
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article professionnel Article 2013                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

UbiqLog: a generic mobile phone-based life-log framework

Rawassizadeh, Reza; Tomitsch, Martin; Wac, Katarzyna; Tjoa, A Min

How to cite

RAWASSIZADEH, Reza et al. UbiqLog: a generic mobile phone-based life-log framework. In: Personal 

and ubiquitous computing, 2013, vol. 17, n° 4, p. 621–637. doi: 10.1007/s00779-012-0511-8

This publication URL: https://archive-ouverte.unige.ch//unige:72569

Publication DOI: 10.1007/s00779-012-0511-8

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:72569
https://doi.org/10.1007/s00779-012-0511-8


ORIGINAL ARTICLE

UbiqLog: a generic mobile phone-based life-log framework

Reza Rawassizadeh • Martin Tomitsch •

Katarzyna Wac • A. Min Tjoa

Received: 2 May 2011 / Accepted: 1 February 2012 / Published online: 3 April 2012

� Springer-Verlag London Limited 2012

Abstract Smartphones are conquering the mobile phone

market; they are not just phones; they also act as media

players, gaming consoles, personal calendars, storage, etc.

They are portable computers with fewer computing capa-

bilities than personal computers. However, unlike personal

computers, users can carry their smartphone with them at

all times. The ubiquity of mobile phones and their com-

puting capabilities provide an opportunity of using them as

a life-logging device. Life-logs (personal e-memories) are

used to record users’ daily life events and assist them in

memory augmentation. In a more technical sense, life-logs

sense and store users’ contextual information from their

environment through sensors, which are core components

of life-logs. Spatio-temporal aggregation of sensor infor-

mation can be mapped to users’ life events. We propose

UbiqLog, a lightweight, configurable, and extendable life-

log framework, which uses mobile phone as a device for

life logging. The proposed framework extends previous

research in this field, which investigated mobile phones as

life-log tool through continuous sensing. Its openness in

terms of sensor configuration allows developers to create

flexible, multipurpose life-log tools. In addition to that, this

framework contains a data model and an architecture,

which can be used as reference model for further life-log

development, including its extension to other devices, such

as ebook readers, T.V.s, etc.

Keywords Life-log � Mobile sensing � Smartphone �
Personal digital memory

1 Introduction

In the past, most life-log tools were custom-built devices or

applications using external hardware as sensors (e.g. [1,

2]). With the advent of smartphones, the mobile phone has

become a feature-rich mobile device, creating an oppor-

tunity to use it as platform for life logging. It is not easy to

convince users to carry something other than their usual

digital devices such as mobile phones or watches to per-

form a novel activity that in this case is recording their

daily activities. Smartphones are small computers with

computing capabilities, but more importantly, they are

equipped with sensors and networking technologies, such

as Bluetooth, which can sense and communicate with the

user’s environment. Their networking capabilities enable

these devices to be connected to a larger computing or

storage media, becoming a hub for personal or body area

networks [3]. Further, smartphones can provide useful

information about our daily activities such as received and

dialed calls, text messages, application usage, phone

camera pictures, etc. A disadvantage of dedicated life-log

devices is that, users need to carry yet another device with

them just for the purpose of recording their daily activities.

R. Rawassizadeh (&) � A. M. Tjoa

Institute of Software Technology and Interactive Systems

Vienna, University of Technology, Favoritenstrasse 9-11/188,

1040 Vienna, Austria

e-mail: rrawassizadeh@acm.org

A. M. Tjoa

e-mail: amin@ifs.tuwien.ac.at

M. Tomitsch

Design Lab-Faculty of Architecture, Design and Planning,

The University of Sydney, Sydney, NSW 2006, Australia

e-mail: martin.tomitsch@sydney.edu.au

K. Wac

Institute of Services Science, University of Geneva,

Rue de Drize 7, Battelle A, 1227 Geneva, Switzerland

e-mail: katarzyna.wac@unige.ch

123

Pers Ubiquit Comput (2013) 17:621–637

DOI 10.1007/s00779-012-0511-8



Based on smartphone capabilities and features, we believe

that they represent a promising platform for life logging.

Therefore, the focus of this study was to create a life-log

tool that resides in the user’s smartphone and does not

require any additional hardware (except that hardware is a

new external sensor). However, smartphones are not

designed to be used as life-log tools, leading to a number of

challenges when using them for this purpose. For example,

the performance of the phone could be affected by the

amount of resources required by a life-log application

running on the phone.

Bell et al. [4] introduced some challenges of personal

archives, which we call life-log dataset in this article.

These challenges include controlling the access to the

information and personal security, browsing and searching

the archive, and the requirement that the archive should

support long-term preservation of information. Log-term

preservation is an important requirement, since life-logs are

worth to be kept at least as through the owner’s life.

Briefly, design requirements of a life-log system are:

seamless integration into daily life, resource efficiency,

security, long-term digital preservation, and information

retrieval from the life-log dataset.

This research proposes UbiqLog, a life-log framework

for smartphones that addresses life-log challenges, while

remaining configurable, flexible, and extendable. More on

this will described in following sections. It is important to

note that the focus is on the collection stage of life log-

ging, and therefore, this research does not delve deep into

reflection methods. Although for the purpose of demon-

stration, we provide visualization features, which will be

examined in the evaluation section. Additionally, the

prototype features a search facility to enable users man-

age their life-log dataset and remove undesired informa-

tion from their dataset directly on their mobile device.

This is an important requirement due to the fact that users

are the owners of their life-log dataset, and thus, they

should have full control on their personal information.

Sensors are core components of life-logs. The proposed

framework allows users to configure the sensors they

want to use for recording their life-logs by disabling or

enabling a sensor, or changing a sensor settings. Addi-

tionally, users can add a new sensor to the framework or

remove an existing sensor from the framework. Flexibility

to this extent requires a specific data model and archi-

tecture, which we propose as a part of this research.

Based on the proposed data model and architecture, we

implemented a prototype of a life-log tool running on the

Android 2 platform for Android phones. The prototype is

flexible enough to be used for other platforms just by

changing sensors according to the target platform. So far,

Android has been used for mobile phones and tablet

computers, but it could be used on other things such as

T.Vs1, and vehicles. Although the implementation have

been done on the Android platform, the architecture and

data model are not Android-dependent and can be used on

other platforms as well.

This work provides a novel approach to life logging by

enabling users to configure sensors and add new sensors.

Other efforts, which employ mobile phones for life log-

ging, provide a closed architecture, making it difficult or

impossible to customize the life-log tool. Related projects

that use an open architecture such as MyExperience [5] are

not designed for life logging. Their focus is on other

research aspects such as context sensing, and to our

knowledge, there is no other open architecture for a life-log

framework available.

Since life-log systems are similar to context-aware sys-

tems, it is notable that a life-log tool is different from a con-

text-aware tool in several aspects. For example, life-log tools

should archive data for long-term access, consider the

annotation of datasets, and so on. Context-aware systems are

typically not designed to maintain information for long-term

access, making annotation and privacy less important con-

cerns in most cases. Moreover, context-aware systems, unlike

life-log systems, do not need to always run in the background

of the device eliminating the issue of resource usage.

The remainder of the paper is organized as follows. We

begin with a discussion of related works. Next, design

considerations of using mobile phones for life logging will

be identified. Then, the framework architecture and its

associated data model will be described. Afterward, an

implementation of this framework will be described. Sub-

sequently, the implementation of the framework will be

evaluated. Finally, we conclude this paper.

2 Related work

As has been described before, using a mobile phone as a

life-log tool is not new. However, to our knowledge, there

is no life-log tool with an open architecture available,

which considers the described challenges of storing life-

time information. Furthermore, existing applications or

tools are not flexible enough to enable users configure

sensors. In this section, we first list approaches that provide

a life-log or a similar tool. Life-logs are subset of context-

aware applications, and thus, life-log applications on

mobile phones might be assumed as context-aware appli-

cations. Therefore, we discuss context-aware approaches

that were designed for mobile phones (or any other per-

vasive devices such as PDAs), and they sense and record

contextual information in a continuous manner. These

1 http://www.google.com/tv.

