% ST \ \\\\
b ¥ P
d S L
Y \\\7777777>777> 777///
o
y
Vo
(c)

Fig. 10 Illustration for the bulk semantics of structural recursion.

edges in d. For an edge (u,a,v) € E with a # ¢, for every (&z,w) € e(a,d,).I, where &z € Z, we add
an € edge from S1(u,&z) to S2(u,a,v,w); similarly for every (w, &z) € e(a,d,).0O we add an ¢ edges from
S2(u,a,v,w) to S2(v,&z). For an € edge (u,e,v) € E, for every &z € Z we add an ¢ edge from S1(u, &z)

to S1(v,&z), for every marker &z € Z.
The above discussion leads us to the following formal definition of the bulk semantics for structural

recursion. Given rec(e) and a data graph d, the data graph d' = rec(e)(d) is:

dV Y {(S1(u,&z) |ueV,&z € Z}U
{52(u, a,v,w) | (u,a,v) € E,a#¢,w € e(a,d,).V}

d'.E % {(S1(u, &z),¢, S2(u, a,v,w)) | &z € Z,(u,a,v) € E,a #¢, (&z,w) € e(a,dy).T}U
{(S2(u, a,v,w),b, S2(u,a,v,w") | (u,a,v) € E,a # ¢, (w,bw') € e(a,dy).E} U

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 29

@ (b)

Fig. 11 A chain data graph (a) and the bulk semantics of even-odd (b).

{(S2(u, a,v,w),e,S1(v,&2)) | &z € Z,(u,a,v) € E,a # ¢, (w, &z) € e(a,d,).0} U
{(S1(u, &2),e,S1(v,&z2)) | &z € Z,(u,¢e,v) € E}

d.1 déf{ &z - &z,51(u, &2)) | (&z,u) € I,&x € X, &z € Z}

d.0 ¥ {(S1(u, &z), &y - &2) | (u,&y) € O, &y € Y, &z € Z}
Here, S1 and S2 are Skolem functions. Each of these sets is definable by a first order formula. Notice also
that, when d € DBF;, then according to this definition d' € DB5; %, which is the same as the type defined
earlier.

It is interesting to notice that the bulk semantics is expressed entirely in first order logic extended with
Skolem functions (in fact, only non-recursive datalog is needed). This may sound surprising since, after all
we are expressing recursion ! It does so by introducing additional £ edges in the result, with the aid of the
markers. If we want to eliminate these edges, then, in general, we have to compute a transitive closure.
In effect, the bulk semantics delays computing the recursion and isolates it in a single computation of a
transitive closure (of € edges).

To appreciate the power of such a semantics, consider the following example:

sfun even({a:T}) = odd(T) sfun odd({a:T}) even(T)
| even({b:T}) = {c} | odd({b:T}) {d}

The function even runs down a chain of a-edges until it finds a b-edge, and outputs c if the a-chain was even
in length, and d otherwise. On a chain T like in Fig. 11 (a), the bulk semantics returns a pair of zigzagging,
crossing chains, Fig. 11 (b), which apparently do not make us much wiser. If we really want to know if the
unique b was at an odd depth or an even depth, we need to eliminate the ¢ edges starting from the left input
marker (corresponding to the function even).

It is also important to note that a query processor does not have to eliminate £ edges after every ap-
plication of structural recursion. All UnCAL’s operators, except one, can cope with £ edges. For example,
assume we have to compute g(even(T)), where T is the chain in Fig. 11 (a), and the function g is:

sfun g({c:T}) = {e}
| g({d:T}H) = {}

We can apply g to the data graph in Fig. 11 (b) without having to eliminate the & edges first: the result will be

a similarly shaped graph with an e label instead of ¢, and with the d edge deleted. Thus, the query processor
can postpone £ elimination until the end of the computation. The only operator requiring & elimination is

30 Peter Buneman et al.

isempty: for example, to compute isempty (g(even(T))), we have no choice but to check if the unique non-¢
edge (e) is reachable from the left marker.

There is some similarity here to duplicate elimination in relational queries without aggregates, where an
optimizer also has a choice when to perform duplicate elimination.

In our definition of the bulk semantics we introduced & edges quite generously. This was convenient for
the definition, but in many practical cases one can save several, or even all the € edges in the definition. For
example in Fig. 11 (b) the connecting € edges, between the output nodes of one graph and the input nodes of
the next could be spared, and the nodes glued instead: this is a form of optimization which can be generalized
to the case when the input data graph has no loops (edges from some node to itself). Alternatively, one could
glue the input and output nodes in each graph: in Fig. 11 one would glue the input &z1 to the output &=z2,
and conversely, in each of the graphs in the boxes. Of course, both optimizations can not be applied together
in this example, unless we compute a transitive closure.

Finally note that the result of any structural recursion computation is polynomial in the size of the
input data. Exponential blowup resulting from recursive processing of trees are avoided by representing
the results as directed acyclic graphs. For example the function £4 in Sec. 2.2, when applied to the tree

U1 = us —b> uz > uyg results essentially in the graph:

a a a

U1 :))U2:>>1)3:>>1}4
b b b

5.1.2 Recursive Semantics of Structural Recursion The idea here is very simple. Given a function f = rec(e)
or, equivalently, sfun f({l : t}) = eQf(t), we compute f(d) recursively on d, essentially by unfolding d, as
if the input were a tree, but memoize all recursive calls to avoid infinite loops. The algorithm is depicted
in Fig. 12; we explain it next. Let p be the number of input and output markers of e, i.e. its markers are
&z1,...,&z,. The algorithm traverses recursively the graph using the function r(u) (whose argument is a
node in the graph). Whenever we visit a node u we check if it is in a list visited of nodes we have seen so far.
Initially visited = (). If w is not there, then, before any recursive call is made, we create a new data graph
sl = (&2 :={},..., &%, := {}), and insert in visited the pair (u, s1). The data graph s1 is a mutable object:
it is similar to a record with p components, in which each component is initially {}. Each of its p input nodes
will represent some node in the result graph (an S1 node, in the terminology of the bulk semantics), and its
set of edges is initially empty. Next, we iterate over all edges (u, a;,v;) and update sl to s1 U e(a;,dy,): as
before, d,, denotes the graph d with node v; designated as input. If u however is already in visited then we
retrieve the graph sl from there and return it. More precisely we return the p input nodes of s1 (and their
set of outgoing edges may not be fully computed yet).

When the input is a tree, then the recursive semantics coincides with that described in Sec. 2. Indeed,
on some non-empty node {aj : t1,...,a, : t,} the function r returns e(ay, f(¢1)) U...Ue(an, f(t,)), which
is precisely what the structural recursive function f does, since f(tUt') = f(¢t) U f(t') and f({a : t}) =

e(a,t)Qf (t).

5.1.3 Equivalence of the Bulk and Recursive Semantics We have given two distinct definitions for the
semantics of structural recursion. Here we establish their equivalence.

Proposition 2 The recursive semantics is value equivalent to the bulk semantics.

Proof For some structural recursive function rec(e) let f; denote its bulk semantics and fy its recursive
semantics. Consider some data graph d. We have to show that fi(d) = f2(d). Let d’ be the accessible part
of fi(d) (i.e. all nodes accessible from some of its input nodes). We show that fa(d) constructs a graph
isomorphic to d', in notation d' = f2(d); graph isomorphism, of course, implies value equivalence, hence this
proves the proposition. For this strong claim to hold we need to explain in more detail what graph exactly
the Algorithm in Fig. 12 constructs. First, the statement:

sl := (&zl = {}, .. .,&Zp = {})

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 31

Algorithm: Recursive Evaluation of Structural Recursion

Input: f =rec(e) and an input graph d

Output: f(d)

Method: /* assume e returns a graph with input and output markers &z, ..., &z, */
/* assume d = (&z1 :=dy, ..., &Tm :=dn) */
visited := {}
fori=1tomdo let (&z1 :=rmi1,...,&2p 1= rip) 1= r(d;)
return (&1 - &z1 = ri11, &x1 - &2z2 ;= 12, .., &Tm - &2p 1= Timp)

fun r(u) =

case u of

{}: return (&z1:={},...,&zp :={})
&y : return (&z1 := &y - &z1,...,&2p 1= &y - &zp)
{a1:v1,...,an 0} [*n>0%/
if exists (u, s1) € wvisited then return sl
else s1:= (&z1:={},..., &% ={})
visited := wvisited U{(u, s1)}
for i =1 ton do
if a; = € then s1 := s1 Ur(v;)
else s1:=slUe(ai,dv;) /* dv,; is graph d with new input v; */
return sl

Fig. 12 The recursive semantics of structural recursion
returns a graph with p nodes (labeled with input markers &z1,...,&z2p) and no edges. The assignment:
sl :=slUe(a;,dy,;)

proceeds as follows. Notice that e(a;,d,,;) returns a graph with p input nodes. Then, the effect of the assign-
ment is to add p € edges from the p inputs of s1 to the p inputs of that graph. Similarly for the statement:

sl:=s1Ur(v;)

Notice that the recursive algorithm constructs an accessible graph fo(d). The claim that d' = f2(d)
follows now immediately, since the nodes s1 constructed by f2(d) correspond isomorphically to the S1 nodes
in f;(d"), while the nodes in the graphs e(a;, d,,) in fo(d) correspond isomorphically to the S2 nodes in fi (d).
O

5.1.4 Structural Recursion and Constructors When we introduced the graph constructors in Sec. 4.2 we
showed that any data graph d can be defined by an expression using only these constructors. The third
alternative for the semantics of structural recursion is to define it inductively, on the structure of this
expression. We will prove this below, referring to the graph constructors in Fig. 7, by showing that structural
recursion “commutes” with each constructor. However, for the @ and cycle constructors the corresponding
equations hold only if the expression e(l,t) in rec(e) does not depend on the tree variable ¢. Because of
this limitation, we do not adopt this as an alternative definition of structural recursion. Nevertheless, these
equations can be useful to an optimizer.

