
ETH Library

Prototypical implementation of
location-aware services based
on a middleware architecture
for super-distributed RFID tag
infrastructures

Conference Paper

Author(s):
Bohn, Jürgen

Publication date:
2007

Permanent link:
https://doi.org/10.3929/ethz-b-000006488

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Personal and Ubiquitous Computing 12(2), https://doi.org/10.1007/s00779-006-0107-2

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000006488
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00779-006-0107-2
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ORIGINAL ARTICLE

Prototypical implementation of location-aware services
based on a middleware architecture for super-distributed
RFID tag infrastructures

Jürgen Bohn

Received: 5 May 2006 / Accepted: 22 June 2006 / Published online: 16 November 2006
� Springer-Verlag London Limited 2006

Abstract We provide evidence of the feasibility and

effectiveness of a middleware architecture for mobile

devices (MoDs), which employs dense distributions of

small computerized entities for providing fault-tolerant

location-aware services. We do so by describing

exemplary implementations based on radio frequency

identification as an enabling technology. Firstly, we

present prototypical implementations of the hardware

abstraction layer and of selected core middleware

services. The latter enable a MoD to store and retrieve

data and position information in physical places in a

fault-tolerant manner, and to identify places based on a

location abstraction which is robust against failure of

individual tags. Secondly, we investigate the feasibility

of some higher-level services and applications by

developing and evaluating prototypical systems for

tracing and tracking, self-positioning, and collaborative

map-making.

Keywords Ubiquitous computing �
Location awareness � Super-distributed RFID tag

infrastructures � Radio frequency identification �
Positioning � Map-making

1 Introduction

Different from conventional means of radio frequency

identification (RFID) tag deployment and utilization,

massively-redundant tag distributions provide novel

RFID-based services and applications to mobile user

devices [2]. By deploying cheap passive RFID tags (i.e.,

tags without a built-in power supply) in large quantities

and in a highly redundant fashion over large areas or

object surfaces, one obtains a so-called super-distrib-

uted RFID tag infrastructure (SDRI). Based on such an

SDRI [2], identifies a number of technical challenges

and describes potential benefits and first prototypical

results. The practical relevance of this concept is re-

flected in the recent appearance of industrial products

that make use of such redundant RFID tag distribu-

tions, such as the ‘‘first carpet containing integrated

RFID technology’’ presented by Vorwerk in coopera-

tion with Infineon Technologies [3].

As a generalization of the SDRI concept, we pro-

pose super-distribution of small computerized (and

therefore ‘‘smart’’) entities as a general design princi-

ple for the development of reliable and highly available

location-dependent services for mobile devices

(MoDs). For that, we developed a layered service

middleware architecture [4] that exploits two funda-

mental characteristics of the resulting infrastructure for

achieving fault-tolerance and serviceability: the high

degree of redundancy with regard to smart entities

(abundance aspect), and the support for localized

interaction between MoDs and their immediate phys-

ical environment (locality aspect).

In this paper we describe a number of concrete pro-

totypical implementations based on super-distributed

smart entities, using RFID as an enabling technology. In

An earlier version of this article [1] was presented at the 19th
international conference on Architecture of Computing Systems
(ARCS ’06) in Frankfurt am Main, Germany.

J. Bohn (&)
Institute for Pervasive Computing,
ETH Zurich, Zurich, Switzerland
e-mail: jjbohn@jjbohn.com

123

Pers Ubiquit Comput (2008) 12:155–166

DOI 10.1007/s00779-006-0107-2

doing so, our major aim is to provide first-hand evidence

of the practicability and effectiveness of the suggested

approach by demonstrating the capabilities and per-

formance of exemplary middleware service implemen-

tations, rather than presenting specific state-of-the-art

solutions for the particular application domains we

cover in the process.

In the following, we define a smart entity (SE) as a

physical artifact that is enhanced by embedded com-

puting technology in such a way that it has a globally

unique identifier, a built-in memory with data read/

write capabilities, and support for close-range wireless

ad-hoc communication. Likewise, we refer to super-

distribution of smart entities as the process of deploying

and distributing SEs in a dense, highly redundant

fashion. The resulting substrate is called a super-dis-

tributed smart-entity infrastructure.

2 Middleware support for super-distributed
smart-entity infrastructures

2.1 Middleware architecture

Our service middleware for super-distributed smart-

entity infrastructures described in [4] is based on a five-

layered architecture (Fig. 1): The distributed physical

smart entities in their entirety constitute the physical

infrastructure on the lowest level (Hardware Layer or

Layer 0). The access to this layer is controlled by the

Hardware Abstraction Layer on the next higher level

(Layer 1). It is represented by an Entity Read/Write

(ERW) service, which defines a generic and unifying

interface to the underlying physical SE infrastructure.

The Core Service Layer (Layer 2) consists of funda-

mental abstractions and generic services that operate

with individual SEs by means of the ERW service. The

Higher-Level Service Layer (Layer 3) is represented by

a collection of specialized services and service tem-

plates. These services do not directly operate on indi-

vidual SEs of the underlying physical infrastructure but

rely on the core services instead. Finally, in the

Application Service Layer (Layer 4), we find applica-

tion-specific services and specialized instantiations of

service templates.

The middleware architecture is extensible, facilitat-

ing the integration of additional services by means of a

modular design. For dependable operation, the

redundancy resulting from the super-distribution of

SEs is exploited by the middleware services for the

realization of fault-tolerance mechanisms. Service

bootstrapping and maintenance tasks are performed

autonomously by the individual services, as far as

possible, thus reducing the need for manual interven-

tion and servicing. For instance, the core middleware

services support the integration of additional SEs that

are distributed at a later point in time without a

noticeable service interruption (hot-integration of SEs)

[4]. Further, the services of the lower middleware lay-

ers mask the complexities of applied fault-tolerance,

self-organization, and self-calibration mechanisms as

well as hardware-specific details from higher-level

services and applications.

