
The VLDB Journal 10: 295–315 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100055

Monotonic complements for independent data warehouses

D. Laurent1, J. Lechtenbörger2,∗, N. Spyratos3, G. Vossen2

1 Université de Tours, LI–IUP Informatique, 41000 Blois, France; e-mail: laurent@univ-tours.fr
2 Universität Münster, Institut f¨ur Wirtschaftsinformatik, Leonardo-Campus 3, 48149 M¨unster, Germany;
e-mail:{lechten,vossen}@helios.uni-muenster.de

3 Université de Paris-Sud, LRI, CNRS-UMR 8623, Bˆat. 490, 91405 Orsay, France; e-mail: spyratos@lri.fr

Edited by J. Widom. Received: 21 November 2000 / Accepted: 1 May 2001
Published online: 6 September 2001–c© Springer-Verlag 2001

Abstract. Views over databases have regained attention in
the context of data warehouses, which are seen asmaterial-
izedviews. In this setting, efficient view maintenance is an
important issue, for which the notion ofself-maintainability
has been identified as desirable. In this paper, we extend the
concept of self-maintainability to (query and update)inde-
pendencewithin a formal framework, where independence
with respect to arbitrary given sets of queries and updates
over the sources can be guaranteed. To this end we establish
an intuitively appealing connection between warehouse inde-
pendence andview complements. Moreover, we study special
kinds of complements, namelymonotonic complements, and
showhow tocomputeminimal ones in thepresenceof keysand
foreign keys in the underlying databases. Taking advantage of
these complements, an algorithmic approach is proposed for
the specification of independent warehouses with respect to
given sets of queries and updates.

Keywords: Data warehouse – View complement – Indepen-
dence – Self-maintainability – Materialized view

1 Introduction

A data warehouseis an integrated and time-varying collec-
tion of data primarily used in organizational decision mak-
ing by means of online analytical processing (OLAP) [7,28].
Typically, it is a standard database that storesmaterialized
viewsin order to provide fast access to integrated information
[28,33]. These views are extracted from multiple, heteroge-
neous, autonomous, distributed information sources (which
are mostly operational databases), and a major difficulty lies

This work was partially supported by the bilateral French-German
PROCOPEprogramunderGrant No. 312/pro-gg; a restricted version
of the problem addressed in this paper appeared in the Proc. 15th
IEEE International Conference on Data Engineering 1999, 490–499.

∗ Correspondence to:J. Lechtenb¨orger

in their propermaintenance[14,28].Incrementalview main-
tenance has been considered for a long time in the literature [6,
10,11,15]; an overview of maintenance of materialized views
appears in [13]. In spite of those rich results, view mainte-
nance in a warehousing environment is still complicated by
the fact that the sources are decoupled from the warehouse,
so that traditional incremental view maintenance may exhibit
anomalies [35,36]. In this situation, the notion ofwarehouse
self-maintainabilityhas been identified as desirable. Roughly
speaking, self-maintainability is the ability of a warehouse to
maintain itself without “help” from the underlying databases,
i.e., just based only on reported changes at the underlying
databases. Self-maintainability for one view has been investi-
gated in [2,5,12,23,25], for multiple views in [17,22], using
auxiliary views in [2,22,23,25], and using conditional tables
in [29]. In this paper, we generalize self-maintainability to
(query and update)independence, and exhibit an intuitively
appealing connection between warehouse independence and
view complements[4]. In addition, we describe an algorithmic
approach for the specification of independent warehouses.

We stress that, in contrast to a traditional database, a ware-
house storesintegrated data. Data integration means that data
which has been extracted from the sources is merged into the
warehouse, initially or after the sources have undergone up-
dates. Integration then means: (i) materializing views of the
underlying databases; and (ii) maintaining them after updates
have occurred at the sources. However, maintenance is more
complicated than in traditional databases for various reasons.
Indeed, since the information sources are only loosely coupled
to the warehouse, they donot participate in its maintenance;
instead, they simply report their changes to the warehouse.
The warehouse is typicallynot in a position to send queries
back to the sources, since that can incur processing delays, the
queries may be expensive, and such queries can cause ware-
house maintenance anomalies [35,36]. Even worse, when in-
formation sources are highly secure or legacy systems, ad hoc
queries may not be permitted at all. Consequently, it is desir-
able to ensure that, as much as possible, queries to the sources
are not required in order to keep the warehouse data consis-
tent [34]. Thus, the problem is how to maintain the warehouse

296 D. Laurent et al.: Monotonic complements for independent data warehouses

based on the reported changes at the sources alone. We now
illustrate this problem using an example from [34].

1.1 Examples and motivation

Example 1.1.Consider the warehouse scenario shown in
Fig.1, where the warehouse consists of the single view
Sold =df Sale �� Emp over a Sales Database with rela-
tionSaleand a Company Database with relationEmp(where
clerk is assumed to be a key for relationEmp).1

Next, let the Sales Database notify the integrator (solid
arrows in Fig.1) of the following update: “insert intoSalethe
tuple〈Computer, Paula〉.” As we have said, obtaining the in-
formation needed by the integrator to maintain the warehouse
byquerying the sources (dashedarrows) is not anoption.Thus,
thestraightforwardapproachof having theCompanyDatabase
join the new tuple with all tuples in relationEmpto find out
the join tuples is not available. Instead, the warehouse should
be able tomaintain itself; to this end, notice that a subset of the
Emprelation appears in the warehouse already (as projection
of Soldontoclerk andage). It hence suffices to additionally
keep the following information in the warehouse (where the
symbol “\” denotes set difference):

CEmp =df Emp \ πclerk,age(Sold)
Since Paula does not appear in the projection ofSold onto
clerk, a joinof tuple〈Computer,Paula〉withCEmp nowyields
the data necessary to update the warehouse. Similarly, if the
insertion concernsEmp, then the integrator will need to know
the following set of tuples:

CSale =df Sale \ πitem,clerk(Sold)

In fact, as is easily seen,CEmp andCSale provide sufficient
information for maintaining the warehouse with respect to
deletions or modifications inSaleandEmpas well. ��

In view maintenance, when additional queries over base
data are never required to maintain a given view, the view
is said to beself-maintainable; since a self-maintainable
warehouse can be updated independently from its underly-
ing sources, we call warehouses with that propertyupdate-
independent.

Clearly, most warehouses are not update-independent.
However, update independence can be ensured by storing ad-
ditional (auxiliary) views at the warehouse. For instance, in
our example, if we add the auxiliary viewsCEmp andCSale to
thewarehouse, it becomesupdate-independent.Obviously, ev-
ery warehouse can become update-independent, ifall relevant
data from the sources is copied to the warehouse. It appears to
beanopenproblem todetermine theminimumamount of extra
information needed for update independence of a given ware-
house [34].We remark that the problemof self-maintainability
with respect to updates, or update-independence, has attracted
considerable attention in the past few years, and partial solu-
tions for various classes of views have been proposed [22,23,
25] (see also Sect.4 below).

1 In this paper, the symbol “=df ” indicates a viewdefinition,where
a relational expression is associatedwith a newviewname;moreover,
“≈” denotes view equivalence. See Sect.2.1 below for details.

In addition, we propose to extend the concept of update
independence to queries as well: indeed, there is goodmotiva-
tion for enabling warehouses to answer queries that could also
be posed directly to the given sources. For example, sources
may be unavailable or too busy to answer queries; similar to
replicated databases, it may then be attractive for an appli-
cation to have its queries answered from somewhere else, in
this case the warehouse. Moreover, source databases might
not tolerate queries from outside, or might be unable to an-
swer queries simply because they are not databases and hence
do not understand languages such as SQL or relational alge-
bra. Intuitively, a warehouse is independent of data sources
in answering source queries, or isquery-independent, if every
query to the sources can be answered using the warehouse
relationsonly.

Example 1.2.Consider Fig.1 once more as well as the fol-
lowing query to the sources:

q =df πclerk(Sale) ∪ πclerk(Emp)

(asking for all clerks that appear either inSaleor in Emp).
Clearly, this query cannot be answered by the warehouse, as
relationSoldcontains only those clerks that appear in both
SaleandEmp. Therefore, the warehouse of Fig.1 is not query-
independent.

However, like update independence, query independence
can be ensured by storing additional (auxiliary) views at the
warehouse: if we add auxiliary viewsCEmp andCSale as
defined in Example 1.1 to the warehouse, the warehouse be-
comes query-independent. Indeed, with the addition ofCEmp

andCSale, the warehouse becomes{Sold, CEmp, CSale} and
can compute both base relations as follows:

Emp ≈ πclerk,age(Sold) ∪ CEmp

Sale ≈ πitem,clerk(Sold) ∪ CSale

In the “augmented”warehouse, queryq abovecanbeanswered
by the following queryq that usesonlywarehouse relations:

q =df πclerk(Sold) ∪ πclerk(CEmp) ∪ πclerk(CSale) ��
An important remark is in order here. In the examples that

we have seen so far, we tacitly assumed that the warehouse
needs to be independent with respect toall updates andall
queries on base relations. In practice however, a warehouse
needs to be independent only with respect to agiven setof up-
dates and/or queries of interest to the warehouse users. There-
fore, the problemofwarehouse independence thatwe consider
in this paper can be stated as follows:

Given a data warehouseV = {V1, . . . , Vk} and a set of
query or update operationsOP = {op1, . . . , opm} to the
sources, determine a set of auxiliary viewsA = {A1, . . . , Al}
such that the warehouseW = V ∪A is independent with re-
spect to any operation fromOP .

We note that the above problem statement includes as a
special case warehouses that need to be independent with re-
spect to all queries and to all updates.

The reason for wanting the warehouse to be independent
with respect to some but not all queries is rather obvious:
the warehouse is initially designed based on a set of business
queries of interest to the warehouse users. At some later time,

D. Laurent et al.: Monotonic complements for independent data warehouses 297

df

Integrator

Data Warehouse

Sales
Database Database

Company

Emp(clerk, age)

Emp

Sale(item, clerk)

Sold = Sale

Auxiliary Views:

CEmp =df Emp \ πclerk,age(Sold), CSale =df Sale \ πitem,clerk(Sold)

Computation of Emp and Sale from viewsCEmp, CSale, andSold:

Emp ≈ πclerk,age(Sold) ∪ CEmp, Sale ≈ πitem,clerk(Sold) ∪ CSale

Fig. 1.Data warehouse example

however, the same warehouse users (or some new users for
thatmatter)may becomealso interested in one ormore queries
that cannot be answered by the warehouse. Such queries will
have to be answered from the sources and their processing
may incur unwanted delays. It may then be interesting to have
such queries answered from the warehouse and to this end we
may have to store auxiliary views. Clearly, this will concern in
general a few but not all queries that can possibly be answered
from the sources.

Turning to updates now, it is less obvious why one would
consider independence with respect to some but not all up-
dates at the sources. Indeed, it might seem that by “ignoring”
somepossible updatesat the sources, thewarehousemayeven-
tually become inconsistent with the sources. However, there
are several situations where one may have to translate only
some among the possible updates at the sources back to the
warehouse, while keeping the warehouse consistent with the
sources. For example, for some sources it may be the case that
the warehouse uses only a small portion of just one table. In
such a situation, especially when the sources are local to the
warehouse, it may be preferable to simply copy periodically

the updated table into the warehouse, and in this case we will
have no update to translatewith respect to that source.Another
example is when a source is insert-only, such as the “table”
storing customer transactions in a supermarket. Here again we
only have to worry about the (incremental) translation of in-
sertions and we can ignore deletions for that source. Thus, in
general we need to worry about the translation of some but not
all possible updates at the sources.

We conclude this motivating section by comparing our
complement-based approach towards independence with two
alternative naive approaches, which can be perceived as “ex-
treme” solutions. The results of this comparison are summa-
rized in Table 1.

The first of these naive approaches (abbreviated asRAR,
for Replicate All Relations) is simply to replicate every rele-
vant base relation in the data warehouse. Then the resulting
warehouse is clearly independent with respect to all queries
and all updates. In this case, there is exactly one material-
ized view per base relation, and this view is just a copy of the
corresponding base relation.

298 D. Laurent et al.: Monotonic complements for independent data warehouses

Table 1.Approaches towards independence

Maintenance cost Query cost No. of materialized views equals/is

Replicate all base relations (RAR)Low High No. of base relations

Materialize all queries (MAQ) High Low Unbounded

Complement-based approach Medium Medium No. of base relations + no. of warehouse views

TheRAR approach has two advantages. First, there is a
boundednumber of materialized views that have to be man-
aged at the warehouse, regardless of user requirements. Sec-
ond, maintenance of the warehouse views is relatively easy, as
reported changes over base relations can be applied directly
to the corresponding views, i.e., without any computations.

The main drawback of theRAR approach is a significant
waste of space and time. For example, in Fig.1 above, if the
warehouse needs the set of all employees only, then storing
bothSaleandEmpas materialized views is a waste of ware-
house space. It is also a waste of time since the view forSale
has to be maintained whenever a new sale is reported,even if
such sales do not affect the set of employees.

The second naive approach (abbreviated asMAQ, forMa-
terializeAll Queries) is to store all user queries asmaterialized
views.

TheMAQ approach has two advantages. First, the result-
ing data warehouse is clearly independent with respect to all
given queries. Second, query answering is as efficient as it
could be, as any of the given queries can be answered by sim-
ply scanning the associated materialized view.

However, theMAQ approach has several drawbacks. First,
the warehouse is not necessarily independent with respect to
updates. Second, the number of materialized views that have
to be maintained is potentially unbounded, as user require-
ments are likely to change with time. Third, the warehouse
may contain redundant views. For example, in Fig.1 above,
suppose that new user needs require the materialization of the
following three queries:

Q1 All employees of theSalerelation
Q2 All employees of theEmprelation
Q3 All employees that are both in theSaleandEmprelation

Clearly, the answer to Q3 can be obtained from the answers
to Q1 and Q2, thus materializing Q3 leads to redundancy.