Proposition 3 The following data value equalities hold for structural recursion:

rec(e)({}) = {}
rec(e)({l : d}) = e(l,d)Qrec(e)(d) (2)
rec(e)(d1 Uds) = rec(e)(dr) Urec(e)(ds)
rec(e)(&zx := d) = &z - (rec(e)(d)) (3)

32 Peter Buneman et al.

rec(e)(&y) = (&z1 := &y - &2, &y - &zp)
rec(e)() = ()
rec(e)(d; @ d2) = rec(e)(dr) @ rec(e)(ds)
rec(e)(d1Qds) = rec(e)(dy)Qrec(e)(dz) (4)
rec(e)(cycle(d)) = cycle(rec(e)(d)) (5)

In Eq.(8), &z - (&2z1 := g1,...,&z2p = gp) denotes (&z - &z1 := g1,...,&z - &2p := g,).% In Equations
(4) and (5) we make the additional assumption that e(l,t) does not depend on the tree variable t.

Proof We sketch here the proof for (4) and (5). The graph d; @d, is obtained by taking the disjoint union of
the graphs d; and ds, then adding certain connecting € edges (see the definition in Fig. 7). Since the bulk
semantics for the graph d' = rec(e)(d; @ds) is obtained by applying e on each edge in d; @ds independently,
we can obtain d' by applying e on the edges in d; separately, then on those in ds, and finally on the connecting
¢ edges. The first set of graphs is precisely rec(e)(d;); the second is rec(e)(ds2); and finally, the third forms
precisely the € edges connecting rec(e)(d1) to rec(e)(dz) in rec(e)(d1)@rec(e)(dz). The case rec(e)(cycle(d))
is treated similarly: here cycle(d) is obtained by adding ¢ edges to d, hence the equation follows easily. All
other equalities are easily proved, in a similar fashion, using the bulk semantics for structural recursion. Note
that in both (4) and (5) we obtain actual graph isomorphism, in the bulk semantics. In some of the other
cases we have only a weaker value equality. For example in (2) we have two £ edges between the output of
e(l,d) and the input of rec(e)(d) on the left hand side, but there are three such edges on the right hand side
(the @ operator adds the third one). Hence the two sides are value equivalent, but not isomorphic. a

Note that if e(l,t) depends on ¢, then, when e is applied on some edge in d;@ds which belongs to e;
it can, through ¢, access and inspect the graph ds, hence we cannot obtain the same effect by computing
rec(e)(dy) and rec(e)(dz) independently. The following example illustrates a case when Eq. (4) fails. Consider
the recursive function

sfun f({L:T}) = if not(isempty(h(T))) then {L} U £(T) else f(T)
returning all edges which have an a below them. Here the function h is defined as

sfun h({a:T}) {a}
| h({L:T}) h(T)

These are not mutually recursive, but h is defined earlier than £ (otherwise £ would not be allowed to test
isempty(h(T)), see condition 2 in Sec. 2.2). That is, in UnCAL the function f(d) becomes:

rec(A(l,t). if not(isempty(rec(A(I',t')....)(t))) then {L} U & else &)(d)

where ... stands for the body of h which is: if I’ = a then {a} else &. Consider now a linear graph

d={b:{a:{c}}} on which we can compute f directly, using the recursive definition, and obtain f(d)

= {b} (because there is an a edge below b). However if we express d as d;@d,, with d; = {b: &y} and
= (&y :={a: {c}}), then both £(d;) and £(dy) return the empty graph.

5.2 UnCAL Queries

UnCAL expressions are built from variables and label constants using the operators depicted in Fig. 9. The
rec(A(L,T).e)(e') construction is the only one which introduces new variables, L and T', whose scope is the
expression e.

An UnCAL query is any expression with a single free variable db.

We illustrate with the following example, taken from Sec. 2:

let sfun hi({ country: C }) =
let sfun h2({ name: N }) = { result: N }
in h2(C)

in hi(db)

8 &z -d can be expressed using the other constructors, as (&z - &z1 := &21Qd, ..., &= - &z, := &2,Qd).

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 33

The corresponding UnCAL query is:

rec(\ (L1,C).
if L1 = "country”
then rec(A(L2, N). if L2 = "name” then {"result” : N'} else {})(C) else {})(db)

Here we used & everywhere as the recursion marker to simplify the rec expressions. Even so, UnCAL is hard
to read: it is intended only as an internal algebra for UnQL, and not as user syntax.

The discussion on polymorphism carries over from constructors to all UnCAL expressions: such expres-
sions are not polymorphic, but are assumed to have the expected input and output markers explicitly stated
(however we drop the marker indexes whenever they are clear from the context).

5.8 UnCAL Queries Are Bisimulation Generic

Proposition 4 If e is bisimulation-generic, then the structural recursion function rec(e), is also bisimulation
generic.

Proof We have to show that, for any two data graphs d,d', if d = d', then rec(e)(d) = rec(e)(d'). We use

the bulk semantics for structural recursion, hence both g def rec(e)(d) and ¢’ def rec(e)(d') are given by the

definition in Sec. 5.1.1. Recall our notation d.V,d.E,d.I, and d.O for the vertices, edges, inputs, and outputs
of some data graph d.

More precisely, given an extended bisimulation R from d to d' (Def. 3), we will construct an extended
bisimulation @ from g to g'. A first observation is that, for any two vertices v € d.V,v' € d'.V s.t. (v,v') € R,
the graphs “at” v and v’ are value equivalent too: d, = d, (recall that d, is the graph d with v considered
the unique input node), because R is also an extended bisimulation from d, to d,:. Then, it follows that for
every label a, we have e(a,d,) = e(a,d,,) (because e is bisimulation generic), and we denote with @ q4,, the
extended bisimulation from e(a, dy) to e(a, d,,). We will construct the bisimulation from g to ¢’ by essentially
taking the disjoint union of R and all these extended bisimulations @Q,q,v:

Q T {(S1(u, &2), S1(u/, &2)) | (u,u') € R, &z € Z} (6)
U {(S2(u,a,v,w),S2(u',a,v",w")) | (u,u’) € R, (v,v") € R,
(u,a,v) € d.E,(u',a,v") € d".E, (w,w'") € Qu,a,0} (7N

We now prove that all four conditions in Def. 3 are satisfied, hence @ is an extended bisimulation. We
show conditions 2, and 4 first, because they are easy to check. For 2, if (p,p') € Q and (&x - &z,p) € g.1, for
&z € X,&z € Z, then, according to the definition in Sec. 5.1.1 we have p = S1(u, &z) and (&=z,u) € d.I;
hence p’ is also of the form p' = S1(u/, &z), and (u,u’) € R. Using condition 2 of the extended bisimulation
for R, we conclude that (&z,u') € d'.I, hence (&x - &z,p') € ¢'.I. For condition 4, let &z € X, &z € Z.
Denoting u = d.I(&z), v' = d.I'(&z) we have (u,u') € R, hence (S1(u,&z),S1(v',&z)) € Q. It suffices now
to observe that g.I(&x - &z) = S1(u,&z2) and ¢'.I (&= - &z) = S1(v', &z).

We prove next that 1 holds: the proof for condition 3 is almost identical and is omitted.

For the first condition, we have to show that for any two nodes p € ¢.V and p' € ¢'.V s.t. (p,p') € Q,
and for any path (p,e*.l,q) € g.E, | # ¢, there exists a path (p',e*.l,¢') € ¢'.E s.t. (¢,¢') € Q. For p,p' there
are two cases, when both are S1 nodes, and when both are S2 nodes. We illustrate the second case only, the
other being proved similarly, hence we have p = S2(u, a,v,w), p' = S2(v,a,v',w"), and the conditions in Eq.
(7) hold. For ¢ we also have two cases, and we only illustrate the case when ¢ is an S2 node, ¢ = S2(z, b, y, 2),
with b # e. Following the path £*.I from p to ¢ in g, we highlight all the S1 nodes:

p = S2(u,a,v,w) 5 S1(v1,&21) 5 S1(ve,&22) 5.5 S1(vy, &25) = S2(z,b,y,2) =q

Here n > 0. From the definitions in Sec. 5.1.1 we notice that v = v, v, =z, and foreach i = 1,...,n
there exists an edge (v;,a;,vi+1) € d.E (with v,41 def y and a, def b). Thus, the path from p to ¢ in g is split

34 Peter Buneman et al.

into n + 1 segments. Our proof relies on finding a similar path in ¢', consisting of a number of segments, all
labeled €* except the last one which is labeled €*.l, and whose intermediate nodes are bisimilar to those in
g. We construct the path in ¢g' inductively, from left to right. The segments in g and g’ will not correspond
one-to-one, but for a group of segments in g we will construct a group of segments in g’. We consider the
first segment separately, then do the induction step.

— Consider the first segment in g: it corresponds to a €* path in e(a, d,) from w to some output node labeled
&z;. Since e(a,d,) = e(a,d),) and (w,w') € Qy,q,0', there exists a * path in e(a,d,,) from w' to some
output node also labeled &2z (condition 3 in Def. 3): from there we have in ¢’ an e-edge to S1(v',&z21)

(an S2-t0-S1 edge in the definition in Sec. 5.1.1). Writing v} ety , we have the first segment in ¢':

p' = 82(u a0, w) LN S1(vy,&z1)

Obviously (S1(v1,&z1),S1(v},&z21)) € @ (because of (p,p’) € @ and of Eq. (7)).

— We prove now the induction step on i. Assume we have found v} such that (S1(v;, &z;), S1(v}, &%) € Q.
Let j € {i,5+1,...,n} be the smallest number for which a; # € (recall that a, = b # €): that is, we
have a; = a;41 = ... =a;_1 = ¢, and a; # €. We consider the entire group of segments:

SI(U,',&ZZ') i) SI(U,’+1,&2’,'+1) i) fen i) Sl(’l)j,&Zj)

Each segment consists of a single e-edge, which is an S1-t0-S1 edge (see the definition in Sec. 5.1.1),
hence each edge preserves the marker and we have &z; = &z;11 = ... = &z;.

When j < n we include the next segment S1(v;,&z;) 5 S1(vj41,&2j41) in our group of segments: it
traverses the graph e(a;,v;4+1). We have a €*.a; path in d, (v;,€*.a5,vj41) which (using the extended
bisimulation condition for R) gives us a path (v;,£*.a;, v},) in d’ with (vj41,vj,) € R. This gives us the
next node on our path in g', namely S1(vj,,&zj+1), but we have to prove that there exists an e* path
from S1(v;, &z;) to S1(vj,&=;11). We split the path (vj,e*.a;,v},,) into a path (v;,€*,s') and the last
edge (s',a;,v}). Since each e-edge in d’' determines an S1-to-S1 edge in g', we have the following path
in ¢’

S1(v}, &zi) = S1(—, &z) S ... 5 S1(—, &z;) = S1(s', &2;)
and from the last node we have a e-edge into the input &z; of e(a;,v},,). Now we use the fact that

e(aj,vj+1) and e(aj,vj,) are bisimilar. The last segment in g, S1(v;, &z;) 5 S1(vj41,&z2j41), corre-
sponds to a €* path in e(aj,vj41) from the input node &z; to some output node labeled &z;;1. Using
conditions 4 then 3 in Def. 3, we find a similar €* path in e(a;, v},) from the input &2; to the output
&zj11, and from there we have another e-edge to S1(v}, |, &z;11). Put together, this gives us a segment:

S1(v}, &zi) 5 S1(0) 41, &2j11)

and (S1(vj41,&2j41), SV} &2i01)) € Q.