2.2 Middleware employment

From the user’s perspective, interaction with the SE

infrastructure is performed by means of a mobile

device, which features a wireless communication

interface for communicating in an ad-hoc fashion

Fig. 1 Overview of the
service middleware for super-
distributed smart entities

156 Pers Ubiquit Comput (2008) 12:155–166

123

with SEs in its immediate vicinity. On each MoD, an

independent instance of the service middleware is

installed, executing the individual middleware ser-

vices as separate processes (modules). Services can

be turned on or off and configured separately, which

allows the MoD to adjust the computational load

according to the available resources and the currently

required functionality. A MoD can be carried by a

user or may be part of other devices, such as being

integrated into a vehicle, a wheelchair, or into a

blind man’s stick, for example.

The execution of the service middleware on the

MoDs themselves (rather than providing the services

as part of a fixed background infrastructure) empowers

the devices to interact with the super-distributed

smart-entity infrastructure in an autonomous fashion.

In particular, by maintaining information in SEs at the

physical places where it is required, middleware ser-

vices on a MoD can remain operational even in the

case of physical damage in other areas of the infra-

structure, and in the absence of network connectivity

or the unavailability of remote services.

Note that—in contrast to sensor networks—our

work is concerned with the explicit goal of enabling

individual MoDs (or their users) to directly and locally

interact with—possibly passive—SEs placed in the

physical environment. Communication between the

SEs themselves is much less an issue than in sensor

networks.

2.3 Prototypical reference implementations based

on RFID

For our prototypical implementation, we selected a

number of exemplary middleware services based on

both a bottom–up and top–down approach. On the one

hand, we implemented services of the lower layers that

provide general basic functionality, which includes the

Hardware Layer, the Hardware Abstraction Layer,

and three essential services of the Core Services Layer:

Local Data Sharing (LDS), Location Manager (LM),

and Position Manager (PM). On the other hand, based

on these services, we investigated the feasibility and

practicability of some higher-level services by devel-

oping and evaluating prototypical systems for tracing

and tracking, self-positioning, and collaborative map-

making.

In our implementations, the SEs were represented

by passive RFID tags. As a result, the Hardware Layer

in our prototype implementation constituted an SDRI

as described in [2]. We therefore use the terms ‘‘RFID

tag’’ or simply ‘‘tag’’ synonymously with ‘‘smart entity’’

in the remainder of the article. The MoD executing the

service middleware software was represented by a

notebook computer, to which a mobile RFID reader

and antenna were attached to enable a localized

interaction with the SDRI.

2.4 Motivating scenarios

In the following, we first present scenarios that high-

light various opportunities and advantages of services

based on a super-distributed smart-entity infrastruc-

ture from the perspective of the user. We then moti-

vate the need for middleware support from the systems

developer’s point of view.

2.4.1 User-centric location-dependent services

Within a super-distributed smart-entity infrastructure,

users directly interact with the SEs at their current

location. This enables applications for geographic

guidance and navigation, where a MoD determines its

current position by calculating an estimate from the

individual positions stored on nearby SEs, or simply

looks up the current location with the help of a local

map containing the positions of individual SEs.

A super-distributed smart-entity infrastructure can

also be employed in the sense of a ‘‘ubiquitous

blackboard’’, where users share information about

local points of interest or leave personal messages

directly in the physical places where the information

is most helpful and required. For instance, it is con-

ceivable to provide public directories whose entries

are physically distributed across SE infrastructure,

providing localized information about room numbers

or names of departments, offices, or personnel, en-

abling visitors to find their way unassistedly even in

unfamiliar places and buildings with the help of their

MoD.

Besides, users can leave virtual data traces in an ad-

hoc fashion on the SEs passed along the way, similar to

‘‘pheromone trails’’ laid by ants, permitting friends or

colleagues to follow at a later point in time to places

where an activity or meeting is to take place.

By integrating the MoD with a blind man’s stick

or with a wheelchair, visually impaired people or

persons with walking disabilities can be empowered

to make use of these services, too, thus greatly

enhancing their capabilities of perceiving and inter-

acting with their physical surroundings. Such users

particularly benefit from the ability to share infor-

mation in situ that is tailored to their particular

needs, such as information about nearby obstacles,

dangerous crossings, handicapped accessible ramps

and gangways, etc.

Pers Ubiquit Comput (2008) 12:155–166 157

123

2.4.2 Dependable and safety-critical services

Disasters caused by natural or human factors (e.g.,

earthquakes, large fire incidents, or terrorist attacks)

often lead to the failure of infrastructure services in

buildings or public places, disrupting electricity and

communication networks. However, by maintaining

safety-critical information in SEs at the physical places

where it is required by rescuers, services based on su-

per-distributed smart-entity infrastructures remain

operational in physically intact areas of the SE infra-

structure even when conventional background service

infrastructures collapse or other areas are damaged, as

the MoD directly interacts with local SEs via short-

range ad-hoc communication. In addition, a super-

distributed smart-entity infrastructure allows for the

provisioning of dedicated emergency services. For in-

stance, by means of permanent virtual data traces

stored on the SEs of a super-distributed smart-entity

infrastructure, it is possible to provide services that

direct users (including professionals such as firefighters

and emergency physicians) to the nearest emergency

exit or life saving equipment.

2.4.3 Systems support for collaborative activities

In some cases the activities of individual MoDs can be

combined to contribute to a global task. For instance,

MoDs that have a third-party positioning service (such

as GPS) at their disposal can store obtained position

readings on the SEs at their respective places. Thus the

SE infrastructure can be ‘‘bootstrapped’’ with position

information over time through a collaborative effort.