In contrast to the above naive approaches, our
complement-based approach towards independence starts
from a pre-existing data warehouse (which can, eventually, be
empty). It then computes as few as possible auxiliary views
in order to make the warehouse independent with respect to
a given set of queries and updates. Therefore, our approach
can be considered as a post-processing step complementing
current warehouse design methods. As such, our approach
supports warehouse evolution, since new (query or update)
requirements can be expressed in terms of independence prop-
erties, as we have explained above.

With respect to query and maintenance costs we argue
that our approach implements a reasonable trade-off between
the two naive approaches. Indeed, as we will see, at most
one additional view per relevant base relation is added to the
data warehouse in order to ensure independence. Such a view
is called acomplementary view. Therefore, the resulting data
warehouse consists of a number of pre-existing views together

with a bounded number of complementary views. In this set-
ting, we expect that most queries can be answered efficiently
from pre-existing warehouse views, in fact, more efficiently
than from base relations in case ofRAR but less efficiently
than from pre-computed views in case ofMAQ. Regarding
performance, since we are dealing with a bounded number of
views and we exploit sharing of common parts among views,
we expect maintenance costs to be considerably lower than in
case ofMAQ but certainly higher than in case ofRAR.

1.2 Contributions and paper outline

The main contributions of this paper can be summarized as
follows:

1. We introduce the concept of update independence and ex-
tend it toqueries, i.e.,we introduce thenotionofwarehouse
independence with respect to a given set of updates and/or
queries on base relations.

2. We provide a formal framework in which warehouse in-
dependence can rigorously be defined and studied, for any
number of materialized views.

3. We show how to compute a “minimal” set of auxiliary
views that makes a warehouse (defined by projection, se-
lection, and join) independent. Our computations take ad-
vantage of any key and foreign key constraints that are
declared on the underlying databases.

4. We propose an algorithmic approach to the specification
of independent warehouses with respect to an arbitrary set
of query or update operations on base relations, and we
show some uniqueness and minimality results which rely
on the notion ofmonotonic complement.

We point out that the warehouse user doesnot need to be
aware of auxiliary views or query translations. At warehouse
definition time (or, in a running warehouse environment, even
later) all necessary expressions can be automatically derived
from the base relation schemes and the view definitions. Fur-
thermore, query rewriting for answering database queries and
incremental view maintenance can be integrated in the ware-
housing environment and can be handled automatically as
well.

We note that themain focus of our contribution is the study
of theconceptsinvolved in warehouse independence. We are
aware of thealgorithmic problems related to our study but
their treatment seems quite involved and has therefore been
deferred to a forthcoming paper.

Thepaper is organizedas follows: inSect.2wegive formal
definitions and examples of views, complements, and mono-
tonic complements. For viewsdefinedbyprojection, selection,
and join we show how to compute a minimal and monotonic
complement. We also show that the presence of key and for-
eign key constraints implies in some cases a decrease in the

D. Laurent et al.: Monotonic complements for independent data warehouses 299

size of complements. In Sect.3 we define warehouse indepen-
dencewith respect to a given set of queries and/or updates, and
we propose a method for obtaining independent warehouses;
in particular, we prove that for warehouses defined by projec-
tion, selection, and join, for which a monotonic complement
is available, under certain conditions there is exactly one sub-
set of this complement that ensures the desired independence
properties. We present related work in Sect.4 and conclude
the paper in Sect.5.

2 Views and complements

We recall the basic definitions of [4] concerning views and
view complements in Sects.2.1 and 2.2, then we proceed in
Sect.2.3 to present new results for the computation of com-
plements for views defined by projection, selection, and join.

2.1 Views

We assume the reader to be familiar with the basics of re-
lational databases, for example, along the lines of [31,32].
Throughout this paper we assume set semantics for relations
and views.

We recall that a database scheme is a set of relation names,
in which each relation name is associated with a set of at-
tributes and each attribute is associated with a domain. We
denote byattr(R) the set of attributes associated with rela-
tion nameR and bydom(A) the domain of attributeA.

For example, referring to Fig.1,D = {Sale, Emp} is a
database scheme where

• Sale andEmp are relation names,
• Sale is associated with the attributesitem andclerk, i.e.,
attr(Sale) = {item, clerk},

• Emp is associated with the attributesclerk andage, i.e.,
attr(Emp) = {clerk, age},

• item andclerk are associatedwith the domainstring, and
• age is associated with the domaininteger.

Throughout our discussions, we consider a fixed set of relation
namesD = {R1, . . . , Rn}, possibly coming from various
underlying databases. We refer to eachRi as abase relation
name.A state ofD has the formd = {(R1, r1), . . . , (Rn, rn)},
whereri denotes a relation overRi, 1 ≤ i ≤ n. Hereafter,
wewrite〈r1, . . . , rn〉 instead of{(R1, r1), . . . , (Rn, rn)} and
refer to eachri as abase relation.

A viewoverD is defined by a declaration of the form

View-name=df View-definition

whereView-nameis a new relation name andView-definition
is a relational expression overD. For example, referring to
Fig.1, we have the following view overD = {Sale, Emp} :

Sold =df Sale ✶ Emp

HereSold is the view-name andSale ✶ Emp is the view-
definition2.

2 Actually, the view definition can be any functionf ranging over
the states ofD such thatf computes a relation over attributes appear-
ing inD (see [4]). However, for the purposes of this paper, we restrict
our attention to view definitions that are expressions from relational
algebra.

Wenote that each relational expression is associatedwith a
set of attributes, namely the attributes of the relation computed
by the expression. Therefore, a view can be seen as a relation
scheme whose name is the view name and whose attributes
are those associated with the view definition. We shall refer
to this scheme as theview scheme.For example, in Fig.1,
the expressionSale ✶ Emp is associated with the set of
attributes{item, clerk, age}, therefore the view scheme is
Sold(item, clerk, age).

Let U =df E be a view overD whereU is the view
name andE is the view definition. The state of the view
scheme depends on the state ofD as follows: For every state
d of D theview stateu is the relation computed by applying
the expressionE to d, i.e., u = E(d). Given a set of views
V = {V1, . . . , Vk}, we denote byV (d) the set of all view
states corresponding tod, i.e.,V (d) = 〈V1(d), . . . , Vk(d)〉.
Moreover, following our notation, ifV andC are sets of views
such thatV = {V1, . . . , Vk} andC = {C1, . . . , Cl}, and ifd
is a state ofD, then

(V ∪ C)(d) = 〈V1(d), . . . , Vk(d), C1(d), . . . , Cl(d)〉 .
Finally, we recall the definitions of containment and equiva-
lence of relational expressions (cf. [31,32]), and we use the
notion of containment to define an ordering for views.

Definition 2.1. Let E1 andE2 be relational expressions over
D with attr(E1) = attr(E2).
1. E1 is contained inor smaller thanE2, denoted byE1 ≤ E2,

if for every stated ofD the inclusionE1(d) ⊆ E2(d) holds.
2. E1 is strictly smaller thanE2, denoted byE1 < E2, if E1 ≤

E2 and there is a stated of D such thatE1(d) � E2(d)
holds.

3. E1 andE2 areequivalent, denoted byE1 ≈ E2, if E1 ≤ E2
andE2 ≤ E1. ��

We recall that a query is defined by a relational expression;
hence, Definition 2.1 immediately applies to queries. More-
over, a view is associated with a view definition, which in turn
is a relational expression. Thus, given viewsV1 =df E1 and
V2 =df E2 we say thatV1 is (strictly) smaller thanV2 (respec-
tively, V1 is equivalent toV2), if E1 is (strictly) smaller than
E2 (respectively,E1 is equivalent toE2).

We propose to use the following extension of the ordering
“≤” to sets of views: IfV = {V1, V2, . . . , Vk} andV ′ =
{V ′

1 , V
′
2 , . . . , V

′
k} are sets of views overD thenV ≤ V ′ if

Vi ≤ V ′
i , 1 ≤ i ≤ k, holds for some ordering of the views in

V andV ′.
We note that the ordering “≤” is only applicable to sets

of viewsV andV ′ with the same cardinality, i.e., with|V | =
|V ′|. However, this is not a severe restriction since the smaller
of both sets, sayV ′, may be augmented with views that are
constantly empty to obtainV ′′ with |V | = |V ′′|. Then the
ordering ofV andV ′ is defined by the ordering ofV andV ′′.

2.2 Complements

A setV of views overD expresses some (but usually not all)
of the information contained inD. Informally, any other set
C of views overD that expresses the information “missing”
from V with respect toD is called acomplementof V . More
formally, we have:

300 D. Laurent et al.: Monotonic complements for independent data warehouses

Definition 2.2. Let V be a set of views overD = {R1, . . . ,
Rn}. AcomplementofV (with respect toD) is a setC of views
overD such that the following holds: For everyi = 1, . . . , n
there exists a relational expressionEi over views inV ∪C only
such thatRi ≈ Ei. In this case, we call the set of equivalences
Ri ≈ Ei, 1 ≤ i ≤ n, theview inverse defined byC. ��

Roughly speaking,C is a complement ofV if each base
relation ofD can be computed fromV andC.

Referringback toFig.1,wehaveD = {Sale,Emp},V =
{Sold}, CEmp =df Emp \ πclerk,age(Sold), andCSale =df

Sale \ πitem,clerk(Sold). The setC = {CEmp, CSale} is a
complement ofV = {Sold} becauseSale andEmp can be
computed from{Sold, CEmp, CSale} by the following view
inverse:

Emp ≈ πclerk,age(Sold) ∪ CEmp

Sale ≈ πitem,clerk(Sold) ∪ CSale

The following proposition states a fundamental property
of complements. Indeed, given a setV of views overD, each
complementC of V sets up a one-to-one mapping from states
of D to states ofV ∪ C.

Proposition 2.1. LetV andC be two sets of views overD. If
C is a complement ofV then

d �= d′ implies(V ∪ C)(d) �= (V ∪ C)(d′)

for all database statesd andd′.

Proof. We show the contrapositive. LetD = {R1, . . ., Rn},
and let d = 〈r1, . . . , rn〉 and d′ = 〈r′

1, . . . , r
′
n〉 be two

database states such that(V ∪C)(d) = (V ∪C)(d′). By Defi-
nition 2.2, there existn relational expressionsE1, . . . , En such
thatRi ≈ Ei, for i = 1, . . . , n. Thus, for everyi = 1, . . . , n,
we haveri = Ei(d) andr′

i = Ei(d′). SinceEi(d) depends on
V ∪ C only and since we assume that(V ∪ C)(d) = (V ∪
C)(d′), it follows that, for everyi = 1, . . . , n, Ei(d) = Ei(d′),
which terminates the proof. ��

In this paper, we restrict our attention to a specific class
of views overD, called PSJ views, and to a specific class of
complements, called monotonic complements. The notion of
PSJ view is defined as follows:

Definition 2.3. A PSJ viewoverD is a view overD whose
definition has the form

πZ(σφ(Ri1 �� . . . �� Rik))

whereRi1 , . . . , Rik are inD and whereφ is a selection con-
dition. ��
Note that most SQL queries, when translated to the relational
algebra, have this PSJ form.

We recall that a relational expression involving only the
relational operators projection, selection, join, and union is
monotonic[1,27]. Monotonic expressions are also relevant in
this paper; indeed, they are used to define monotonic comple-
ments as follows:

Definition 2.4. Let V be a set of views overD = {R1, . . . ,
Rn}. ThenC is amonotonic complementofV , if C is a com-
plement ofV such that the following properties are satisfied:

1. C is of the formC = {CR1 , . . . , CRn
}, whereCRi

is
either an empty view or we haveCRi

=df Ri \ Ei such
thatEi is a monotonic relational expression overV , i =
1, . . . , n.

2. The view inverse forRi is an expression overCRi
andV ,

i = 1, . . . , n.
We say thatCRi is the(monotonic) complementary viewfor
base relationRi. ��

We point out that the second condition of Definition 2.4
may appear redundant at first sight. However, the following
example exhibits a complement which is not monotonic, as it
satisfies the first condition of Definition 2.4 but not the second.

Example 2.1.Let D = {R1, R2}, where attr(R1) =
attr(R2). Consider awarehouseV = {V1, V2}overD, where
V1 =df R1 ∪R2 andV2 =df R1 ∩R2. LetC = {CR1 , CR2},
whereCR1 =df R1 \ V2 andCR2 =df ∅.

ThenC is a complement ofV as we haveR1 ≈ V2 ∪CR1

andR2 ≈ (V1 \ (V2 ∪ CR1)) ∪ V2. Moreover,CR1 andCR2

satisfy the first condition of Definition 2.4. However, the view
inverse forR2 involvesCR1 , which violates the second con-
dition of Definition 2.4. Consequently,C is not a monotonic
complement. ��

We note that following [27], query containment is decid-
able for monotonic complementary views. In particular, the
tableaux techniques developed in [27] can be applied here
to optimize monotonic complementary views and to remove
them if theyare constantly empty (i.e., if theyarenot necessary
to compute base relations).

Referring back to Fig.1, we haveD = {Sale, Emp} and
Sold =df Sale ✶ Emp, which is trivially a PSJ view over
D. Moreover, the complement isC = {CEmp,CSale}, where
CEmp =df Emp \ πclerk,age(Sold) andCSale =df Sale \
πitem,clerk(Sold). Finally, the inverse expressions for both
relations are a union of a complementary viewandaprojection
overSold. Thus, the conditions of Definition 2.4 are met, and
C is a monotonic complement.