We now consider the case j = n, and here we include the last segment S1(vy,, &2y,) = S2(z,b,y,2) =¢q
into our group of segments. Recall (see definition 2) that + = v, and b = a,, and in this case we
have &z; = ... = &z,. Since (v;,e*.b,y) € d.E, the bisimulation gives us a path (v},e*.b,y’) in d', s.t.
(y,9") € R. As in the previous argument, we split it into (v},e*,s’) and (s',b,9'), and find an €* path
from S1(v;, &2;) to S1(s',&z;), and from here an e-edge into the &z; input of e(b,d;,). Then we use the
fact that e(b, dy) is bisimilar to e(b, d;,): the segment £*.l in g corresponds to a path in e(b,dy) from its
input &z;(= &2y,) to the node 2, and using conditions 4 and 1 in Def. 3 we find a path &*.l in e(b,d},)
from its input &z; to some node z’. This gives us the last segment in ¢':

S1(v}, &2) = S2(2',b,y',2') = ¢

This completes the proof. O

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 35

6 Expressive Power of UnCAL

We establish here three results describing UnCAL’s expressive power (and, hence, UnQL’s expressive power
as well). First, we compare UnCAL’s expressive power with a certain extension of First Order Logic (FO).
When doing so we assimilate a datagraph d = (V, E,I,0) with a first order structure consisting of four
relations, V, E, I, O, of arities 1,3, 2, 2 respectively. We call this the standard first order structure of the data
graph d.

FO+TC Immerman [Imm87] describes the language FO+TC: first order logic extended with transitive
closure. It extends first order logic with expressions of the form T'C(\Z,Z'.¢(Z,Z')), where ¢(Z,Z') is any
formula in FO+TC denoting a binary relation on k tuples (we assume both Z and Z' are k-tuples). Then
TC(AZ,z'.p(Z,%')) denotes the transitive closure of ¢. Immerman showed that FO+TC can express over
ordered structures precisely the queries in NLOGSPACE, the class of boolean functions computable by a
nondeterministic Turing machine with O(logn) space. We establish first that UnCAL can be expressed in
FO+TC.

Theorem 2 All UnCAL queries can be expressed in FO+ TC.

Proof More precisely we prove that every UnCAL query f can be expressed by a formula FO+TC over
the standard first order structure of its input graph. Assume f expects an input data graph in DBS‘;, i.e.
with input markers X = {&z1,...,&zn,}, and output markers Y = {&y1,. .., &y, }. We have to define four
FO+TC formulas oy (v), pg(u,l,v), p1(z,v), po(v,y) constructing the relations V', E', I' O' of the output
graph. The formulas are easy to construct in FO+TC extended with Skolem functions. Indeed, for structural
recursion rec(e) the formulas are given in Sec. 5.1. For the other constructors (depicted in Fig. 7) the
corresponding formulas are straightforwardly expressible in FO, without TC. The only complication arises
with the conditional if — then — else when the boolean condition is isempty(T). Here we have to compute a
transitive closure to determine whether any edge labeled with something different from ¢ is reachable from
T’s root.

Once we have the three formulas ¢g, ¢r, 9o we have to eliminate the Skolem functions. This is done
with a standard technique, described for example in [AHV95]. The idea is to replace a Skolem term, say
S2(u,a,v,w) with a 4-tuple (u,a,v,w). For example the triple:

(S1(u, &2),¢,52(u, a,v,w))

becomes now a seven-tuple:
(u7 &z7 E\7 u? a? U? w)

There are two problems however: we create non-homogeneous relations with tuples of unequal arity, and we
need to differentiate between tuples from different Skolem terms with the same arity but different function
names (for example a 4-tuple (z,y, z,u) could come either from S2(z,y, z,u), or from S1(S1(S1(z,y), 2),u)).
Both problems are solved by padding all the tuples in a collection to a common length, with two distinct
constants a # f: a tuple (1, ...,2) will be padded to (z1,...,%k, a,...,a,3,...,5). The position where «
changes to 3 encodes the names of the Skolem functions used in the tuple. Details can be found in [AHV95].
Note that the Skolem terms used in the TC operators do not create additional problems: by contrast Skolem
terms in the head of datalog rules construct new nodes, and can lead to non terminating computations. O

Using Immerman’s result [Imm87] we obtain immediately:

Corollary 1 All UnCAL queries are computable in NLOGSPACE (and, hence, in PTIME).

UnQL on Relational Data As explained in Sec. 2, relational data can be encoded as trees, like:

{ student: { id: "123", name: "L. Simpson", age: "19" },
student: { id: "345", name: "T. Quail", age: "22" },
student: { id: "789", name: "E. Vader", age: "32" },
course: { cid: "294", title: "An Introduction to Java" },
course: { cid: "552", title: "Advances in Databases" },
enrolls: { id: "345", cid: "294" },
enrolls: { id: "789", cid: "294" } }

36 Peter Buneman et al.

This is a tree of depth two, encoding an instance db of the relational schema student (id, name, age),
course(cid, title), enrolls(id, cid). In general, for every relational schema S, each instance db of S
can be encoded as a tree datagraph t: we call d the tree encoding of db. Note that in ¢ both the relation
names and the attribute names in S occur as labels. Recall that in UnCAL we move values from leaves to
edges (see Fig. 4), hence tree encodings of relational databases have depth three, rather than two.

Hence UnQL can be used to query relational data. It is easy to see that it can express all relational
algebra queries. For example the following query expresses a join:

select {class T}

where {student: { id: ID, name: "T. Quail"}} in db,
{enrolls: { id: ID’, cid: CID’}} in db,
{course: { cid: CID, title: T}} in db,
ID = ID’, CID = CID’

The query computes all courses taken by T. Quail. Union is already a primitive in UnQL, while for difference
one uses the isEmpty predicate, as in the following query returning all student names taking course 294
without taking course 552 (notice that we use the variable ID in several places, to express joins more
concisely):

select {result: N}
where {student: { id: ID, name N}, enrolls: { id: ID, cid: "294"} } in db,
isEmpty(select { some } where { enrolls: { id: ID, cid: "552" }} in db)

A question arises: do we get more expressive power than the relational algebra ? An immediate answer
is yes, since we can express queries returning non-flat results, like grouping students by age:

select {result:{age:A, students:(select { name: N}
where {student: {name: N, age: A}} in db)}}
where {student: { age: A}} in db

Another source of additional power comes from UnQL’s ability to express polymorphic queries, with
respect to the relational database schema. For example the following query returns all attributes of the
student "Smith", except its id:

select {L : V}
where {student: {name: "Smith", L: V}} in db, L !'= "id"

This is polymorphic since it works regardless of the input relational schema. For example if we evaluate this
query on the tree representation of a table student(id, name, age, office, phone, email), then we
retrieve the attributes name, age, office, phone, email.

More interestingly, we can write UnQL queries that ignore the schema. For example the following query
returns all strings in the database containing the substring "Java":

select {result: S}
where {_*: S} in db, match("Java", S)

Apart from its ability to bypass the schema, the question still remains whether UnQL can express more
queries than the relational algebra, in a setting in which both the input and the output relational schemas
are fixed. The answer is no, and we state this in the more general framework of UnCAL queries. More
precisely, let S be an input relational schema, and S’ be an output relational schema with a single relation.
Recall [AHV95] that in relational databases a query @ is always defined in connection with an input schema
S and an output schema S’: () maps S-instances to S’-instances. Consider now an UnCAL query f, and
suppose it enjoys the following semantic property:

— For every tree encoding t of an S-instance, f(¢) is a tree encoding of some S’-instance.

Then, we can show that there exists a FO query, @, from S-instances to S’-instances, which is “equivalent” to
f in the following sense: for every S-instance db, f maps the tree encoding of db into the tree encoding of Q(db).
For a trivial illustration, consider the UnQL query f above, retrieving all strings in the database containing

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 37

root

N\

X

NS
11 A
oy

Fig. 13 Illustration for the proof of Lemma 1.

the substring "Java", and assume the relational schema S to be student(id, name, age), course(cid,
title), enrolls(id, cid), and the relational output schema S’ to consists of a single relation, with a
single attribute. Then f can be expressed as the following union of seven formulas (one for each attribute,
in each relation):

Q = {z | student(z,y, z), match(”Java”,)} U
{y | student(z,y, z), match(”Java”,y)} U

{y | enrolls(z,y), match(”Java”, y)}

It is important to note that, in general, () depends not just on f, but also on both the input schema S and
the output schema S’. In the remainder of this section we will state and prove this result formally.

We start with a graph theoretic discussion. Given a graph G, we denote a path p as x¢.T1.Z2 . . . L, Where
Zo,--.,Zr are p's nodes. The length of p is k (i.e. the length is the number of edges). The path is simple,
if all nodes zg,x1, ...,z are distinct. For m > 1, we say that p has at most m repetitions, if each node x;
occurs at most m times in the path, for ¢ = 0,...,k. In particular a path is simple if and only if it has at
most 1 repetition. We call a graph G k-short if all its simple paths have length < k. For example a tree
of depth k is k-short, hence the tree encodings of relational instances are 3-short. As another example, the
graph consisting of a single cycle with k£ nodes and k edges is (k — 1)-short. Observe that in a k-short graph
one can compute its transitive closure by inspecting all paths of length < k. We establish the following graph
theoretic lemma:

Lemma 1 Let G be k-short, and let® ¢(m, k) def m::jl_l — 2. Then, for any m > 1, every path with at most
m repetitions in G has length < ¢(m, k).