Another example for collaboration is the construction

of a global site map of a super-distributed smart-entity

infrastructure by joining partial SE mappings obtained

from individual MoDs, as we later see in Sect. 5. An

SE infrastructure can also serve as a vast communal

information space; the individual contributions of users

in different physical places can contribute to the cre-

ation of open, community-driven information services

and directories.

2.4.4 Middleware support

While in general the ad-hoc realization of specialized

applications and services based on super-distributed

SEs is always possible, such a procedure is bound to

lead to closed systems with a narrow, limited scope,

and functionality. To support the systems developer in

the rapid development of whole classes of applications,

a fundamental challenge is to provide a set of general,

basic services that satisfy a broad spectrum of

requirements and needs. The development of reusable,

basic services has the advantage that it greatly facili-

tates the development of higher-level services and

applications.

In order to identify location-dependent services that

particularly benefit from the availability of a super-

distributed smart-entity infrastructure, we performed

an analysis of the needs of various ubiquitous com-

puting projects [5]. We further identified a number of

basic building blocks that encapsulate the hardware-

specific aspects of the underlying physical infrastruc-

ture, provide low-level services and abstractions, and

mask the complexities of fundamental maintenance

and fault-tolerance management tasks from higher-le-

vel services. In a second step, we combined the various

services into the layered middleware framework out-

lined earlier in Sect. 2.1, according to their respective

levels of specialization and universality. The detailed

description of our general middleware architecture,

however, is beyond the scope of this article and has

been discussed elsewhere [4].

3 Implementation of basic SDRI middleware services

3.1 Hardware Layer: super-distributed RFID tag

infrastructure prototype

The RFID hardware we used for the SDRI consisted of

ISO 15693 compliant smart labels (transponders) that

operated at a frequency of 13.56 MHz. As transpond-

ers, we employed Philips I�CODE tags (Type 1) [6],

with a dimension of 7.5 · 4.5 · 0.1 cm. The

I�CODE RFID tags feature 64 byte of physical mem-

ory, which is organized into 16 slots á 4 byte (of which

11 slots are rewritable). This allowed us to store the

data of several middleware services (e.g., Position

Manager and Tracing and Tracking Service) directly

on the physical memory of individual tags during our

experiments.

For building the SDRI, we attached the transpond-

ers onto four identical plastic foils using the same

pseudo-random distribution pattern. This yielded four

RFID-tagged templates with equal characteristics as

shown in Table 1.

3.2 Hardware Abstraction Layer: ERW

For the realization of the ERW service on the Hard-

ware Abstraction Layer, we used the RFIDStack [7],

which offers a manufacturer-independent API to

applications and incorporates drivers for various types

of RFID hardware. Based on the RFID-Stack, the

158 Pers Ubiquit Comput (2008) 12:155–166

123

ERW service provides the interface for writing data to

and reading data from the underlying RFID tags of the

SDRI, masking the complexity and hardware-specific

characteristics of the underlying RFID hardware from

the higher service layers. The writing of data can either

be performed physically, writing to the physical tag

memory, or virtually, storing the data in the so-called

virtual tag memory. The latter is managed by a service

instance of the RFID-Stack residing in the internet,

which can be accessed by means of XML messages sent

via a TCP connection [7]. The virtual tag memory not

only mirrors the physical memory of a tag, but also

provides an extended storage space. Our ERW

implementation only allows a MoD to access the vir-

tual memory of a tag if that entity is physically present

within communication range.

The ERW service also implements the data man-

agement for the physical and virtual tag memory. It

emulates a simple file system for the physical tag

memory, where Service Data Units represent files and

the Smart Entity Directory represents the root direc-

tory. A Service Data Unit constitutes a service-specific

data unit that encapsulates the information that a ser-

vice requires to be stored on a single tag for a well-

defined purpose. To detect incomplete or inconsistent

data units on tags caused by interrupted, incomplete

write operations, CRC error checking is performed.

In particular, the ERW service provides the fol-

lowing basic methods for accessing the physical mem-

ory of individual tags: listTags, listTagDirectory,

writeTagFile, readTagFile, deleteTagFile. Parameters

include tag ID, file type, file data, and flags that indi-

cate the use of the virtual memory and declare if a file

should be stored persistently or can be overwritten at a

later point in time (persistence flag).

3.3 Core Service Layer: LDS

The LDS service provides MoDs with an API for

sharing data in physical places of the SDRI with other

devices. In doing so, the LDS service exploits the high

tag density in the SDRI for fault-tolerant data storage

by replicating Service Data Units across multiple tags

in antenna range at the current location. Data can be

shared in situ by using method shareData, which is

parameterized with the service-specific data type and

the persistence flag. Previously shared data can be re-

trieved by means of the getData method.

The API of the LDS service allows the user to set

the replication degree, which can be defined as an

absolute number and which is targeted on a best effort

basis, or as a relative percentage value. These values

apply to the initial replication and the later replication

maintenance procedure. The actual replication man-

agement is hidden from the service clients. For

accessing the tags of the SDRI, the LDS service is

based on the API of the ERW service. Further the

LDS service allows to set a tolerance threshold for the

number of failed tag identify/read/write attempts of the

underlying ERW service. For example, if data is to be

read from or written to eight different tags, failed read/

write attempts for two of the tags are tolerated, given a

tolerance threshold value of 25%. This enables the

service to deal with known imperfections of RFID

systems (e.g., tags in range may not be detected, or

read/write operations may abort [8]). When Service

Data Units are retrieved from local tags, the LDS

service transparently filters duplicates.

