
Design and validation of a light inference system to support
embedded context reasoning

Josué Iglesias • Ana M. Bernardos •
Paula Tarrío • José R. Casar • Henar Martín

Abstract Embedded context management in resource-
constrained devices (e.g. mobile phones, autonomous sen­
sors or smart objects) imposes special requirements in
terms of lightness for data modelling and reasoning. In this
paper, we explore the state-of-the-art on data representation
and reasoning tools for embedded mobile reasoning and
propose a light inference system (LIS) aiming at simpli­
fying embedded inference processes offering a set of
functionalities to avoid redundancy in context management
operations. The system is part of a service-oriented mobile
software framework, conceived to facilitate the creation of
context-aware applications—it decouples sensor data
acquisition and context processing from the application
logic. LIS, composed of several modules, encapsulates
existing lightweight tools for ontology data management
and rule-based reasoning, and it is ready to run on Java-
enabled handheld devices. Data management and reasoning

This paper is an extension of the work entitled 'A light reasoning
infrastructure to enable context-aw are mobile applications' presented
in the third International Workshop on Sensor Networks and Ambient
Intelligence (SeNAmI 2010), Hong Kong, China, 2010.

J. Iglesias (£3) • A. M. Bernardos • P. Tarrío •
J. R. Casar • H. Martin
Universidad Politécnica de Madrid, Av. Complutense 30,
28040 Madrid, Spain
e-mail: josue@grpss.ssr.upm.es

A. M. Bernardos
e-mail: abernardos@grpss.ssr.upm.es

P. Tarrío
e-mail: paula@grpss.ssr.upm.es

J. R. Casar
e-mail: jramon@grpss.ssr.upm.es

H. Martin
e-mail: hmartin@grpss.ssr.upm.es

processes are designed to handle a general ontology that
enables communication among framework components.
Both the applications running on top of the framework and
the framework components themselves can configure the
rule and query sets in order to retrieve the information they
need from LIS. In order to test LIS features in a real
application scenario, an 'Activity Monitor' has been
designed and implemented: a personal health-persuasive
application that provides feedback on the user's lifestyle,
combining data from physical and virtual sensors. In this
case of use, LIS is used to timely evaluate the user's
activity level, to decide on the convenience of triggering
notifications and to determine the best interface or channel
to deliver these context-aware alerts.

Keywords Context-aware application • Data modelling •
Light ontology management • Embedded reasoning •
Service-oriented architectures • Activity inference

1 Introduction

Acquiring, processing, merging and disseminating data
coming from heterogeneous sensors in order to infer
information about a target entity's situation and intent
(usually referred as context information in scientific liter­
ature since mid-90s) may be a very costly and complex
process. To alleviate the difficulty of dealing with context
management tasks and facilitate the development of con­
text-aware applications, a good number of frameworks
have been proposed to date (e.g. see [1, 2] for a survey).
Most of them rely on infrastructure-based centralized
architectures (e.g. [3-6]), which allow powerful processing
and reasoning. This centralized approach requires perma­
nent communication between context-data sources and

mailto:josue@grpss.ssr.upm.es
mailto:abernardos@grpss.ssr.upm.es
mailto:paula@grpss.ssr.upm.es
mailto:jramon@grpss.ssr.upm.es
mailto:hmartin@grpss.ssr.upm.es

context-data consumers. Data losses or delays in the infor­
mation flow may cause distorting effects on the application
side due to information misalignment. Moreover, this
approach may require complex security techniques as con­
text data are handled in external infrastructures, and security
implementation becomes significantly important when
managing context information (as it includes highly private
data such as location, identity, activity or social network
information [7]).

At the same time that new context-aware architectures
and reasoning tools have evolved, mobile devices have
dramatically improved their communications, processing
and sensing capabilities. Mobile applications are nowadays
increasingly adapted to user's profile and needs, as they can
take advantage of the deep knowledge about the individual
that it is possible to gather directly from the mobile device.

The process of extracting information to personalize a
mobile service may be transferred from the application side
to common 'core' device modules. Hence, a personal
device may establish a univocal relationship with the user,
performing an accurate and continuous analysis of the
user's behaviour and context (from communication data
exchange, sensor data, contacts, agenda, information
requests or interactions), which it may internally use or
expose for other applications to exploit. This embedded
personalization capability may be used, for example, to
adapt any kind of interface in the mobile device or to serve
as a commodity layer to develop diverse behaviour-based
applications (such as personal trainers, navigation tools
taking into account the user's driving skills, family man­
agers helping to schedule daily life or ambient care systems
enhancing the social network of the elder).

Context-aware/behaviour-based embedded applications
make an intensive use of sensor data, needing to accom­
plish in-device complex reasoning processes to efficiently
analyse the collected information. Thus, embedded archi­
tectures to manage context become important to deal with
acquisition, fusion and reasoning tasks. This device-centric
approach for context management enables the user to
control the personal information shared with external sys­
tems and services, at the same time that the application
performance and the final user experience may benefit from
the absence of communication delays or interruptions.

Nowadays, mobile operating systems are providing
easily accessible interfaces to mobile devices embedded
sensors, but context-aware reasoning-oriented solutions to
deal with context data and avoid processing redundancy are
still pending. Although there are some proposals coping
with this issue, most of them are application oriented, not
being suitable for scaling or changing the application
domain.

In this paper, we address the design and integration of a
light inference system (LIS). This system has been designed

to be part of an embedded service-oriented mobile frame­
work offering a complete set of context management fea­
tures (acquisition, data fusion and context reasoning), ready
to be directly consumed and customized from the developer
side. LIS is built on existing tools for data modelling and
reasoning, which have been adapted and integrated to work
coordinately. The result is an embeddable software module
offering domain-agnostic rule-based reasoning and data
model managing capabilities, which may be configured and
used either from the context-aware framework itself or
directly by context-aware applications. As a case of use
relying on the designed architecture, LIS is used in this
work to facilitate the deployment of a context-aware
behaviour-based application, an Activity Monitor, which
aims at persuading the user to increase his/her physical
activity all day long, by establishing well-defined goals
related to the user's lifestyle.

The paper is structured as follows. Section 2 reviews
and compares existing embedded toolkits for data model
management and reasoning. Section 3 briefly presents the
embedded context-aware framework supporting the light
inference system, including the data model, which serves to
support the communication between software modules.
From a set of operational requirements, LIS is fully
described in Sect. 4. Section 5 explains how the reasoning
needs of the Activity Monitor are fulfilled by using LIS.
Section 6 concludes the paper with an analysis of the
drawbacks and key issues identified when designing,
building and testing the reasoning system.

2 Related work on lightweight data representation
and reasoning

Relying on a restricted use of communications, device-
embedded strategies for context management may deliver
relevant functional benefits, such as personal data securi-
zation and control and efficient data handling and pro­
cessing, thus offering an acceptable performance from the
user's point of view in terms of Quality of Service. Nev­
ertheless, this approach implies redesigning context man­
agement processes to adapt them to adequately work in
resource-constrained devices. In particular, centralized
context-aware frameworks may integrate standard reason-
ers—e.g. Pellet, HermiT—together with data model man­
agement tools to automate the inference process of
complex context information on a knowledgebase, an
approach to consider also in mobile computing environ­
ments. To date, how to face this capability in resource-
constrained devices has been explored in several proposals.
Following, a state-of-the-art on lightweight tools to manage
data models and a review on strategies to integrate auto­
mated reasoning on context instances are addressed.