2.3 Computation of monotonic complements

In the remainder of the paper, we make use of the following
notation:

• Given a setV of PSJ views overD andR ∈ D, we denote
by VR the set of views inV such thatR appears in the
view definition.

• For ease of notation,πZ(R) denotes the usual projection
of R onto attribute setZ if Z ⊆ attr(R), or the empty
relation (overZ) otherwise.

In the following two sections we show how to compute
monotonic complements. In Sect.2.3.1, we consider the case
where no integrity constraints are declared on the base rela-
tionsD. In Sect.2.3.2, we exploit the practically relevant cases
of keys and foreign keys to reduce the size of the resulting
monotonic complements.

2.3.1 Monotonic complements in the absence of constraints

The following proposition states how to construct amonotonic
complement for a set of views.

D. Laurent et al.: Monotonic complements for independent data warehouses 301

Proposition 2.2. Let D = {R1, . . . , Rn}, and let V =
{V1, . . . Vk} be a set of PSJ views overD. Define the following
views overD:

CRi =df Ri \Ri, 1 ≤ i ≤ n (1)

where

Ri =df

⋃
Vj∈VRi

πattr(Ri)(Vj), 1 ≤ i ≤ n .

Then the set of viewsC = {CR1 , . . . , CRn} is a monotonic
complement ofV whose view inverse is defined by:

Ri ≈ CRi ∪Ri, 1 ≤ i ≤ n (2)

Proof. AsVj is a PSJ view, it follows thatπattr(Ri)(Vj) ⊆ Ri

for everyVj in VRi . Therefore,Ri ⊆ Ri, and sinceCRi =df

Ri\Ri, it follows thatRi ≈ CRi
∪Ri. Thus, all base relations

can be computed fromV andC as stated in Eq. (2), and hence
C is a complement ofV . By construction,C is monotonic.��
Definition 2.5. Given a set of PSJ viewsV , the complement
C of V defined by Proposition 2.2 is called thecanonical
complementof V .

For example, referring to Fig.1, we have:

• D = {Emp, Sale}, V = {Sold}
• VEmp = VSale = {Sold}
• Emp =df πclerk,age(Sold) and
Sale =df πitem,clerk(Sold)

• Therefore, the canonical complement of{Sold} is C =
{CEmp, CSale} where
CEmp =df Emp \ πclerk,age(Sold) and
CSale =df Sale \ πitem,clerk(Sold).

• The view inverse defined byC is
Emp ≈ πclerk,age(Sold) ∪ CEmp and
Sale ≈ πitem,clerk(Sold) ∪ CSale.

We note, however, that the canonical complement may not be
a minimal complement, as the following example shows.

Example 2.2.LetD = {R}whereattr(R) = {A,B,C}and
consider the set of viewsV = {V1, V2, V3}, whereV1 =df

πAB(R), V2 =df πBC(R) andV3 =df σB=b(R). Applying
Proposition 2.2, we have:

• VR = {V1, V2, V3}, sinceR appears in every view defini-
tion.

• AsπABC(V1) ≈ ∅,πABC(V2) ≈ ∅, andV3 ≈ πABC(V3),
we obtain:R =df V3.

• Therefore, the canonical complement ofV isC = {CR}
whereCR =df R \ V3.

• The view inverse defined byC isR ≈ CR ∪R, i.e.,R ≈
CR ∪ V3.

However, apart from the canonical complementC =
{CR} just computed, there is a second complementC ′ =
{C ′

R} of V (which is not monotonic), where

C ′
R =df (R �� πAB((V1 �� V2) \R)) \ V3 .

The view inverse ofC ′ is defined by:

R ≈ C ′
R ∪ V3 ∪ ((V1 \ πAB(C ′

R ∪ V3))
�� (V2 \ πBC(C ′

R ∪ V3)))

Now, it is easy to see that the complementC ′ is strictly smaller
than the canonical complementC. Therefore the question is
under what conditions the canonical complement is also a
minimal complement. ��
Our next goal is to prove that for SJ views (i.e., for views
defined by selection and join only) the canonical complement
is also aminimal complement. For this purpose we need some
preliminary definitions. Given a set of viewsV overD and a
database stated of D, there are, in general, several database
statesd′ other thand such thatV (d) = V (d′). We calld′ V -
equivalentto d, denotedd′ ≡V d, if V (d′) = V (d). Given a
database stated, the following definition designates a database
statedr as the representative state in theV -equivalence class
of d.

Definition 2.6. LetV be a set of SJ views overD, and letd be
a state ofD. We callrepresentative state forV andd the state
dr defined bydr = 〈R1(d), . . . , Rn(d)〉, whereR1, . . . , Rn

are given by Eq. (1) of Proposition 2.2. ��
Lemma 2.1. Let V be a set of SJ views overD, let d be a
state ofD, and letdr be the representative state forV andd.
Then we have:

1. R(dr) ⊆ R(d) for all R ∈ D
2. V (dr) = V (d)
3. Letd′ be a state ofD such thatR(dr) ⊆ R(d′) ⊆ R(d)

for all R ∈ D. Then we haveV (d) = V (d′).

Proof. 1 and 2 are basically well-known properties of
projection-join and join-projection expressions (the selections
are not essential).

3. We have to proveV0(d′) = V0(d) for all V0 ∈ V . Let
V0 ∈ V . As V0 is an SJ view, it is monotonic, hence we have
V0(dr) ⊆ V0(d′) ⊆ V0(d). Then the equalityV (d) = V (d′)
follows from 2, which concludes the proof. ��

Now we are in the position to prove that the canonical
complement for SJ views is indeed minimal.

Theorem 2.1. Let V = {V1, . . . , Vk} be a set of SJ views
overD. Then the canonical complement ofV is a minimal
complement.

Proof. See Appendix A.1. ��
The following example illustrates the computation of

canonical complements for SJ views.

Example 2.3.LetD = {R,S, T} whereattr(R) = {X,Y },
attr(S) = {Y,Z} andattr(T) = {Z}. Let V = {V1, V2}
whereV1 =df σφ(R �� S �� T) andV2 =df S. To compute
the canonical complement, we apply Proposition 2.2 and we
find:

• VR = {V1}, VS = {V1, V2} andVT = {V1}.
• R =df πXY (V1), S =df πY Z(V1) ∪ πY Z(V2) andT =df

πZ(V1).
• Therefore, the canonical complement ofV is C =

{CR, CS , CT } where

CR =df R\πXY (V1), CS =df S\(πY Z(V1)∪πY Z(V2)),

andCT =df T \ πZ(V1).

302 D. Laurent et al.: Monotonic complements for independent data warehouses

• The view inverse defined byC is:

R ≈ CR ∪R, i.e.,R ≈ CR ∪ πXY (V1)

S ≈ CS ∪ S, i.e.,S ≈ CS ∪ πY Z(V1) ∪ πY Z(V2)

T ≈ CT ∪ T , i.e.,T ≈ CT ∪ πZ(V1)

As V1 andV2 are SJ views, according to Theorem 2.1, the
above complementC is a minimal complement.We note that,
as πY Z(V2) ≈ S, we haveCS ≈ ∅, i.e., the viewCS is
constantly empty and should not be stored as an auxiliary
view. We recall that, in general, recognizing which views are
constantly empty is an undecidable problem [1], whereas in
our setting the techniques of [27] are applicable. ��

2.3.2 The impact of keys and foreign keys

In this sectionweexplore the impact of integrity constraints on
the size and the form of complements. More specifically, we
look into the practically relevant cases of key and foreign key
constraints.We denote the key of a relationRi bykey(Ri) and
a foreign key in relationRi with sourceRj byπkey(Rj)(Ri) ⊆
πkey(Rj)(Rj).

Concerning key constraints we assume that at most one
key is declared for every relation scheme (as is the case in
SQL); if no key is declared for relation schemeR then we
always havekey(R) = attr(R).

The central ideas for the minimization of complements
in the presence of constraints rely on the following observa-
tions: first and most importantly, key constraints might per-
mit the computation of lossless joins while computing base
relations from views, an observation that has been made by
Honeyman [16] in an entirely different context and that has
lead to the notion of anextension join. Second, if a foreign key
πkey(Rj)(Ri) ⊆ πkey(Rj)(Rj) is declared, and if the canon-
ical complement forV = {Ri �� Rj} is computed, then the
complementary viewCRi will always be empty, as every tuple
ofRi has a join partner inRj ; hence, the complete information
concerningRi is preserved in the join.

Example 2.4.Refer to Fig.1, and assume now that there is a
foreign key stating that every clerk ofSalealso appears inEmp
(i.e.,πclerk(Sale) ⊆ πclerk(Emp)). As a consequence, every
tuple ofSalehas a join partner inEmp. HenceCSale is always
empty, and we obtainC = {CEmp, ∅} as a complement of
V = {Sold}. ��
Now, we introduce some notation: letV be a set of PSJ views,
and letRj be a relation scheme.

• We denote byVkey(Rj) the set of views involvingRj that
contain a non-trivial key ofRj , i.e.:

Vkey(Rj) =

{∅ if key(Rj) is the trivial key

{Vi ∈ VRj | key(Rj) ⊆ attr(Vi)} otherw.

• We call a subsetY of Vkey(Rj) such that|Y | ≥ 2 acover
of Rj if
1. every attribute ofRj is present in some view ofY , and
2. Y is minimal with respect to the above property.
We denote byCkey

Rj
the set of all covers ofRj .

Before stating our main theorem on the computation of mono-
tonic complements, we illustrate the above notations by way
of an example.

Example 2.5.Consider the relation schemesR1(A,B),
R2(A,C), andR3(C,D,E), whereA is a key forR1, C is
a key forR3, AC is the trivial key forR2. Assume moreover
that we have the following foreign keys:πA(R2) ⊆ πA(R1)
andπC(R2) ⊆ πC(R3).

Let V = {V1, V2, V3, V4, V5}, whereV1 =df R1 �� R2,
V2 =df σφ2(R3), V3 =df πCD(σφ3(R3)), V4 =df πCE(R3),
V5 =df πDE(R3). Then we have

• Vkey(R1) = {V1},
• Vkey(R2) = ∅,
• Vkey(R3) = {V2, V3, V4},
• Ckey

R1
= ∅,

• Ckey
R2

= ∅,
• Ckey

R3
= {{V3, V4}}.

Note thatVkey(R2) is empty as the key ofR2 is trivial. More-
over, we note thatV5 is not contained in a cover ofR3, (as it
does not contain the key ofR3). Hence,V5 cannot be used to
compute lossless joins. ��
Proposition 2.3. LetD = {R1, . . . , Rn}, and letV = {V1,
. . . Vk} be a set of PSJ views overD. For 1 ≤ i ≤ n, define

Ri =df

⋃
Vj∈VRi

πRi
(Vj)

and
Rllj

i =df

⋃
Y ∈Ckey

Ri

πRi(✶Vj∈Y Vj).3

Then the set of viewsC = {CR1 , . . . , CRn
}, where

CRi
=df Ri \ (Ri ∪Rllj

i), 1 ≤ i ≤ n, (3)

is amonotonic complement ofV whose view inverse is defined
by:

Ri ≈ CRi ∪Ri ∪Rllj
i , 1 ≤ i ≤ n (4)

Proof. The expressionRi is defined in exactly the same way
as in Proposition 2.2, and so it collects all those tuples fromRi

which can be obtained from a view by projection. Concerning
Rllj

i , we note that all joins inside the definition ofRllj
i are

along keys, therefore they are lossless and yield a subset of
Ri.As a conclusion, every base relation can be computed from
V andC as stated in Eq. (4), and henceC is a complement of
V . Finally, by construction,C is monotonic, which completes
the proof. ��
Theorem 2.2. LetD,V , andC be as in Proposition 2.3. Then
C is minimal among all complements for which the computa-
tion of base relations is achieved as follows:

1. Joins are always performed along keys, i.e., are extension
joins, and

3 The superscriptllj indicates that this view contains tuples derived
due to lossless joins.

D. Laurent et al.: Monotonic complements for independent data warehouses 303

2. only complementary views and views contained in some
Vkey(R) are used.

Proof. Suppose thatC ′ is a complement withC ′ < C. By
definition of “<” there are viewsCRi ∈ C,C ′

Ri
∈ C ′ and

some database stated such thatC ′
Ri

(d) ⊂ CRi(d). In the
following let ri = Ri(d), ci = CRi(d), andc

′
i = C ′

Ri
(d).

SinceC ′ is supposed to be a complement, in order to compute
ri, the tuples inci\c′i have to be restored using views different
thanC ′

Ri
. Nevertheless, those tuples (or supertuples thereof)

are not contained in any view inV (by definition ofCRi).
According to the restrictions we have placed on computations
here, they have to be computed using (subsets or projections
of) joins using views in someVkey(R). However, all those joins

are exploited in the setRllj
i already. Thus, any set of viewsC ′

overD such thatC ′ < C is not a complement forV . ��
Since all joins involved in the computation of a base re-

lation are extension joins (cf. Eq. (4)), they can be performed
using efficient algorithms [16].

The following example demonstrates the role of con-
straints in reducing the size of a complement.

Example 2.5 (continued).Consider again the relation
schemesR1(A,B), R2(A,C), andR3(C,D,E) and views
V = {V1, V2, V3, V4, V5}. Assume first that there are no
constraints. Then the covers of all base relations are empty,
Eq. (3) reduces to Eq. (1), and we obtainR1 =df πAB(V1),
R2 =df πAC(V1), R3 =df πCDE(V2). Thus, the canon-
ical complementC = {CR1 , CR2 , CR3} is defined by
CR1 =df R1 \ πAB(V1), CR2 =df R2 \ πAC(V1), and
CR3 =df R3 \ πCDE(V2).