3.4 Core Service Layer: PM

The main contributions of the PM service are the

methods getPosition and setPosition. The setPosition

method enables a MoD to locally store its current

position pM obtained from a third party positioning

service on the nearby tags. In doing so, for each tag, the

new position pnew
t is calculated as the weighted mean of

the position pM of the MoD and the old position pold
t of

the tag, using the number of previous write operations

w as a weight: pt
new :¼ ðpM þ wpt

oldÞ : ðw þ 1Þ: Vice

versa, upon calling getPosition, the PM first scans all

tags in antenna range and extracts their individual

position coordinates if available. Then it calculates an

estimate for the current position as the mean over all

obtained individual tag positions.

3.5 Core Service Layer: LM

The LM provides an API to define and resolve abstract

locations: a Location has a unique identifier and is

defined by the set of (stationary) SEs that are detected

in a well-defined range of the MoD executing the ser-

vice [4]. The Location identifiers are directly stored on

the defining SEs themselves.

The main contribution of the LM is the getLocation

method, which determines an abstract Location L as the

set of RFID tags tagIDSetl detected at the respective

Table 1 Properties of plastic foil templates used for building a
prototypical SDRI

Dimension of plastic foil templates 123 · 128 cm
Mean distance between two adjacent RFID tags 17.5 cm
Standard deviation of tag distribution 2.1 cm
Number of tags per plastic foil template 61 tags/foil
Average area covered by a single RFID tag 258 cm2

Average RFID tag density per square meter 39 tags/m2

Pers Ubiquit Comput (2008) 12:155–166 159

123

physical place l in the SDRI: L :¼ tagIDSetl :¼
ftagIDt : inRangeðt; l; rÞg; where tagIDt is the unique

identifier of tag t, and inRange(t,l,r) a Boolean predicate

that equals true iff tag t is within distance r of the field of

the RFID antenna at place l and false otherwise. In our

prototype system, the range r of the RFID system was

defined by the characteristics of the used RFID hard-

ware. Ideally, the range of the RFID reader/antenna

should be customizable to enable the integration of

different RFID systems with variable characteristics.

If the getLocation method is called to determine the

Location of the current place, then the LM searches

for predefined Location identifiers on all tags in range

r. The Location whose identifier is stored on the

majority of the detected tags is returned as the current

Location. In case no predefined Location is available,

or if the number of tags containing the dominant

Location identifier is below a well-defined percentage

value T, then the LM automatically defines a new

Location and stores the corresponding Location iden-

tifier on the affected tags. This ensures that adjacent

Locations only overlap in up to T% of the tags, which

in return enables a robust and selective Location

detection in situations where individual tags fail to

respond temporarily.

4 SDRI Tracking and Positioning prototype

The SDRI Tracking and Positioning prototype system

provides two main services: laying and following of

data traces, and self-positioning.

4.1 Prototype description

We have developed a fully functional SDRI Tracking

and Positioning prototype, which consists of two major

hardware components. Firstly, a trolley with the RFID

equipment (RFID reader and antenna) and the MoD

(in our case represented by a notebook computer

running the SDRI Tracking and Positioning applica-

tion). Secondly, four RFID-tagged templates forming a

prototypical SDRI (Fig. 2).

The RFID hardware consisted of an ISO 15693

compliant mid range RFID reader, and an external

mid range RFID antenna1. The RFID reader sup-

ported collision resolution, which enabled it to simul-

taneously identify multiple transponders within

antenna range. The RFID antenna was attached

underneath the center of the bottom pane of the trol-

ley, at 10 cm above the floor space. At this distance,

the approximately square operating area of the RFID

antenna was about 50 · 50 cm. For constructing the

prototypical SDRI, the four RFID-tagged templates

described in Sect. 3.1 were arranged in an L-shape

around a corner of a corridor in our office building

(Fig. 2). On the templates, we manually marked a test

track for our experiments with a total length of 526 cm.

4.2 SDRI Tracing and Tracking Service

The SDRI Tracing and Tracking Service features a

tracing mode, which enables the MoD to leave a digital

data trace in the SDRI, and a tracking mode, which

allows a MoD to follow a previously laid data trace.

Each mode itself is divided into a basic and advanced

version, which we describe in the following.

4.2.1 Tracing mode

A basic trace is represented by a sequence of trace data

objects (TDOs) stored on tags of the SDRI. Each trace

data object consists of an anonymous trace identifier

(trace ID), which is generated by random, and a

timestamp. A trace ID only has to be unique in the

local area where it is applied, but not on a global scale.

Further, all TDOs are flagged as non-persistent, and

over time, the SDRI Tracing and Tracking Service

overwrites the oldest TDOs on a tag with newer traces

if memory space is short.

In our prototypical implementation, we replaced the

timestamp in the TDO with a trace counter serving as

logical clock to obtain a more compact, memory-space-

saving representation. This was feasible since it is

Notebook computer
 dnagnikcartgninnur
noitacilppagninoitisop

yellorT

annetna DIFR
)elbisivton(

ecivedredaer DIFR

kcart tset dekraM

setalpmet IRDS

Fig. 2 Measurement trolley and prepared test track

1 Manufacturer: Feig Electronic, model: OBID i-scan HF
ISC.MR100 and OBID i-mid ISC.ANT340/240

160 Pers Ubiquit Comput (2008) 12:155–166

123

usually only necessary to locally distinguish the age of

detected TDOs belonging to the same trace, which we

achieve by applying a sliding-window approach. In

addition, we adapted the TDO overwrite strategy to

selecting a random TDO for replacement, as the use of

logical clocks no longer allows to identify the oldest

TDO on a tag. Memory-wise, we used 1 byte for the

trace ID and one for the trace counter (with a window

size of 12) per basic TDO, which fit into a single slot of

our physical RFID tag memory.

If tracing is active, new TDOs are stored in a

redundant fashion on the RFID tags at the current

position of the MoD (by using the LDS service) at a

well-defined update rate (specified in milliseconds).