From a functional point of view, machine-processable
descriptions are necessary to organize, valorize and share
the huge amount of context information nowadays gener­
ated by information systems [8]. Sensor data, personal
digital information, linked open data, etc., may be jointly
processed if they are organized under a common and
expressive data structure. Information representation tech­
niques differ depending on the area of knowledge and,
mainly, on the practical requirements of the final applica­
tion itself. How to optimally represent information in
resource-constrained mobile devices is still an open chal­
lenge, and several approaches for light context information
modelling have been addressed in the literature (e.g. [1,9,
10]). For example, the simplicity of tuple-based models
(also known as key value models) reduces management
overhead and enables them to be applied to already existent
mobile systems (e.g. [11, 12]), but they lack from valida­
tion and scalability capabilities and they are not suitable for
handling the typical ambiguity of context information. The
hierarchical structure and automatic validation are some of
the main strong points of markup scheme modelling. These
approaches are usually based on Standard Generic Markup
Language (SGML), being XML the most popular. XML
has a high semantic redundancy, and it is not adapted to the
limited resources of embedded devices; according to [13] a
better performance, saving computing resources and
bandwidth can be obtained with other techniques as, e.g.,
JavaScript Object Notation (JSON) [14]. A lightweight
XML-based approach for modelling context information
and for encoding context management messages is pre­
sented in [15]; it enables fast processing on resource-con­
strained mobile devices but lacks semantic expressiveness.

Ontology-based modelling [16] combines the advanta­
ges of object-based and logic models [17], i.e., encapsu­
lation, extendibility and reusability, and formalism and
inference capabilities, respectively. Ontology-based data
models facilitate information fusion from heterogeneous
data and knowledge sources, also providing support for
automated reasoning [18]. OWL (Web Ontology Lan­
guage) [19], the standard ontology language endorsed by
the W3C, enables different applications/tasks to share a
common model [20], providing common shared domain
vocabularies and a consistent mechanism for information
representation. According to [9], these features are partic­
ularly important in mobile and pervasive environments, in
which different heterogeneous and distributed entities must
interact for exchanging users' context information. OWL
needs a particular syntax in order to store and exchange
ontologies among applications. RDF/XML [21] is widely
used; it is a 'heavy-weight' representation but many
methods and tools for lighten XML have been proposed
(mainly based on compression methods or binary XML
formats [22]). Besides RDF/XML, there exist several other

syntaxes tailored to the features of resource-constrained
devices. Manchester OWL [23] is a natural-language
compact syntax for OWL ontologies, more readable and
understandable by common human users; according to
[24], ontology files encoded in Manchester OWL are easier
to parse and approximately twice smaller than when
encoded in the RDF/XML syntax. KRSS2 (Knowledge
Representation System Specification 2), an extension of
KRSS [25], is another easy-to-parse syntax for DL-based
knowledge representation; it is used in [26] to formalize
several ontologies used to perform embedded reasoning.
N-Triples [27] is a line-based, plain text serialization for­
mat for ontologies; it was designed to be a fixed subset of
N3 syntax (and hence of Turtle) and therefore easier for
software to parse and generate; however, it lacks some of
the shortcuts provided by other RDF serializations.

Formal information representation facilitates automated
reasoning (e.g. model and knowledgebase consistency
checking, concept and instance classification [28]).
Although scarce compared with general context manage­
ment systems, some light tools enabling reasoning in
resource-constrained devices have already been described
in the literature (see Table 1 for a comparison); most of
them work on ontology-based data models. Crivellaro et al.
[29] developed fdena to manage ontologies stored in
mobile devices (this tool does not provide ontological
reasoning but only an API to create, delete, edit, etc.
ontology concepts, relations, etc.). LOnt [24] is another
custom implementation of the Jena API [30] for mobile
devices. Its main features are its small size and low-
memory fingerprint, which make it suitable for use in
J2ME mobile devices. Kleeman et al. [7] integrated the
mobile Pocket KRHyper reasoner [31] for profile man­
agement and decision-making tasks. Pocket KRHyper is a
reasoning system for Java-enabled mobile devices; it does
not offer support for any of the standard ontology lan­
guages (OWL, SWRL [32]—Semantic Web Rule Lan­
guage—etc.). In [33], a mobile framework providing
ontology processing and reasoning was proposed. The
reasoning engine contains a forward chaining rule-based
inference engine, which can be used to trigger the desired
actions based on the rules that are explicitly defined, but it
only works on a subset of OWL ontology inference rules.
In this framework, a lightweight RDQL (RDF Data Query
Language) query engine supporting a subset of RDQL
syntax is also developed. The fiOR reasoner [34] is intro­
duced as a part of a framework for developing Ami-based
medical devices. It makes reasoning over a subset of OWL-
Lite entailments. Vázquez [35] implements a 'MiniOwl
and MiniRule' embedded reasoner, powered with ontolo­
gies and domain rules that can successfully interpret situ­
ations that were not previously solved without reasoning.
This proposal only implements a subset of OWL-Lite, too.

Finally, Bossam [36] has native support for reasoning over
OWL/SWRL ontologies and RuleML rules [37]. Its run­
time size is about 750 Kb, running on J2ME CDC/PP
platforms as well as on J2SE platform of JDK 1.3 or later.
At this point, it is worth mentioning androjena, a new
development (the first version was released on May 2010)
based on a subset of the popular Jena framework, migrated
to Android platforms. To the best of our knowledge, up to
now, it has only been used in few works (e.g. [38, 39]) to
support information management and reasoning in
embedded privacy protection and mobile social network
developments.

In addition, some hybrid architectures combining server-
based and device-oriented approaches have also been
explored. MobileOntoDB [40] evaluates each query per­
formed in the device, and if it exceeds the device capa­
bilities, it is sent to a central reasoning server. A distributed
case-based reasoning mechanism is used in AmbieSense
[41], an agent-based infrastructure for context-based
information delivery for mobile users, in which online
reasoning (most simple and common processes) lies on the
user's mobile device while offline reasoning (processes
requiring more resources but without response time con­
strains) is done in the backbone system.

The state-of-the-art analysis reveals two approaches
when embedding ontology model management and rea­
soning capabilities. On the one hand, most of the current
developments are focused on tailoring representation and
reasoning techniques to solve specific problems (e.g. [42,
43, 44]). The work presented in [45] is particularly relevant
at this point, as it presents an OWL ontology reasoner that
is dynamically and automatically composed to provide
only the level of reasoning required for the ontology in use.
On the other hand, recent improvements in the perfor­
mance of mobile devices (with higher processing capabil­
ities, available memory, etc.) enable lightweight general-
purpose ontological tools to be embedded with a promising
success (e.g. [29, 36, 39]). However, there are still few
developments in this direction, and the existing ones are
still far away from maturity. Although some performance
tests can be found in the literature (e.g. for uJena [29],
Bossam [36] or, more recently, androjena [39]), there is a
lack of experiments comparing their performances in a
common scenario. Finally, it should be noted that much of
these developments are discontinuous research projects so,
not only the performance has to be taken into account when
making a choice, but also its public availability, standard
compatibility, maintenance or planned future extensions.

In this paper, we propose the design of a general-pur­
pose light inference system (LIS) aiming at offering
ontology model support, rule-based reasoning and multiple

¡á http://www.code.google.eom/p/androjena/.

http://www.code.google.eom/p/androjena/

query management. For interoperability and reusability
purposes, we target the design of a standard-oriented rea­
soning proposal, in terms of languages used for ontology
modelling, rule set and queries. As none of the previously
analysed tools fulfil all these requirements, we aim at
adapting and combining a selection of them to design our
own solution.

3 A service-oriented mobile framework to manage
context data

The light inference system described in this paper is part of
a light framework that aims at providing a set of standard
features to build context-aware mobile applications in
order to support and accelerate their design and develop­
ment life cycle. It is out of the scope of the paper to detail
how the framework has been designed and built, but Sect.
3.1 gathers a general view of its software architecture in
order to contextualize the following description of the
inference system (Sect. 4). For the same reason, Sect. 3.2
describes the underlying data model handled by LIS to
support the reasoning tasks.

3.1 General description of the framework software
architecture

The framework is conceived to provide easy access to data
coming from a number of sensors, either embedded in the
mobile device (such as accelerometers, gyroscopes, RFID/
NFC interfaces or cameras) or deployed within the user's
environment (e.g. wireless nodes with sensors or bidi-
mensional codes). Additionally, the framework is also
prepared to integrate context information from third parties
(coming from virtual sensors, e.g., in-the-cloud calendars).