622 Pers Ubiquit Comput (2013) 17:621–637

123

http://www.google.com/tv


related works served as inspiration for the UbiqLog

architecture described in this paper.

Nokia Photos, formerly known as Nokia Lifeblog [6], is

a life-log tool designed for Nokia mobile phones. Inputs for

this life-log tool are images and videos captured by the

phone’s camera, sent and received multi-media messages,

sent and received text messages, user created text notes,

blog posts, and recorded sounds. Lifeblog enables users to

post their information to their blogs. It has a closed

architecture, and there is no possibility to extend or con-

figure its sensors.

MyLifeBits [7], a research project proposed by Micro-

soft, focuses on capturing most desktop activities of users

and storing them digitally. Desktop activities include read

articles, books, emails, presentations, pictures, home

movies, video taped lectures, and voice recordings. This

project can be considered one of the largest efforts toward

designing a life-log system. In addition, it supports some

ubiquitous sensors such as Sensecam [8], which is a body

mounted camera.

Reality Mining [9] employs mobile phones for life

logging. They sense and record users’ location (using

bluetooth beacons), social proximity (using the phone’s

bluetooth sensor), phone usage including application usage

and dialed and received calls. Text messages and call

contents are not included. It focuses on learning the social

behavior of a group of users. Unlike Reality Mining, our

focus is on a life-log framework that contains an applica-

tion architecture and its associated data model. As has been

noted before, UbiqLog was not designed for a specific

purpose. In other words, our research does not focus on any

specific life-log use cases such as analyzing user’s social

behavior. iRemember [10] uses a PDA to continuously

record users’ conversations in order to help them aug-

menting their memory at a later stage. It converts users’

generated audio to the text and enables them to search and

browse these texts. Audio requires more storage than text;

therefore, due to a lack of local storage on PDAs, audio

data is transferred to a large storage server.

MyExperience [5] is a data collection framework for

mobile phones, which allows users to automatically log

phone sensors data. The recorded data can be enriched

through self-report surveys. MyExperience senses and

records device usage, user’s contextual information, and

environmental sensors. It is open source, and it provides an

interface for configuring and extending sensors. These are

useful features for a life-log tool. However, MyExperience

is not a life-log tool, because it does not support other

requirements for life-logs such as long-term preservation,

annotation, user privacy, and resource efficiency.

Pensieve [11] is another mobile phone-based approach

for augmenting users’ memory. It uses captured pictures

and audio as an input for its dataset. Likewise, it provides

manual and automatic annotation features for the recorded

data.

Experience Explorer [12] is a recent life-log approach,

which uses a mobile phone to sense and capture contextual

information. It provides an open interface to communicate

with third parties such as the Flickr photo service2, to let

users share media content. In contrast to Experience

Explorer, UbiqLog does not provide any social networking

features, since social networking requires an external ser-

ver that hosts the users’ information and go beyond the

scope of a mobile phone. Instead, the focus when designing

UbiqLog was to stay within the mobile device and to

exclude other issues such as connecting to external servers.

It is notable that there is a feature to transfer life-log

information to another media, but this is an optional

component and not a mandatory option. This will be

explained in more detail in the following sections. Con-

textPhone [13] is a software platform designed to sense and

record contextual information, and it runs on the Symbian

OS of Nokia series 60 smartphones. It consists of inter-

connected modules that can sense and record contextual

information, connect and communicate with external ser-

vices, customize applications such as recent calls and

launch background services such as status display.

Lu et al. [14] described that long-term continues sensing

on mobile phones is a challenge, because of lack of

resources. Jigsaw [14] contains a design and implementa-

tion of a continuous sensing application that balances the

performance needs of the application and the resource

demands of continues sensing on the phone. Jigsaw has

been implemented for GPS, Accelerometer, and Micro-

phone sensors. The Jigsaw itself is an engine that runs in the

background of mobile devices. Two applications have been

built based on Jigsaw, JigMe, which provides a log of users’

daily activity (life-log), and GreeSaw that provides carbon

footprint and caloric expenditure information. Similar to

Jigsaw, our approach could be used as API or application.

CenceMe [15] is a Symbian based platform designed for

N95 Nokia Mobile phones. It is designed to infer users’

sensing presence (e.g. dancing in a party with friends) and

share this presence through a social network such as Face-

book. As sensor, it employs GPS, Microphone, captured

picture, accelerometer, and Bluetooth. CenceMe contains a

mobile application and a backend infrastructure on a server

machine. The mobile application performs sensing, classifies

raw sensor data in order to produce meaningful data, and

finally, it presents users’ presence directly on the phone and

upload this information to the backend server.

Mobile Lifelogger [16] is designed to provide a digital

memory assistance via life logging. It collects accelerom-

eter and GPS sensor data, and it tackles the issue of large

2 http://Flickr.com.

Pers Ubiquit Comput (2013) 17:621–637 623

123

http://Flickr.com


life-log dataset by indexing those data objects using an

activity language. Their indexing approach supports easy

retrieval of life-log segments representing past similar

activities and automatic life-log segmentation. In general, the

proposed framework is composed of three parts: Mobile

Client, Application Server, and Web Interface. The Mobile

Client will be installed as a mobile application on users’

phone and handles the sensing. The Application Server is

responsible for storing, pre-processing, modeling recorded

data as an activity language and finally retrieving similar

activities of the user. The Web Interface is a web application

that enables users to browse and access their life-log infor-

mation. In order to facilitate information retrieval add

semantic to raw sensor information, we provide semantic

enrichment that will be described in the ‘‘Annotation’’ sec-

tion. Moreover, from sensor extension and configuration

perspective, our approach is flexible.

There are some context-aware approaches such as ViTo

[17], UbiFit [18], and PEIR [19], which are not considered

as continuous sensing tools, but they employ mobile

phones or PDAs to sense contextual information and record

them. ViTo uses a PDA as a home entertainment remote

control device that records usage duration of T.V, Music

player, etc. It assists users to alter their behavior by

embedding behavior change strategies into normal inter-

action with the device. UbiFit is another smartphone-based

approach to record users’ physical activities. It provides an

esthetic representation of the physical activities to

encourage users do exercises. PEIR (Personal Environment

Impact Factor) uses GPS of mobile phones to collect users

location changes, and by using a accelerometer sensor data

and Hidden Markov Model-based activity classification, it

determines users transportation mode.

3 Design considerations

Mobile phones (or in general pervasive devices) by their

very nature are not designed to host large computing

applications. There are some restrictions such as resource

limitation, user interface, etc. in comparison to personal

computers. Life-log tools are very privacy sensitive, and

this research proposes to bring this tool on mobile phones,

which are prone to loss or damage [20]. It is therefore

important to take some design considerations into account

when implementing a life-log application for mobile

phones. These considerations constitute the foundation for

the implementation of the UbiqLog framework.

3.1 Controversial history of life-logs and security

Since life logging promises recording every activities of

individuals, life-logs are very privacy sensitive tools. They

have a controversial history, for example, the DARPA lifelog

project [21] that was canceled in 2004 because of the criticism

of the privacy implications of the system. Allen [22] identi-

fied two important potential hazards of life-logs: pernicious

memory and pernicious surveillance. In another classification

[23], risks have been listed as surveillance, long-term avail-

ability of personal information, the theft of life-log infor-

mation, and memory hazards as potential risks of sharing

life-log data with society. However, life-logs propose a

complimentary assistance to our biological memory, and they

are highly capable of augmenting our life. Therefore, these

risks should not hinder technological development, and they

can be reduced by considering users’ security and privacy in

the implementation of a life-log system. UbiqLog framework

handles these issues via introducing a security component,

which secures the sensing and recording process. This com-

ponent will be described in more detail in the ‘‘Security and

Privacy related issues’’ section.