For preventing repetitive trace updates at the same

physical location, which would lead to a discontinuity

of the trace counter values, the IDs of the locally de-

tected tags are cached. A new TDO is only written to

the SDRI if at least K percent of the local tag IDs have

changed. Concretely, we used a trace update rate of

500 ms and set the update tolerance to K = 50.

The advanced tracing mode uses position informa-

tion (e.g., obtained from the PM or from a third-party

positioning service) to create an augmented trace: the

individual trace data objects are augmented with the

current information about direction (orientation),

change of direction, and speed of the MoD.

4.2.2 Tracking mode

The tracking mode of the SDRI Tracing and Tracking

Service enables a MoD, the follower, to follow a trace

by detecting the corresponding TDOs in the tags of the

SDRI. We call the MoD that previously laid the trace

the forerunner. Initially, the forerunner has to reveal its

randomly chosen trace ID of the trace to the devices

that are to become its followers, and to inform them

about potential starting points for picking up the trace

(which are not necessarily equal to the starting point of

the trace).

Once a follower has detected or rediscovered the

trace (i.e., tags in the SDRI which contain a TDO with

the forerunner’s trace ID), the follower repeatedly

searches for tags with more recent trace information

and moves into this direction. More precisely, the fol-

lower continuously seeks TDOs of the wanted trace ID

with either a more recent timestamp, or with a higher

trace counter value (based on the counter window

calculated using modular arithmetic). In our system,

the detected trace counter values for a specified trace

are displayed in a graphical user interface window

(GUI). If an RFID tag map of the prototypical SDRI is

available, the GUI visualizes the tags of the trace that

have been detected so far, and highlights the most re-

cent trace information. In case of an augmented trace,

the GUI also displays the augmented information, such

as the current direction and change of direction (as

numerical values and visually by means of an arrow

symbol).

4.3 SDRI Positioning Service

The SDRI Positioning Service enables the MoD to

store position information to or to retrieve it from

individual RFID tags of an SDRI, either using the

physical on-tag memory or a remote virtual tag data-

base.

4.3.1 Calibration mode

For the calibration of the SDRI with position infor-

mation, the SDRI Positioning Service supports two

modes of operation. Firstly, the exact calibration

mode allows the user to calculate the individual tag

positions of all RFID tags of an SDRI template at

once, based on two manually entered reference posi-

tions per template. The determined exact tag positions

are then stored on the physical tags and/or in the

virtual tag database. The physical tag calibration

procedure is supported by a tool that shows the pro-

gress and status of the calibration with the help of a

graphical display.

Secondly, the incremental calibration of the SDRI

uses the position information of a third-party posi-

tioning service to update the position coordinates on

the individual tags by calculating a new weighted mean

as described in Sect. 3.4. This procedure can be per-

formed in a collaborative fashion by independent

MoDs. In the process, the accuracy of individual tag

position coordinates usually increases with the number

of positions that are stored on the respective tags: as

the actual positions of the MoDs performing the cali-

bration are typically scattered around individual tags,

the errors of the single position values that are aver-

aged tend to cancel each other out.

4.3.2 Positioning mode

The implemented position calculation or positioning

procedure of the SDRI Positioning Service uses the

positioning procedure of the PM: first the tag position

coordinates stored on the single RFID tags within an-

tenna range are retrieved. Then the arithmetical mean

of the obtained single tag position coordinates is cal-

culated and used as the estimated position (x,y,z) of

the MoD.

Pers Ubiquit Comput (2008) 12:155–166 161

123

4.4 Experimental results

We performed our experiments by pushing the trolley

at a constant speed along the marked test track

(Fig. 2). We further calibrated the tags of the SDRI

with local positioning coordinates using the exact cal-

ibration tool.

4.4.1 Efficiency of virtual and physical tag memory

access

For our positioning measurements, we used both the

virtual and physical tag memory.

For accessing the virtual tag memory, which was

maintained in a database on the MoD itself, it was

sufficient for the ERW service to retrieve the IDs of all

RFID tags within antenna range with a single com-

mand call (identify). The duration of the identify com-

mand was independent from the number of tags within

range, and took approximately 200 ms on average

(using 16 time-slots for multi-tag-detection as part of

the anti-collision protocol of the reader). This enabled

a maximum rate of up to 5 Hz for multi-tag detection

and subsequent position calculation.

The efficiency of the physical tag memory was more

than one order of magnitude lower, since our particular

RFID hardware required sequential scans for reading

out a data slot: one identify command followed by a

separate read command for each detected tag. In our

implementation, we needed two physical memory slots

to store positioning coordinates on a tag. Therefore, for

attempting to read the two data slots from four RFID

tags detected during an inquiry, the duration of the

scan varied from approximately 2 s (eight successful

reads), if no errors occurred, to up to 5 s (eight failed

reads) in the worst case if all eight sequential read

operations failed. These numbers are based on timing

measurements for successful and failed attempts for

reading a single data slot, which for our RFID hard-

ware were approx. 250 and 600 ms respectively. How-

ever, if we used a more advanced RFID system that

supported the direct and parallel reading of a data slot

from multiple tags in range without a prior identify

operation, the duration of the physical tag memory

access would be reduced to the order of magnitude of

the duration of the virtual tag memory access.

4.4.2 Accuracy of the positioning procedure

Due to the comparably slow physical tag memory ac-

cess of our RFID hardware, we used the virtual tag

memory for our experiments. We performed three test

runs at a speed of 50 cm/s, using exact manual mea-

surements of the test track as reference (Fig. 3). The

resulting mean absolute positioning error was approx.

15 cm. Given our specific configuration, the maximum

tolerable speed of the trolley is 2.5 m/s, which is

determined by the tag inquiry time of approx. 200 ms

(required by the ERW service for determining the tag

IDs for accessing the virtual tag memory) and the

length of the antenna field in moving direction of

50 cm.