Built on these sensing modules, the framework offers a
set of general and application-independent facilities to deal
with context processing, offered as horizontal services to
be used by any application deployed on top of it. To date,
horizontal services provide, for example, the following: (1)
seamless position estimation (handling handovers from
outdoor GPS to WiFi, ZigBee and Bluetooth indoor
localization systems), (2) detection of tagged Points of
Interest (which can be dynamically discovered by using
wireless technologies or by previous registration of their
location in the Pol database), (3) image-based decoding of
bidimensional codes and (4) ontology rule-based reason­
ing. This last capability is the one addressed in this paper
through the design of LIS. From its functional perspective,
LIS is thought to be a flexible and configurable tool to
outsource periodic rule-based reasoning tasks from appli­
cations or internal framework components, reducing the
coding complexity and the computational cost in runtime.

In brief, the framework requirements include the
following:

• Encapsulation of embedded and external sensors,
offering common interfaces to access the data they
offer.

• Offering different acquisition methods (synchronous,
asynchronous or on-demand) in order to adapt sensor
data retrieval to consumer applications needs.

• Managing a dynamic registry of available sensors, and
its associated measurements, in order to support
discovery and subscription processes.

• Providing a set of horizontal services (in charge of
processing the data coming from sensors or from other
services) that are encapsulated as a special type of
sensor, sharing a common registration method and
access mechanisms.

In order to clarify how LIS has been integrated into the
framework, a brief description of its software architecture is
presented next. The framework is implemented on a service-
oriented software architecture [46] composed by three main
building blocks: Sensing Subsystem, Context Management
Subsystem and Core Subsystem (Fig. 1). The Sensing Sub­
system decouples access to embedded and external sensors
from upper processing levels by wrapping sensor-specific
characteristics inside software units, which deal with low-
level hardware information retrieval. The Context Man­
agement Subsystem is composed of a number of modules
that process data coming from sensors (or from other mod­
ules), fuse them and infer complex context parameters
(offered as horizontal services). Finally, the Core Subsystem
provides several features to integrate software modules into
the framework, such as discovery and registry management
of new elements and some common utility libraries. Internal
modules and applications use an (asynchronous) event-
based communication strategy, leaded by the Core Subsys­
tem, in order to exchange context data. Applications con­
sume context information provided by modules using the
features provided by the Core Subsystem.

The resulting approach has been developed using the
service-oriented mobile OSGi programming platform.
mOSGi handles modules referred as bundles {enablers):
cohesive, self-contained units, which explicitly define their
dependencies to other modules/services and their external
APIs. For example, LIS relies on two enablers referred in
Fig. 1 as Ontology Model Manager and Inference Engine.

3.2 Description of a light data model for context
management

As previously stated, the framework needs to handle a
generic data model, built to enable communication among
the horizontal services and with the applications on top of

Fig. 1 Architecture of the
mobile service-oriented
framework supporting the light
inference system

Applications

Location
Fusion

Context Management Subsystem I u9ht ,nference sy$tem'LIS

Ontology Model Inference
Manager Engine

E DataConsumer Communicat. Manager

SensorManager

WatchSensor

Core Subsystem

Sensing Subsystem other sensors

it. This data model will also be shared between LIS and the
framework components invoking its reasoning services. It
has been designed to be: light to be easily managed by
mobile devices; scalable, allowing dynamic updates of the
knowledgebase to include new context sources; flexible,
allowing standard access from different components in
order to associate context information at different levels of
abstraction; syntactic and semantically explicit and formal,
facilitating consistency checking when including new
entities and concepts; sharable and reusable among dif­
ferent types of systems and prepared to support future
distributed reasoning processes; and adaptable/extensible
to different knowledge domains, as it is intended to support
a wide range of heterogeneous applications.

The data model has been implemented by means of
ontologies, as this approach results in a versatile structure
in terms of distribution, validation, formalization and
completeness [18]; it has been built taking into account the
design principles in [47].

Figure 2 shows an overview of the core ontology used to
build the data model, considering common concepts on
which the framework works. This first version of the
ontology considers general concepts common to embedded
context-aware deployments, being extensible by using
domain ontologies in order to cope with the particular
aspects of different application requirements.

Initially, five common packages of classes have been
included in the core ontology: User, Device, Context,
Service and Event. Figure 2 highlights the classes and
relationships modelled in the Context package and the
relationships among some of the most important concepts
in other packages:

The User package considers explicit and non-dynamic
characteristics of the user. For example, personal data
{userName, userBirthDate, userGender, etc.), profile
information (e.g. including disabilities) and preferences are
included in this package. Generally, these data are manu­
ally entered into the system, directly by the user or a sys­
tem administrator.

The Context package models different features defining
the situation of the user. This information is extracted from
in-device, personal or environment sensors and offered to
the applications through different horizontal services. This
package includes concepts such as Location, Environmen­
tal Conditions, near Networked Resources, user Activity
and Biometry.

The Device package specifies particular features
describing the user's mobile device. They include both
software (operatingSystem, audioPlayerFormat, etc.) and
hardware features (totalMemory, keyboardType, etc.). The
list of available services and device sensors is also mod­
elled here.

The Service package mainly defines the attributes
characterizing the structure of the horizontal services, i.e.,
the context information they offer and how to access this
information.

The information provided by the enablers is usually
modelled as events. Different types of events are modelled
in the Event package (e.g. calendar appointments, points of
interest and networked resources).

Following the analysis in [19], we have opted for
OWL-Lite as the language to develop a light ontology
suitable to work in the mobile device. OWL-Lite supports a
classification hierarchy and simple constraints; classes and

Fig. 2 Overview of the
framework ontology
(highlighting Context package
classes and relations)

User Package

Preferences

hasPreference

J Z
foaf iPerson

hasProfile

Profile

hasContext I r

Context Package

Biomet ry

Í L-^i
Context

Ac t i v i t y

N etwo rked Reso urce

~FZ§.

hasValidTime

composedBy

contains

Ne two rked 0 bj ect

owtTim e:Tempora fTh ing

POI

S ym bo l kZ one Envi ronmentCond i t ion

A
GukJeRoutes

Device

h¡ sOevice

Pack.

dcon t e x t O n t D e u ice

Service Pack

haslnstalled

Service

get ¡Information

genera tesEvent

Event Fack

infer •edFrom

Event

properties can be defined as equivalent, making possible
schema-matching and ontology alignment. The fact that
OWL-Lite is less complex than OWL-DL (offering less
language constructs and less expressivity power) may have
a positive impact on the reasoner's efficiency, while being
sufficient for many real applications [19].

However, in the initial stages of the framework ontology
design, we aimed at fulfilling OWL-DL expressiveness, as
the data model could also be used in a centralized infra­
structure environment. OWL-DL is an extension to OWL-
Lite that has computational completeness and decidability
(which means that all computations are guaranteed to be
computable within finite time). When possible, the entities
considered in the OWL-DL data model have been imple­
mented through standard ontologies such as OWL-Time
(Time), Geo-OWL (Location), FOAF (User), RDF Cal
(Calendar) or Delivery Context Ontology (Device).

In order to adapt the data model to be processed in a
mobile device, the initial OWL-DL model was manually
transformed to accomplish OWL-Lite features (to the best
of our knowledge, no software tool exists that automatically
performs this OWL-DL to OWL-Lite conversion). In this
process, some logical assertions, those available in OWL-
DL but not in OWL-Lite, had to be removed (e.g. multiple
cardinality restrictions), but not the main relations between
concepts (and their attributes and data types constraints).
Protege (v3.4.4) utility was used to develop the framework
ontology and also to verify that it accomplished OWL-Lite
expressiveness level. Although OWL-Lite does support

importing third parties' ontologies, external models avail­
able in the OWL-DL developments were removed in the
OWL-Lite version, once more to free the mobile device
from extra processing tasks. The extension of the core
ontology with domain-specific ones should be revisited in
future works in order to check how these extensions may
deteriorate the overall system performance.

4 Design of a light inference system

LIS is conceived as a general-purpose rule-based reasoner
with ontology management capabilities, which operates on
the data model described in Sect. 3.2. LIS's features need
to be accessible both to every component in the framework
and to context-aware applications built on top of it, so the
inference system has to be versatile enough to be config­
ured to perform fusion tasks on plain data or to manage
reasoning on context features. This approach allows cus­
tomized development strategies (where the programmer
decides to which extent the application logic should be
retained into the application layer or delegated to the
framework).