3.2 User intervention

Sensors are the core components of a life-log. They con-

tinuously sense contextual information, and therefore,

interruption and resumption of interruption should be

addressed [24]. In particular, a service is always running in

the background. Ideally a life-log application runs in the

background of a device 24/7, hence user administration or

user intervention should be reduced as much as possible.

On the other hand, users should have appropriate under-

standing and enough control over the application. While

users should be able to configure sensors, but sensing and

logging (recording) processes should not depended on any

user intervention. According to the expectancy theory [25],

performing administration tasks has a negative impact on

the user experience. UbiqLog does not require any user

intervention or supervision during the sensing and record-

ing phases, which is assumed to improve usability. Only

administration tasks, such as configuring sensors or man-

aging temporary disk spaces, require user intervention.

Users have sufficient control on managing UbiqLog, but it

does not interrupt users, and thus, it is unobtrusive, which

is assumed to be an intelligibility fact. To evaluate the

UbiqLog user interface, we performed an evaluation based

on Nielsen’s usability heuristics. Test result indicates that

participants were satisfied with the user control on the

application. Further details about the usability evaluation

are provided in the ‘‘Evaluation and Verification’’ section.

3.3 Application performance

Mobile phones, like other pervasive devices, suffer from

resource weaknesses [26]. Client thickness [20] of mobile

applications, from resource usage perspective, is a

624 Pers Ubiquit Comput (2013) 17:621–637

123



challenging issue in mobile computing. As described

above, Life-log applications, by their very nature, are

always running in the background of the system. A service

running in the background of a mobile system should not

consume too much resources, and it should not affect other

functionalities of the system. It is therefore important to

consider the resource usage of such applications. We study

and analyze the resource usage and performance of this

framework in the ‘‘Performance Evaluation’’ section. There

we prove that running UbiqLog always in the background

does not have significant effect on the target device

resources.

3.4 Storage

The disk space available on mobile phones and other per-

vasive devices is smaller than on personal computers.

While sensors that store data in the textual format do not

consume much disk space, binary data such as audio,

picture, or video consume more disk space. Satyanarany-

ann [26] described that mobile phones, like other portable

computers, are more vulnerable to loss or damage than

desktops (reliability treat). On the other hand, as far as a

life-log application is working, its dataset size is continu-

ously increasing. All these facts lead us to conclude that a

server with enough storage capacity must be the main

residence of the data, and life-log information will be

maintained only temporarily on the target phone. Data

needs to be uploaded to the server either manually or

automatically. Users should be able to access and manip-

ulate life-log dataset on the server too, but uploading to an

external storage is not in the scope of this research. Similar

solutions were used in related projects, for example,

iRemember [10] transfers recorded audio to a large

capacity server.

3.5 Sensor extendability

Another potential problem with using smartphone sensors

are their limited precision and weakness compared to

external sensors. For instance, an external GPS device is

more powerful than the phone’s built-in GPS, or the quality

of a photo from a digital camera is better than the quality of

a photo taken with the phone’s camera. On the other hand,

mobile phones are increasingly equipped with more capa-

bilities and features. It can be anticipated that in the future,

new sensors will get integrated into mobile phones.

Therefore, it is a crucial requirement to provide an open

interface that allows adding new sensors. In order to deal

with this problem, we propose an integration interface

to enable developers integrate external sensors into Ubiq-

Log. For instance, an external GPS can be connected to

the phone via bluetooth. The interface for the external

sensor integration will be discussed in more detail in

the ‘‘Framework Architecture’’ and ‘‘Implementation’’

sections.

3.6 Support for multiple use cases

As described earlier, the information recorded by life-logs

can be used in many different domains. Our focus is to

provide a generic life-log framework, which is capable to

be configured based on the users’ requirements. Users can

add/remove (extendability) or disable/enable (flexibility)

sensors and change settings of available sensors. This

capability makes the framework flexible enough to be used

for different purposes. For instance, once it can be used as

health monitoring device and in another use case it can be

used to study a group behavior such as employees’ geo-

graphical location changes in a firm. Li et al. [27] stated

that an individual’s life has different facets and available

systems are mostly unifaceted. However, we claim that

UbiqLog is a multifaceted system, because it is capable to

be used for different use cases.

4 Data model

UbiqLog stores each life event as a data entity. A life-log

dataset composed from a set of infinite life events. Each

life event of users is a record in this dataset. We are living

in a spatio-temporal world. Meaning, all of our life events

except dreams happen in a specific location and at a spe-

cific date-time. Based on the current available technolo-

gies, it is not always possible to sense the location, because

location sensors such as GPS do not function in every

environment. For instance, a GPS can not function in

indoor environments. There are other approaches such as

A-GPS (Assisted GPS) to solve this problem, but they are

not always able to sense location, and they are imprecise.

On the other hand, most operating systems have date-time,

which is accessible as long as the target device has not been

turned off. This means most devices with computing

capabilities can provide time-stamps. Therefore, we con-

clude that date-time is a necessary field for any life-log

record, and all life-log information objects will be stored

with the time-stamp.

The Life-log dataset of a user U represented via L(U)

and LðUÞ ¼ fE1;E2; . . .Eng; n! þ1: n is going to

infinity because the user’s life is ongoing, and the life-log

dataset size is increasing continuously. The life-log data

entity E is a 3-tuple (D, T, A), where T is the time-stamp,

which can be continuous or discrete. If it is continuous, it

will be the start time-stamp and the end time-stamp; if it is

discrete, then it will be only a time-stamp. D is the infor-

mation object, and it can be a binary data, for example,

Pers Ubiquit Comput (2013) 17:621–637 625

123



image, audio or textual data, for example, GPS location,

micro blog content, etc. A is the annotation associated with

this data object. Annotations are text data and used to

enrich the semantic of a data entity. More on this will be

explained in the ‘‘Annotation’’ section. The UbiqLog

framework was implemented based on this data model, and

to our knowledge, yet there is no specific data model

designed for life-log systems. Some example records of the

proposed data model will be shown in the next sections.

This data model is technology independent and can be

implemented for any life-log system.

5 Framework architecture

In order to achieve a versatile and flexible architecture, we use

a layered architecture model [28]. Components were

designed to be abstract, and thus, it is possible to add new

components or remove an existing component. One of the

main design requirements was to create a flexible and

extendable system, which enables users to integrate new

sensors or configure current sensors. This sensor extendibility

feature is called versatility in context-aware approaches [29].

Figure 2 shows the architecture of the framework. As it has

been stated before, the proposed architecture is not intended

for context-aware applications, although life-logs might be

interpreted as a subset of context-aware applications.

Figure 1 shows the sensing process sequence diagram of

this framework. It is notable that our focus was on creating

a tool for data collection and not reflecting data to users.

However, in order to enable end users evaluate the

implementation, some visualization approaches have been

proposed. We will explain them more in the ‘‘Usability

Evaluation’’ section.

In this section, we first describe general components,

followed by a discussion of a set of components that are

being used in the sensing and data collecting phases of the

life logging process. Application Log is being used to log

errors and messages of the application in order to assist

developers in debugging. Extension Interface is used as an

interface for adding new sensors to the framework. An

external sensor might be an application, or it might be a

hardware component such as a device with a Bluetooth

connectivity feature. How to add a new sensor to the

framework will be described in more detail in the imple-

mentation section.

Similar to other context-aware approaches, this frame-

work contains two major operations, sensing and recording.

Chen and Kotz suggested [30] to decouple the context

sensing part from other parts of the application in order to

maintain a flexible environment for sensors configuration.

The UbiqLog framework is based on their suggestion.

Mostly life-log tools are composed of two types of hard-

ware: a data acquisition device and sensors. Sensors are

responsible for sensing the environment and reading the

contextual data in a raw format. The data format varies

based on the sensor. The raw data of each sensor should be

aggregated in a format that is appropriate to gather all

readings in one dataset. Therefore, the data acquisition

device is required, which is responsible to gather and

aggregate raw data from the sensors. Aggregation here

means converting raw data into a data format, which the

framework is able to parse. In the UbiqLog framework, we

use the mobile phones’ sensors although it is possible to

Fig. 1 Sensing process sequence diagram Fig. 2 UbiqLog framework architecture

626 Pers Ubiquit Comput (2013) 17:621–637

123



integrate external sensor. This means that, in the imple-

mentation of this framework, sensors do not reside sepa-

rately from the phone and their data will be stored on users’

mobile phones.