Proof Let p = xg.x1 ..., be a path with at most m repetitions. We will refer in the sequel to z; as an
“occurrence” in p: that is, for ¢ # j, z;,x; may denote the same node, but we will treat them as different
occurrences. We will arrange the n+1 occurrences xg, 1, .. ., Z, in a tree T, with n+ 2 nodes, such that each
node, except for the root, is labeled with exactly one occurrence z; (the root is unlabeled). We describe the
tree top-down. Once a node is constructed, its subtrees are obtained by processing a subsequence of p. Initially
we construct the root, and derive its children from the entire sequence p, as follows. Consider the first node
in p, 29. There are (at most) m occurrences in p denoting the same node as xo: To = Zi,, Tip, Tig, - - -, Ti,,
for m' < m. They split p into m' subsequences, best visualized as:

.1'0(.1'1 .. .m‘il,l),xil (.Z‘z'1+1 - ..Z‘Z'Q,l),.’EiZ (.’Ei2+1 . ..23,'3,1), - ..Z‘z'm, ($im,+1 .. .Z'n)

We then create m' children for the root node, as follows. For 5 = 1,...,m’, child j will be labeled with
occurrence z;,;, and its subtrees will be constructed from the the subsequence to the right of z;;, i.e.
Ti;41-Ti;42 - - - Tijyq—1, IN @ TECUrsive manner.

® As usual, for m = 1, ¢ is defined to be (1, k) e (k+2)—2=k.

38 Peter Buneman et al.

This completes the description of T'. For a simple illustration of this construction, consider the sequence
r.y.2.y.u.2.2.2.9y.uy.2.u.z. The corresponding tree is

root(x(y(2), y(u(2))), (2(y(u),y), 2(u), 2))

and is also illustrated in Fig. 13. Let us inspect some properties of T'. Obviously, each node in 7" has at most
m children. Further, all children with the same parent are labeled with the same node in G (corresponding
to different occurrences in p). In our example, the root’s children are labeled x,z; the first «’s children are
labeled y,y; the second z’s children are labeled z, z,z. Next, each edge in T corresponds to an edge in G:
to illustrate, in our example we have a node labeled z having children labeled z and, indeed, there exists an
edge from z to z in the graph (because z.z occur adjacent in the path). Finally, if a node in T is labeled
with occurrence z;, then the node z; does not occur in any descendant of that node. In our example, a node
labeled x does not have any descendant also labeled z. This all implies that each path in T' from the root
to some leaf corresponds to a simple path in G. Hence, the depth of T is at most k + 1 (we had to add 1 for
the root), and T has at most

k+2 _ 1
l+m+m?+... +mtt=""" "2
m—1
nodes. Recall that this is n 4+ 2. Hence, the length of p is n = m::jl’l - 2. m|

Now we can prove a remarkable property enjoyed by all UnCAL queries.

Proposition 5 For any UnCAL query f there exists a function (k) s.t. if the input data graph d is k-short,
then the output data graph f(d) is p(k)-short.

Proof (Sketch) Most tree constructors only add a constant to the lengths of simple paths: for example dU d’
and {l : d} increase it by 1. For cyclez(d), if d is k-short and Z has m markers, then cyclez(d) is m x (k+1)
short. To see that, observe that there are exactly m input nodes z1,...,z,, in d. Given a simple path p in
cyclez(d), each z; occurs at most once in p, hence the m input nodes split p into (at most) m + 1 simple
paths fragments of length < k + 1 each (the +1 represents the £ edge connecting an output node to an input
node in cycle z(d), which is at the end of each path fragment), except for the last fragment whose length is
< k. It follows that p has length at most k + m(k + 1).

The most interesting case is recz(e)(d). Assume that e increases the length by a function ¢. Consider a
simple path p in recz(e)(d) (Fig. 10 might help visualize such a path).. Let

S1(ug, &xo), S1(u1,&x1),. .., S1(u,, &z,)

be all nodes of type S1 occurring in p. These nodes are distinct, hence p’' = ug.uy. . ..u, is a path in d with
at most m repetitions (because there are at most m distinct markers among &z, ..., &z,). It follows that
the length of p' is n < ¥(m, k). The path p can be longer: between any two S1 nodes we can have a path
of length < (k) + 2 (the +2 accounts for the two gluing e edges), while before the first S1 node, and after
the last S1 node there can be another path, each of length < (k) + 1. It follows that p’s length is at most

2(p(k) + 1) + ¢(m, k) (¢(k) +2). O

Theorem 3 Let f be an UnCAL expression. Then, for any k > 1, there exists a FO formula ¢ which
computes f on all k-short graphs.

Proof We first apply Theorem 2 and obtain a FO+TC formula for f. Since all occurrences of TC are applied
to a k'-short graph, for some k', we can unfold the TC operator k' times and express it in FO. a

From this it is straightforward to derive:

Corollary 2 (Conservativity) Let S be an input relational database schema, and S' an output relational
schema. If an UnCAL query f maps tree encodings of S-instances into tree encodings of S'-instances, then
f can be expressed in the relational calculus.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 39

Proof We will construct a query @ in the relational calculus “simulating” f. @ operates in three steps.
In Step 1, given an S-instance d, it constructs a first order structure representing the tree ¢ encoding d:
obviously, this graph is 3-short. This query is expressed in the relational calculus extended with Skolem
functions. Note that this step uses the schema S. In Step 2 @ applies the FO formula (3 from Theorem 3,
to obtain the first order structure for f(¢). In Step 3, it constructs from f(¢) the relational output, knowing
that f(t) is a tree encoding of some S’ instance; notice that this step uses the schema S’. The three formulas
are then composed, and finally we eliminate Skolem functions, as outlined in the proof of Theorem 2. Only
steps 1 and 3 are new. We illustrate them by example only, the general case should be obvious. For step
1, assume the relational schema to be course(cid, title), enrolls(id, cid). Then the following two
queries construct the relations E and I of the tree ¢t (O = (), and we omit V' which simply consists of all
nodes mentioned in E, and is straightforward):

E = {(Root(), “course”, F1(z,y)) | course(x,y)} U
{(F1(z,y), “cid”, F2(x,y)) | course(z,y)} U
{(F2(z,y),z,F3(z,y)) | course(z,y)} U
{(F1(z,y), “title”, F4(x,y)) | course(z,y)} U
{(F4(2,9),y, F5(z,y)) | course(z,y)} U
{(Root(), “enrolls”, G1(z,y)) | enrolls(z,y)} U
{(G1(z,y), “id”,G2(z,y)) | enrolls(z,y)} U
{(G2(z,y),z,G3(z,y)) | enrolls(z,y)} U
{(G1(z,y), “cid”,G4(x,y)) | enrolls(z,y)} U
{(GA(z,y),y,G5(z,y)) | enrolls(z,y)}
I={()}

Both queries are in the relational calculus extended with the Skolem functions Root, F'1, F2,...,G5. Note that
the values are placed on the last edges, as illustrated in Fig. 4. Step 3 is the reversed direction, and is easier.
Assume the output schema S’ to be result (A, B);hence, Step 2 returns a first order structure (V', E', I', 0")
representing a tree encoding an S’ instance. Then we can construct the binary relation result (A,B) by:

Y
Y
G1(z,y
G4(z,y),
&, Root()

{(Z.J y) | II (&7 T)? EI (TJ “TeSUZt”7 u)7 EI(“J “AII, U)7 EI(U7 'Z.7 —)7 El (u7 “B”7 w)7 El(w7 y7 —)}
This completes the proof. O

Based on our earlier discussion, the converse also holds: all relational calculus queries can be expressed
in UnCAL.

7 Optimizations
We have shown in Sec.5.1.4 some simple equations which can be used by an optimizer based on rewriting
rules. Here we show a more powerful equation, which can be used to optimize mediator systems. Technically
this involves rewriting the composition of two structural recursion functions, i.e. rec(es) o rec(e;). Recall
that both recursion bodies e; and es are functions expecting a label and a tree argument: e (1,t), e2(l,1).
Theorem 4 (1) Assume that ex(l,t) does not depend on the argument t. Then:

rec(es) o rec(er) = rec(rec(es) o eq)

(2) For any e1,ex we have:

rec(es) o rec(er) = rec(A(l,t). rec(ez)(er(l,t)Qrec(er)(t)))

40 Peter Buneman et al.

gov meft
1 . \government
gover nmm@"%??}emmem government 93% .
e e
v
name .
el e2 3 n official
name = name official name| —=> naxe name name| —— = 3
v
el e €3 L L
Ll — L |L L|l—= ¢ |L L |——=, £
v Voo

Fig. 14 Illustration for optimizing structural recursion.

Both equations offer powerful optimizations. The left hand side describes two structural recursions com-
puted in sequence: evaluating rec(ez) o rec(er)(t) directly requires us to compute the intermediate graph
t' = rec(e1)(t). As we argue below, this intermediate graph is often as large as the input graph, and ex-
pensive to compute. Moreover, the second structural recursion, rec(e2)(t') often returns only a small result,
making the cost for computing ¢ even more of a waste. By contrast, the right hand side of both equations
consists of a single structural recursion, albeit with a more complex body: a direct evaluation of this function
makes it unnecessary to compute the intermediate result.

The intuition in (1) is rather simple. The first recursion, rec(e;), replaces every edge [with a new graph!®
e1(l). Thus, the intermediate graph consists of many “fragments” e; (I). Next rec(ez) traverses the resulting
graph and replaces each edge I’ with the graph e(l'). The two steps can be achieved in a single step, by
replacing each edge ! with a new graph es(l): the latter is e;(l) in which every edge I’ is replaced with
ea(l'), i.e. e3(l) = rec(ez)(e1(l)). While this is intuitive, the details are tricky: rec(ez2)(e1(l)) technically is
a recursion on an unfinished graph, since e; (1) is only a fragment. What makes things work is the correct
interaction between recursion and markers — since the markers in e;(!) tell how this fragment is connected
to the others.

The explanation of (2) is the following. In (1) we needed ex(l,t) not to depend on ¢, since we apply it
on a fragment e (I). If e2(l,t) does depend on ¢, then we need to replace the fragment e (I) with the entire
graph — at least following edges forward. This is done by substituting e; (1)@ rec(e1)(t) for ey (1). After that,
the intuition in (2) is the same as in (1).

Before proving the theorem, we illustrate with two examples.