In order to invoke LIS reasoning service, next elements
should be defined in advance:

1. A background ontology modelling a knowledgebase
with specific facts to reason over (e.g. ontology data
model described in Sect. 3.2).

2. A set of rules/queries used to infer new knowledge
from the facts stated in the knowledgebase (these rules/
queries may be dynamically provided and are tightly
coupled to the ontology model).

3. One or more information sources (sensors, horizontal
services, etc.) updating the knowledgebase (i.e. updat­
ing the facts used in the rule/query sets).

4. A consumer service (application or in-framework
element), in charge of configuring the rule/query set
and invoking the reasoning process.

This version of LIS employs the data model previously
presented as a static ontology, but the rule/query sets and
the information sources and consumers can be dynamically
configured. Note that reasoning service consumers are in
charge of feeding LIS with a rule set adapted to obtain the
desired information.

This Section details how LIS has been built. It first
discusses the selection of the software tools that were
finally used to enable the reasoning service and how these
tools have been integrated into the service-oriented soft­
ware architecture; secondly, it describes how data flow
when an application or component uses LIS.

4.1 Embedding semantic tools into a light
service-oriented framework

LIS is composed by an ontological manager to handle the
knowledgebase—shaped according to the data model pre­
viously explained—and an ontological and rule-based
reasoner.

As previously commented, LIS is conceived to offer a
generic problem-solving approach. Thus, most of the tools
analysed in the state-of-the-art were discarded to imple­
ment LIS features, as they are solutions designed to solve
domain-specific problems (despite the general approach of
androjena, it was not taken into account as it is not fully
compatible with our development tools). Among the rest of
tools (i.e. ¡iJena, Pocket KRHyper and Bossam), ¡iJena has
been selected as ontology model and knowledgebase
manager as it is the only one with this kind of capabilities,
also being capable of dealing with OWL-based ontologies.
Regarding the reasoner, both PocketKRHyper and Bossam
are currently publicly available but the fact that the former
is not standard oriented led us to choose Bossam as rule-
based reasoner (it is able to manage most of the well-
known ontology standards). In fact, selecting fiJena led us
to choose also Bossam as both share a common ontology
syntax (N-Triples, see Table 1).

In practice, to implement LIS into the service-oriented
framework presented in Sect. 3.1, it has been necessary to
design and encapsulate the reasoning tools into two new
modules: (1) one enabler in charge of managing the

ontological knowledgebase (Ontology Model Manager in
Fig. 3) and (2) another one encapsulating the reasoner itself
(Inference Engine enabler in Fig. 3). Thereafter, fiJena and
Bossam could be managed as framework enablers and may
use the Core Subsystem capabilities: e.g., they can be
registered into the framework, being able to be discovered,
configured and invoked by other enablers.

It is important to remark that the lightweight framework
also had to be extended in order to be able to host the
services offered by fiJena and Bossam. It was initially
designed to manage event-based notifications between
framework enablers/sensors/applications, but the new rea­
soning processes required to be invoked on an 'on-demand'
basis. Once integrated into the embedded context-aware
framework as enablers, fiJena and Bossam had to be tuned
up in order to use the same syntax when dealing with the
data model and knowledgebase. Although Bossam is able
to cope with several ontology syntaxes (see Table 1), the
only choice was N-Triples, as fiJena only accepts this
format.

With respect to initial versions of LIS [48], the use of
separated enablers for data model management and rea­
soning enhances and simplifies the strategy adopted, as
every operation to be performed on the knowledgebase is
now centralized in the new Ontology Model Manager.
Initially, the knowledgebase management (update and
retrieval) had to be performed on each enabler willing to
invoke the reasoning services, increasing their complexity.
However, knowledgebase management is now totally
decoupled from the implementation of the logic for a given
enabler, also ensuring knowledgebase integrity.

Next Section addresses how LIS is configured and used
by consumer modules.

4.2 Data flow in LIS

The operation of the reasoning system is explained
throughout the following data flow (Fig. 3). It starts when
an application asks the framework for some context
information to be provided by a (let's call it) Generic E-
nabler through the use of sensors and other services in the
framework:

1. Context parameter request: an application demands
information on a context parameter, the framework
dynamically discovers the enabler providing this
information (Generic Enabler in Fig. 3) and starts and
configures it to fulfil the application requirements.

2. External context-data retrieval: the Generic Enabler
may need information coming from other enablers or
sensors; it can then subscribe or query other compo­
nents in the framework in order to get this information
(by using its External Context Manager). As shown in
Fig. 3, the Generic Enabler can access the information

Fig. 3 Software structures and
information flow for building
intelligent services based on
ontological reasoning over the
described framework

GenericEnabler OntologyModelManager
I

SQWRL SWRL

^v^ 6 B o s s a m (Ontology Reasoner)
UJL

InferenceEngine

LIS - Light Inference System

— • Enabler internal data exchange
C^> Light Framework Core Subsystem event exchange

stored in the knowledgebase using the common
interface offered by the Ontology Model Manager.

3. Context parameters pre-processing: each type of
context data received from sensors and/or enablers
will be managed by different External Context Han­
dlers. Context data may be independently pre-pro­
cessed here.

4. Reasoner service invocation: the set of rules (SWRL)
and queries (SQWRL) to be applied by the Inference
Engine enabler need to be configured by the Generic
Enabler.

5. Knowledgebase facts retrieval: Bossam needs to know
the current status of those variables appearing in the
rule and query sets. It uses the common interface of the
Ontology Model Manager (described below) to access
these data.

6. Reasoning: Bossam is used as ontology and rule base
reasoner. It reasons about the set of facts obtained from
merging both OWL and SWRL ontologies, returning
the answers to the SQWRL queries.

7. Context aggregation: the Generic Enabler may also
need to fuse different context data (some from the
reasoning process, some directly coming from other
enablers/sensors). For example, time alignment is
performed here.

8. Service output adjustment: finally, the Generic Enabler
output is adapted to meet the application requirements
(mainly a syntactic adaptation according to the appli­
cation needs).

In practice, the Ontology Model Manager common
interface includes general get(), create(), set() and delete()

operations over the knowledgebase, which may be used by
any enabler. In a similar manner, the Inference Engine offers
a common interface to allow any other enabler to invoke
reasoning services; in this case, this interface includes getters
and setters operations managing (1) the set of rules to apply in
the reasoning process and (2) the set of queries the reasoner
needs to answer. Although Bossam is able to deal with stan­
dard SWRL rules and SQWRL queries, a Bossam's, pro­
prietary format (Buchingae) was actually used due to
performance requirements (using SWRL/SQWLR led to
memory overloads, see Sect. 6 for more details on this).

Section 5 explores the use of LIS capabilities to build a
domain application; the data flow between components is
analysed for this example in Sect. 5.3.

5 Case of use: reasoning in the Activity Monitor,
an application to prevent sedentary lifestyles

The framework described so far, equipped with LIS for
ontology model management and inference capabilities,
has been used to build the Activity Monitor [49], a context-
aware mobile application capable of tracking and evalu­
ating the user's daily movement, in order to provide
feedback about his/her level of sedentary behaviour
(Fig. 4a shows the Activity Monitor's graphical user
interface). The final objective of this application is to
deliver adequate context-aware notifications to motivate
the user to increase his/her activity level, adapting the
exercise goals with respect to his/her physical fitness and
health and lifestyle restrictions.

Fig. 4 a Application interface delivering an alarm, according to the
estimated location and activity of the user [49]. The main interface for
feedback is a puzzle of 24 blocks hiding a picture; blocks are unveiled
when the user achieves a sufficiently active behaviour. The interface
provides information about the estimated type of movement, the
user's heart rate and the place where the user is located, b External
sensors feeding the application: Shimmer motes for movement
estimation and Zephyr band with accelerometer, inclinometer and
biometric sensors

The Activity Monitor works with measurements taken
by sensors (Fig. 4b) both embedded in the mobile device
(accelerometers for movement estimation, GPS for out­
doors positioning and Bluetooth and WiFi for indoor
positioning) and external sensors (wearable inertial sensors
for movement estimation and biometric sensors—heart
rate, respiration rate, skin temperature and inclinometer—
for movement and health status estimation). The applica­
tion's logic fuses different types of entries to get its best
location, movement and subsequent activity estimates.