Sensing and recording are assumed to be two different

phases of the life-logging process. Following is the detail

explanation about the sensing and the recording processes.

5.1 Sensing

Context data acquisition methods predefine the architec-

tural style of the system. There are different approaches to

read contextual data; in this framework, sensor data will be

read directly via a sensor connector, and no middleware

will be used.

The sensing process is composed of three component:

Sensors, Sensor Connectors, and Data Acquisitor. ‘‘Sen-

sors’’ are used to sense and read contextual information.

They can reside in smartphones as an application or

hardware component. They can also reside physically

outside the smartphone, such as an external GPS device

connected to the smartphone via Bluetooth, or a Web

service, which provides temperature based on current

location of the user.

The ‘‘Sensor Connector’’ establishes a connection

between the framework and the sensor. The Connection

depends on the sensor, for example, a sensor can send data

via a Web Service or a sensor can write data in the file

only. A security component might also be used by the

sensor connector, especially when the sensor is physically

located outside the phone. A network connection will be

established between the sensor and the framework; hence

an authentication or an authorization process might be

necessary. In simple terms, the sensor connector encapsu-

lates the sensor structure and reads data from the sensor.

We suggest having a sensor connector for each sensor, as a

sensor failure would otherwise affect other functionalities

of the framework.

Information about sensors, their configuration, and their

connection status will be kept in the Sensor Catalog. The

sensor connector connects to the sensor and reads infor-

mation based on the configurations, which reside in the

sensor catalog. Table 1 shows default installed sensors and

their configuration values in the implemented application

of the UbiqLog framework. Users can list sensors from the

application GUI as shown in Fig. 3 Frame 3. The Accel-

erometer is disabled by default, because it consumes high

amount of resources and thus drains the battery. Other

sensors are disabled, based on the result of our user survey,

in which users stated which sensors have higher priority

(enabled sensors).

The ‘‘Data Acquisitor’’ is a stream, which acts as a

temporary queue to hold the read data from sensors.

It contains raw sensor data and is located between the data

aggregator and sensor connectors. It encapsulates data that

has been read from sensors in order to make it available for

the data aggregator. This layer exists because it is not

possible to send raw data from the sensor connector to the

data aggregator directly, while there is no guarantee for

reading sensor data synchronously in the real time; there-

fore, this component is required. For instance, an authen-

tication process might take time, which means a data from

that sensor cannot be read in real time. In addition, data

aggregation processing cannot be done in real time. Thus,

the data acquisitor will be used as a temporary sensor data

holder (data buffer). This leads us to conclude that the

acquired data from sensors will be logged passively and not

actively.

It is notable that this architecture does not comply with

any sensor classification unlike other context-aware efforts.

For instance, Raento et al. [13] has classified smartphone’s

sensors as location, user interaction, communication

behavior, and physical environment sensors. Froehlich

et al. [5] categorizes phone’s sensor as hardware sensors

and software sensors such as application usage. Schmidt

et al. classified sensors as logical and physical [31]. We do

not provide any sensor categorization, to avoid that a cat-

egorization might restrict the extendability feature of the

framework, since it is possible that in the future, new

sensors are becoming available, which do not refer to any

of the proposed categories.

As has been described previously, mobile sensors are

less precise than external sensors. Likewise, it might be

possible that in some situations, sensors are not available

(resource can not be discovered). These problems should

not affect other sensors. We handle this via reading sensors

in parallel. In more technical terms, each sensor has an

associated background service (in the implementation

Android services were used). If a sensor is not available, it

does not raise any errors, and it does not affect other

reading processes. Only an error log entry will be created

Table 1 Default sensor configurations

Sensor Configuration values

Application Enable = yes, record interval in ms = 10,000

Telephone Enable = yes, record communication = no

SMS Enable = yes

Location Enable = yes, update rate in ms = 10,000

Accelerometer Enable = no, rate = delay_game,

force threshold = 900

Temperature Enable = no, measurement unit = Celsius

Compass Enable = no

Bluetooth Enable = no, scan interval in ms = 60,000

Orientation Enable = no

Pers Ubiquit Comput (2013) 17:621–637 627

123



for this sensor, and the associated sensor connector does

not add any data to the data acquisitor.

Sensors and the mobile device are connected mostly in a

unidirectional way. If an authentication or authorization

mechanism is required, connection can be bidirectional

between the mobile phone and the sensor.

5.2 Refining and recording data

The refining and recording phase consists of five compo-

nents: Data Aggregator, Metadata Extraction, Data Man-

agement, Local Data Storage, and Network Transmitter.

This phase considers scalability, manageability, and reli-

ability of a life-log dataset.

Raw data from different sensors needs to comply with a

consistent data format. Furthermore, the data needs to get

annotated in order to facilitate browsing, search, and

further data retrieval. The ‘‘Data Aggregator’’ receives raw

data from ‘‘Data Acquisitor’’ and transforms data to a

consistent structure, which is readable for the framework.

In particular, Data Aggregator is a middle layer, which

enriches sensor data via annotation and converts its format.

Most other context-aware approaches [32] use XML for

their data format. In the implementation of this framework,

we convert data into the JSON3 format, because a JSON

document consumes less disk space in comparison to

similar XML documents while being as flexible as XML.

The following shows two examples of the aggregated data,

one from the SMS sensor and the other one from the

Application sensor:

Fig. 3 GUI screenshots. Frame 1 shows the first screen that appears

when the user opens the application. The feature shown in Frame 2
enables the user exclude specific application from being logged.

Frame 3 shows the list of default sensors, which were implemented in

the application. Clicking on one of the sensors from this list takes the

user to the configuration screen, shown in Frame 4. Frame 5 shows

the data management setting screen. Frame 6 shows the screen for

configuring network settings. Frame 7 shows the setting options.

Frame 8 shows the search facility

3 http://www.json.org.

628 Pers Ubiquit Comput (2013) 17:621–637

123

http://www.json.org


These JSON data entities comply with the described data

model, because each entity has a date-time, a data object

and an annotation. Binary data has the same structure, but

instead of text, they hold the location of that binary data

entity. For instance, a picture data entity is as follows:

Converting a raw data to the desired data format will use

the information from the sensor catalog, for example, find

and use the related annotation class. Metadata Extraction

component in the proposed architecture (Fig. 2) will be

used to annotate data in order to make them searchable and

browsable. Annotation here is adding a textual data to the

JSON record. For instance, an annotated data entity from

the call sensor might be as follows:

The ‘‘metadata’’ element of the above JSON record

represents the annotation. The Data Aggregator uses the

‘‘Metadata Extraction’’ component to annotate data of the

sensors. The annotation process is not only restricted to be

done during the data aggregation phase, it can also be done

during the data acquisition phase. For instance, in the

implementation, calls and SMSs get annotated during the

sensor read, because by one query to the Android content

provider this information can be read.

After the data getting annotated and converted to the

data entity format, the resulting information object will be

stored locally on the phone (data will be stored locally,

because of the data connection cost and reliability of

mobile phones. However, we enable users to transfer them

to a reliable storage). These information objects will be

written to the ‘‘Local Data Storage’’ by the Data Aggre-

gator. The write process will be done passively and not

actively or real time, because raw data must be converted

to a readable data format. Furthermore, the data aggrega-

tion process cannot be done in a realtime, for example, an

annotation could be done via an external web service call,

which costs time. First data will be stored locally because

of two reasons. A network connection is not always

available, and previous research efforts [2] show that

transferring data automatically to anther storage increases

the risk of packet loss and requires data compression.

Mobile phone storage has limited capacity; therefore, we

provide a feature that allow users to manually upload the

data to a reliable storage media (RSM) or even automati-

cally. The RSM could be the personal computer of the

device owner or a server on the cloud, which is capable of

hosting life-log information. Uploading data to the RSM

will be done by the ‘‘Network Transmitter’’ layer.