5 Collaborative SDRI Mapping prototype

The prototypical Collaborative SDRI Mapping system

has two main tasks: the localization and mapping of

RFID tags in an SDRI by means of autonomous

vehicles, and the merging of overlapping partial RFID

tag mappings, which were constructed independently

from each other by these vehicles as part of a collab-

orative effort.

We do not aspire to contend with state-of-the-art

solutions for the general collaborative map-making

problem, which has been in the focus of research in the

domain of mobile robots for decades (cf. to the work

by Burgard et al. [9, 10], for instance). Our primary

goal is to demonstrate the feasibility and practicability

of using an SDRI for the realization of collaborative

activities, which is not considered by traditional map-

making systems. In contrast to our approach, RFID

tags for positioning have so far only been used in the

function of dedicated artificial landmarks on walls or

floor spaces, providing auxiliary support to dedicated

positioning and navigation systems [11–13].

5.1 Prototype description

The Collaborative SDRI Mapping prototype consists

of the following components: a model vehicle, a

2600

2650

2700

2750

2800

2850

11501000 1050 1100850 950800 900

X [cm]

Y
 [

cm
]

tcaxE 1 nuR 2 nuR 3 nuR

Fig. 3 Three positioning experiments of the SDRI Positioning
Service performed at 50 cm/s

162 Pers Ubiquit Comput (2008) 12:155–166

123

prototypical SDRI, an on-board vehicle control appli-

cation (for evasive driving and dead reckoning), an off-

board RFID tag mapping application, and a stand-

alone collaborative map-merging application for fusing

partial map observations obtained during independent

test runs.

The model vehicle was constructed using LEGO

Mindstorms [14] technology. It is self-propelled, fea-

turing two actuated parallel wheels in the back (each

equipped with a rotation sensor and an electrically

powered motor) and one castor wheel in the front for

stabilization. A bumper sensor connected to a front

bumper is used for collision detection. An on-board

LEGO Mindstorms RCX controller hosts the software

for controlling the motors of the vehicle, and for

monitoring the rotation and bumper sensors. In addi-

tion, the model vehicle is equipped with an on-board

RFID reader (Fig. 4), and an RFID antenna2 mounted

at the bottom at 1 cm distance from the floor space

(Fig. 5). Due to the size of the model vehicle, the

vehicle control application was executed on a separate

notebook computer, which was connected to the RCX

controller and the RFID reader by cable.

For obtaining a prototypical SDRI test area, we

evenly distributed 32 mu-chip inlets across a wooden

panel of the size of 50 · 50 cm (Fig. 4). This corre-

sponds to a tag density of 128 tags/m2. Each mu-chip

tag features a unique 128-bit ID stored in its read-only

memory (ROM). The test area of was rounded off with

a solid wooden barrier to mark off its boundaries.

The on-board vehicle control application is executed

on the RCX controller and performs the following

actions: It triggers an evasion manoeuvre whenever the

bumper sensor connected to the front bumpers reports

an obstacle. It also continuously monitors the two

rotation sensors and calculates the current position by

means of a basic dead reckoning algorithm. The RFID

tag mapping application is executed off-board on the

notebook computer. It is connected to the RFID

reader and continuously maps detected RFID tags,

using the latest dead reckoning position information

obtained from the RCX controller of the model vehicle

as reference.

Overlapping partial map observations, which were

created during independent map-making runs, are

merged with a single, gradually growing comprehen-

sive map of the area by the collaborative map-merging

application. The map merging algorithm uses an affine

coordinate transformation between two arbitrary maps

with different local (or global) coordinate systems. The

transformation is unambiguously defined by a transla-

tion vector and a rotation angle given two or more

overlapping tags (i.e., tags that are contained in both

maps). The affine transformation is calculated numer-

ically using a least squares metric for minimizing the

overall transformation error.

6 Experimental results

6.1 Experimental method and validation

Four map-making test runs were carried out in our test

area of 2,500 cm2. Starting from a random position

(which served as the origin of the local coordinate

system for the measurement), the model vehicle drove

along a straight trajectory within the SDRI at a con-

stant speed of 3.6 cm/s. Whenever the bumpers hit the

encircling barriers, the vehicle stopped and performed

an approx. 90� turn on the spot, and resumed its

straight movement. While driving, the off-board

Fig. 4 Model vehicle with mu-chip reader on top of the Lego
RCX, within the prototypical SDRI tagged with mu-chip RFID
inlets

Fig. 5 Bottom view of the model vehicle prototype showing the
wheel configuration, front bumper, and the mu-chip antenna

2 Manufacturer: Hitachi Kokusai Electric Inc., model: MRE200
No. 1010 and PA1-2450AS

Pers Ubiquit Comput (2008) 12:155–166 163

123

application recorded the tag IDs together with the

corresponding local position coordinates of the tags

detected by the RFID reader on the vehicle. The po-

sition coordinates were obtained from the dead reck-

oning program running on the vehicle’s RCX

controller. Each test run lasted approx. 90 s, during

which the vehicle performed 6 turns (each of which

took approx. 6 s). Thus, on average, the vehicle cov-

ered a distance of approx. 200 cm per test run.

To validate our experimental results, we have man-

ually measured the exact local position coordinates of

all RFID tags in the test area as a reference. To assess

the quality of an experimental RFID tag map, we cal-

culated the overall minimum, maximum, and mean

absolute tag localization error. For an individual tag,

the localization error was determined by calculating the

Euclidean distance between its estimated position and

its corresponding exact reference position.

6.2 Dead reckoning error

The driving distance of the model vehicle was approx.