Example 1 Assuming our database d in Fig 2 we construct a view in which every name attribute under
government is relabeled official. The view is computed by d' = £1(d) where:

sfun f1({government:T}) = {government:gl(T)} sfun gl({name:T}) = {official:gl1(T)}
| £1({L:T}) {L:£1(T)} | gt({L:T}) {L:g1(T)}

Next, the following query on the view asks for all names in the view:

sfun f2({name:T})
| £2({L:T}H)

{name:g2(T) } sfun g2({L:T}) = {L:g2(T)}
£2(T)

(We could have defined £2 simpler by replacing the first clause with sfun £2({name : T}) = {name : T}, but
then its body would use T directly, violating the condition on ey in Theorem 4. Hence we modified £2 to copy
T with the aid of the function g2.) The answer to our query is obtained as £2(d’). Obviously that answer can
be also obtained directly from the database, by returning all names, except those under a government label.
Theorem 4 allows us to derive the optimized query automatically. First we express both as rec(el),rec(e2)
(See also Fig. 14):

10 Assume, for illustration purposes, that e1(l,t) does not depend on ¢.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 41

case L of

government : (&z11l :
name : (&z11 :
(&z11 :

el (L)

{government: &z12}, &=z12 :
{name: &=z11}, &z12 :
{L: &=z11}, &z12 :

{government: &z12})
{official: &z12})
{L: &z12})

e2(L) = case L of
name : (&z21 :
(&z21 :

{name:&z22}, &z22 :
&z22, &z22 :

{name: &z22})
{L: &z22})

The view d' is defined as the first component of rec(el)(d), while the query answer is the first component
of rec(e2)(d'), which is the first component of rec(e2)(rec(el)(d)). The optimization in Theorem 4 allows
us to compute this as the first component of rec(rec(e2) o el)(d). Let us look at the body of this recursion,

e3 rec(e2) o el (See also Fig. 14):

e3(L) =
case L of
government: (&z11.&z21 := &z12.&z21, &z12.&z21 := &z12.&z21,
&z11.8&222 := {government: &z12.&z22}, &z12.%z22 := {government: &z12.%&z22})
name : (&z11.&z21 := {name: &z11.&=z22}, &z12.&z21 := &z12.&=z21,
&z11.8&z22 := {name: &z11.&z22}, &z12.8&z22 := {official: &z12.&z22})
L: (&z11.&z21 := &z11.&=z21, &z12.&z21 := &z12.&z21,
&z11.8&z22 := {L: &=z11.&=z22}, &z12.84z22 := {L: &=z12.&=z22})

Note that e3 returns a tree with four markers. Hence, we can express rec(e) as four mutually recursive
functions, named £3, g3, h3, k3:

sfun f3({government:T}) = g3(T) sfun g3({L: T}) = g3(T)
| £3({name:T}) = {name: h3(T)}
| £3({L:T}H) = £3(T)

sfun h3({government: T})= {government: k3(T)} sfun k3({name: T}) = {official: k3(T)}
| h3({L: T}) = {L: T} | k3({L: T}) = {L: T}

Finally we observe that g3(t) = {}, for any tree t: this is because it only calls itself recursively without
ever constructing any result. Hence we can farther simplify the functions to:

sfun f3({government:T}) = {}
| £3({name:T}) = {name: h3(T)}
| £3({L:T}H) = £3(T)

sfun h3({government: T})= {government: k3(T)} sfun k3({name: T}) = {official: k3(T)}
| h3({L: T} = {L: T} [k3({L: TH = {L: T}

It is interesting to compare £3(d) to our informal description earlier on how to compute the query directly
from the database: retrieve all names except those under government. Namely £3(d) does the same, except
that it replaces the value v under name with the view £1(v). The reader may check that this is, indeed, the
correct answer for our query.

Ezxample 2 We consider now the example in Sec. 2: the functions £5, g5 define a view in where all areas are
converted to mi2, while the query Q returns the land area of France. Here the task is to simplify a structural
recursion function £5 followed by a select-where query:

query Q :=
select {area: A} where {country: {name: "France", area.land: A}} in f£5(db)

First we write Q as a structural recursive function, using the rewriting in Sec. 2. We only apply one step of
the rewriting:

42 Peter Buneman et al.

sfun h5({country: C}) = bh5(C)

fun bh5(C) = /* body of hb */
select {result: A} where {name: "France", area.land: A} in C

That is, the query Q is obtained as the result of h5(£5(d)).
We now rewrite £5, gb as rec(el), and h5 as rec(e2), where:

el(L, T) = case L of

area: (&z1 := {area: &z2}, &z2 := {area: &=z2})
isInt(L): (&z1 := {L: &z1}, &z2 := {(0.3861%L): &z2})
_ (&z1 := {L: &=z1}, &z2 := {L: &z2})

e2(L, C) = case L of
country: bh5(C)
_ {3
Our goal is to compute rec(e2) o rec(el): by Theorem 4, this is equivalent to
rec(A(l,t).(rec(e2)(el(l,t)@Qrec(el)(t)))) = rec(A(l,t).rec(e2) o el’)
where el’(l,t) def el(l,t)@rec(el)(t). Let us first examine el’. It is obtained by unfolding the recursion in
rec(el) once, i.e. replacing the markers &21, &22 with the recursive function calls f5(T"), g5(T):

el’(L, T) = case L of

area: (&z1 := {area: g5(T)}, &z2 := {area: gb(T)})
isInt(L): (&z1 := {L: £5(T)}, &z2 := {(0.3861*L): g5(T)})
_ (&z1 := {L: £5(T)}, &z2 := {L: gs(D)})

Next we compute e3(l,1) def rec(e2) o el’(l,t)
e3(L, T) = case L of

country: (&z1 := bh5(f5(T)), &z2 := bh5(gh(T)))
(&z1 := {}, &z2 := {1})

rec(e3)(db) translates into two structural recursion functions k, k’, of which we only need the first one (the
second one is unnecessary since they are not recursive). Thus we have rewritten the query Q into Q1:

query Q1 :=
let sfun k({country:C}) :=
select {area: A} where {name: "France", area.land: A} in f5(C)

in k(db)

We now repeat the same process again on the inner select-where query. After several such steps we obtain
the simplified query @’ in Sec. 3.

The rest of this section is dedicated to the proof of the theorem.
Let us start by looking more carefully at the types in Theorem 4 (1):

e1 : Label x DBy — DBZ!
es : Label x DBy.z, - DB

rec(ey) : DB§ - DB§'§11

rec(es) : DB Z* — DB 21 22
rec(es) o rec(ey) : DB§ - DB§§11§22

rec(es) : DBZ' — DBZ''%

rec(es) o ey : Label x DBy — DB%:%

rec(rec(ez) oey) : DB§ — DB§§11§22

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 43

Recall that - is associative, i.e. (&z - &y) - &z = &z - (&y - &z). This shows that both expressions
rec(es) o rec(er) and rec(rec(ez) o e1) have the same type. As we stated repeatedly, expressions in UnCAL
are not polymorphic, but have to state their expected makers explicitly: the two occurrences of rec(ez2) in
the equation have different types. Written formally, the equation is:

Tecx.z,,y.2,,2,(€2) orecx,y z,(e1) = recx.y z,.z,(recz, z,,z,(e2) o e1)
Now we prove Theorem 4.

Proof Tt is possible to prove both statements directly, by examining the graphs on both sides of the equation
and proving them to be value equivalent. Such a proof would be complete, but it becomes quite technical
and nonintuitive. Instead, we prefer an alternative proof method: we show that both equations hold on finite
trees, by induction on the tree structure, then use Fact 1 to argue that they also hold for graphs. We caution
the reader that this proof is somewhat restrictive, since in the Appendix we only substantiate Fact 1 for
a subclass of UnCAL queries (for positive ones): still, we prefer it over the complete, but highly technical
direct proof.

To be precise, we need to prove that the equalities hold on any finite forest ¢. It actually suffices to check
that for finite trees t' only: this is because the value of rec(e)(t) on a forest t is fully determined by its
value on each component tree (recall rec(e)(t ®t') = rec(e)(t) ® rec(e)(t'), Prop. 3). Thus, we will prove the
following equations, by induction on the finite tree ¢':

rec(es)(rec(er)(t')) = rec(rec(es) o er)(t') (8)
rec(ez)(rec(er)(t')) = rec(A(l,t).rec(es)(e1(I,t)@rec(er)(t))) (') 9)

We start with (8).

— When t' = {} then both sides are {}.
— When t' = {l: t}, we have:

rec(ez)(rec(er))({l : t}) = rec(ez)(e1(l,t)Qrec(er)(t))
= rec(ez)(e1(l,t))@rec(ez)(rec(e1)(t))
= (rec(en) o

= rec(rec(ez) oer)({l : t})

We used here Eq.(4) in Prop. 3, and the fact that Eq.(8) holds on ¢, by induction hypothesis.
— When t' = t; U ty, we have:

(
(
e1)(l,t)Q@rec(rec(es) o er)(t)
)
)

Urec(er)(t2))
1)) Urec(es)(rec(er)(t2))
t1) Urec(rec(es) o e1)(t2)

rec(es)(rec(er))(t1 Uta) = rec(es

vv

Here we used the induction hypothesis for ¢; and t,.
— When t' = &y (an output marker), then let the two sets of markers be 21 = {&z11,...,&21,}, and
Zy = {&221,...,&22;}. Then the following results directly from the marker types:

rec(es)(rec(er)(&y)) = recles)(&z11 = &y - &z11, ..., &z1p - &21p)
= (&z11 - &z91 := &y - &2z11 - &201,&211 - &200 1= &y - &211 - &290,
S &z1p - &zog = &y - &z1p - &294)
= rec(rec(ea) o e1)(&y)

44 Peter Buneman et al.

We prove now (9). The cases when t' is {}, t1 Ut or &y are handled similarly as in the previous proof, and
are omitted. The interesting case is when ¢’ = {l : t}. Here the key observation is that the right hand side does
a single iteration, without a recursive call on ¢. That is, denoting e3 = A(l,t).rec(e2)(e1(l,t)Qrec(er)(t)),
the right hand side is rec(es)({l : t}) = es(l,t)@Qrec(es)(t) = es(l,t). This is because in the right hand
side the recursion on the remaining tree is hidden in the expression e3. Technically, this follows from the
fact that there are no Z; - Z5 output markers occurring in ez (this is because the Z; output markers in
e1(l,t)@rec(er)(t) where “consumed” by the append operation). To see the technical details, we illustrate
the types for the case when X = {&} and) = {}, i.e. when the entire recursion is applied to trees. Then:

e1 : Label x DB — DBZ!
ez : Label x DB — DBZ?