Assume now thatA is a key forR1,C is a key forR3,AC
is the trivial key forR2, and we have the following foreign
keys:πA(R2) ⊆ πA(R1) andπC(R2) ⊆ πC(R3). Then, as
seen previously, the covers forR1 andR2 are empty, whereas
the covers forR3 are given byCkey

R3
= {{V3, V4}}. Thus, we

obtainRllj
1 =df ∅, Rllj

2 =df ∅, andRllj
3 =df πCDE(V3 ��

V4).
Consequently, applying Proposition 2.3 the expressions

forCR1 andCR2 previously computed remain unchanged and
the expression forCR3 is now:

CR3 =df R3 \ (πCDE(V2) ∪ πCDE(V3 �� V4))

Note moreover that the join inV1 is now along a foreign
key which implies thatCR2 will be constantly empty. ��

2.3.3 Complexity results

We end the discussion on the computation of complements
with some complexity results. Propositions 2.2 and 2.3 pro-
vide expressions that form a minimal complementC of a set
of PSJ viewsV with respect to base relationsD in the ab-
sence (respectively, presence) of constraints. In the following,
we study the cost of actuallyconstructingC. Clearly, both
propositions yield exactly one complementary viewCR ∈ C
per base relationR ∈ D. Thus, givenR ∈ D we next analyze
the complexity to build complementary viewCR.

In the absence of constraints, according to Proposition 2.2,
CR is given byR \R, whereR is a union of|V | views. Thus,
the complexity to constructCR is linear in the size of the views
in V .

In the presence of constraints, according to Proposition
2.3,CR is given byR \ (R ∪ Rllj). Clearly, the complexity
of constructingR is exactly as in the case without constraints.
Thus, we turn to the construction ofRllj . To constructRllj , we
have to determine the set of all covers ofR, denoted byCkey

R .
For this purpose, we first look at each viewVi ∈ V exactly
once, to decide whether it contains the key ofR. Thus, we find
Vkey(R) in timeO(|V |). Next, the covers ofR have to be built
starting fromVkey(R).We recall that a cover ofR is a subsetY
of Vkey(R) with |Y | ≥ 2 such that: (a) every attribute ofR is
present in some view ofY ; and (b)Y is minimal with respect
to the above property. Now, condition (a) can be restated as
follows:

attr(R) ⊆
⋃

Vi∈Vkey(R)

attr(Vi)

Clearly, this alternative formulation shows that finding a cover
of R is an instance of the minimal-set-cover problem, which
is known to beNP-complete [18]. Consequently, the construc-
tion ofRllj , and hence the construction ofC, is NP-complete,
and we have:

Theorem 2.3. The computation of minimal complements in
the presence of constraints according to Proposition 2.3 is
NP-complete. ��

3 Warehouse independence

In this section, we consider the problem of rendering a ware-
house independent with respect to the underlying sources, and
we provide a solution to this problem based on the notion of
monotonic complement.

Definition 3.1. Let D = {R1, . . . , Rn}. A data warehouse
overD is any setV of (materialized) views overD. ��
We recall that a materialized view is a view whose state is
physically stored in a database.

Roughly speaking, warehouse independence with respect
to queries is the ability of the warehouse to answer queries
posed to the underlying sources from the warehouse views.
Similarly, warehouse independence with respect to updates
is the ability of the warehouse to maintain itself based only
on reported changes at the underlying sources (i.e., without
posing any queries to the underlying sources).

Awarehouse is calledindependentif it is independentwith
respect to queries and updates. Clearly, a warehouse is not in-
dependent in general. However, if appropriate auxiliary views
are added to the warehouse, then the augmented warehouse
becomes independent.

As we have explained in the Introduction, in practice a
warehouse doesnot need to be independent with respect to
every query and every update operation. It is sufficient that the
warehouse be independent with respect to those queries and
updates that are of interest to the warehouse users. Therefore,
the problem of warehouse independence that we consider in
this section can be stated as follows:

304 D. Laurent et al.: Monotonic complements for independent data warehouses

Given a data warehouseV = {V1, . . . , Vk} overD and a
set of query or update operationsOP = {op1, . . . , opm} over
D, determine a set of auxiliary viewsA = {A1, . . .,Al} such
that the warehouseW = V ∪ A is independent with respect
to any operation fromOP .

We note that the above problem statement includes as a
special case warehouses that need to be independent with re-
spect toall queries andall updates.

The solution that we propose in this section relies on the
notion of monotonic complement. Indeed, as we shall see, the
auxiliary views that provide a solution are in fact determined
based on a monotonic warehouse complement.

3.1 Basic definitions and properties

LetD = {R1, . . . , Rn} be a set of base relation names. In the
remainder of the paper,

• the termoperationoverD refers to either a query or to an
update overD and

• we assume that keys and foreign keys may be declared
overD.

In analogy to our notation for views, we define a query overD
by a declaration of the formq =df E, whereq is a name and
E is a relational expression overD, and we define an update
overD by a declaration of the formu =df U , whereu is a
name andU is an insertion, deletion, or modification in a base
relation occurring inD.

We emphasize that our approach is not restricted to a spe-
cific update language; instead, in accordance with the more
abstract point of view from [6], which is frequently adopted
in research on viewmaintenance, we simply represent updates
in terms of theirnet effectsor deltas. Thus, ifu is an update
overD, the effect ofu on an instanced of D is given by two
“delta” relations,∆+r and∆−r, for eachR ∈ D, where∆+r
and∆−r represent the tuples to be inserted into (respectively,
deleted from) the instanceR(d) to obtain the new instance of
R after execution ofu. Moreover, we assume that these delta
relations are the information that is shipped from sources to
the warehouse for maintenance purposes.

We next give the formal definitions of query- and update-
independent warehouses.

Definition 3.2. LetV beawarehouse overD, letq beaquery,
and letu an update overD.

• V is calledq-independentif there is a queryq overV such
that for all statesd ofD we haveq(d) = q(V (d)), i.e., if
the diagram of Fig.2 commutes.

• V is calledu-independentif there is an updateu such
that for all statesd of D we haveV (u(d)) = u(V (d))
andu can be computed using onlyu andV (d), i.e., if the
diagram of Fig.3 commutes.

LetOP be a set of operations overD. ThenV is calledOP -
independent, ifV is op-independent for allop in OP . ��

The following proposition states some useful properties
of query- and update-independence that follow immediately
from the above definition.

Proposition 3.1. Let V1 andV2 be two warehouses overD,
and letOP1 andOP2 be two sets of operations overD.

d
q

w = V(d)

q

q(d) = q(w)

V

Fig. 2. q-independence expressed as a commuting diagram

d

V

d’ = u(d)

V

w’ = V(d’) = u(w)w = V(d) u

u

Fig. 3.u-independence expressed as a commuting diagram

1. If V1 isOP1-independent and ifOP2 ⊆ OP1 holds, then
V1 isOP2-independent.

2. Assume thatOP1 contains queries only. IfV1 is OP1-
independent and ifV1 ⊆ V2, thenV2 isOP1-independent.

3. Assume thatOPi (i = 1, 2) contains queries only. IfVi is
OPi-independent (i = 1, 2), thenV1∪V2 is (OP1∪OP2)-
independent.

4. If Vi (i = 1, 2) isOP1-independent, thenV1 ∪ V2 isOP1-
independent.

5. Assume thatOP1 contains only queries with the same set
of attributes, and letq be the query defined byq =df⋃

qi∈OP1
qi. If V1 is OP1-independent, thenV1 is q-

independent. ��

It is important to note that Property 2 above does not hold if
OP1 contains updates and Property 3 above does not hold if
OP1 orOP2 contain updates.

For example, concerning Property 3, letD = {R1, R2},
and letV = {V1, V2}, whereV1 = {σφ(R1)} andV2 =
{R1 �� R2}. ConsiderOP1 = {u} whereu is an insertion
intoR1, andOP2 = {q} whereq is the queryR1 ✶ R2. Then
V1 isOP1-independent andV2 isOP2-independent. However,
V1 ∪V2 is not(OP1 ∪OP2)-independent, sinceq is notOP1-
independent. A similar argument can be given for Property
2.

However, as will be shown in the next section, if a ware-
houseV contains only PSJ views together with views from a
monotonic complementC, and ifV is independent with re-
spect to a given updateu, then adding toV any view fromC
preservesu-independence.

D. Laurent et al.: Monotonic complements for independent data warehouses 305

3.2 Warehouse independence based on monotonic
complements

We recall that, for the purposes of this paper, views are de-
fined by projection, selection and join, and complements are
monotonic complements. Thus, the problem that we consider
can now be stated more precisely as follows:

Let V be a data warehouse that consists of materialized
PSJ views overD, and letC be a monotonic complement
of V . Given a setOP = {op1, . . . , opm} of operations
overD, determine a setA of auxiliary views such that:
1. A ⊆ C,
2. the warehouseW = V ∪A isOP -independent,
3. A is minimal (with respect to set inclusion).

We provide a partial solution to this problem, proceeding as
follows:

• Auxiliary views for a single operation:
Given an operationopwe determine a setAop of auxiliary
views such thatV ∪Aop is op-independent. Moreover, we
show existence and uniqueness results concerning such a
minimal setAop (minimality with respect to set inclusion).

• Auxiliary views for a set of operations:
Let A =

⋃
op∈OP Aop. We show thatW = V ∪ A is

OP -independent.
• Complement reductions:
WhenOP consists of PSJ queries only, then we reduce
the size of complementary views inA (with respect to the
view ordering≤).

In the following sections we present the above solution in
detail.

3.2.1 Auxiliary views for a single operation

Given operationop, we determine a setAop of auxiliary views
such thatW = V ∪ Aop is op-independent by applying the
three steps shown in Table 2. We refer to these steps as the
independence steps.

Example 3.1.Referring back to Fig.1, we haveV = {Sold}
andC = {CEmp, CSale}. Suppose

op =df πclerk(Emp) ∩ πclerk(Sale) .

The independence steps apply as follows:

Step 1:The new warehouse isW = V ∪ C = {Sold, CEmp,
CSale}.

Step 2: op =df πclerk(Sold)
Step 3:As noCRi appears inop, we haveAop = ∅. ��
Example 3.2.Next, refer again to Fig.1 and supposeop =df

σitem=V CR(Sale). Now, the independence steps apply as fol-
lows:

Step 1:As above.
Step 2: op =df

πitem,clerk(σitem=V CR(Sold))∪σitem=V CR(CSale)
Step 3:AsCSale appears inop, whereasCEmp does not, we

haveAop = {CSale}. ��

Example 3.3.Finally, letD = {R}, let V =df σφ(R) be a
view overD, and consider the updateu =df insert∆r intoR.
Let r denote the initial state ofR.

Step 1:ByProposition 2.2wehave a complementC = {CR}
of {V }, whereCR =df R \ σφ(R). The view inverse
defined byC is given byR ≈ V ∪ CR. The new
warehouse isW = {V,CR}.

Step 2:We translate the update using the view inverse as fol-
lows:

u(w) = W (u(W−1(V (r), CR(r))))
= W (u(V (r) ∪ CR(r)))
= W (V (r) ∪ CR(r) ∪∆r)

AsW consists ofV andCR, we have:

W (V (r) ∪ CR(r) ∪∆r)
= 〈V ((V (r) ∪ CR(r) ∪∆r)),

CR((V (r) ∪ CR(r) ∪∆r))〉
= 〈σφ((σφ(r) ∪ CR(r) ∪∆r)),

CR((σφ(r) ∪ CR(r) ∪∆r))〉
= 〈σφ(r) ∪ σφ(∆r), CR((σφ(r) ∪ CR(r) ∪∆r))〉
= 〈σφ(r) ∪ σφ(∆r), CR(r) ∪ σ¬φ(∆r)〉

We remark that one has to observe thatCR(r) =
σ¬φ(r) andV (CR(r)) = CR(V (r)) = ∅ to obtain
the above equations. To summarize, we have:
u(w) = 〈V (r) ∪ σφ(∆r), CR(r) ∪ σ¬φ(∆r)〉

Step 3:As noCRi appears in the computation of the new state
for V (which is given byV (r) ∪ σφ(∆r)), we have
Au = ∅. ��

Theorem 3.1. LetV be a warehouse overD, and letC be a
monotonic complement ofV . Letop be an operation overD,
and letAop be the set of auxiliary views produced according
to the independence steps. ThenW = V ∪ Aop is an op-
independent warehouse.

Proof. See Appendix A.2. ��
It is important to note from Example 3.3 that the setAop is

not unique, mainly depending on how the expression in Step 2
is produced. Indeed, if onedoesnot notice thatV (CR(r)) = ∅,
then the setA′

u produced at Step 3 is{CR}. In this case,
althoughV ∪ {CR} is u-independent, it is not necessary to
storeCR.

The following theorem,however, states that there is always
a minimal subsetAop of C that ensuresop-independence. In
addition, this setAop is even unique if we apply the inde-
pendence steps to amonotoniccomplement and there are no
foreign keys declared overD.

Theorem 3.2. LetV beawarehouse overD, letC beamono-
tonic complement ofV , and letop be an operation overD.

1. Then there is a subsetAop ofC such that
(a) V ∪Aop is op-independent and
(b) Aop is minimal with respect to set inclusion, i.e., if we

remove any of the views inAop then (a) above does
not hold.

306 D. Laurent et al.: Monotonic complements for independent data warehouses

Table 2.The independence steps

Step 1: Find a monotonic complementC of V and add it toV , thus obtaining a new warehouseW = V ∪ C.
Note that we do not materializeC at this step; we just use it for subsequent computations.
In addition, note that according to Proposition 2.1, there is now a one-to-one mapping from database states to warehouse states.
We denote this mapping byW and its inverse byW −1.