0.33 cm per rotation sensor increment. The average

absolute error of the dead reckoning algorithm for an

approx. 90� turn of the vehicle on the spot was about

4%, and its lateral drift approx. ±7 cm/m during

straight driving. When considering several consecutive

turns, the occurring negative and positive errors partly

annihilate each other, leading to a lower effective er-

ror. In our case, the overall error of six consecutive

turns was reduced to approx. 1.4%, which corresponds

to an accumulated drift of only about 2 cm/m of

straight driving.

6.3 Tag localization error

The specific RFID antenna we used detected tags in-

side an area of approximately 6 · 9 cm around its

center point, at approx. 1 cm distance from the floor

space. Since each mu-chip of our SDRI test area cov-

ered an area of approx. 78 cm2, only one tag was within

antenna range at a time. Therefore, whenever the

model vehicle took its current reckoned position as a

position estimate for a detected RFID tag, the error

caused by the uncertainty about the exact tag position

within the antenna tag reception area, which we call tag

localization error, added to the dead reckoning error.

In our prototype system, the tag localization error

equaled the distance between the center of the tag

reception area of the antenna and the center point of

the mu-chip inlet. Concretely, assuming that the center

point of the vehicle is also the center point of the RFID

antenna tag reception area, the mean tag localization

error amounted to approx. 2.7 cm. In the worst case, if

a detected tag was situated in one of the corners of the

tag reception area, the resulting maximum tag locali-

zation error was approx. 5.4 cm.

6.4 Tag mapping error

During the mapping, the deviation eTP of experimen-

tally measured tag position coordinates from the true

coordinates, which we call tag mapping error, is

determined by two factors: the error eDR of the dead

reckoning system (which is proportional to the distance

traveled since the initial starting position was set), and

the tag localization error eTL, which depends on the

properties of the RFID hardware and RFID tag dis-

tribution: eTP = eDR + eTL.

6.5 Evaluation of mapping procedure

As a result of the four map-making test runs, four

partial maps were created. In the process, on average

11 tags were detected per test run, and 21 different tags

were detected altogether. Each two created maps

overlapped in two or more tags. The resulting tag

mapping errors for the tags of each partial map in

comparison to the tags of the exact reference map are

shown in Table 2. The average tag mapping error over

four experiments was 4.1 cm, with little variation

(standard deviation r = 1.4 cm). The overall maximum

tag mapping error remained below 8 cm.

6.6 Evaluation of map merging procedure

To assess the robustness of our map merging procedure

with regard to the order in which overlapping maps are

Table 2 Tag mapping errors
of four experimentally
constructed partial maps

Partial map No. of
tags

Minimum
error (cm)

Maximum
error (cm)

Mean
error (cm)

Standard deviation
of mean error (cm)

1 10 2.5 6.7 4.3 1.3
2 9 1.0 5.2 3.2 1.3
3 11 1.9 7.3 4.3 1.8
4 14 2.0 7.9 4.4 1.3
Average 11 1.9 6.8 4.1 1.4

164 Pers Ubiquit Comput (2008) 12:155–166

123

merged, we have joined the four partial maps in dif-

ferent sequential orders and compared the resulting

minimum, mean, and maximum tag mapping errors.

In a first step, we merged the individual maps pair-

wise. The results show a slight increase of the mean tag

mapping error to 4.4 cm, with a higher variability

(r = 2.0 cm), as shown in Table 3. The mean absolute

tag mapping error increased slightly to 8.4 cm, with a

new overall maximum error of 10.0 cm. The results

differ significantly for each combined pair of partial

maps. An explanation for this observation is that—at

this stage—a better map merging result can be ex-

pected for maps that have more tags in common.

In a second step, we merged the previously paired

maps. The resulting errors are shown in Table 4. We

can see that the mean tag mapping error stabilized at

4.0 cm, with a lower standard deviation than in the case

of the original partial maps. A stabilization can also be

observed with respect to the minimum and maximum

errors. The maximum tag mapping error after two

consecutive map merging operations has even dropped

below the initial values to 7.7 cm. Apparently, inde-

pendently from the merging order, the errors with

opposite signs tend to partially cancel each other out as

the estimated tag positions of all available partial maps

are eventually combined.

7 Conclusion

Based on an existing service middleware architecture

for super-distributed smart-entity infrastructures, we

prototypically implemented basic middleware layers

and services with the help of RFID technology: the

Hardware Layer, the Hardware Abstraction Layer,

and the three essential core services LDS, LM, and

PM. We demonstrated the application of these services

by developing and evaluating systems for tracing and

tracking, positioning, and collaborative map-making.

The SDRI-based tracking and positioning system we

implemented on top of two core middleware services is

fault-tolerant with respect to individual tag failures: (1)

it redundantly stores TDOs in physical places using the

LDS service, and (2) it exploits the data fusion capa-

bilities of the PM, which allows the service to tolerate

the unavailability of single tags by interpolating the

position coordinates of the MoD at a physical location.

By means of experimental evaluation we demonstrated

that our positioning service provides an average accu-

racy of approx. ±15 cm at walking speed in our pro-

totypical SDRI with a tag density of 39 tags/m2. We

consider this a promising result and a strong indication

for the practicability and effectiveness of our approach,

in particular considering that we used off-the-shelf

RFID equipment that was not optimized for use in

mobile environments.

The prototype system for the collaborative mapping

of super-distributed smart-entity infrastructures used

mu-chip RFID tags as smart entities and low-cost

rotation sensors for implementing the dead reckoning

system. We experimentally evaluated an application

for merging partial SDRI mappings created indepen-

dently by autonomous MoDs. We observed that the

mean tag mapping error stabilized on the level of the

corresponding errors of the original individual map-

pings, independent from the order in which the map-

pings were combined. The maximum and particularly

the minimum tag mapping errors were even reduced in

Table 3 Tag mapping errors
of pairwise merged partial
maps

Merged maps No. of
tags

Minimum
error (cm)

Maximum
error (cm)

Mean
error (cm)

Standard deviation
of mean error (cm)

1 + 2 15 1.5 8.1 3.9 1.5
1 + 3 15 1.4 9.2 5.2 2.5
1 + 4 21 1.0 10.0 4.7 2.4
2 + 3 17 1.0 7.1 4.0 1.8
2 + 4 16 1.2 7.9 4.1 1.6
3 + 4 18 1.3 8.0 4.2 1.9
Average 17 1.2 8.4 4.4 2.0

Table 4 Tag mapping errors
of maps obtained after two
consecutive merging
operations

Merged maps No. of
tags

Minimum
error (cm)

Maximum
error (cm)

Mean
error (cm)

Standard deviation
of mean error (cm)

(1 + 2) + (3 + 4) 21 0.5 7.6 3.8 1.8
(1 + 3) + (2 + 4) 21 1.6 7.6 4.2 1.6
(1 + 4) + (2 + 3) 21 0.8 7.7 3.9 1.8
Average 21 1.0 7.6 4.0 1.7

Pers Ubiquit Comput (2008) 12:155–166 165

123

the process, which we consider evidence for the feasi-

bility of our approach. We conclude that the collabo-

rative mapping prototype provides an encouraging

example for the general idea of employing super-dis-

tributed smart entities as a substrate for the realization

of collaborative activities.

Currently we are in the process of investigating

means for performing the dead reckoning itself with

the help of a pure SDRI-based middleware service, to

free the MoD from its dependence on the rotation

sensors. Besides, we intend to further develop our

mapping system to make use of the Location abstrac-

tion provided by our LM implementation to improve

the robustness against individual tag failures.

Acknowledgments We wish to thank Vito Piraino for his work
on the implementation of the SDRI middleware prototype [5].
We further wish to acknowledge Nicola Oprecht for his work on
the implementation of the SDRI Tracking and Positioning pro-
totype [15], and Marco Bär for his work on the Collaborative
SDRI Mapping system [16].

References

1. Bohn J (2006) Prototypical implementation of location-
aware services based on super-distributed RFID tags. In:
Proceedings of the 19th international conference on archi-
tecture of computing systems (ARCS’06). Number 3894 in
LNCS, Frankfurt am Main. Springer, Berlin Heidelberg New
York, pp 69–83

2. Bohn J, Mattern F (2004) Super-distributed RFID tag
infrastructures. In: Markopoulos P, Eggen B, Aarts E,
Crowley J (eds) Proceedings of the 2nd European sympo-
sium on ambient intelligence (EUSAI 2004). Number 3295 in
LNCS. Springer, Berlin Heidelberg New York, pp 1–12

3. Vorwerk & Co. Teppichwerke GmbH & Co. KG (2005)
Vorwerk is presenting the first carpet containing integrated
RFID technology. Press release, Hamlin, Germany

4. Bohn J (2006) User-centric dependability concepts for
ubiquitous computing. Doctoral dissertation, No. 16653,
ETH Zurich, Zurich, Switzerland

5. Piraino V (2004) A middleware for robust self-organizing
services based on highly redundant RFID tag infrastructures.
Master’s thesis, Institute for Pervasive Computing, Depart-
ment of Computer Science, ETH Zurich, Switzerland

6. Philips Semiconductors (2006) I-CODE—Smart Label
Technology. Homepage at http://www.semiconductors.phi-
lips.com/products/identification/icode/

7. Flörkemeier C, Lampe M (2005) RFID middleware design -
addressing application requirements and RFID. In: Pro-
ceedings of sOc-EUSAI 2005 (Smart Objects Conference),
Grenoble, France

8. Flörkemeier C, Lampe M (2004) Issues with RFID usage in
ubiquitous computing applications. In: Proceedings of
PERVASIVE 2004. Number 3001 in LNCS, Linz/Vienna,
Austria. Springer, Berlin Heidelberg New York, pp 188–193

9. Burgard W, Moors M, Fox D, Simmons R, Thrun S (2000)
Collaborative multi-robot exploration. In: Proceedings of the
IEEE international conference on robotics and automation
(ICRA)

10. Fox D, Burgard W, Kruppa H, Thrun S (2000) A probabi-
listic approach to collaborative multi-robot localization.
Auton Robots 8:325–344

11. Hähnel D, Burgard W, Fox D, Fishkin K, Philipose M (2004)
Mapping and localization with RFID technology. In: Pro-
ceedings of the IEEE international conference on robotics
and automation (ICRA), New Orleans, LA, USA

12. Kubitz O, Berger MO, Perlick M, Dumoulin R (1997)
Application of radio frequency identification devices to
support navigation of autonomous mobile robots. In: 47th
IEEE vehicular technology conference proceedings, vol 1. pp
126–130

13. Ni L, Liu Y, Lau Y, Patil A (2003) Landmarc: indoor loca-
tion sensing using active RFID. In: Proceedings of the 1st
IEEE international conference on pervasive computing and
communications (PerCom), pp 407–415

14. LEGO Mindstorms (2006) Homepage at http://www.mind-
storms.lego.com/

15. Oprecht N (2005) Positioning and object tracking based on
super-distributed RFID tag infrastructures. Master’s thesis,
Distributed Systems Group, ETH Zurich, Switzerland

16. Bär M (2004) Collaborative map-making in an area of ran-
domly distributed RFID-tags using a LEGO Mindstorms
robot vehicle. Semester thesis, Institute for Pervasive Com-
puting, Department of Computer Science, ETH Zurich,
Switzerland

166 Pers Ubiquit Comput (2008) 12:155–166

123

http://www.semiconductors.philips.com/products/identification/icode/
http://www.semiconductors.philips.com/products/identification/icode/
http://www.mindstorms.lego.com/
http://www.mindstorms.lego.com/