In particular, the reasoning process that evaluates the
user's activity level and decides when and how to deliver
notifications regarding the user's lifestyle is fully accom­
plished through LIS. LIS is used to:

• Evaluate the user's activity level: physical movement is
quantified and evaluated in different timeframes in
order to estimate the most plausible activity.

• Generate context-aware alarms: notifications encour­
aging users to follow healthier lifestyles are generated
having into account the following: (1) the application
configuration (gathering user's preferences), (2) the
time elapsed since last notification and (3) the result of
evaluating short- and long-term activity levels.

• Configure multimodal channels for context-aware
feedback delivery: once a notification is to be gener­
ated, LIS is invoked to decide the more suitable
interface (in-device alarm—e.g., soundless, vibrating—
email notification, social network post, etc.) to provide

the alert, according to the user context (e.g. current
location or activity).

The Activity Monitor also accomplishes some other
low-level reasoning tasks (e.g. user activity detection from
accelerometers and biometric data or seamless zone-based
location estimation), which are not configured to make use
of the embedded ontology reasoner.

5.1 Software components in the Activity Monitor

The complete set of enablers used in the Activity Monitor
is shown in Fig. 5. Apart from sensors and specific
framework enablers, four new enablers have been devel­
oped to support the application's functionalities: Energy
Cost Meter, Activity Evaluator, Alarm Generator and
Activity Application GUI/Logic. The Activity Evaluator
and Alarm Generator enablers are the ones invoking LIS.

After processing several types of data acquired from
sensors, the Activity Evaluator enabler is in charge of
assessing the set of activities that the user performs in the
short (Ws) and long term (W¡) (both short- and long-term
performances are taken into account in order to globally
evaluate user's activities; Ws and W¡ are configurable
parameters, currently set to 1 and 24 h, respectively). This
evaluation is made by comparing the 'energy cost' of each
atomic activity performed by the user with a set of 'mini­
mum energy cost' values set by experts. Energy cost is
specifically measured in PARs {Physical Activity Ratio),
which are multiples of BMR {Basal Metabolic Rate) per

ActivityApplicationGUI

ActivityApplicationLogic

EnergyCost
Meter

Biometric
Manager

sensors i

AtomicActivity
Detector

k i

Biometric

i

Accelerometers

Fig. 5 The Activity Monitor's architecture [49]

minute, the minimal rate of energy expenditure compatible
with life [50]. The Energy Cost Meter enabler is in charge
of quantifying user's activity into PARs. The Activity
Evaluator uses the general-purpose rule reasoner encap­
sulated in the Inference Engine in order to execute any rule
it needs to obtain its outputs. Specifically, several rules and
queries are configured, aiming at verifying that the user's
performance in the short and long term is not less than a
minimal value dynamically established, generating an
alarm if this happens.

Once the user's activity level has been evaluated, the
Alarm Generator enabler is in charge of providing feed­
back by managing the alarms sent to the user. When an
alarm is detected, this enabler first decides whether to
notify the user depending on the user's context. Three
parameters are currently taken into account for this
decision:

• User's explicit alarms configuration: no alarm would
be generated if the user states so in the static
configuration.

• Short- and long-term evaluations: an alarm is sent to
the user only when both short- and long-term evalua­
tions of the user's activity level are determined to be
below the expected minimum.

• Elapsed time since last alarm acceptance: in order not
to constantly disturb the user, a time between alarms
(tba) needs to be guaranteed before generating new
alarms.

Next, once an alarm is generated, the user will be
informed through alternative channels depending on his/
her context: different types of in-device alarms can be
configured (soundless, vibrating, etc.), and email or social
network notification could be also considered. Currently,
two context parameters are taken into account in this case:
user's location and activity. Apart from the default con­
figuration, the user may customize the application's per­
formance, e.g., to use a vibration alarm if working or a
soundless one if practicing sports.

The Activity Evaluator and Alarm Generator enablers
follow the architecture defined for the Generic Enabler
presented in Sect. 4.2. Their detailed logic is explained in
the next Section.

5.2 Logic in the Activity Monitor

The instantiated entities stored in the knowledgebase,
together with rules and queries, are supporting the rea­
soning process (Fig. 6C2). Entities have been modelled
according to the data model described in Sect. 3.2. Data for
instantiation can be classified depending on when and how
they are generated:

• Static data containing the information used to quantify
user's activities (into 'energy costs', measured in
PARs). These data are pre-stored in the knowledgebase
and cannot be modified (Fig. 6A).

• Asynchronous data gathering the current user's context
information. As the user changes his/her location,
activity, walked distance, profile, these data are asyn­
chronously updated in the knowledgebase (Fig. 6B).

• Pre-processed data. User's asynchronous context data
are periodically pre-processed in order to complete the
set of information needed for reasoning purposes.
These data are also stored in the knowledgebase
(Fig. 6 d) .

The knowledgebase update process is detailed in Fig. 6,
which also gathers the full relationship of context concepts
included in the reasoning process.

The ontology model was first adapted to meet the
lightweight infrastructure requirements. In addition, the
initial package structure (Fig. 2) was tailored, removing
those concepts not used in the Activity Monitor to avoid
'out of memory' problems in the reasoner invocation.
Then, from the initially planned set of five packages, only
User, Context and Event packages were used in practice.
Profiling parameters (gender, height, etc.) and configura­
tion (saved POIs, alarms ON/OFF, etc.) are considered in
the User package; context parameters (location, activity,
activity level and heart rate) are included in the Context
package; finally, alarms status and characteristics are
modelled in the Event package.

5.3 Reasoning process using LIS

Figure 7 details the model management and reasoner
invocation process for the Activity Evaluator and the Alarm
Generator (and multimodal interface selector).

For the Activity Evaluator, the process is as follows
(Fig. 7, left): (1) the application requests subscription to
the user's activity levels measurements and the framework
addresses this subscription towards the service in charge of
that kind of measure: the Activity Evaluator enabler; (2)
this enabler knows that it needs to update the data model
with the last user's activity level before invoking the rea­
soner; (3) after updating the knowledgebase, the Inference
Engine is configured (with a set of SWRL rules and
SQWRL queries) and invoked; (4) the Inference Engine
accesses the knowledgebase in order to obtain every fact
appearing in the rule/query sets (in this case, minimum
activity level values); (5) the Inference Engine answers to
the query set informing the Activity Evaluator if any
activity level alarm needs to be generated; (6) the Activity
Evaluator updates the knowledgebase with the activity
level alarms status (ON/OFF), offering in (7) the estimation

preLast_tsPAR

biometric
update

AtomicActivityDetector r- BiometricManager ActivityApplicationGUI LocationFusion

last_tsPAR

WsCalculator

-goal-

ir

WiCalculator

T I Y

WsThresholdCalculator

L_
[Ci]

periodic KB update

L 7
breathingRate

/ /

I a st Activity

steps

distance

speed

/
lastAccepted

Alarm

/ /
alarmsON/OFF

user goal

POI - loc.type

7

W,objPAR(goal)

WiminPAR(goal)

[B]

asynchronuos
KB update

[A]
• static data

query Set

h
alarmON/OFF-

•a la rmType^

Activity Monitor KB [C2]

inference

Fig. 6 The Activity Monitor knowledgebase update process

for the user's activity level. Figure 8 details the rules used
to evaluate user's activity level at short- and long-term,
respectively.