Step 2: Translateop into a query or updateop over the warehouse as follows:
• If op is a query, then define the queryop overW by:

op(w) = op(W −1(w)), for all statesw of W .
• If op is an update, then define the updateop overW by:

op(w) = W (op(W −1(w))), for all statesw of W .
Step 3: DefineAop as follows:

• If op is a query, then defineAop to be the set ofCRi ’s appearing in the expression ofop.
• If op is an update, then defineAop to be the ofCRi ’s appearing in the maintenance expressions for views inV as given byop.

2. If there are no foreign keys declared overD then the min-
imal setAop mentioned in (1) is unique.

Proof. See Appendix A.3. ��
We point out that this theorem holds for warehouses de-

fined by PSJ views, but not for arbitrary views. First, the theo-
rem makes use of monotonic complements, and it is not clear
how monotonic complements can be computed for a larger
class of views. Second, the following examples shows that
there is no hope to preserve uniqueness when starting from ar-
bitrary views where a (monotonic) complement is derived in
an ad hoc manner or when starting from base relations where
arbitrary foreign keys may hold.

Example 3.4.As in Example 2.1 letD = {R1, R2}, where
attr(R1) = attr(R2), and consider a warehouseV =
{V1, V2} overD, whereV1 =df R1∪R2 andV2 =df R1∩R2.
Let op =df R1. Clearly, some auxiliary information is re-
quired for op-independence. LetC = {CR1 , CR2}, where
CR1 =df R1 \ V2 andCR2 =df R2 \ V2. It is easy to see that
C is a complement ofV .

However,{CR1} and{CR2} are also complements ofV .
As we have already seen in Example 2.1, we haveR1 ≈ V2 ∪
CR1 andR2 ≈ (V1 \ (V2 ∪ CR1)) ∪ V2, which shows that
{CR1} is a complement ofV ; the proof for{CR2} is similar.
Thus, to guaranteeop-independence, eitherR1 \V2 orR2 \V2
may be added toV .

Next, considerD from above and assume that we have
key(R1) = attr(R1) = attr(R2) = key(R2), as well as
the cyclic foreign keysπkey(R1)(R1) ⊆ πkey(R1)(R2) and
πkey(R1)(R2) ⊆ πkey(R1)(R1), which imply R1 ≈ R2.
Clearly, any query involving eitherR1 orR2 can be answered
from each individual base relation. Consequently, ifV ′ is a set
ofPSJviewsoverD,C ′ is amonotonic complement ofV ′, and
op is an operation overD such thatV ′ is notop-independent,
then we can either add the complementary view forR1 or the
complementary view forR2 to enforceop-independence.��

3.2.2 Auxiliary views for a set of operations

Now we turn to the general case whenOP consists not just
of one operation but of any set of operations. More precisely,
let OP be a set of operations overD, let V be a warehouse
overD, and letC be a monotonic complement ofV . Let
AOP =

⋃
op∈OP Aop, whereAop is the set of auxiliary views

produced by the independence steps for operationop ∈ OP .
We show thatV ∪AOP isOP -independent.

Lemma 3.1. Let V be a warehouse overD, and letC be a
monotonic complement ofV . Letop be an update overD, and
letAop be the subset ofC as determined by the independence
steps forop-independence.

Then for every subsetC ′ ofC, thewarehouseV ∪Aop∪C ′
is op-independent.

Proof. The proof proceeds exactly as the proof of
Theorem 3.1. ��
Theorem 3.3. LetV be a warehouse overD, and letC be a
monotonic complement ofV . LetOP be a set of operations
overD, and letAOP =

⋃
op∈OP Aop, whereAop is the set of

auxiliary views produced by the independence steps for oper-
ationop ∈ OP . ThenW = V ∪AOP is anOP -independent
warehouse.

Proof. We show the theorem in the casem = 2, from which
the general case follows. Ifop1 andop2 are both queries, then
the result follows immediately from Proposition 3.1 (3).

Assume now thatop1 is an update. ThenV ∪Aop1 is op1-
independent, and thus, by Lemma 3.1 (sinceAop2 contains
views from amonotonic complement),W = V ∪Aop1 ∪Aop2

isop1-independent.Assumemoreover thatop2 is a query, then
Proposition 3.1 (2) shows thatW is alsoop2-independent.
Assume now thatop2 is an update. SinceV ∪ Aop2 is op2-
independent, then, by Lemma 3.1, so isW . Thus we obtain
thatW isOP -independent, which terminates the proof.��

So far, we have shown that the independence steps (which
are formulated for individual queries or updates) can be ex-
ploited to guaranteeOP -independence for a set of operations
OP in a natural way.

As mentioned previously, the independence steps do not
always lead to minimal auxiliary sets. However, as a conse-
quence of Theorem 3.2 and Theorem 3.3 we can show that if
eachAop is a unique minimal set, then so is the setAOP .

Theorem 3.4. LetV be a warehouse overD, and letC be a
monotonic complement ofV . LetOP be a set of operations
overD, and letAOP =

⋃
op∈OP Aop, whereAop is the set

of auxiliary views produced by the independence steps for
operationop ∈ OP .

If, for everyop ∈ OP , Aop is the unique minimal subset
of C such thatV ∪ Aop is op-independent, thenAOP is the

D. Laurent et al.: Monotonic complements for independent data warehouses 307

unique minimal subset ofC such thatW = V ∪AOP isOP -
independent.

Proof. OP -independence follows from Theorem 3.3.
Concerningminimality and uniqueness, letA′

OP be amin-
imal subset ofC such thatW = V ∪A′

OP isOP -independent.
Assume that there is an auxiliary viewCR such thatCR ∈
AOP \A′

OP . Then there existsop ∈ OP such thatCR ∈ Aop;
moreover,V ∪A′

OP is op-independent. LetA′
op be a minimal

subset ofA′
OP that ensuresop-independence. Thus we have

CR ∈ Aop \ A′
op, showing thatAop andA′

op are different
sets. This is in contradiction to the uniqueness assumption.
Consequently, we haveAOP = A′

OP , which concludes the
proof. ��

3.2.3 Complement reductions

So far, we have concentrated on the question of guaranteeing
OP -independence by using aminimal subsetAOP of amono-
tonic complement. However,AOP might contain information
that is not essential forOP -independence. We illustrate this
observation for the queryσitem=V CR(Sale) whose indepen-
dence steps have been computed in Example 3.2.

Example 3.5.Recall from Fig.1 that we have base relations
Sale(item, clerk)andEmp(clerk, age), and thewarehouseV =
{Sold} whereSold =df Sale �� Emp. If op is the query
σitem=V CR(Sale), then the associated independence steps
give Aop = {CSale} whereCSale =df Sale \ πitem,clerk

(Sold).
In general, however,CSale contains tuples whereitem =

VCRdoes not hold, although these tuples are not necessary for
op-independence. In fact, a smaller amount of auxiliary infor-
mation,which is sufficientandnecessary forop-independence,
isC ′

Sale =df σitem=V CR(CSale). ��
To account for this observation, we now improve Theorem 3.3
using traditional push-down rules for query optimization.Any
PSJ queryop =df πZ(σφ(R1 �� . . . �� Rk)) is equivalent to
a union of PSJ expressions of the form

q =df πZ(σφ0(σφ1(R1) �� . . . �� σφk
(Rk))),

where

• φ0 is a conjunction of non-local atomic selection condi-
tions and

• φi is a conjunction of local atomic selection conditions,
1 ≤ i ≤ k.

Let qconj be the set of PSJ expressionsq for op. Then by
Proposition 3.1 (5), a warehouse isop-independent if it is
qconj-independent.

Moreover, we recall that ifop is a PSJ queryop =df

πZ(σφ(R1 �� . . . �� Rk)), then the setAop produced by
the independence steps is a subset of{CR1 , . . . , CRk

}, say
Aop = {CRi1

, . . . , CRil
} for l ≤ k. To simplify the following

presentation, we assume that the independence steps always
produce an auxiliary view for each base relation, where an
auxiliary view may be empty.

In the following proposition, we provide an optimized set
of auxiliary views for a PSJ query where the selection condi-
tion is a conjunction. Then, based on the above considerations,

we extend the result to a set of PSJ queries having any selec-
tion condition. To state our result, we need the operation of a
semijoin, defined as follows:ri � rj = πattr(Ri)(ri �� rj).

Proposition 3.2. LetV beawarehouseoverD, and letC bea
monotonic complement ofV . Letop =df πZ(σφ(R1 ✶ . . . ✶

Rk)) be a PSJ query overD whereφ = φ0 ∧φ1 ∧ . . .∧φk is a
conjunctive selection condition such thatφi is the conjunction
of all atomic conditions inφ related toRi (i = 1, . . . , k) and
φ0 is the conjunction of all non-local atomic conditions inφ.

LetAop = {CR1 , . . . , CRk
} be the set of auxiliary views

produced by the independence steps, and letC ′
Ri

(i = 1, 2,
. . . , k) be defined by:

C ′
Ri

=df σφi(CRi) �
(
σφ0

(
��ki=1 σφj (Rj)

))
Let A′

op = {C ′
R1
, . . . , C ′

Rk
}. ThenW = V ∪ A′

op is op-
independent.

Proof. The proof comes from the fact that we keep in each
auxiliary viewC ′

i only those tuples fromCi that (i) satisfy
the selection conditionφi and that(ii) participate in the join
in op. ��
Example 3.5 (continued).By Proposition 3.2, we obtain
C ′
Sale =df σitem=V CR(CSale). ��
Now, letop =df πZ(σφ(R1 ✶ . . . ✶ Rk)) be a PSJ query

whereφ is any selection condition. Then,op can be written as
op1∪. . .∪opl where everyopj is a PSJ querywith conjunctive
selection condition. Applying Proposition 3.2 above to every
opj , we obtain setsAj = {Cj

1 , . . . , C
j
k} such thatV ∪ Aj is

opj-independent. Let

A′
op =




l⋃
j=1

Cj
1 , . . . ,

l⋃
j=1

Cj
k


 .

By Proposition 3.1 (1,3),V ∪ A′
op is opj-independent, for

everyj = 1, . . . , l,which implies, by Proposition 3.1 (5), that
V ∪A′

op is op-independent.
Let us now considerOP = {op1, . . . , opm}, a set of PSJ

queries overD, and let us denote byA′
i the set of auxiliary

views associated toopi as obtained just above. By Proposi-
tion 3.1 (3),V ∪A′

OP whereA′
OP = A′

1 ∪ . . . ∪A′
m isOP -

independent. If we denote byC ′′
Ri

the union of all auxiliary
views inA′

OP which are subsets of the complementary view
CRi in a monotonic complementC of V , if we useA′′

OP to
denote the set of these union viewsC ′′

Ri
, then Proposition 3.1

implies thatV ∪A′′
OP isOP -independent. Therefore, we have

the following theorem which in conjunction with Proposition
3.2 shows that we are able to minimize the complementin
theory, according to our ordering of the views. Nevertheless,
the computation(and thus the maintenance of that minimal
complement) may still be expensive.

Theorem 3.5. LetV be a warehouse overD, and letC be a
monotonic complement ofV. LetOP be a set of PSJ queries
overD, and letA′′

OP be the set of auxiliary views as defined
above. ThenV ∪A′′

OP isOP -independent. ��
Example 3.6.Consider

D = {R(A,B), S(A,C), T (A,D)},

308 D. Laurent et al.: Monotonic complements for independent data warehouses

and a warehouseV = {V1, V2}, where
V1 =df πA,B(σC<0(R �� S)),
V2 =df σD≥0(T).

LetOP = {op1, op2, op3}, where
op1 =df σ(B=D)∨(A≤7)(R �� T),
op2 =df πA(σD>7(T)),
op3 =df πA,C(σB=5(R �� S)).

Then the canonical complement ofV isC = {CR, CS , CT }
whereCR =df R \ V1, CS =df S, andCT =df T \ V2
and it is easy to see thatA1 = {CR, CT }, A2 = ∅ (be-
causeσD>7(T) always gives a subset ofV2) andA3 = {CS}.
Therefore,AOP = {CR, CS , CT }. On the other hand, using
Theorem 3.5, we can reduce the size of all auxiliary views in
AOP as follows:

• First op1 is decomposed intoop11 =df σB=D(R �� T)
andop12 =df σA≤7(R) �� σA≤7(T) andop3 is written as
σB=5(R) �� S.

• Applying Proposition 3.2, we obtain:
–A′

11
= {CR � (σB=D(R �� T)),

CT � (σB=D(R �� T))}
–A′

12
= {σA≤7(CR) � (σA≤7(R) �� σA≤7(T)),

σA≤7(CT) � (σA≤7(R) �� σA≤7(T))}
–A′

2 = ∅, sinceA2 is empty as well
–A′

3 = {CS � (σB=5(R) �� S)}.
• Therefore,A′′

OP = {C ′′
1 , C

′′
2 , C

′′
3 } is defined by:

C ′′
1 =df (CR � (σB=D(R �� T)))

∪ (σA≤7(CR) � (σA≤7(R) �� σA≤7(T)))
C ′′

2 =df CS � (σB=5(R) �� S)
C ′′

3 =df (CT � (σB=D(R �� T)))
∪ (σA≤7(CT) � (σA≤7(R) �� σA≤7(T)))

��

3.3 A detailed example

In this section, wework out a detailed example, which demon-
strates the following strengths of our approach:

• Computation of complements forsetsof views.
• Computation ofminimalcomplements by taking keys and
foreign keys into account.