The life-log dataset consists of files, which are either binary

files (pictures, videos, calls, etc) or text files. Manual upload to

the RSM requires user intervention, which is not desirable.

Therefore, ‘‘Data Manager’’ will be used. Data Manager is

responsible to check whether the maximum size of the

UbiqLog folder is reached or not; if it reaches the maximum

size, a secure network connection will be established by the

‘‘Network Transmitter,’’ and it uploads dataset files to the

RSM. After a successful file receive, RSM acknowledges

the framework. If files are successfully uploaded to the RSM,

then Data Manager removes files from the local storage.

Moreover, Data Manager is responsible to compress the

content of text files. For instance, Data Manager can check the

log file and remove redundant records or compressing files if

there is lack of disk space on the local storage.

5.3 Annotation

Annotation describes the attachment of extra information

to a piece of information [33]. Life-log datasets host large

Pers Ubiquit Comput (2013) 17:621–637 629

123



amounts of contextual information about owners and their

activities. In addition, dataset size increases continuously,

and information retrieval is a major challenge. Since the

data comes to the life-log dataset from heterogeneous

sensors, basic issues that are being solved in RDBMS are

critical challenges in the context of PIM and also life-log

systems [34].

A possible approach for assigning semantics and

enriching life-log datasets based on described requirements

is the use of annotation. Here by annotation we mean

tagging and thus metadata creation, which is data about the

data. Metadata information objects will be extracted from

other resources, and they will be collected based on date-

time and (if possible) location. Annotation can be done

either manually or automatically. Due to the fact that life-

log dataset structure is always growing in size, manual

annotation is not feasible and cumbersome. Annotation can

be stored embedded in the information objects or separated

from the target information objects [33].

We embed some annotations within the data entities in

the ‘‘metadata’’ tag, as shown in the above examples. Some

annotations will be stored separately from the life-log

dataset, but those files have similar structure. Annotations

that are not embedded in the data entities will be done by

calling external web services. Those services collect tex-

tual annotation from other information resources such as

personal calendar, social network activities, and news. In

the implementation, we use a service to call Google cal-

endar, and it collects calendar events in a text file.

Although this feature is available, we suggest to perform

this type of annotation on RSM and not on the device,

because establishing a connection to an external service

consumes bandwidth.

Moreover to consider the readability and flexibility of

the framework, we suggest to perform the annotation dur-

ing the data aggregation phase and not during the data

acquisition phase.

5.4 Digital preservation

Digital preservation is maintaining information, in a cor-

rect and independently understandable form, over the long

term [35]. Likewise, it can be interpreted as method to

preserve the content in an understandable form in long

term; therefore, digital preservation prevents data format

obsolescence.

As has been described, life-log information is worth

keeping during the owner’s life. Bell et al. [4] noted that

this problem is one of the major challenges of using life-log

tools. There are two challenges with long-term archival of

digital data, hardware, and software. The hardware prob-

lem is not in the scope of this research, but we provide a

solution for the software problem.

A digital preservation process composed of different

processes such as migration, evaluation, emulation, etc.

[36]. Migration is a process of changing the format of a

digital object to another format that is long-term archive-

able [37]. Migration eliminates the need to retain the

original application for opening binary files. Bell [38]

named long-term preservable data formats ‘‘Golden’’ data

formats. For instance, TIFF is a golden data format for

long-term preservation of image files. Text files such as

XML are golden data format. Life-log files are either in

text format or binary format. Binary files format needs to

be checked, and if it is not long-term preservable, it must

be changed to a long-term preservable format.

Rawassizadeh and Tomitsch [39] proposed a framework

to consider the long-term preservation of the digital objects

for pervasive devices. There they suggested to handle the

file conversion to an external Web service, because file

conversion is a resource intensive process. We converted

binary objects that are not long-term preservable to a pre-

servable format. Therefore, users do not need to have any

interaction with the system, and file conversion is being

done in the background.

In the UbiqLog framework, we intend not to bound

ourselves to any external tool such as Web services, which

require external service call. Thus, users can choose how to

handle their binary objects. Either they can use the

described method or a second method, which is lighter. The

second method is a simple evaluation mechanism based on

the data format. If the file format is not preservable (not in

a golden format category), an entry for the metadata

information of that file will be created. All binary files in

the framework have a record in a textual file, which con-

tains information about the files. This textual file will be

sent to the RSM with the associated binary files. File for-

mat conversion can then be handled on the RSM side, and

the results can be automatically evaluated by another

component. In simple terms, in the second method, only

the file format will be checked on the mobile device. If it is

not long-term preservable, an entry will be written in the

text file. We suggest to use the second method, because it

consumes less resources such as bandwidth and CPU, and

there is no guarantee that external services are always

available for the file format conversion.

5.5 Security and privacy

Allen [22] described that using life-logs with the existing

privacy laws and policies, do not set appropriate limits on

unwanted usage of information. She described that there is

a high potential of incivility, emotional blackmail,

exploitation, prosecution, and social control by government

while using life-log tools. Strahilevitz [40] stated that the

most private information consists of sensitive personal

630 Pers Ubiquit Comput (2013) 17:621–637

123



matters such as sexual encounters and bodily functions,

sensitive medical information and knowledge of owners

fundamental weaknesses. A life-log tool can sense and

record this information; therefore, from a privacy per-

spective, a life-log dataset is a very sensitive object. These

facts show the importance of securing the life logging

process. Security issues need to be considered during the

design and implementation of life-log tools and not only

after the implementation of the target tool is finished.

Usually a life logging system has three stages [41]. Each

stage requires specific security considerations. The first

stage is sensing the information from the user environment

by sensors; the second stage is collecting the sensed

information; and the third stage enables users to browse

and retrieve information from their life-log dataset. Users

should be able to define what information object they

intend to collect. They might need to configure sensors in

order to set their configuration parameters such as sensing

interval, etc. The first stage connects the life-log system to

sensors and reads sensors data. In this stage, two parts

might require to be secure. First, some sensors might

require authentication; second, if the sensors’ data contains

sensitive information, data transmission from the sensor to

the life-log tool should be secure too, for example,

encrypted data. The second stage collects the sensed

information in the life-log device. This stage creates a

dataset of the life-log information. The dataset contains a

set of life-log records. Data that comes from sensors are

mostly raw data, and in order to enable users to browse and

access them, some changes have to be done on the raw

data. Changes might include annotation, aggregating sen-

sors’ data, migrating data from one format to another for-

mat, etc. During the collection phase developers should

consider the third party tools that they are using for

changing data. For instance, a security threat might be the

use of an annotation engine from a third party, which sends

users’ information to that third party.

The third stage is storing the life-log data. Here storages,

which host life-log information, should be secure. We

suggest maintaining data in an encrypted format if data is

intended to be stored as text files, or if it will be stored in a

database, designers should consider to define appropriate

access limitation on the database.

This framework performs all of those three stages

internally, and no connection to a third party tool will be

established. Furthermore, we do not use any external

libraries for these stages. Therefore, we respect security by

those stages internally, without any external access. How-

ever, if a sensors require a third party tool or library for

sensing, we can not guarantee the security of that specific

sensor.

Usually life-log devices are pervasive devices such as

mobile phone, and not desktop application. Unlike desktop

computers, pervasive devices are prune to loss or damages

[26]; hence they are not capable of hosting personal

information. Therefore, life-logs should maintain their data

on reliable storages such as the personal computer or cloud

of the user. If a life-log tool does not use a pervasive

device, then there is no need to have a local storage, and

data can be stored directly on a reliable storage media. But

life-logs usually contain at least a pervasive device.