: DB — DB*!
: Label x DB - DB C DBZ!

rec(ey)
)
) : Label x DB — DB®+'%2 c DBZ'' 22
)

AL, t).e1(l,t)Qrec(e;
es = A(l,t).rec(er (I, 1)@ rec(er

)
rec(A(1,t).rec(es)(e1 (I, t)Qrec(e)(t))) : DB — DB*'#2

The types illustrate that es doesn’t have any occurrences of the output markers Z; - Z,.
The case t' = {l : t} follows now immediately:

rec(es)(rec(er)({l : t})) = rec(ez2)(e1(l,t)Qrec(er)(t))

rec(es)({l: t}) = es(l,1)
= rec(e2)(e1(l,t)Qrec(er)(t))

This concludes the proof. O

8 Getting Practical: How to Evaluate UnQL

UnQL can be evaluated in two ways: top-down and bulk. We describe here these two strategies. Both assume
that the UnQL query has been translated into UnCAL, then essentially use the two semantics for structural
recursion in Sec. 5.1 (recursive and bulk). We will illustrate them both on the query Q7 (a variation on query
Q1 from Sec. 2):

query Q7 :=
select {result: E}
where {country: {name: "France", *.ethnicGroup: E}} in db

which, translated into structural recursion becomes:

query Q7’ :=
let sfun f7({ country : C }) =
let sfun g7({ name: "France" }) =
let sfun h7({ ethnicGroup: E}) = {result: E} U h7(E)
| h7({ L: E} = h7(E)
in h7(C)
in g7(C)
in £7(db)

Notice that we go back here to the original data model in Sec. 2, where data values are stored on leaves
rather than edges.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 45

Top-down Evaluation Given an UnCAL query @), this strategy evaluates its operators in the order in which
they appear in the query. All constructors are evaluated directly. Structural recursion is evaluated using
the recursive algorithm in Fig. 12. For example, our query Q7° is evaluated on some input graph db as
follows. First apply the recursive evaluation algorithm to compute £7(db). This algorithm needs to traverse
db recursively (top-down) and evaluate the recursion body on each edge in the graph. The recursion body
is the function g6, which is another structural recursion: hence this function is evaluated recursively on the
graph starting at the current node, etc. Each recursive function is computed using the algorithm in Fig. 12.

The advantage of this method is its simplicity. On tree data, this method proceeds like any interpretor
of a functional programming language. On cyclic data, the algorithm in Fig. 12 adds some more cleverness
in that it avoids chasing infinite loops. The disadvantage of this method is that no further optimizations are
possible: all operators are evaluated precisely in the order in which they occur in the UnCAL query. However,
for small or medium data sets, like XML documents, this strategy results in acceptable performance.

Bulk Evaluation This consists in the construction of a query plan, which can be further optimized before
evaluation. The plan starts from a ternary input relation E(z,[,y), and constructs a ternary output relation
denoting the result graph. The result graph may (and usually does) have ¢ edges: they are removed in
a final step with a transitive closure operation, see Sec. 4.1. Alternatively, £ edges may also be removed
in intermediate subexpressions. The query plan’s operators are the selections, generalized projections, and
dependent joins. The generalized projections allow us to apply a Skolem function to some columns in the input
relation and construct new nodes in some column of the output relation. Dependent joins (see e.g. [FLMS99])
are non-commutative: they bind variables to values in the left operand, then evaluate the right operand for
each such value. Fig. 15 illustrates a query plan for our example, omitting the e-edge removal operation. It
is obtained by applying the bulk semantics of Sec. 5.1.1 for every recursive function, and by doing several
simplifications.

In general, every query can be expressed first in the relational calculus using the expressions in Sec. 5.1.1,
then translated into a query plan. This, however, results in an unnecessarily complex plan, that needs to
be simplified in order to be practical. In Fig 15 we did the simplifications by hand: a general framework for
such simplifications is beyond the scope of the paper. We explain now the plan in Fig. 15.

Recall the terminology we used in the bulk semantics Sec. 5.1.1: a structural recursion function f returns
a graph consisting of two types of nodes: S1 nodes and S2 nodes. In the query plan, there is a union operator
(U) for each such function: the left operand computes the S1-t0-S2 and S2-t0-S1 edges (all are € edges),
while the right operand computes the actual body (the S2-t0-S2 edges). The topmost union operator in
our example corresponds to £7: since its body is nonrecursive, there are no output markers, and, hence, no
edges of type S2-to-S1 in the left operand. Moreover, £7 will only be applied to the root node, hence we
further optimized by selecting u = root. The function £7 constructs nodes with Skolem functions R1 and
R2: R1(root) will be the root of £7(db), while R2(C) will be the connection node to the right operand.
The right operand repeats the selection oy=root,i="country” (& potential for further optimization), but only
retains the bindings of the C variable, which it passes to the right operand of a dependent join. Here, the
top-most union operator corresponds to g7 (C). The relation E is now scanned with the first column bound
to C, and searched for label name "name" and value "France": for each such edge a new ¢ edge is created
from R2(C) to S1(C) (with S1 a new Skolem function). The right operand here corresponds to h7(C): since
no variables are bound by g7, there is no dependent join here. The plan for h7 (C) traverses the entire graph,
since h7 is recursive: hence, no simplifications are further possible to exploit the fact that it is called on the
node C. But the plan for h7 contains a different simplification: S2 nodes have been eliminated. Instead, each
label L contributes either to a labeled S1-to-S1 edge (when L is "ethnicGroup"), or to an ¢ such edge. This
optimization was mentioned in Sec. 5.1.1 as a possible way to reduce the number of e-edges in the result.

Note that the original query was recursive, but the execution plan is non-recursive. This is because the
plan constructs a graph with possible many e-edges, corresponding to the recursion. In fact the plan for h7
does just that: it replaces every label different from ethnicGroup with an e-edge. These are eliminated in a
final step (not shown in Fig. 15), as described at the end of Sec. 4.1.

The advantage of bulk evaluation is that we can perform separate optimizations. This is very powerful,
because we can apply known optimization techniques for non-recursive queries to optimize structural recur-
sion. For example optimizations for dependent joins have been considered in the context of object-oriented

46 Peter Buneman et al.

£7(db)

n

(U=R1(root), I=¢ V=R2(C)) c
‘) \ ,,,,,,,,,,,,,,,,,,,,,,,,,,, ORI
o-U:root, L="country" n © '

L / \ -

E(UL,C Il

() o-u:root,I:"countfy" (U=R2(C), L, V=SL(O) /

(o)

E(U,L,C) N="name", F="France" M

(U=S1(U),L=L V=S1(V)) u S1(U) L= EV=S1(V))

(0}
E(C,N,F) L=

0
"ethnicGroup” lLl "ethnicGroup"

EULY) EULVY)

Fig. 15 A query plan for bulk evaluation.

databases [BCD89,CD92] and of semistructured data [FLMS99]. The only restriction comes when the origi-
nal query has the boolean predicate isempty: this introduces some transitive closure operators in the query
plan, where optimizations are harder. However, most practical applications require only the positive fragment
of UnQL (i.e. without isempty) and, hence, can benefit from well-known relational optimizations.

9 An Implementation of UnQL

We have implemented UnQL in Standard ML [AM87,ATT]. UnQL queries are translated into UnCAL, for
which we implemented the top-down evaluation strategy. Input graphs are loaded into main memory and the
query interpreter works directly on that graph representation. Inaccessible memory is automatically garbage
collected in ML, therefore no explicit memory management is necessary. This is adequate for small input
graphs, e.g., graphs with at most 1000 nodes and 10,000 edges, but it does not scale to large graphs with
10,000 or more nodes. For large scale inputs, a secondary storage manager for accessing graph elements
directly from disk would be necessary. The entire implementation of UnQL and UnCAL is about 10,000 lines
of commented ML code.

Our implementation performs an additional optimization to the naive recursive evaluation strategy.
Namely, it keeps track of which markers are needed so that only those parts of a recursive function that
are actually needed are evaluated. For example, assume we have two mutually recursive functions f and g,
and a call £(d) for some data graph d. This will be translated into the UnCAL expression &z1Q rec(e)(d),
where e is the recursion body, returning a graph with inputs and outputs &z1,&22. The evaluation al-

gorithm in Sec. 8 would compute d’ def rec(e)(d) first, then compute &z1Qd'. Recall that d’' is precisely
(&z1 := f(d),&22 := g(d)). In short, we have evaluated unnecessarily g(d). To avoid that, our implemen-
tation uses a smarter evaluation strategy. For the top-most operator append (@), the recursive evaluation

computes its left operand first, resulting in d" 4ef ¢21. Then the interpreter computes the set of all output
markers in d"': in this case, it is {&z1}, but in more complex cases, this may require a traversall! of d'. Next,

1 In fact our implementation avoids this traversal altogether, by computing the set of output markers together with
the result of the evaluation.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 47

the interpreter evaluates the right operand of @, rec(e)(d), but now it “knows” that only the input marker
& 21 is needed. Hence it proceeds as in the Algorithm in Fig. 12, but at the root node computes only the
&2z1 component of s1. As it proceeds recursively, it only computes the required component of s1, at each
node. Of course, cycles in the graph and the logic of a given query may force it to compute eventually the
& 22 component, for the root too, but that is computed only if it belongs to the accessible part of the result.

10 Conclusions and Acknowledgements

We believe that the principles of UnQL will be useful in describing the foundations of query languages for
XML and semistructured data. We have illustrated query constructs (structural recursion), shown how they
related to practical query languages (XSL), and proved powerful optimization techniques. We believe these
foundations to be of use both in query language design and their implementation.

However, there are some important and interesting areas of research that may well bear fruit. In connec-
tion with XML, we have shown how the principles of UnQL will work on an ordered tree model, however
it is not clear how they can be extended to an ordered graph model (the graph model discussed in section
4 was an unordered graph.) Some query primitives for dealing with order are provided by XML-QL but we
still lack a complete picture of this topic.

Another area is the connection with Graphlog (see Sec. 1), i.e. datalog on graphs. This is another elegant
formalism for querying semistructured data, but its connection with structural recursion and the connection
with optimization techniques for recursive datalog queries [BR86] remain unexplored.

Optimizations of recursive queries as found for example in XSL is an exciting research area. The techniques
illustrated here only provide the equational tools: future work is needed to combine these with a cost model
and an optimization algorithm.