• OP -Independence with respect toarbitrary sets of oper-
ationsOP .

• Derivation of aminimal set of auxiliary views to ensure
OP -independence.

The example that we use builds on our running example of
Fig.1 and considers a database schemeD = {Emp,Catalog,
Sale}, where
• attr(Emp) = {clerk, age},
• attr(Catalog) = {item, price, description},
• attr(Sale) = {item, clerk, date, amount},
• key(Emp) = {clerk},
• key(Catalog) = {item},

• key(Sale) = {item, clerk, date},
• πitem(Sale) ⊆ πitem(Catalog), and
• πclerk(Sale) ⊆ πclerk(Emp).

We assume a warehouseV = {ItemDesc,GoodSales,
Y oungSales} overD whose views are defined as follows:

ItemDesc =df πitem,description(Catalog)
GoodSales =df πitem,clerk,date,amount,price(

σprice>1000(Sale �� Catalog))
Y oungSales =df σage<30(Sale �� Emp)

We want this warehouse to be independent with respect to
three queries (op1, op2, andop3) and two updates (op4 and
op5, which are specified in terms of delta relations) defined as
follows:

op1 =df πclerk,price(σprice>10000(Sale �� Catalog))
op2 =df πitem,price(Catalog)
op3 =df

πclerk(Emp) \ (πclerk(σprice>10000(Sale �� Catalog)))
op4 =df insert∆e intoEmp

op5 =df insert∆s into Sale

In other words, we want the warehouseV to be OP -
independent whereOP = {op1, op2, op3, op4, op5}. To this
end we apply the independence steps as follows:

Step 1.We apply Proposition 2.3 to obtain a monotonic com-
plementC of V with respect toD. Note that, according to
Theorem 2.2,C is minimal.

Emp =df πattr(Emp)(Y oungSales)

Empllj =df ∅
Catalog =df ∅

Catalogllj =df πattr(Catalog)(GoodSales �� ItemDesc)

Sale =df πattr(Sale)(Y oungSales)
∪ πattr(Sale)(GoodSales)

Salellj =df ∅
Therefore, we obtain:

CEmp =df Emp \ Emp

CCatalog =df Catalog \ Catalogllj
CSale =df Sale \ Sale

Thus,C = {CEmp, CCatalog, CSale} is amonotonicminimal
complement ofV and has the following view inverse:

Emp ≈ CEmp ∪ Emp

Catalog ≈ CCatalog ∪ Catalogllj

Sale ≈ CSale ∪ Sale

We remark that the size ofCCatalog is reduced by exploit-
ing a lossless join inCatalogllj , which is possible due to
key constraints. Furthermore, the computation ofCSale takes
advantage of multiple views involvingSale.

D. Laurent et al.: Monotonic complements for independent data warehouses 309

Step 2.One by one, we translate the operations occurring in
OP using the view inverses associated withC.

Concerningop1 we have:

op1 =df πclerk,price(σprice>10000(Sale �� Catalog))

≈ πclerk,price(σprice>10000((CSale ∪ Sale)

�� (CCatalog ∪ Catalogllj)))

≈ πclerk,price((CSale ∪ Sale)

�� σprice>10000(CCatalog ∪ Catalogllj))

≈ πclerk,price((CSale ∪ Sale)

�� σprice>10000(Catalogllj))

≈ πclerk,price(Sale �� σprice>10000(Catalogllj))
≈ πclerk,price((πattr(Sale)(Y oungSales)

∪ πattr(Sale)(GoodSales))

�� σprice>10000(Catalogllj))
≈ πclerk,price(πattr(Sale)(GoodSales)

�� σprice>10000(Catalogllj))
≈ πclerk,price(σprice>10000(GoodSales))

Therefore, we obtain

op1 =df πclerk,price(σprice>10000(GoodSales)),

which shows that no complementary view is necessary to
rewriteop1 overV ∪C.As a consequence, we haveAop1 = ∅.

Concerningop2 we have:

op2 =df πitem,price(Catalog)

≈ πitem,price(CCatalog ∪ Catalogllj)

≈ πitem,price(CCatalog) ∪ πitem,price(Catalogllj)
≈ πitem,price(CCatalog) ∪ πitem,price(

πattr(Catalog)(GoodSales �� ItemDesc))

Therefore, we obtain

op2 =df πitem,price(CCatalog) ∪ πitem,price(
πattr(Catalog)(GoodSales �� ItemDesc)),

which shows thatCCatalog is necessary to rewriteop2 over
V ∪ C. As a consequence, we haveAop2 = {CCatalog}.

Concerningop3 we have:

op3 =df πclerk(Emp) \
(πclerk(σprice>10000(Sale �� Catalog)))

≈ πclerk(CEmp ∪ Emp) \
πclerk(σprice>10000((CSale ∪ Sale)

�� (CCatalog ∪ Catalogllj)))

≈ πclerk(CEmp ∪ Emp) \
πclerk(σprice>10000(GoodSales))

≈ (πclerk(CEmp) \
πclerk(σprice>10000(GoodSales)))

∪ (πclerk(Emp) \
πclerk(σprice>10000(GoodSales)))

≈ (πclerk(CEmp) \
πclerk(σprice>10000(GoodSales)))

∪ (πclerk(πattr(Emp)(Y oungSales)) \
πclerk(σprice>10000(GoodSales)))

Therefore, we obtain

op3 =df (πclerk(CEmp) \
πclerk(σprice>10000(GoodSales)))

∪ (πclerk(πattr(Emp)(Y oungSales)) \
πclerk(σprice>10000(GoodSales))),

which shows thatCEmp is necessary to rewriteop3 overV ∪C.
As a consequence, we haveAop3 = {CEmp}.

Concerningop4 =df insert∆e intoEmp we are now go-
ing to derive the translated updateop4 thatmaintains theware-
house views in response toop4. We note thatEmp occurs
in the warehouse viewY oungSales, but not inItemDesc
or GoodSales; moreover,Emp occurs in the complemen-
tary viewsCEmp andCSale, but not inCCatalog. Therefore,
Y oungSales,CEmp, andCSale are the only views that could
be affected byop4. Consequently, we proceed to derive main-
tenance expressions for these views. Letd be a state ofD, and
let d′ be the new state after execution ofop4. Then we have:

Y oungSales(d′)
= σage<30(Sale �� Emp)(d′)
= σage<30(Sale(d′) �� Emp(d′))
= σage<30(Sale(d) �� (Emp(d) ∪∆e))
= σage<30(Sale(d) �� Emp(d))

∪ σage<30(Sale(d) �� ∆e)
= Y oungSales(d) ∪ Sale(d) �� σage<30(∆e)
= Y oungSales(d)

We note that the last of the above equalities holds due to the
foreignkeybetweenSaleandEmp: nonewly inserted tuple in
Emp can join with a previously existing tuple inSale; hence,
σage<30(Sale(d) �� ∆e) is always empty. Consequently, the
state ofY oungSales is not affected byop4; moreover, as no
complementary view is necessary to maintain the views inV ,
we obtainAop4 = ∅.

Since we know thatY oungSales andGoodSales are
not affected byop4, it is easy to see thatCSale ≈ Sale \
(πattr(Sale)(Y oungSales)∪πattr(Sale)(GoodSales)) is not
affected byop4 either.

The new state forCEmp in response toop4 is now com-
puted as follows:

CEmp(d′)

= (Emp \ Emp)(d′)

= Emp(d′) \ Emp(d′)

= (Emp(d) ∪∆e) \ Emp(d′)
= (Emp(d) ∪∆e) \ πattr(Emp)(Y oungSales)(d′)
= (Emp(d) ∪∆e) \ πattr(Emp)(Y oungSales)(d)
= (Emp(d) \ πattr(Emp)(Y oungSales)(d))

∪ (∆e \ πattr(Emp)(Y oungSales)(d))
= CEmp(d) ∪ (∆e \ πattr(Emp)(Y oungSales)(d))
= CEmp(d) ∪∆e

310 D. Laurent et al.: Monotonic complements for independent data warehouses

We note that the last of the above equalities holds due to the
key constraint onEmp and the foreign key betweenEmp
andSale: these constraints imply that no newly inserted tu-
ple in ∆e can already be contained in the join involved in
Y oungSales.

To summarize, the only view inW that needs to be main-
tained in response toop4 is CEmp. Thus,op4 is defined by
CEmp(d′) = CEmp(d) ∪∆e.

Concerningop5 =df insert∆s into Sale we note that
Sale occurs in the warehouse viewsGoodSales and
Y oungSales as well as in all complementary views. There-
fore, op5 is defined by maintenance expressions for these
views, which we derive next. Letd be a state ofD, and let
d′ be the new state after execution ofop5. Similar computa-
tions as above give the following:

GoodSales(d′)
= GoodSales(d) ∪ πattr(GoodSales)(σprice>1000(

∆s �� (CCatalog(d) ∪ Catalogllj(d)))) (5)

Y oungSales(d′)
= Y oungSales(d) ∪ σage<30(

∆s �� (CEmp(d) ∪ Emp(d))) (6)

The above equations show thatCCatalog is necessary to de-
termine the new state ofGoodSales and thatCEmp is nec-
essary forY oungSales. Consequently, we obtainAop5 =
{CCatalog, CEmp}.

Concerning the maintenance expressions forC, we have:

CEmp(d′)
= CEmp(d) \ πattr(Emp)(σage<30(

∆s �� (CEmp(d) ∪ Emp(d)))) (7)

CCatalog(d′)
= Catalog(d) \ (πattr(Catalog)((GoodSales(d)

∪ πattr(GoodSales)(σprice>1000

(∆s �� (CCatalog(d) ∪ Catalogllj(d)))))
�� ItemDesc(d))) (8)

CSale(d′)
= (Sale(d) ∪∆s) \ (πattr(Sale)(GoodSales(d)

∪ πattr(GoodSales)(σprice>1000(

∆s �� (CCatalog(d) ∪ Catalogllj(d)))))
∪ πattr(Sale)(Y oungSales(d)

∪ σage<30(∆s �� (CEmp(d) ∪ Emp(d))))) (9)

To summarize,op5 is defined by insertions intoGoodSales
andY oungSales as stated by Eqs. (5) and (6) above, respec-
tively, and updates forCEmp, CCatalog, andCSale as stated
by Eqs. (7), (8), and (9) above, respectively.

Step 3. The results of Step 2 implyAop1 = ∅, Aop2 =
{CCatalog}, Aop3 = {CEmp}, Aop4 = ∅, andAop5 =

{CEmp, CCatalog}. Thus, Theorem 3.3 implies thatV ∪
AOP is an OP -independent warehouse, whereAOP =
{CEmp, CCatalog}. In particular, no auxiliary information
concerning base relationSale is necessary. Finally, it is easy
to see thatAopi

is a unique minimal subset ofC that ensures
opi independence,i = 1, . . . , 5. Hence, Theorem 3.4 asserts
thatAOP is the unique minimal subset ofC that ensuresOP -
independence.

Finally, we emphasize that modifications can be handled
by the independence steps as well. Consider the following
modification:

op6 =df updateSale set amount =x wherey

Werecall that thewarehouseunder consideration isnotupdate-
independent with respect to insertions intoSale (as the inde-
pendence steps produceAop5 = {CEmp, CCatalog} for the
insertion intoSale specified byop5). Nevertheless, the ware-
house isop6-independent, as we will indicate next.

Let d be a state ofD, and letd′ be the new state after
execution ofop6. Sinceop6 is a modification toSale, we
haveSale(d′) = (Sale(d) ∪∆+s) \∆−s, where every item
that occurs in∆+s or∆−s must also occur (with a different
amount) inSale(d).

To simplify notation letG = attr(GoodSales) andφ =
price > 1000. Then we have:

GoodSales(d′) = πG(σφ(Sale(d′) �� Catalog(d′)))

= πG(σφ(((Sale(d) ∪∆+s) \∆−s) �� Catalog(d)))

= GoodSales(d) ∪ πG(σφ(∆+s �� Catalog(d)))

\ πG(σφ(∆−s �� Catalog(d)))

Now, since every item that occurs in∆+s or∆−s also occurs
in Sale(d), we know that all tuples in∆+s and∆−s that con-
tribute toGoodSales(d′) have join partners inCatalog(d).
Moreover,GoodSales(d) contains the keyitem for all join
partners that satisfy the selection conditionprice > 1000.
Therefore, usingSoldItem =df πitem,price(GoodSales) we
obtain

GoodSales(d′) = GoodSales(d)
∪ πG(σφ(∆+s �� SoldItem(d)))

\ πG(σφ(∆−s �� SoldItem(d))),

which can be computed from warehouse views and update
information. Consequently, no complementary information is
necessary to maintainGoodSales. Similar computations ap-
ply to view Y oungSales, which can be maintained with-
out complementary views as well, andSale does not oc-
cur in ItemDesc, which shows that the warehouse isop6-
independent.

Weend this sectionwith some remarks concerning the cost
of performing the independence steps. First, all computations
involve schema manipulations only and require no access to
datawhatsoever. Second, the independence steps require some
skill in the manipulation of relational expressions. However,
we would like to emphasize in this respect that performing
the independence steps is a one-shot operation, required only
at the design phase, and performed by the data warehouse
designer who presumably does have such skills.

D. Laurent et al.: Monotonic complements for independent data warehouses 311

Moreover, we note that throughout the above examples
we have given canonical rewritings in our context. In general,
the problem of finding such rewritings relates to “answering
queries using views” ([8,20,26]) a very difficult problem in
general. Clearly, whatever optimization results exist or will
exist in that area can be used in our case as well. However,
this topic in itself, lies outside the scope of the present paper.