A similar process takes place next for inferring context-
aware alarms (Fig. 7, right): (a) the application requests
subscription to the context-aware alarms, being this sub­
scription addressed towards the service in charge of that
kind of measure: the Alarm Generator enabler; (b) the
Inference Engine is configured (with a set of SWRL rules
and SQWRL queries) and invoked; (c) the Inference
Engine accesses the knowledgebase in order to obtain
every fact appearing in the rule/query sets, in this case,
current configuration of the application regarding the alarm

generation process and context information related to the
user; (d) the Inference Engine answers to the query set
informing the Alarm Generator whether an alarm should be
generated or not and, if so, the kind of notification to use
(in-device alarm, email notification or social network post)
according to the user's current activity level and context;
finally (e), the Alarm Generator updates the data model
with the characteristics of the alarm to be shown to the user
and (f) also offers this information to the application.
Figure 8 details the rules used to decide whether generate
an alarm to the user and, if so, the type of alarm to be
generated (depending on the user's location, activity or
heart rate).

Application

Ontology
Model

Manager
• 4. 4. .

Inference Engine (Bossam)

user's activity level subscription a
ontology model update b
past known user's activity level)
rea son er invocation C
Irule + querysets] d
model data retrievaI e
rea son er response
ontology model update f
¡alarm ONÍOFF]
user's activity level response

a la rm typ e su bs criptio n
rea son er invocation
[rule+ querysets)
model data retrieval
reason er response
ontology model update
[alarm type)
alarm type response

Fig. 7 Activity evaluator (left) and context-aware alarm generator

and multimodal interface selector (right) service overview

6 Conclusions

The light inference system (LIS) presented in this paper is
built on available tools for data model management and
ontology rule-based reasoning, which have been adapted to
work properly in a service-oriented embedded framework
to deal with context management in mobile applications.
LIS provides a domain-agnostic and configurable reasoning
tool to release other framework components from inter­
nally implementing particular reasoning mechanisms.
Reasoning processes encapsulated within LIS are offered
using a common interface, so it can be dynamically con­
figured and invoked from either internal framework com­
ponents or final applications.

When initiating the design process, we aimed at building
a reasoning system: (1) capable of dealing with ontology
data, (2) using standard formats and (3) working in
resource-constrained mobile devices. On the one hand,
nowadays, it is easy to find implementations just satisfying
requirements (1) and (2) (Jena, OWLAPI, Pellet, HermiT,
etc.), but they have not really been designed to be deployed
in mobile devices. On the other hand, state-of-the-art
analysis reveals a (limited) number of developments just
meeting prerequisite (3). So, to the best of our knowledge,
fiJena (as ontology manager) and Bossam (as ontology and
rule-based reasoner) are the only ones satisfying all three
key requirements (androjena has not been taking into
account as it was released after making our decision, and it
was not compatible with our development tools). Never­
theless, their integration inside the service-oriented
framework has not been smooth.

It is important to note that both ¡iJena and Bossam are
research developments. One of their main drawbacks is
their lack of integration: most of the infrastructure

ontology reasoners (Pellet, HermiT, etc.) are directly
coupled with Jena and/or OWLAPI in order to manage the
models they reason over. However, Bossam can just load
data models from the file system. This limitation breaks
the process of updating the knowledgebase before infer­
ring new information: in our particular implementation,
¡iJena and Bossam communicate between them by
exchanging documents stored in the mobile file system, an
error prone practice that definitely increases response
times. This is, from our point of view, a relevant limita­
tion. Besides, although Bossam is able to handle several
well-known ontological standards, we experienced some
stack overflow problems when trying to use SWRL and
SQWRL for rules and queries definitions. As argued in
the state-of-the-art (Sect. 2), everything suggests that
parsing this kind of XML-based annotations overloads
resource-constrained devices (a Samsung Omnia with
Windows Mobile 6.1, 97 MB RAM and 528 MHz pro­
cessor was used for our experiments). Finally, a Bossam's
proprietary rule and query language (Buchingae) were
used with success.

Moreover, ¡iJena also lacks flexibility regarding the
supported standard formats. Although future extensions are
planned, at present, it just can read OWL ontologies coded
in N-Triples syntax. No report about the performance of
this syntax in mobile devices has been found, but updated
references regarding this issue [24, 26] point out to Man­
chester or KRSS2 syntax as some of the most appropriate
for resource-constrained devices. In addition, ¡iJena does
not support any rule or query language standard; besides, it
does not allow external ontologies to be imported.

There are still few developments capable of dealing
with ontology management and reasoning in mobile
devices, and the existing ones are far from maturity.
From our point of view, there is a need of a common
ontology management strategy (as Jena or OWLAPI for
infrastructure environments) to be integrated in mobile
reasoners. It is also worth mentioning that none of the
'well-known' ontological reasoners (Pellet, FaCT++,
RacerPro, etc.) are planned to be migrated to mobile
environments for the time being. At this point, it is
worth mentioning again androjena, which is supposed to
integrate a reasoner and an ontological manager, over­
coming the fiJena and Bossam integration problems
stated above.

The application described in Sect. 5 shows the feasi­
bility of using the light inference system to solve common
problems in ordinary mobile applications (for instance, the
context-aware notifications generation and multimodal
interface configuration may be easily integrated in other
kind of applications). Anyway, it also reveals semantic
tools immaturity regarding their adaptability to resource-
constrained devices needs (as the used tools needed to be

Fig. 8 Main rules used in the
activity evaluation, context-
aware alarm generation and
multimodal interface selector
processes

Long term evaluation rule:
The minimum PARs associated to the desired user's long term activity goal is compared to the
actual PARs related to the user's long term activity, generating a positive or negative evaluation
accordingly.

IF User(?user) AND
hasPreference(?user, ?goal) AND
ActivityLevelGoal(?goal) AND
hasMinPARlongTerm(?goal, ?minPARlongTerm) AND
hasContext(?user, ?activity) AND
Activity(?activity) AND
lastRealPARlongTerm(?activity, ?realPARlongTerm) AND
associatedEvaluation{?activity, ?evaluation) AND
[?realPARlongTerm < ?minPARlongTenn]
THEN hasNegativeLongTermEvaluationRevaluation, true)

Short term evaluation rule:
The minimum PARs associated to the desired user's short term activity goal is compared to the
actual PARs related to the user's short term activity, generating a positive or negative evaluation
accordingly.

IF User(?user) AND
hasContext(?user, ? activity) AND
Activity(?activity) AND
hasNowMinPARshortTerm(?activity, ?minPARshortTerm) AND
lastRealPARshortTerm (?activity, ?realPARshortTerm) AND
associatedEvaluation(?activity, ?evaluation) AND
[?realPARshortTerm < ?minPARshortTerm]
THEN hasNegativeShortTermEvaluationRevaluation, true)

Context-aware alarm generation:
If the required time between alarms has already expired and the user has enabled the alarms
notification and both short and long term evaluations are negative, then, an alarm notification
should be sent to the user.

IF User(?user) AND
hasContext(?user, ?lastAlarm) AND
LastAlarm(?lastAlarm) AND
hasValue(?lastAlarm, ?lastAlarmTime) AND
hasPreference(?user, ?time_between_alarms) AND
TimeBetweenAlarm (?time_between_alarms) AND
[?lastAlarmTime < (now - ?time_between_alarms)]
hasPreference(?user, ?alerts) AND
AlertStatus(?alerts) AND
hasValue(?alerts, true) AND
associatedEvaluation(?lastAlarm, ?alarm) AND
hasNegativeShortTermEvaluation(?alarm, true) AND
hasNegativeLongTermEvaluation (?alarm, true) then
THEN hasGlobalAlarmState(?alarm, true)

Multimodal interface selector (by activity):
A particular alarm type is used to inform the user depending on the user's activity being performed.
IF User(?user) AND
hasContext(?user, ?activity) AND
Activity(?activity) AND
hasValue(?activity,<activity_id>) AND
associatedAlarm(?activity, ?alarm) AND
THEN hasAlarmType(?alarm,<alarmType_id>)

Multimodal interface selector (by heart rate):
A particular alarm type is used to inform the user depending on the user's heart rate level.

IF User(?user) AND
hasContext(?user, ?heartRate) AND
HeartRate(?heartRate) AND
hasValue(?heartRate, ?hr_value) AND
[<maxHRvalue> < ?hr_value] AND
associatedAlarm(?heartRate, ?alarm) AND
THEN hasAlarmType(?alarm,<alarmType_id>)

Multimodal interface selector (by location):
A particular alarm type is used to inform the user depending on the user's location.

IF User(?user) AND
hasContext(?user, ?poi) AND
POI(?poi) AND
hasPOItype(?poi,<POI_type>) AND
associatedAlarm(?poi, ?alarm) AND
THEN hasAlarmType (?alarm, <alarmType_id>)

constantly tuned up in order to avoid, e.g., stack overflow
problems). Regarding the Activity Monitor application, it
has to be noted that, to date, all the ontological reasoning
processes have been applied to 'high-level' context
parameters (user's location, activity, etc.), with particular
features regarding reasoning invocation frequency, number
of facts to reason over, etc. Future extensions of this
Activity Monitor will consider the feasibility and conve­
nience of applying these reasoning processes to 'lower
levels of abstraction' (e.g. pre-processed accelerometer
signals). To what extent it would be convenient to integrate
every semantic concept in the ontology is usually a design
factor that has to be defined taking into account the com­
putational cost (and subsequent effects) when performing
this in resource-constrained devices.

We are currently starting to face some of the main
limitations of the employed tools, mainly the file system
dependency and the dynamic SWRL and SQWRL man­
agement support. Having this reasoning platform in a
mature state would open the possibility to run performance
tests comparing this kind of light embedded architectures
with infrastructure-based ones (e.g. those accessing to
infrastructure reasoners from mobile devices via RESTful
or OWLlink interfaces). Although LIS can be dynamically
configured with different rule sets, these rules are currently
statically generated by each component invoking LIS rea­
soning services; this should be reviewed in order to add
intelligence and dynamism to the rule generation process.

We are already working on extending our LIS with
imperfect information support, which is an important
research line in context information management. We are
currently analysing different kinds of probabilistic and
fuzzy approaches (e.g. [51, 52]). The probabilistic
approach is suitable for dealing with the uncertain nature of
the information (inherently present in sensor-based con­
text-aware services) whereas the fuzzy logic one is able to
manage the vagueness of concepts arising from human
perception and cognition processes (also present in most of
the real world applications).

Future works also consider empirically analysing per­
formance, flexibility and stability, by measuring the effect
of different application invoking LIS services in parallel
and comparing the time saving with respect to an infra­
structure reasoning service. Ultimately, the impact on the
global user's experience, understood as QoS, is to be also
considered.

Acknowledgments This work has been supported by the Spanish
Ministry of Industry, Tourism and Commerce and the European Fund
for Regional Development under grant TSI020301-2008-2, the Min­
istry for Science and Innovation under grant TIN2008-06742-C02-01
and the Government of Madrid under grant S2009/TIC-1485. The
authors also acknowledge enriching discussions with Marcos Sacris­
tan and Alejandro Alvarez of the PIRAmlDE project.

References

1. Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context
aware systems. Int J Ad Hoc Ubiquitous Comput 2:263-277

2. Perttunen M, Riekki J, Lassila O (2009) Context representation
and reasoning in pervasive computing: a review. Int J Multimed
Ubiquitous Eng 4(4): 1-28

3. Gu T, Pung HK, Zhang DQ (2004) Toward an osgi-based
infrastructure for context-aware applications. IEEE Pervasive
Comput 3:66-74

4. Chen H, Finin T, Joshi A (2004) Semantic web in the context
broker architecture. In: Proceedings of the second IEEE inter­
national conference on pervasive computing and communications
(PERCOM'04), Orlando, Florida, USA, Mar 14-17, 2004, IEEE
Computer Society, Washington, pp 277-286

5. Fahy P, Clarke S (2004) Cass: a middleware for mobile context-
aware applications. In: Proceedings of the workshop on context
awareness (MobiSys'04), Boston, Massachusetts, USA, June 6-9,
2004, pp 1-6

6. Chan ATS, Chuang SN (2003) Mobipads: a reactive middleware
for context-aware mobile computing. IEEE Trans Softw Eng
29:1072-1085

7. Kleemann T (2006) Towards mobile reasoning. In: Parsia B,
Sattler U, Toman D (eds) CEUR workshop proceedings on
description logics, vol 189, Lake District, UK, May 30-June 1,
2006, CEUR-WS.org

8. Toma E, Simperl GH (2009) A joint roadmap for semantic
technologies and the internet of things. In: Workshop proceedings
of the 3rd STI roadmapping workshop charting the next genera­
tion of semantic technology at the 6th European semantic web
conference (ESWC 2009), June 1, 2009, Heraklion, Greece

9. Bettini C, Brdiczka O, Henricksen K, Indulska J, Nicklas D,
Ranganathan A, Riboni D (2010) A survey of context modelling
and reasoning techniques. Pervasive Mob Comput 6:161-180

10. Strang T, Linnhoff-Popien C (2004) A context modeling survey.
In: Workshop on advanced context modelling reasoning and
management as part of UbiComp, Nottingham, UK, Sept 9, 2004,
p p l - 8

11. Beigl M, Gellersen H (2003) Smart-its: an embedded platform for
smart objects. In: Proceedings of smart objects conference
(SOC'03), Grenoble, France, May 15-17, 2003, pp 15-17

12. Siegemund F (2004) A context-aware communication platform
for smart objects. In: Ferscha A, Mattern F (eds) Proceedings of
the international conference on pervasive computing (PERVA-
SIVE'04), vol 3001, Linz, Viena, April 18-23, 2004, ser. LNCS,
Springer, Berlin, pp 69-86

13. Corredor I, Martínez JF, Familiar MS (2011) Bringing pervasive
embedded networks to the service cloud: a lightweight middle­
ware approach. J Syst Archit Embed Softw Des (To appear),
Special Issue: Emerging applications of embedded systems,
Elsevier

14. JSON. http://www.json.org
15. Knappmeyer M, Kiani SL, Fra C, Moltchanov B, Baker N (2010)

Contextml: a lightweight context representation and context
management schema. In: Proceedings of the 5th IEEE interna­
tional symposium on wireless pervasive computing (ISWPC10),
Modena, Italy, May 5-7, 2010, IEEE Press, Piscataway, NJ,
USA, pp 367-372

16. Ye J, Coyle L, Dobson S, Nixon P (2007) Ontology-based models
in pervasive computing systems. Knowl Eng Rev 22:315-347

17. SOPRANO: Service oriented programmable smart environments
for older Europeans (2007) Deliverable Dl.1.2: review state-of-
the-art and market analysis, Version 1.1

18. Boury-Brisset AC (2003) Ontology-based approach for infor­
mation fusion. In: Proceedings of the sixth international

http://CEUR-WS.org
http://www.json.org

conference of information fusion, Cairns, Queensland, Australia,
July 8-11, 2003, International Society of Information Fusion, vol
1, pp 522-529

19. OWL Web Ontology Language Overview (2004). http://www.
w3.org/TR/owl-features/

20. Spyns P, Meersman R, Jarrar M (2002) Data modelling versus
ontology engineering. SIGMOD Rec 31(4): 12-17

21. RDF/XML Syntax Specification (2004). http://www.w3.org/
TR/REC-rdf-syntax/

22. Su X, RiekM J (2010) Transferring ontologies between mobile
devices and knowledge-based systems. In: Proceedings of the
2010 IEEE/IFIP international conference on embedded and
ubiquitous computing (EUC'10), Hong Kong, China, Dec 11-13,
2010, IEEE Computer Society, pp 127-135

23. Horridge M, Drummond N, Goodwin J, Rector A, Wang HH
(2006) The Manchester owl syntax. In: Proceedings of the OWL
experiences and directions workshop (OWLED), vol 216, Athens,
Georgia, USA, Nov 10-11, 2006, CEUR-WS.org

24. Koziuk M, Domaszewicz J, Schoeneich R, Jablonowski M, Bo-
etzel P (2008) Mobile context-addressable messaging with dl-lite
domain model. In: Roggen D, Lombriser C, Trster G, Kortuem G,
Havinga P (eds) Smart sensing and context (lecture notes in
computer science), vol 5279. Springer, Heidelberg, pp 168-181

25. Schneider PP, Swartout B (1993) Description-logic knowledge
representation system specification from the KRSS group of the
ARPA knowledge sharing effort

26. Kleemann T, Sinner A (2005) Description logic based match­
making on mobile devices. In: Baumeister J, Seipel D (eds)
Proceedings of 1st workshop on knowledge engineering and
software engineering (KESE'05), Koblenz, Germany, Sept 11,
2005, pp 3 7 ^ 8

27. RDF Test Cases (2004) W3C Recommendation, http://www.w3.
org/TR/rdf-testcases/#ntriples

28. Cuenca B, Motik B, Wu Z, Fokoue A (2008) OWL 2 web
ontology language: profiles. W3C Working Draft

29. Crivellaro F (2007) microJena: Gestione di ontologie sui dispo-
sitivi mobile. M.Sc. Thesis, Politécnico di Milano

30. Carroll JJ, Dickinson I, Dollin C, Reynolds D, Seaborne A,
Wilkinson K (2004) Jena: implementing the semantic web rec­
ommendations. In: Proceedings of the 13th international world
wide web conference on alternate track papers & posters, (WWW
Alt'04), New York, NY, USA, May 17-22, 2004, ACM, New
York, pp 74-83

31. Sinner A, Kleemann T (2005) Krhyper in your pocket. In: Nie-
uwenhuis R (ed) Automated deduction CADE-20 (lecture notes
in computer science), vol 3632. Springer, Heidelberg,
pp 452-457

32. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B,
Dean M (2004) SWRL: a semantic web rule language combining
OWL and RuleML. W3C member submission

33. Gu T, Kwok Z, Koh KK, Pung HK (2007) A mobile framework
supporting ontology processing and reasoning. In: Proceedings of
the 2nd workshop on requirements and solutions for pervasive
software infrastructures (RSPSI'07), in conjunction with the 9th
international conference on ubiquitous computing (Ubicomp'07),
Innsbruck, Austria, Sept 16-19

34. Ali S, Kiefer S (2009) Micro a micro owl dl reasoner for ambient
intelligent devices. In: Abdennadher N, Petcu D (eds) Advances
in grid and pervasive computing (lecture notes in computer sci­
ence), vol 5529. Springer, Heidelberg, pp 305-316

35. Vazquez Gomez JI (2007) A reactive behavioural model for
context-aware semantic devices. Ph.D. thesis

36. Jang M, Sohn JC (2004) Bossam: an extended rule engine for owl
inferencing. In: Antoniou G, Boley H (eds) Rules and rule
markup languages for the semantic web (lecture notes in com­
puter science), vol 3323. Springer, Heidelberg, pp 128-138

37. Boley H (2006) The RuleML family of web rule languages. In:
Alferes J, Bailey J, May W, Schwertel U (eds) Principles and
practice of semantic web reasoning (lecture notes in computer
science), vol 4187. Springer, Heidelberg, pp 1-17

38. Tramp S, Frischmuth P, Arndt N, Ermilov T, Auer S (2011)
Weaving a distributed, semantic social network for mobile users.
In: Proceedings of the 8th extended semantic web conference
(ESWC'll) , Heraklion, Greece, May 29-June 2, 2011. Springer,
Heidelberg, pp 200-217

39. Toninelli A, Pathak A, Issarny V (2011) Yarta: a middleware for
managing mobile social ecosystems. In: Riekki J, Ylianttila M, Guo
M (eds) Advances in grid and pervasive computing (lecture notes in
computer science), vol 6646. Springer, Heidelberg, pp 209-220

40. Specht G, Weithoner T (2006) Context-aware processing of
ontologies in mobile environments. In: Proceedings of the 7th
international conference on mobile data management, MDM
2006, Nara, Japan, May 9-13, 2006, IEEE Computer Society
Washington, DC, USA, pp 86-89

41. Kofod-Petersen A, Aamodt A (2003) Case-based situation
assessment in amobile context-aware system. In: University des
Saarlandes (ed) Proceedings of artificial intelligence in mobile
systems (AIMS'03), Seattle, WA, USA, Oct 12, pp 4 1 ^ 9

42. Raento M, Oulasvirta A, Petit R, Toivonen H (2005) Context-
phone: a prototyping platform for context-aware mobile appli­
cations. IEEE Pervasive Computing 4(2):51-59

43. Yamabe T, Takagi A, Nakajima T (2005) Citron: a context
information acquisition framework for personal devices. In:
Proceedings of 11th IEEE international conference on embedded
and real-time computing systems and applications (RTCSA'05),
Hong-Kong, China, Aug 17-19, IEEE Computer Society,
pp 489^95

44. Vázquez JI, de Ipiña DL, Sedaño I (2006) Soam: an environment
adaptation model for the pervasive semantic web. In: Gavrilova
ML, Gervasi O, Kumar V, Tan CJK, Taniar D, Lagaña A, Mun Y,
Choo H (eds) ICCSA (4) (lecture notes in computer science), vol
3983. Springer, Berlin, pp 108-117

45. Tai W, Brennan R, Keeney J, O'Sullivan D (2009) An auto­
matically composable OWL reasoner for resource constrained
devices. In: Proceedings of the 2009 IEEE international confer­
ence on semantic computing (ICSC'09), IEEE Computer Society,
Washington, DC, USA, pp 495-502

46. Organization for the Advancement of Structured Information
Standards (2006) Reference model for service oriented architec­
ture 1.0. OASIS

47. Noy NF, McGuinness DL (2001) Ontology development 101: a
guide to creating your first ontology. Tech. Rep. Stanford
Knowledge Systems Laboratory and Stanford Medical Infor­
matics, Stanford, CA, USA

48. Iglesias J, Bernardos AM, Alvarez A, Sacristan M (2010) A light
reasoning infrastructure to enable context-aware mobile appli­
cations. In: Proceedings of the 2010 IEEE/IFIP international
conference on embedded and ubiquitous computing (EUC'10),
IEEE Computer Society, Washington, DC, USA, pp 386-391

49. Iglesias J, Cano J, Bernardos AM, Casar J (2011) A ubiquitous
activity-monitor to prevent sedentariness. In: Proceedings of the
IEEE international conference on pervasive computing and
communications workshops (PERCOM'll workshops), Seattle,
WA, USA, Mar 21-25, IEEE, pp 319-321

50. Food and Agricultural Organization of the United Nations, Uni­
ted Nations University, World Health Organization (2004)
Human energy requirements: report of a joint FAO/WHO/UNU
expert consultation. Rome, 17-24 Oct 2001. FAO food and
nutrition technical report series. Food and Agricultural Organi­
zation of the United Nations

51. Klinov P (2008) Pronto: a non-monotonic probabilistic descrip­
tion logic reasoner. In: Bechhofer S, Hauswirth M, Hoffmann J,

http://www
http://w3.org/TR/owl-features/
http://www.w3.org/
http://CEUR-WS.org
http://www.w3

Pers Ubiquit Comput

Koubarakis M (eds) The semantic web: research and applications
(lecture notes in computer science), vol 5021. Springer, Heidel­
berg, pp 822–826

52. Bobillo F, Straccia U (2010) Representing fuzzy ontologies in
OWL 2. In: Proceedings of the IEEE international conference on
fuzzy systems (FUZZ’10), Barcelona, Spain, July 2010, IEEE,
pp 2695–2700

53. Prud’hommeaux E, Seaborne A (2008) SPARQL query language
for RDF. W3C recommendation. http://www.w3.org/TR/rdf-
sparql-query/

54. Hori M, Euzenat J, Patel-Schneider PF (2003) OWL web ontol­
ogy language XML presentation syntax. W3C Note. http://www.
w3.org/TR/owl-xmlsyntax/

55. O’Connor MJ, Das AK (2008) SQWRL: a query language for
OWL. In: Hoekstra R, Patel-Schneider PF (eds) Proceedings of
the 6th international workshop on OWL: experiences and direc­
tions (OWLED’09), vol 529, Chantilly, VA, USA, Oct 23–24,
Springer, Berlin/Heidelberg

^ S p r i n g e r

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl-xmlsyntax/
http://www.w3.org/TR/owl-xmlsyntax/