Transferring data from a pervasive device to a reliable

storage media might not be a standard stage for a life-

logging process, but usually it is required. Communications

and data transfers are very sensitive from a security point

of view. This demonstrates that during the communication,

data should be transfer encrypted. Securing the connection

can be done by the transport layer security (TLS). How-

ever, additional to TLS, using a digital signature has been

suggested as an additional way to secure the data trans-

portation. Here we secure the communication from the

phone to the server. It means communication with the

server is encrypted via implementing TLS (Transfer Layer

Security) and using HTTPS instead of HTTP. Security

Component represents security-related issues such as

authentication and authorization.

6 Evaluation and verification

To evaluate the UbiqLog framework, first an implemen-

tation of the proposed architecture on the Android 2 plat-

form will be described. The purpose of this implementation

was to evaluate and improve the feasibility of the frame-

work. Then as a longitudinal evaluation, a nine month

usage of this tool on user’s mobile phone will be analyzed.

Since the life-log tool needs to be constantly running in the

background of the device, it is important to evaluate the

battery efficiency during use the implementation. Finally, a

usability evaluation of the application based on Nielsen’s

heuristics [42] approaches will be described.

6.1 Implementation

We have developed an implementation of the proposed

architecture on the Android 2.0, 2.1, and 2.2 platforms. The

implemented application was used and tested on a Moto-

rola Milestone(Droid), HTC Legend, Samsung Galaxy S,

HTC Desire and HTC Desire HD. This application fully

complies with the described architecture.

Figure 3 shows the graphical user interface (GUI) of

the application. A major consideration during the GUI

design was to provide sufficient functionality to enable

users to easily configure sensors without any knowledge

about the lower layer of the application. When users click

on any sensor in the sensor list, as shown in Fig. 3, Frame

Pers Ubiquit Comput (2013) 17:621–637 631

123



3, they will be shown the configuration screen for each

sensor such as Frame 4, Figure 3. The user navigation

flow between the different screens of the application is

shown in Fig. 4. Each box represents a screen in the

application. Each Sensor Reader has been implemented as

a separate Android Service. Since Android services run in

the background, no GUI is required to run these services.

For each sensor, there should be an associated sensor

reader class. In order to add a new sensor into the

application, a developer must implement the ‘‘Sensor-

Connector’’ java interface in the ‘‘com.ubiqlog.sensor’’

package. If developers intend to add the associated

annotation class, they should create a class in the

‘‘com.ubiqlog.annotation’’ package, and this class has to

implement the ‘‘Annotation’’ java interface. Currently, in

the implemented application, we annotate incoming and

outgoing calls and text messages (SMS) with the recipi-

ents or senders names, which are read from the contact

list. After the developer creates the annotation class they

need to rebuild the framework and installs the new apk

file on the target device. This apk file contains newly

added sensor. There is no possibility to add new sensors

dynamically or during the run time to the framework,

which means end users can not do them. They can only

configure existing sensors and enable/disable them.

Android provides listener classes for some sensors;

when the sensor senses a new data, the listener will be

notified, for example, calls information can be read via

using ‘‘PhoneStateListener’’ Listener. We use these lis-

teners to log sensors’ data, but for some sensors such as

application usage, there is no such a listener. Those sensors

will be checked frequently based on a specified time

interval via their associated sensor readers.

As described above, the Sensor Catalog contains infor-

mation about sensors. A table in the SQLLite database of

the Android platform has been used for the Sensor Catalog

implementation. This table contains sensor names, sensor

reader class, sensor annotation class, and a list of config-

uration data for that sensor.

In order to implement the Data Acquisitor, which is a

temporary data buffer, a static Java Collection object

(ArrayList) was used. The sensor connectors write their

data directly to this object.

Data Aggregator runs as an Android service, it reads data

from the Data Acquisitor, and it performs the annotation.

Life-log data is stored as a set of text files on the SD

card of the phone in a folder called ‘‘ubiqlog’’; binary files

such as photos can be stored in different location. Location

and metadata about each binary file is stored in the same

file, which will be created for every day the application is

being used. Users can use the ‘‘Search’’ menu and access

their life-log data. They can also manipulate the search

result (modify or remove an entire record).

Life-log files will be uploaded to the RSM by the

HttpClient package of the Android. Password and server

address are required, as shown in Fig. 3 Frame 6, to allow the

application connecting to the RSM and uploading files. On

the RSM side, we have designed a simple Java Servlet, which

reads files and stores them locally on the user’s personal

computer. After a successful file receive, the RSM

acknowledges the application in the Http response (HTTP

Status Code is 200)that the files have been successfully

uploaded to the RSM. Afterward, the Data Manager removes

the files from the SD card of the device. Users can specify the

maximum size for the UbiqLog folder as shown in Fig. 3

Frame 5. The Data Manager can check whether the threshold

Fig. 4 GUI screens navigation

flowchart

632 Pers Ubiquit Comput (2013) 17:621–637

123



has been exceeded or not, and if the threshold has been

exceeded, it will upload life-log files automatically to the

RSM. The Data Manager has been implemented as an

Android service, which continuously runs in the background,

with the sensor readers and other services.

‘‘Archiving Evaluation’’ is another Android service,

which checks whether binary files are in a long-term

archive-able format. As described above, this service can

be used in two ways, either to call an external Web service

to convert file format or mark the binary files that they are

not in the long-term archive-able format by adding a cor-

responding metadata for this file in the associated record.

In order to check the long-term archive ability of life-log

dataset binary files, users can manually generate the report

by using the ‘‘Generate Report’’ button on the ‘‘Setting’’

Frame as shown in Fig. 3 Frame 7. Calling an external

Web service to change the format of the file is another

method that we described it in another paper [39].

6.2 Longitudinal analysis

The application described in the previous section was used by

six users over a period of one to fourteen months. Three users

immediately installed the application after they purchased the

new phone. This means that they used the application from

the first day of using their phone. Every day a text file was

created containing sensor information. It contains location of

the binary objects, and their metadata. Figure 6 shows the

size of log files for about three months. Those logs are gen-

erated by using a Motorola Milestone phone. The reason why

the file size was larger in the beginning of the study period

was since the user described that he is keen in using a new

phone and discovering the device features or surfing the

market for new applications. This behavior is repeated by two

other users with new phones. Therefore, we conclude this is

the reason of having a large log files in the first days of usage.

Besides, when users have lots of location changes, file sizes

increases. Figure 6 shows two days in this period with zero

file size. On those days, UbiqLog was not running; therefore,

no file was created. The visualization shown in Fig. 5 dem-

onstrates how the data recorded with the UbiqLog tool can be

used to visualize the users social activity. This visualization

approach was inspired by Song et al. [43]. Individuals’ names

have been pseudonymized in respect to the users’ privacy;

therefore, phone numbers are shown with Person and a

number. The longer the call duration, the closer the person is

to the center of the circle.

6.3 Resource usage evaluation

Jain [44] described that the application performance is

composed of five factors: usability, throughput, resource

usage, response time, and reliability. Evaluating the

performance of an application is necessary for evaluating

the implementation of the framework, since the UbiqLog

application will always run in the background (and there-

fore always consume resources). As mentioned above,

resource consumption is one of the major challenges of

mobile computing [26], which is especially relevant for

life-log application, since they typically need to constantly

run in the background. Thus, the performance of the

application can influence the general functionality of the

device, which is not designed for this type of application

usage. Therefore, resource usage monitoring is an impor-

tant factor that developers need to consider while designing

such applications.

The application was tested directly on the device at the

end of the implementation cycle to eliminate any data

redundancy and sensor reader malfunction.

Mobile resources include battery usage, CPU usage,

memory usage, disk activity, and network activity [45]. To

measure mobile phone resource utilization, we used a

resource monitoring tool [45]. We specifically measured

battery, CPU, and memory usage of our application. Net-

work activity and disk I/O of the life-log were not mea-

sured, since the application did not have heavy network or

disk activity. Disk write happens infrequently because we

buffer data and then write them in the file.