4 Related work

We next review work that is related to ours. The notion of a
warehouse complement we use here derives directly from the
notion of view complement first introduced in [4]. However,
view complements were used in [4] to translate updates on
the view back to updates on the underlying database. Here we
use complements to translate in the opposite direction, i.e., to
translate queries and updates on the database to queries and
updates on the view (i.e., on the warehouse).

The computation of complements for views defined by re-
lational algebra was first discussed in [9]. The approach of [9]
is restricted to the setting of a single viewdefinedbyprojection
of a single relation, where arbitrary functional dependencies
may hold. The key result of [9] states that even in this simple
setting, finding a minimal complement (where a “minimal”
complement is a projection with as few attributes as possible)
is NP-complete. This result does not carry over to our setting,
since: (a) we do not consider arbitrary functional dependen-
cies; (b) our complements and inverses have a different form;
and (c) our notion of minimality is completely different. On
the other hand, our approach allows to compute complements
for setsof views defined by projection, selection, and join, and
the results of Sect.2.3.3 show that the computation of com-
plementary views is, roughly, exponential in the number of
warehouse views.

The present paper is an extension of [19], where we have
shown how to compute complements for sets of views defined
by projection, selection, and join in the presence of key and
inclusion dependencies. Moreover in [19], we have defined
the notion of warehouse independence, and we have shown
that independence with respect to all queries and all updates
can be achieved by adding a complement to a warehouse. In
this paper we improve over [19] in the following important
and nontrivial points:

1. We define and study independence forarbitrary sets of
queries and updates.

2. We provide independence steps to compute aminimalset
of auxiliary views for rendering the warehouse indepen-
dent.

Concerning the complements computed here and in [19], we
finally remark that the approach presented in [3] shows how
to exploit these complements to make temporal views over
non-temporal sources self-maintainable.

We next clarify some terminology concerning self-
maintainability and independence. The idea of maintaining
views without looking at the underlying base relations goes
back at least to [5]. The problems addressed in [5] are the fol-
lowing ones. Consider a single materialized viewV over base
relationsD. Given a base relation update, determine condi-
tions under which the update cannot affect the current instance

of V , and determine conditions under which the effects of the
update on the current instance ofV can be computed without
base relation access. Updates of the former kind are called
irrelevant updateswhile updates of the latter kind are called
autonomously computablein [5]. The main results of [5] are
necessary and sufficient conditions characterizing both kinds
of updates for a given viewV , which is defined using the
relational operations selection, projection, and join.

We note that an irrelevant update is always autonomously
computable, but the converse is clearly not true. Moreover,
it is easy to see that a view isu-independent for an update
u if and only if u is autonomously computable onV in the
sense of [5]. Hence, the work of [5] can be seen as a precursor
for research on self-maintainability, which has been identified
as a desirable warehouse property in [12]. The work of [17]
presents algorithms that decide whether a given set of views
is self-maintainable or not.

Furthermore, we observe that irrelevant updates are stud-
ied in detail in [21]. In [21] a query (given as datalog program)
is calledindependentof an update (specified as another data-
log program), if the update does not change the answer to the
query, i.e., if the update is irrelevant in the sense of [5]. Inde-
pendence is reduced to the equivalence problem for datalog
programs, andquery-reachability anduniformequivalenceare
identified as sub-classes of equivalence, which provide decid-
able conditions for independence.

In the warehousing context, the results of [21] could be
exploited in a filtering step at the source layer, which detects
irrelevant updates that cannot have any effect on the ware-
house state and that consequently do not need to be sent to
the warehouse. Only those updates that can possibly affect the
warehouse state need then to be shipped to and integrated into
the warehouse. Clearly, in such a scenario it is still desirable
to make the data warehouse self-maintainable.

The first technique tomake a given warehouse self-
maintainable by using “auxiliary” views seems to be the one
presented in [25]. The approach followed in [25] is to first
determine a set{E1, . . . , En} of so-calledmaintenance ex-
pressions(assuming a single materialized viewV) and then
to proceed in either of two different ways:

1. From the maintenance expressionsE1, . . . , En, extract
auxiliary views that, together with the warehouse view,
are self-maintainable with respect to updates.

2. Given the warehouse viewV , “guess” a set of auxiliary
views{A1, . . . , Al} and then
• check if the maintenance expressionsE1, . . . , En can
be computed fromW = {V,A1, . . . , Al}, using an al-
gorithm to determinewhether a query can be answered
using a set of views [8,20,26] and

• check if the views{A1, . . . , Al} can be maintained
fromW .

The work reported in [2] is an extension of [25] towards the
self-maintainability of a singlegeneralized PSJview, i.e., a
PSJ expression, where the projection may include group-by
and aggregate attributes.

In fact, our approach is the “opposite” of that of [2,25], in
the sense that we first determine the auxiliary views and then
compute themaintenance expressions. In doing so, we assume
anynumber of materialized views – not just a single view as
in [2,25].

312 D. Laurent et al.: Monotonic complements for independent data warehouses

A different approach towards self-maintainability of a sin-
gle PSJ view is proposed in [29]: here, data sources are rep-
resented using tables with variables, whereas the warehouse
as well as auxiliary views are modeled as conditional tables.
Then updates are perceived as assignments of values to vari-
ables, which allows to compute new warehouse states using
the conditional (warehouse) tables relative to new variable as-
signments. In contrast to our work, the results of [29] are only
applicable in warehouse environments, where source relations
may contain variables and thewarehouse itself is a conditional
database.

Before we continue to present further related work, we
would like to recall that a PSJ view is, in general, not self-
maintainable with respect to deletions [12]. A sufficient con-
dition for self-maintainability (with respect to deletions) of
PSJ views is that the view preserves a key of each base re-
lation occurring in the view definition [12]. Indeed, this ob-
servation is already true for views involving projections only:
E.g., given a relation nameR with attr(R) = {A,B} and
a view V =df πA(R), it is easy to see thatV is only self-
maintainable, ifA is the key ofR.

In fact, the algorithm for self-maintainability of [25] de-
rives one auxiliary view per base relation, and the projection
involved in this view includes the key. However, this algorithm
alwaysproduces one non-empty auxiliary view per base re-
lation – even if the original view is self-maintainable without
further information. Thus, the claim of [25] that the set of
auxiliary views produced by this algorithm is minimal (with
respect to set inclusion), is clearly false.

Next, [22] claims to be an extension of [25] towards self-
maintainability ofsetsof PSJ views. However, this approach
does not consider keys and foreign keys; hence, it falls short of
including a key into the list of projected attributes in auxiliary
views.As a consequence, the algorithm presented in [22] fails
to make views of the formπX(R) self-maintainable, whenX
does not include a key ofR. Moreover (similarly to [25]), the
algorithm produces auxiliary information, even if the original
set of views is already self-maintainable.

The approach described in [23] considers the problem of
deriving auxiliary views to ensure self-maintainability of a
single view that is defined using relational algebra with ag-
gregation. In this approach, a view is represented using an
expression tree, where: (a) the base relations are leafs; (b) pro-
jections and selections are associated to edges; and (c) binary
operations as well as group-by operations are inner nodes.
Based on this representation, the authors compute auxiliary
views in such a way that a view maintenance algorithm can
determine the “exact” changes to each subexpression of the
view bottom-up in the expression tree.

The approach of [23] should be improved with respect
to the following points: first, similarly to [22], the proposed
view maintenance algorithm is based on the assumption that
changes for subexpressions of the formπX(σφ(R)) are al-
ways available, which is not true in general. Second, in order
to determine the auxiliary relations, the authors assume that
key constraints are given for theinner nodesof an expression
tree.However, [23] doesnot contain anyhint of how these keys
could be obtained. Finally, concerning self-maintainability of
a join of two base relations, according to [23] both base re-
lations are materialized at the warehouse. However, our ap-
proach shows that the complement is: (a) sufficient for update

andquery independence; and (b) strictly smaller than the base
relations (consider the auxiliary views defined in Fig. 1).

5 Concluding remarks and future work

We have presented an approach for specifying independent
warehouses, i.e., warehouses that are independent of data
sources in answering source queriesand in processing source
updates. The key idea behind our approach is setting up a
one-to-onemapping from database states to warehouse states,
so that the warehouse can compute all base relations, if nec-
essary. We have seen that this idea can be implemented by
adding a complement to the warehouse, and we have given an
algorithmic approach for computing monotonic complements
for warehouses defined by PSJ expressions from databases
containing keys and foreign keys.

We remark that the complementary relations{CR1 , . . .,
CRn} given by Proposition 2.3, or the subset thereof pro-
duced by the independence steps, areall the information we
need for warehouse independence. If the queries to base re-
lations required for the computation of any specificCRi can
be answered in reasonable time, then we do not need to main-
tain CRi at the warehouse; we simply store the expression
for computing it. Otherwise, we have to maintainCRi at the
warehouse.

Next, it is current practice to build warehousing environ-
ments on top of star schemes around fact and dimension ta-
bles which integrate information from various sources [7,28].
If we assume all sources to be relational, then each fact table
can be regarded as a PSJ view (or unions thereof) and main-
tained using our approach. For example, consider a business
warehousewhereparts fromdifferent suppliers are sold to cus-
tomers according to their orders (similar to the onemodeled in
the TPC-H decision support benchmark [30]). This business
could be distributed over several locations, each running its
own operational database. Now, the warehouse maintains:

a) dimension tables to store data on locations, customer, and
supplier and;

b) fact tables (including foreign keys from the dimension
tables) for orders and sales which are extracted by PSJ
queries from the sources and integrated by union.

Although views including union cannot be used for computing
complements in general, the presence of foreign keys allows
us to uniquely determine the origin of each tuple in a fact table
by selecting on the dimension attributes. Thus, we can even
exploit fact tables, that are integrated by union, for computing
the warehouse complement. As a result, star schemes allow
for an even wider applicability of our approach.

Furthermore, as mentioned in the Introduction, OLAP is
a major application domain for data warehousing, where ana-
lysts execute complex queries involving aggregate views de-
fined on fact tables. Although aggregate queries cannot be
exploited when computing complements, they donot restrict
the applicability of our approach either: the fact tables can be
maintained as described above using PSJ views, whereas view
maintenance algorithms for aggregate queries, e.g., [10,15,
24], can be used to maintain materialized aggregate queries.

Several lines of future research are envisaged. The com-
putation of minimal complements needs to be studied in more

D. Laurent et al.: Monotonic complements for independent data warehouses 313

depth. In this paper we have assumed that each view in the
complement has the same set of attributes as some base re-
lation. Relaxing this restriction may lead to smaller comple-
ments.Moreover, the computation of complements for a larger
class of views is still an open problem. However, Example 3.4
raises the question for which extensions of views and comple-
ments the uniqueness and minimality results of Theorem 3.2
and Theorem 3.4 still hold.

Finally, in the present paper we have studied the concepts
involved in warehouse independence, and we have proposed
the independence steps as an algorithmic approach to establish
independence. A single algorithm, however, which takes as
input: (a) a warehouseV ; and (b) a set of operationsOP , and
which produces as output: (a) a set of auxiliary viewsA such
that V ∪ A is OP -independent; and (b) a set of translated
warehouse operations, needs still to be devised.

Acknowledgements.The authors would like to thank the reviewers
whose really careful reading and constructive remarks have lead to a
significant improvement of the presentation.

References

1. Abiteboul S., Hull R., Vianu V. Foundations of databases.
Addison-Wesley, Reading, Mass., USA, 1995

2. AkindeM.O., JensenO.G., B¨ohlenM.H.Minimizing detail data
in data warehouses. Proc. 6th EDBT 1998, pp 293–307

3. de Amo S., Halfeld Ferrari Alves M. Efficient maintenance of
temporal data warehouses. Proc. IDEAS 2000, pp 188–196

4. Bancilhon F., Spyratos N. Update semantics of relational views.
ACM TODS 6:557–575, 1981

5. Blakeley J.A., Coburn N., Larson P. Updating derived rela-
tions: detecting irrelevant and autonomously computable up-
dates. ACM TODS 14:369–400, 1989

6. Blakeley J.A., Larson P., Tompa F.W. Efficiently updating ma-
terialized views. Proc. ACM SIGMOD 1986, pp 61–71

7. Chaudhuri S., Dayal U. An overview of data warehousing and
OLAP technologies. Proc. ACM SIGMOD 1997, pp 65–74

8. Chaudhuri S., Krishnamurthy R., Potamianos S., Shim K. Opti-
mizing queries with materialized views. Proc. 11th ICDE 1995,
pp 190–200

9. Cosmadakis S.S., Papadimitriou C.H. Updates of relational
views. JACM 31:742–760, 1984

10. Griffin T., Libkin L. Incremental maintenance of views with
duplicates. Proc. ACM SIGMOD 1995, pp 328–339

11. Griffin T., Libkin L., Trickey H. An improved algorithm for
the incremental recomputation of active relational expressions.
IEEE TKDE 9:508–511, 1997

12. Gupta A., Jagadish H.V., Mumick I.S. Data integration using
self-maintainable views. Technical Memorandum, AT&T Bell
Laboratories, November 1994

13. Gupta A., Mumick I.S. Maintenance of materialized views:
problems, techniques, and applications. IEEE Data Eng Bull
18(2):3–18, 1995

14. Gupta A., Mumick I.S. (eds) Materialized views: techniques,
implementations, and applications. TheMIT Press, Cambridge,
Mass., USA, 1999

15. Gupta A., Mumick I.S., Subrahmanian V.S. Maintaining views
incrementally. Proc. ACM SIGMOD 1993, pp 157–167

16. Honeyman P. Extension joins. Proc. 6th VLDB 1980, pp 239–
244

17. Huyn N. Multiple-view self-maintenance in data warehousing
environments. Proc. 23rd VLDB 1997, pp 26–35

18. Karp R.M. Reducibility among combinatorial problems. In:
Complexity of computer computations. Plenum, New York,
1972, pp 85–103