Acknowledgements. We are deeply indebted to Susan Davidson for her collaboration on this topic
and for getting us interested in semistructured data in the first place. We would also like to thank Gerd
Hillebrand for his contributions, and the anonymous reviewer who suggested to us the example in Sec. 5.1.1
and made numerous constructive criticisms.

References

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to Semistructured Data
and Xml. Morgan Kaufmann, 1999.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley Pub-
lishing Co, 1995.

[AKS89] S. Abiteboul and P. C. Kanellakis. Object identity as a query language primitive. In Proc. ACM
SIGMOD Conference, pages 159-73, Portland, OR, May 1989.

[AMS8T7] Andrew W. Appel and David B. MacQueen. A standard ml compiler. Functional Programming

Languages and Computer Architecture, 1987.
[AQMT97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for semistruc-
tured data. International Journal on Digital Libraries, 1(1):68-88, April 1997.

[ATT] AT&T Bell Laboratories, Murray Hill, NJ 07974. Standard ML of New Jersey User’s Guide, February
1993.

[BBKVS8T7] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a powerful and simple database
language. In Proceedings of 13th International Conference on Very Large Data Bases, pages 97-105,
1987.

[BCD8Y] F. Bancilhon, S. Cluet, and C. Delobel. A query language for the O2 object-oriented database system.

In Proceedings of 2nd International Workshop on Database Programming Languages, pages 122-138.
Morgan Kaufmann, 1989.

[BDHS96] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language and optimization
techniques for unstructured data. In Proceedings of ACM-SIGMOD International Conference on
Management of Data, pages 505-516, 1996.

[BDS95] Peter Buneman, Susan Davidson, and Dan Suciu. Programming constructs for unstructured data. In
Proceedings of the Workshop on Database Programming Languages, Gubbio, Italy, September 1995.
[BLS"94] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax. SIGMOD Record,

23(1):87-96, March 1994.

48

[BRS6]
[BTBN91]

[BTS91]

[CDY2]

[Cla99a]
[C1a99b]
[CM90]
[Con98]

[Cou90]

[DFF*99]
[DGMYS]

[FFK*98]

[FFLS97]

[FLMS99]

[GJI79]

Peter Buneman et al.

F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query processing strate-
gies. In Proc. ACM SIGMOD Conference, pages 16-52, Washington, DC, USA, May 1986.

V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Conf.
on Database Programming Languages, DBPL, 1991.

V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of programming with
Sets/Bags/Lists. In LNCS 510: Proceedings of 18th International Colloquium on Automata, Lan-
guages, and Programming, Madrid, Spain, July 1991, pages 60—75. Springer Verlag, 1991.

Sophie Cluet and Claude Delobel. A general framework for the optimization of object oriented queries.
In M. Stonebraker, editor, Proceedings ACM-SIGMOD International Conference on Management of
Data, pages 383-392, San Diego, California, June 1992.

James Clark. Xml path language (xpath), 1999. http://www.w3.org/TR/xpath.

James Clark. Xsl transformations (xslt) specification, 1999. http://www.w3.org/TR/WD-xslt.

M. P. Consens and A. O. Mendelzon. Graphlog: A visual formalism for real life recursion. In Proc.
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Sys., Nashville, TN, April 1990.
World Wide Web Consortium. Extensible Markup Language (XML) 1.0, 1998.
http://www.w3.org/TR/REC-xml.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In Formal Models and Semantics, vol-
ume B of Handbook of Theoretical Computer Science, chapter 5, pages 193-242. Elsevier, Amsterdam,
1990.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for xml. In
Proceedings of the Eights International World Wide Web Conference (WWW8), Toronto, 1999.
D.Calvanese, G.Giacomo, and M.Lenzerini. What can knowledge representation do for semi-structured
data ? In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), 1998.
Mary Fernandez, Daniela Florescu, Jaewoo Kang, Alon Levy, and Dan Suciu. Catching the boat
with Strudel: experience with a web-site management system. In Proceedings of ACM-SIGMOD
International Conference on Management of Data, 1998.

Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A query language for a web-site
management system. SIGMOD Record, 26(3):4-11, September 1997.

D. Florescu, L. Levy, I Manolescu, and D. Suciu. Query optimization in the presence of limited access
patterns. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
Philadelphia, June 1999.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of N'P-completeness.
W. H. Freeman, San Francisco, 1979.

[GPVABVGY90] M. Gyssens, J. Paredaens, J. Van den Bussche, and D. Van Gucht. A graph-oriented object database

model. In ACM Symposium on Principles of Database Systems, pages 417-424, 1990.

[GPVABVG94] M. Gyssens, J. Paredaens, J. Van den Bussche, and D. Van Gucht. A graph-oriented object database

[GW97]
[HHK95]
[HY90]
[Imm87]
[KW93]
[Mai86]

[Mil89]
[MS99]

[MW99]

[OBB8Y]

model. IEEE Transactions on Knowledge and Data Engineering, 6(4):572-586, August 1994.

Roy Goldman and Jennifer Widom. DataGuides: enabling query formulation and optimization in
semistructured databases. In Proceedings of Very Large Data Bases, pages 436-445, September 1997.
Monika Henzinger, Thomas Henzinger, and Peter Kopke. Computing simulations on finite and infinite
graphs. In Proceedings of 20th Symposium on Foundations of Computer Science, pages 453-462, 1995.
R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object identifiers. In
Proceedings of 16th International Conference on Very Large Data Bases, pages 455-468, 1990.

Neil Immerman. Languages that capture complexity classes. STAM Journal of Computing, 16:760-778,
1987.

M. Kifer and J. Wu. A logic for programming with complex objects. Journal of Computer and System
Sciences, 47(1):77-120, 1993.

D. Maier. A logic for objects. In Proceedings of Workshop on Deductive Database and Logic Program-
ming, Washington, D.C., August 1986.

Robin Milner. Communication and concurrency. Prentice Hall, 1989.

Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings of the International
Conference on Database Theory, pages 277-295, 1999.

J. McHugh and J. Widom. Query optimization for XML. In Proceedings of VLDB, Edinburgh, UK,
September 1999.

A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in Machiavelli, a polymorphic
language with static type inference. In James Clifford, Bruce Lindsay, and David Maier, editors, Pro-
ceedings of ACM-SIGMOD International Conference on Management of Data, pages 46-57, Portland,
Oregon, June 1989.

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 49

[PAGM96] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. Object fusion in mediator systems. In
Proceedings of Very Large Data Bases, pages 413-424, September 1996.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous in-
formation sources. In IEEE International Conference on Data Engineering, pages 251-260, March

1995.

[PT87] Robert Paige and Robert Tarjan. Three partition refinement algorithms. SIAM Journal of Computing,
16:973-988, 1987.

[QLIS] Query for XML: position papers. http://www.w3.org/TandS/QL/QL98/pp.html.

[Rob99] Jonathan Robie. The design of xql, 1999. http://www.texcel.no/whitepapers/xql-design.html.

[RS97] G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer Verlag, 1997.

[Wad92] Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461-493,
1992.

A Lifting Equations from Finite Trees to Graphs

In this appendix we establish formally Fact 1 enabling us to lift equations from finite trees to graphs. We are
concerned here with infinite graphs, with inputs X and outputs). The sets X',) are finite, which implies
that every graph has only a finite set of input nodes. Recall that a finite graph is referred to as a data
graph. Throughout this appendix we are only concerned with graph isomorphism, not bisimulation: thus,
the notation g = ¢’ means that g and g’ are isomorphic.

An infinite graph is called locally finite if for each node the set of its outgoing edges is finite. We only
consider locally finite graphs: this is sufficient for our purposes because we only need to consider infinite
graphs of the form unfold(d), for some data graph d.

A forest is a graph in which each input node is the root of a (finite or infinite) tree. In other words, a
forest is a finite set of trees, each with a distinct input marker (because X is a finite set). A tree is a special
case of a forest with a single input node.

Compactness Given two forests t,t with the same inputs and outputs we say that ¢ occurs in ', in notation
t C t', if there exists an isomorphism between ¢ and a subgraph of ¢': we require the isomorphism to preserve
the marker labeling, for both input markers and output markers. Obviously C is reflexive and transitive,
and is also antisymmetric (this follows from the fact that the forests are locally finite). The following is
straightforward:

Fact 5 Given two (possible infinite) forests T, T' with the same inputs and outputs, we have T = T" iff for
any finite forestt, t CT <=t CT'.

Note that this property only holds when T',T' are locally finite, otherwise it is easy to find counterex-
amples. For example take both T, T’ to be flat trees, i.e. consisting of a root an a single level of children,
both have infinitely many children, and all edges have the same label, a. The only difference is that 7" has
countably many children, while 7" has uncountably many. Then all finite trees ¢ occurring in either T or T"
have the form {a,a,...,a}, but the two trees are not isomorphic.

The rest of this Appendix deals with functions on labeled graphs. More precisely, writing G§ for the
set of labeled graphs with inputs X and outputs Y, we consider functions of type f : G§ — G§,' that map
isomorphic inputs to isomorphic outputs, and map forests to forests. The sets X',V, X',)' determine the
function’s type. Two functions have the same type if they have the same X,), X',)"

Often one needs to prove equalities of the form f(d) = g(d), for all data graphs d, where f,g are two
functions on labeled graphs of the same type. It is much easier to prove instead f(t) = g(¢), for all finite
forests ¢. In this appendix we state two sufficient conditions which allow us to lift equations from finite forests
to graphs.

First we show how to lift equations from finite forests to infinite forests. The key property here is:

Definition 5 Let f be a function from forests to forests. We say that f is compact if, for any t' the following
property holds: t' C f(T) iff Ito C T s.t. Vi1, to Ct1 CT = t' C f(t1). Here t',t9,t1 Tange over finite
forests.

50 Peter Buneman et al.

Note that a compact function is not necessarily monotone (i.e. T C T” does not imply f(T) C f(T")). In
UnCAL the isempty operator allows us to define non-monotone functions. For example consider the function
£ (T) below:

sfun h({a:T}) = {a}
[h({L:T}) = h(T)
sfun f({a:T}) = {}

| £({L:T})

which takes a tree T and returns the set of labels L in T which have no descendants labeled a (this example
is the negation of that in Sec. 5.1.4). For some tree T a label b may be in the result £(T), but if we extend
T to T’ (thus T C T') by introducing an a label under b, then b is not in £(T?), hence £ is not monotone.
Still, we show that £ is compact. Suppose t' C £(T). We choose to C T to consists of that subtree of T which
includes all edges of T whose label b is in t’: for each such edge we also include in tq all the ancestor edges
too. Then, every extension t; of to (i-e. to C t1 C T) will include all those edges b too, and, moreover, none
of these edges will have an a descendant in t;, because they didn’t have one in T. Hence, t' C £(t1).

if isempty(h(T)) then {L} U £(T) else £(T)

Proposition 6 Let f,g be two compact functions. If f(t) = g(t) for every finite forest t, then f(T) = g(T)
for every forest T'.

Proof Given some T, let T = f(T),T5 = g(T). We plan to use Fact 5, so let ' C T}. If we can prove
t' C T4 then we are done, since the reverse is proved similarly. To do this, we use the compactness property
for g. First we apply the compactness property to f and ¢ C T]. We obtain that there exists tg C T s.t.
whenever tg C t; C T, we have t' C f(t1). Since f(t1) = g(t1), we also haver ¢’ C g(¢1). Hence we can use
the compactness property for g and conclude that ¢’ C 7. O

Next we show how to lift equations from infinite forests to graphs.

Definition 6 Let f be a function from labeled graphs to labeled graphs. We say that it is unfolding if
unfold(f(d)) = f(unfold(d)), for any data graph d.

Proposition 7 Let f,g be unfolding. Then f(T) = g(T') for every forest T implies f(d) = g(d) for any data
graph d.

Proof Follows directly from f(d) = f(unfold(d)) = g(unfold(d)) = g(d). O
The following theorem then substantiates Fact 1:

Theorem 6 If f, g are compact and unfolding, then f(t) = g(t) for every finite forest t, implies f(d) = g(d)
for any data graph d.

Proof We simply combine the two propositions above. |

We end this appendix showing how Theorem 6 can be applied to UnCAL queries. It turns out that not
all UnCAL queries are compact. For a trivial example, consider a query k that returns {c} if there exists a
subtree of the form {a : {}}, and returns {d} otherwise. Consider an infinite chain T = {a: {a: {...}}}. Then
k(T) = {d}, but for any finite subtree t; C T, k(t1) = {c}. However, we prove the compactness property for
an important class of UnCAL queries.

Call an UnCAL query positive if every occurrence of the isempty operator has the form if isempty(e1) then
{} else e2. Note that positive queries may still contain unrestricted conditionals testing label equality, i.e.
of the form if I; = Iy then e else e3. We will prove below that all positive UnCAL queries are compact.
Positive UnCAL queries are monotone, of course: the function f earlier in this Appendix is an example of a
non-monotone UnCAL query which is compact.

First, we need to discuss how UnCAL’s semantics carries over from finite graphs to infinite graphs. For the
constructors the same definitions in Fig 7 apply, while for structural recursion we adopt the bulk semantics.
In particular each UnCAL query returns a locally finite graph: the constructors only introduce finitely many
outgoing edges (however both d;@Qds and cycle(d) may introduce infinitely many incoming edges to some

UnQL: A Query Language and Algebra for Semistructured Data Based on Structural Recursion 51

nodes), while for structural recursion rec(e)(t) one can check in the bulk definition that the outdegree of an
S1 node is the same as the outdegree of the corresponding node in ¢, while the outdegree of an S2 node is
the same as the outdegree of some node in e(l,d,) (refer to the notations in Sec. 5.1.1), hence rec(e)(t) is
locally finite. However, an UnCAL query does not map forests to forests. For example consider tQt'. If both
t,t' are trees, then in tQt' there are several e-edges leading to the root of ¢’ (one from each output node in
t). Similarly cycle(d) and rec(e)(t) fail to return a forest in general. To get around that, given an UnCAL
query f(t), we apply Theorem 6 to the function f'(t) = unfold(f(t)). More precisely we prove the following.
Proposition 8 Let f(t) be a positive UnCAL query. Then f'(t) def unfold(f(t)) is both compact and unfold-
ing.

Proof The proof is done by induction on an UnCAL query, referring to UnCAL’s definition in Fig. 9. Recall
that an UnCAL query is an expression with a unique free variable. Subexpressions however may have multiple
free variables, hence we can assimilate such an expression with a function f(t1,...,t,). The definitions for
both compactness and invariance under unfolding can be extended naturally to such functions. For illustration
purposes however we show the proofs only for the case of a single free variable.

We consider a few cases for f: the others are proved similarly.

— The case when f(t) =t. Then f'(t) = unfold(t) is trivially unfolding. Compactness is also trivial to prove:

we show the details next. Notice that for any forest T, f'(T) = T, so let t' C T': we pick tg def , and

notice that for every t; s.t. to C t; € T we also have trivially ¢/ C f'(¢;) = t;. This proves the “only

if” direction. For the “if” direction, given some tq C T', choose t; def to. The conditions tg C t; C T are
satisfied, hence we have t' C f(t1) = t1, which also gives us t' C T.

— The case when f(t) = fi(t) U fa(t). Technically f(t) = {e : fi(t),e : f2(t)}, and we have similarly
@) = {e = filt),e : f4(t)}. We prove invariance under unfolding first: unfold(f'(d)) = unfold({e :
fild),e : fi(d)}) = {e : unfold(f{(d)),e : unfold(f3(d))}. Here we apply induction hypothesis on fi, f1,
and the claim follows immediately. Now we prove compactness, showing the “only if” direction (the “if”
direction is similar and omitted). Assume t' C {e : fi(T),e : f3(T)}. There are three cases: when ¢
has a single node, when it contains only one of the two £ edges, or when it contains both. We illustrate
the last case only, the others are similar (actually simpler) and omitted. Hence ¢’ = {e : ¢{,£ : t} and
t; C f1(T), ty C f3(T). Now we apply the induction hypothesis which says that f], f5 are compact,
and this gives us a tg; C T for f| and a to2 C T for fj s.t. V1,801 C t1 C T implies t' C f{(¢1), and
similarly for fi. We choose then ¢y to be the “union” of tg; and tg2. Recall that containment ¢y C T,
too € T means that tgq,t92 are isomorphic to finite subforests of 7. The union refers to those two
subforests in T': hence % is a finite subforest of T', t¢ C 7', and we have both tg; C ty and tgs C ty. Now
consider tome t1 s.t. to C t; C T. It follows that tg; C ¢ C T, hence, by compactness for f], we have
ty C fi(t1). Similarly tg2 C t; C T, hence, by compactness for fi, we have t), C fi(t1). It follows that
V= {e:th,e:th} C{e: filt),e: folt)}.

— The case when f(t) = rec(e)(g(t)) where e is A(I',#').e(I',t'). In its most general form e may also depend
on t, but for illustration purposes we assume that it only depends on I’ and t'. We sketch the proof
for invariance under unfoldings first. We start by noticing that unfold(f(d)) = wunfold(rec(e')(g'(d))),
where €' = unfold(e), and ¢'(d) = unfold(g(d)): in other words, doing some unfoldings early doesn’t
hurt if we want to unfold the final result anyway. We omit the lengthly details of this simple fact, but
illustrate the intuition behind it with the graph in Fig. 10(c). If we unfold the graph on the right of
the figure, we get an infinite forest. The same can be obtained by unfolding the graph on the left first
(the reader may help visualize it by looking at Fig. 6, which contains a similarly shaped graph and
shows its unfolding), then applying structural recursion, then unfolding again (since structural recursion
creates a directed acyclic graph). Invariance under unfoldings follows then immediately: unfold(f'(d)) =
f'(d) = unfold(rec(e’)(g'(d))) = unfold(rec(e')(g' (unfold(d)))) (we applied induction hypothesis on g¢').
Now we sketch the proof for compactness, illustrating the “only if” direction only. Here we start with
t' C f(T) = unfold(rec(e')(g'(T))). Hence t' will consists of a finite set of S1 nodes and a finite set of
S2 nodes. The first set gives us a tree t; C 7' = ¢'(T), while the second set gives us, for each edge
(u,a,v) in ty, a tree t;, ,, ., C €'(a,Ty) (notations as defined in Sec. 5.1.1): assume that there are n such
trees t'e,u,a,u- We apply the compactness property for g and t'g, and this gives us some tree t49. Next we

52

Peter Buneman et al.

! .

apply the compactness property n times for e, once for each of the n trees ¢ this gives us n trees

e,u,a,"
t10, . - -, tno. We then take to to be the “union” (as discussed above) of the n +1 trees t40, t10, . . ., tno. Let
now t; be such that ¢g C ¢; C T. From t4o C t; and the fact that g is compact, it follows that t; C g(t1),
i.e. g(t1) contains all nodes for the S1 nodes we need to include in ¢'. Furthermore t}, C to,...,t.o C to,

hence, by the compactness argument for e’, the combined graphs e’(a, 7)) contain all the S2 nodes in
t'. Tt follows that rec(e’)(g'(t1)) contains both the S1 nodes and the S2 nodes in #', in other words
t' Crec(e')(g'(t1)) = f'(t1).-

We finally illustrate the case when f(t) =if isempty(fi(t)) then {} else fo(t). For invariance under
unfolding we notice that isempty(fi(t)) = isempty(unfold(fi(t))) = isempty(fi(t)), hence f'(t) =if
isempty(fi(t)) then {} else f5(t). We have unfold(f'(t)) = f'(t) =if isempty(fi(t)) then {} else f3(¢)
and we apply the fact that f{, f§ are unfolding. For compactness we show the “only if” direction. Let
t' C f'(T). There are two cases: when isempty(fi(T)) = true and when it is false. In the first case
we have f'(T) = {}, hence t' can only be {}, so t' C f'(t1) for any ¢, (one can also notice that f'(¢;)
is, in fact, {}, whenever ¢t; C T, but this fact is not needed). In the second case we have some non-e
edge in f1(T): let s' C f1(T) be some finite tree containing at least one such edge. By compactness for
f1, we find some sqg s.t. for all t1, so C t; C T we have s’ C f1(t1), hence isempty(fi(t1)) = false. To
prove compactness for f'(T'), let t' C f'(T) = f5(T). We now use compactness for f§ and find some taq
s.t. for all ¢; containing ta9, ' C fi(t1). We choose then ¢y to be the “union” (as above) of s and t2q.
Let ¢1 be such that to C t; C T. We still have isempty(fi(t1)) = false, hence it is still the case that
f'(t1) = f5(t1), and we also have t' C fi(¢1).

The other cases are similar and omitted. a