When all sensors were active, result of the CPU utili-

zation monitoring showed that our application consumes

less than 3 % of CPU in average, when administration

activities are performed and the GUI is active, it consumed

about 10 % of CPU in average. Average VmRSS (Virtual

Fig. 5 Social activity of the user based on the duration of received

and dialed calls

Pers Ubiquit Comput (2013) 17:621–637 633

123



Memory Resident Set Size) was 15728_Kb, and VMSize is

127268_Kb. It is notable that disabling some sensors (i.e.

reducing the number of sensors) did not affect the CPU or

memory utilization. This result shows that the implemen-

tation of the UbiqLog consumes fair amount of the CPU

and the memory. Battery utilization cannot be measured

per process. The GPS sensor reads the user’s current

location, and the Bluetooth sensor scans the environment

for discovered devices, based on a configurable time

interval. The default Bluetooth scan interval is 6 minutes,

and the default GPS location read interval is 10 seconds.

Both Bluetooth and GPS are highly battery consuming, but

they produce important information for the life-log dataset.

Therefore, we needed to investigate whether the imple-

mentation of the framework had any significant impact on

battery consumption. In order to perform this study, we

investigated battery utilization under different conditions,

where different sensors were activated. Each test was

started at a set time in the morning with a fully charged

battery. Tests were run until the battery level reached a

level of the 20 %. Device usage conditions have been kept

constant during the entire test period. This means that the

device was still used to answer phone calls or SMS, but not

for any unusual purposes, such as playing games. However,

there is no guarantee that the device usage is exactly the

same for all tests, because the user can not control

incoming calls or etc.

Table 2 shows the approximate time it took for the

phone to reach a battery level of 20 % in different sce-

narios. It is notable that Wi-Fi, which consumes high

amount of battery, was always on in all scenarios. Fur-

thermore, to preserve more battery network connection of

the phone was set to 2G (not 3G).

The intention of this study was not to evaluate battery

usage of different hardware settings. Instead we intend to

prove that the implementation of the proposed UbiqLog

framework does not have a large impact on battery utili-

zation. As shown in Table 2, there is about one hour dif-

ference between using the application and not using it

while Bluetooth and GPS are disabled. With Bluetooth and

GPS both enabled, the application decreased the battery

time for half an hour. This might be due to I/O operation

increase (writing GPS and Bluetooth log on SD Card)

6.4 Usability evaluation

This framework and its implemented prototype targets life-

log system developers, but it can benefit end users by

providing self-insight. In order to enable end users benefit

from the framework, we propose following visualizations

Fig. 7, which assist users in better self-awareness and self-

monitoring about their device usages. In order to evaluate

the usability of the framework implementation, we have

Table 2 Approximate time it took for the phone to reach a battery

level of 20 % (starting from 100 %) in different scenarios. When

WiFi and Bluetooth are on, they were idle and not active

Battery discharge

duration (hours)

UbiqLog

application

WiFi GPS Bluetooth

21:00 Deactive On Off Off

20:00 Active On Off Off

7:30 Active On On Off

6:30 Active On On On

7:00 Deactive On On On

14:30 Active On Off On

Fig. 6 File sizes of the life-log dataset. The unsteady part represents that user is playing with his new phone features(the area is marked with red).

Other days when the file size is big mostly is because of using GPS outdoor and many location log entries have been generated (color figure online)

634 Pers Ubiquit Comput (2013) 17:621–637

123



employed Nielsen’s usability heuristics [42]. The imple-

mentation that users evaluate contains those visualizations

under the ‘‘visualization’’ option of the ‘‘tools.’’ The usability

of the implementation has been evaluated by six users (2

female, 4 male) between 25 and 37 years of age. Four of the

participants stated having strong computer knowledge; and

other two stated having basic computer knowledge. All par-

ticipants use computers and mobile phones in their daily life.

Participants owned HTC Desire, Motorola Droid (Mile-

Stone), Samsung Galaxy S, HTC Legend, and HTC Desire

HD. We installed the application on the participants’ phones

and asked them to use the application for a period of four

weeks to one year. After this period, we conducted interviews

and asked them to fill out a survey. The survey included

Nielsen’s principles for user interface design [42]. We

adapted those principles in form of questions and asked

participants to rank the application accordingly. The result of

the evaluation shows Help and Documentation received the

lowest score (2 from 5), but other heuristic factors received

satisfactory scores (4 or 5 from 5).

To meet the design requirements, based on the result of

those evalutions, ‘‘seamless integration into daily life’’ will

be supported by unobtrusive and continues sensing. We

have also described our approaches for the ‘‘Security,’’

‘‘information retrieval,’’ and ‘‘long-term digital preserva-

tion.’’ Moreover, the resource usage evaluation indicates

the ‘‘resource efficiency’’ of the UbiqLog implementation.

7 Conclusion

To our knowledge, there is no open architecture available for

life logging tools. Most scientific efforts focus on a specific

use case of using life-logs without publishing any information

regarding their architecture or data model. This makes it

necessary to custom-build every new life logging application

running on smartphones, which is expensive and time con-

suming, and requires advanced programing skills and sys-

tems architecture knowledge. Additionally, with life-logs

becoming increasingly important as source of information for

behavior learning, health monitoring, memory augmentation,

etc., it is necessary to provide users with a flexible architec-

ture and data model allowing them to adjust the application

for their life logging needs.

To address these issues, we presented UbiqLog, a life-log

framework, which is flexible and extendible to add new sen-

sors and change the configuration of existing sensors. Ubiq-

Log consists of an open architecture and propose a data model

specifically designed for life logging. The generic approach of

the architecture enables developers to implement it on any

devices with computing capabilities, such as e-book readers,

mobile phones, T.V.s, etc. UbiqLog is a generic and holistic

framework, which can be used for different use cases and can

be configured based on the user requirements.

To evaluate the proposed framework and data model, we

developed an implementation of the UbiqLog framework

on the Android 2 platform for smartphones. The imple-

mentation was evaluated regarding resource utilization,

longitudinal analysis, and usability requirements.

Acknowledgments We would like to thank all students who helped

us in developing this platform, including Victor Andrei Gugonatu and

Soheil Khosravipour.

References

1. Ryoo D, Bae C (2007) Design of the wearable gadgets for life-log

services based on UTC. IEEE Trans Consum Electron 53(4):1–6

Fig. 7 1 Location, 2 application usage, 3 call visualizations, and 4 movement

Pers Ubiquit Comput (2013) 17:621–637 635

123



2. Choudhury T, Borriello G, Consolvo S, Haehnel D, Harrison B,

Hemingway B, Hightower J, Klasnja P, Koscher K, LaMarca A,

Landay J, LeGrand L, Lester J, Rahimi A, Rea A, Wyatt D (2008)

The mobile sensing platform: an embedded activity recognition

system. IEEE Pervasive Comput 7(2):32–41

3. Roussos G, Marsh A, Maglavera S (2005) Enabling pervasive

computing with smart phones. IEEE Pervasive Comput

4(2):20–27

4. Bell G, Gemmell J, Lueder R (2004) Challenges in using lifetime

personal information stores. In: SIGIR ’04: Proceedings of the

27th annual international ACM SIGIR conference on research

and development in information retrieval, p 1

5. Froehlich J, Chen M, Consolvo S, Harrison B, Landay J (2007)

MyExperience: a system for in situ tracing and capturing of user

feedback on mobile phones. In: 5th international conference on

Mobile systems, applications and services (MobiSys ’07),

pp 57–70

6. Myka A (2005) Nokia lifeblog—towards a truly personal multi-

media information system. In: Proceeding of workshop des

GI-Arbeitkreises mobile datenbanken and informationsysteme

7. Gemmell J, Bell G, Lueder R (2006) MyLifeBits: a personal

database for everything. Commun ACM 49(1):88–95

8. Hodges S, Williams L, Berry E, Izadi S, Srinivasan J, Butler A,

Smyth G, Kapur N, Wood K (2006) SenseCam: a retrospective

memory aid

9. Eagle N, Pentland A (2006) Reality mining: sensing complex

social systems. Pers Ubiquit Comput 10(4):255–268

10. Vemuri S, Schmandt C, Bender W (2006) iRemember: a per-

sonal, long-term memory prosthesis. In: CARPE ’06: Proceed-

ings of the 3rd ACM workshop on continuous archival and

retrieval of personal experiences, pp 65–74

11. Aizenbud-Reshef N, Belinsky E, Jacovi M, Laufer D, Soroka V

(2008) Pensieve: augmenting human memory. In: CHI ’08: CHI

’08 extended abstracts on Human factors in computing systems,

pp 3231–3236

12. Belimpasakis P, Roimela K, You Y (2009) Experience explorer: a

life-logging platform based on mobile context collection. In:

Third international conference on next generation mobile appli-

cations, services and technologies, pp 77–82

13. Raento M, Oulasvirta A, Petit R, Toivonen H (2005) Context-

Phone: a prototyping platform for context-aware mobile appli-

cations. IEEE Pervasive Comput 4(2):51–59

14. Lu H, Yang J, Liu Z, Lane N, Choudhury T, Campbell A (2010)

The Jigsaw continuous sensing engine for mobile phone appli-

cations. In: Proceedings of the 8th ACM conference on embedded

networked sensor systems (SensSys 2010), pp 71–84

15. Miluzzo E, Lane N, Fodor K, Peterson R, Lu H, Musolesi M,

Eisenman S, Zheng X, Campbell A (2008) Sensing meets mobile

social networks: the design, implementation and evaluation of the

CenceMe application. In: Proceedings of the 6th ACM conference

on embedded network sensor systems (SenSys’08), pp 337–350

16. Chennuru S, Chen P, Zhu J, Zhang Y (2010) Mobile Lifelogger-

recording, indexing, and understanding a mobile user’s life. In:

The second international conference on mobile computing,

applications, and services (MobiCase 2010)

17. Nawyn J, Intille S, Larson K (2006) Embedding behavior mod-

ification strategies into a consumer electronic device: a case

study. In: 8th international conference on ubiquitous computing

(UbiComp 2006), pp 297–314

18. Consolvo S, McDonald D, Toscos T, Chen M, Froehlich J,

Harrison B, Klasnja P, LaMarca A, LeGrand L, Libby R, Smith I,

Landay J (2008) Activity sensing in the wild: a field trial of ubifit

garden. In: CHI ’08: Proceeding of the twenty-sixth annual

SIGCHI conference on Human factors in computing systems,

pp 1797–1806

19. Mun M, Reddy S, Shilton K, Yau N, Burke J, Estrin D, Hansen

M, Howard E, West R, Boda P (2009) Peir, the personal envi-

ronmental impact report, as a platform for participatory sensing

systems research. In: Proceedings of the 7th international con-

ference on mobile systems, applications, and services (MobiSys

2009), pp 55–68

20. Satyanarayanan M (2001) Pervasive computing: vision and

challenges. Pers Commun IEEE 8(4):10–17

21. Shachtman N (2003) A spy machine of DARPA’s dreams.

http://www.wired.com/print/techbiz/media/news/2003/05/58909.

Last Accessed 6 Aug 2010

22. Allen A (2008) Dredging up the past: lifelogging, memory, and

surveillance. Univ Chic Law Rev 75(1):47–74

23. Rawassizadeh R (2012) Toward sharing life-log information with

society. Behav Inf Technol. doi:10.1080/0144929X.2010.510208

24. Abowd G, Mynatt E (2000) Charting past, present, and future

research in ubiquitous computing. ACM Trans Comput-Human

Interact (TOCHI) 7(1):29–58

25. Vroom V, MacCrimmon K (1968) Toward a stochastic model of

managerial careers. Adm Sci Q 13(1):26–46

26. Satyanarayanan M (1996) Fundamental challenges in mobile

computing. In: Fifteenth annual ACM symposium on principles

of distributed computing (PODC ’96), pp 1–7

27. Li I, Dey A, Forlizzi J (2010) A stage-based model of personal

informatics systems. In: CHI ’10: Proceedings of the SIGCHI

conference on human factors in computing systems, pp 557–566

28. Wac K, Pawar P, Broens T, van Beijnum B, van Halteren A

(2010) Using SOC in development of context-aware systems:

domain-model approach. In: Sheng M, Yu J, Dustdar S (eds)

Enabling context-aware web services: methods, architectures, and

technologies. Chapman and Hall/CRC, pp 171–210

29. Lugmayr A, Saarinen T, Tournut JP (2006) The Digital Aura—

Ambient Mobile Computer Systems. In: 14th Euromicro Inter-

national Conference on Parallel, Distributed, and Network-Based

Processing (PDP ’06), pp. 348–354

30. Chen G, Kotz D (2000) A survey of context-aware mobile

computing research. Tech. rep

31. Schmidt A, Aidoo K, Takaluoma A, Tuomela U, Van Laerhoven

K, Van de Velde W (1999) Advanced interaction in context. In:

First international symposium on handheld and ubiquitous com-

puting, pp 89–101

32. Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-

aware systems. Int J Ad Hoc Ubiquitous Comput 2(4):263–277

33. Hunter J (2009) Collaborative semantic tagging and annotation

systems. Annu Rev Inform Sci Technol Am Soc Inform Sci

43(1):187–239

34. Jones W (2007) Personal information management. Annu Rev

Inform Sci Technol 41(1):110–111

35. Consultative Committee for Space Data Systems (2001) CCSDS

650.0-B-1. Recommendation for space data system standards:

reference model for an open archival information system (oais).

Tech. rep

36. Waugh A, Wilkinson R, Hills B, Dell’oro J (2000) Preserving

digital information forever. In: Fifth ACM conference on digital

libraries (DL ’00), pp 175–184

37. The Commission on Preservation and Access and the Research
Libraries Group, Washington, D.C. : Preserving digital informa-

tion : report of the Task Force on Archiving of Digital Infor-

mation (1996)

38. Bell G (2001) A personal digital store. Commun ACM 44:86–91

39. Rawassizadeh R, Tomitsch M Towards digital preservation of

pervasive device information. http://www.personalinformatics.

org/docs/chi2010/rawassizadeh_digital_preservation.pdf (2010)

40. Strahilevitz L (2005) A social networks theory of privacy. Univ

Chic Law Rev 72(3):919–988

636 Pers Ubiquit Comput (2013) 17:621–637

123

http://www.wired.com/print/techbiz/media/news/2003/05/58909
http://dx.doi.org/10.1080/0144929X.2010.510208
http://www.personalinformatics.org/docs/chi2010/rawassizadeh_digital_preservation.pdf
http://www.personalinformatics.org/docs/chi2010/rawassizadeh_digital_preservation.pdf


41. Rawassizadeh R, Tjoa A (2010) Securing shareable life-logs. In:

IEEE international conference on privacy, security, risk and trust,

first international workshop on privacy aspects of social web and

cloud computing (PASWeb-2010), pp 1105–1110

42. Nielsen J (1994) Ten usability heuristics. http://www.

useit.com/papers/heuristic/heuristic_list.html

43. Song M, Lee W, J, K (2010) Extraction and visualization of

implicit social relations on social networking services. In:

Twenty-fourth AAAI conference on artificial intelligence (AAAI

10), pp 1425–1430

44. Jain R (1991) The art of computer system performance analysis:

techniques for experimental design, measurement, simulation and

modeling. Wiley, New Jersey

45. Rawassizadeh R (2009) Mobile application benchmarking based

on the resource usage monitoring. Int J Mob Comput Multimedia

Commun 1(4):64–75

Pers Ubiquit Comput (2013) 17:621–637 637

123

http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html

	UbiqLog: a generic mobile phone-based life-log framework
	Abstract
	Introduction
	Related work
	Design considerations
	Controversial history of life-logs and security
	User intervention
	Application performance
	Storage
	Sensor extendability
	Support for multiple use cases

	Data model
	Framework architecture
	Sensing
	Refining and recording data
	Annotation
	Digital preservation
	Security and privacy

	Evaluation and verification
	Implementation
	Longitudinal analysis
	Resource usage evaluation
	Usability evaluation

	Conclusion
	Acknowledgments
	References