19. Laurent D., Lechtenb¨orger J., Spyratos N., Vossen G. Comple-
ments for data warehouses. Proc. 15th ICDE 1999, pp 490–499

20. Levy A.Y., Mendelzon A., Sagiv Y., Srivastava D. Answering
queries using views. Proc. 14th ACM PODS 1995, pp 95–104

21. LevyA.Y., SagivY. Queries independent of updates. Proc. 19th
VLDB 1993, pp 171–181

22. Liang W., Li H., Wang H., Orlowska M.E. Making multiple
views self-maintainable in a data warehouse. DKE 30:121–134,
1999

23. Mohania M.K., Kambayashi Y. Making aggregate views self-
maintainable. DKE 32:87–109, 2000

24. Mumick I.S.,QuassD.,MumickB.S.Maintenanceofdatacubes
andsummary tables inawarehouse.Proc.ACMSIGMOD1997,
pp 100–111

25. Quass D., GuptaA., Mumick I.S.,Widom J. Making views self-
maintainable for data warehousing. Proc. PDIS 1996

26. Rajaraman A., Sagiv Y., Ullman J.D. Answering queries using
templates with binding patterns. Proc. 14th ACM PODS 1995,
pp 95–104

27. SagivY.,Yannakakis M. Equivalences among relational expres-
sions with the union and difference operators. JACM 27:633–
655, 1980

28. Sen A., Jacob V.S. (eds) Industrial-strength data warehousing.
CACM 41(9):28–69 1998

29. Shu H. View maintenance using conditional tables. Proc. 5th
DOOD 1997, Lecture Notes in Computer Sciance, vol. 1341.
Springer, Berlin Heidelberg NewYork, 1997, pp. 67–84

30. Transaction Processing Council. TPC Benchmark(tm) H (Deci-
sion Support), Standard Specification, Revision 1.2.1. San Jose,
1999.Available on theweb underURLhttp:// www.tpc.org/tpch

31. Ullman J.D. Principles of database and knowledge-base sys-
tems, vol I. Computer Science, NewYork, 1988

32. Vossen G. Data models, database languages, and databaseman-
agement systems.Addison-Wesley, Reading,Mass., USA, 1991

33. Widom J. (ed) Special issue on materialized views and data
warehousing. IEEE Data Eng Bull 18(2), 1995

34. Widom J. Research problems in data warehousing. Proc. 4th
CIKM 1995

35. ZhugeY., Garcia-Molina H., Hammer J., Widom J. View main-
tenance in a warehousing environment. Proc. ACM SIGMOD
1995, pp 316–327

36. ZhugeY., Garcia-Molina H.,Wiener J.L. Multiple view consis-
tency for data warehousing. Proc. 13th ICDE 1997, pp 289–300

A Appendix

A.1 Proof of Theorem 2.1

Theorem 2.1.Let V = {V1, . . . , Vk} be a set of SJ views
overD. Then the canonical complement ofV is a minimal
complement.

Proof. Let C = {CR1 , . . . , CRn} be the canonical comple-
ment ofV , and consider a set of viewsC ′ = {C ′

R1
, . . .,C ′

Rn
}

such thatC ′ < C, i.e., wehaveC ′
Ri

(d) ⊆ CRi(d) for all states
d andi ∈ [1, n], and there is a stated0 = 〈r1, . . . , rn〉 such
thatC ′

Ri
(d0) � CRi

(d0) for somei ∈ [1, n]. For the sake of
readability, we assumei = 1 andC ′

Rj
≈ CRj for j ∈ [2, n].

314 D. Laurent et al.: Monotonic complements for independent data warehouses

(The proof can easily be adapted to the case whereC ′ con-
tains multiple complementary views that are strictly smaller
than their counterparts inC.) We proceed by showing thatC ′
is not a complement ofV with respect toD.

Consider the sequence of states(dj)j≥0, wheredj =
〈C ′

R1
(dj−1) ∪ R1(d0), r2, . . . , rn〉 for j ≥ 1. Let dr be the

representative state forV andd0. We observe thatR(dr) ⊆
R(dj) ⊆ R(d0). Hence, Lemma 2.1 (3) impliesV (dj) =
V (d0) for j ≥ 0.

Moreover, the sequencer(j)1 of relations overR1 defined

by r(j)1 = R1(dj) is monotonically decreasing: Recall that for
j ≥ 0 we haveV (dj) = V (d0). Hence, we haveCR1(dj) =
C ′
R1

(dj−1). As we assumeC ′ < C, we find C ′
R1

(dj) ⊆
CR1(dj) = C ′

R1
(dj−1), i.e.,C ′

R1
(dj) ⊆ C ′

R1
(dj−1).

By monotonicity,r(j)1 has a limit. This implies the exis-

tence of somel > 0 such thatr(l+1)
1 = r

(l)
1 � r

(l−1)
1 , which

in turn results inC ′
R1

(dl) = C ′
R1

(dl−1) wheredl �= dl−1.
Hence, we have〈C ′(dl), V (dl)〉 = 〈C ′(dl−1), V (dl−1)〉, and
by Proposition 2.2, this implies thatdl = dl−1; a contradic-
tion showing thatC ′ is not a complement ofV with respect
toD. ��

A.2 Proof of Theorem 3.1

Theorem 3.1.Let V be a warehouse overD, and letC be a
monotonic complement ofV . Let op be an operation overD,
and letAop be the set of auxiliary views produced according
to the independence steps. ThenW = V ∪ Aop is an op-
independent warehouse.
Proof. If op is a query, thenop-independence follows im-
mediately from Definition 3.2 and from the construction of
Aop.

If op is an update, then it is easy to see that the indepen-
dence steps determine a subsetAop of C such that the new
state ofV afteru can be derived fromV ∪Aop. It remains to
show that the new state of every complementary view inAop

can be derived fromV ∪Aop.
Let CR0 ∈ Aop. As C is monotonic, for every database

stated = 〈r1, . . . , r0, . . . , rn〉, we haveCR0(d) = (R0 \
E0)(d) = R0(d)\E0(d). Letu be the translation ofu in terms
of the views inV ∪Aop, and letd′ = 〈r′

1, . . . , r
′
0, . . . , r

′
n〉 be

the database stateu(d). Thus we haveCR0(d
′) = R0(d′) \

E0(d′). We now show that the subexpressionsR0(d′) and
E0(d′) in the computation ofCR0(d

′) can be computed using
only information fromV ∪Aop.

1. LetE0 be the inverse expression of the monotonic com-
plementary viewCR0 forR0.Then, basedonDefinition2.4,E0
is defined overE0 andCR0 . Thus, the presence ofCR0 allows
to computeR0(d) from warehouse views using the expres-
sionR0(d) = E0(E0(d), CR0(d)). Moreover, as the changes
to R0(d) are shipped to the warehouse, the new state ofR0,
R0(d′), can be computed at the warehouse.

2.On the other hand,E0 is an expressionwhere only views
from V occur,V ∪ Aop is a superset ofV , andV ∪ Aop is
determinedby the independence steps in suchaway thatV (d′)
can be computed fromV ∪ Aop. As a consequence, the new
state for each view inV can be computed at the warehouse.
EvaluatingE0 on this new view state then givesE0(d′).

Consequently, the new state forCR0 ,CR0(d
′) = R0(d′)\

E0(d′), can be computed fromV ∪Aop, which concludes the
proof. ��

A.3 Proof of Theorem 3.2

Theorem 3.2.LetV be a warehouse overD, letC be amono-
tonic complement ofV , and letop be an operation overD.

1. Then there is a subsetAop of C such that
(a) V ∪Aop is op-independent and
(b) Aop is minimal with respect to set inclusion, i.e., if we

remove any of the views inAop then (a) above does
not hold.

2. If there are no foreign keys declared overD then the set
Aop mentioned in (1) is unique.

Proof. Existence ofAop is not an issue, asC itself ensures
independence.Moreover, by considering each subset ofC that
ensuresop-independence a minimal one can be identified.

Concerning uniqueness, letAop be a minimal subset ofC
that ensuresop-independence, and letA′

op bea subset ofC that
does not include all views ofAop, sayCR1 ∈ Aop \A′

op. AsC
is a monotonic complement,CR1 is the complementary view
for base relationR1. The fact thatCR1 is contained inAop,
which is a minimal subset of a monotonic complement that
guaranteesop-independence, tells us that some information
fromR1 that isnecessary forop-independence ismissing in the
viewsV . Formally (using the notion of information content of
[4]), thismeans that there are at least two legal states ofD (i.e.,
states that satisfy all key constraints) that are distinguished by
op andV ∪ Aop, but not byV ∪ Aop \ {CR1}. Let d1 =
〈r11, . . . , r1n〉 andd2 = 〈r21, . . . , r2n〉 be witnesses for this fact,
i.e., we have

(a) V (d1) = V (d2),
(b) (Aop \ {CR1})(d1) = (Aop \ {CR1})(d2),
(c) CR1(d1) �= CR1(d2)

(this condition must hold asV andAop together are sup-
posed to distinguishd1 andd2, andCR1 is the only view
in V ∪Aop that is not excluded by (a) and (b)),

(d) op(d1) = op((V ∪ Aop)(d1)) �= op((V ∪ Aop)(d2)) =
op(d2)
(if op would not distinguishd1 andd2 then no additional
information forop-independence would be necessary to
tell both states apart).

For the purposes of this proof, we assume that PSJ expres-
sions always are of the formπZ(σφ(Ri1 �� . . . �� Rik)),
whereφ ≡ true if no selection is necessary, and whereZ =⋃k

j=1 attr(Rij) if no projection is necessary.
LetV SJ be the set of SJ viewsoverD that is obtained from

V by removing the projection from each view, i.e.,V SJ =
{σφ(Ri1 �� . . . �� Rik) | πZ(σφ(Ri1 �� . . . �� Rik)) ∈ V }.
In the following we use the representative state forV SJ and
d1 to obtain two legal states ofD showing thatA′

op does not
contain enough information forop-independence.

Letdr be the representative state forV SJ andd1. Then, by
Lemma 2.1 (1) we haveR(dr) ⊆ R(d1) for allR ∈ D. Since
d1 is supposed to be a legal state ofD, all key constraints are
valid in dr (if a relation satisfies a key constraint then so does
every subset), which proves thatdr is a legal state ofD.

D. Laurent et al.: Monotonic complements for independent data warehouses 315

Next, by Lemma 2.1 (2) we haveV SJ(dr) = V SJ(d1).
Hence, by applying the original projections to the views in
V SJ , we findV (dr) = V (d1) (= V (d2) by (a) above).

Consider the statesd′
1 and d′

2 of D that are defined as
follows forR ∈ D, i = 1, 2:

R(d′
i) =

{
R(di) if R ∈ {R ∈ D | CR ∈ Aop}
R(dr) otherwise

As the relation states associated withd′
1 andd

′
2 do either occur

in dr, in d1, or ind2, all of which are legal states ofD, all key
constraints are satisfied ind′

1 andd′
2, i.e.,d

′
1 andd′

2 are legal
states ofD as well.

We now proceed to establish several facts, which are then
used to prove thatA′

op does not guaranteeop-independence.

1. R1(d′
1) �= R1(d′

2)
Recall thatC contains a monotonic complementary view
CR1 =df R1 \ E1 for R1, whereE1 is an expression
overV . By (a) we haveV (d1) = V (d2), which implies
E1(d1) = E1(d2). Then it follows from (c) thatR1(d1) �=
R1(d2). As we haveR1(d1) = R1(d′

1) andR1(d2) =
R1(d′

2), the claim follows.
2. R(d1) = R(d′

1) = R(d′
2) = R(d2), for R ∈ {R ∈

D | CR ∈ Aop \ {CR1}}

Let R ∈ {R ∈ D | CR ∈ Aop \ {CR1}}. Then (a) and
(b) show that the (monotonic) inverse forR yields the
same result ind1 andd2, i.e.,R(d1) = R(d2). Using the
definitions ofd′

1 andd′
2, we obtainR(d′

1) = R(d1) =
R(d2) = R(d′

2).
3. V (d′

1) = V (d1) = V (d2) = V (d′
2)

We observeR(dr) ⊆ R(d′
1) ⊆ R(d1), for all R ∈ D.

Thus, by Lemma2.1, we haveV (d1) = V (d′
1). The equal-

ity V (d2) = V (d′
2) is shown in the same way and the

equalityV (d1) = V (d2) is (a).
4. Aop(di) = Aop(d′

i), i = 1, 2
Facts 2 and 3 imply(Aop \ {CR1})(di) = (Aop \
{CR1})(d′

i). As d
′
i is defined such thatR1(di) = R1(d′

i),
the claim follows from fact 3.

5. A′
op(d

′
1) = A′

op(d
′
2)

As (i) all views inA′
op are associated to base relations

whose states ind′
1 and ind′

2 coincide; and (ii)V (d′
1) =

V (d′
2) holds by fact 3, the claim follows.

On the one hand, facts 3, 4, and 5 above implyV ∪Aop(di) =
V ∪ Aop(d′

i), i = 1, 2; hence, using (d) above, we have
op(d′

1) �= op(d′
2). On the other hand, by facts 3 and6abovewe

have(V ∪A′
op)(d

′
1) = (V ∪A′

op)(d
′
2),which impliesop(d′

1) =
op((V ∪ A′

op)(d
′
1)) = op((V ∪ A′

op)(d
′
2)) = op(d′

2). There-
fore, we have a contradiction showing thatAop is unique. ��

