
ETH Library

Toward Location-Aware Web:
Extraction Method, Applications
and Evaluation

Journal Article

Author(s):
Hess, Basil; Magagna, Fabio; Sutanto, Juliana

Publication date:
2014-06

Permanent link:
https://doi.org/10.3929/ethz-b-000077139

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Personal and Ubiquitous Computing 18(5), https://doi.org/10.1007/s00779-013-0718-3

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000077139
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00779-013-0718-3
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ORIGINAL ARTICLE

Toward location-aware Web: extraction method, applications
and evaluation

Basil Hess • Fabio Magagna • Juliana Sutanto

Received: 30 November 2012 / Accepted: 3 July 2013 / Published online: 8 October 2013

� Springer-Verlag London 2013

Abstract Location-based services (LBS) belong to one of

the most popular types of services today. However, a

recurring issue is that most of the content in LBS has to be

created from scratch and needs to be explicitly tagged to

locations, which makes existing Web content not directly

usable for LBS. In this paper, we aim at making Web sites

location-aware and feed this information to LBS. Our

approach toward location-aware Web is threefold: First, we

present a location extraction method: SALT. It receives

Web sites as input and equips them with location tags.

Compared to other approaches, SALT is capable of

extracting locations with a precision up to the street level.

Performance evaluations further show high applicability

for practice. Second, we present three applications for

SALT: Webnear.me, Local Browsing and Local Facebook.

Webnear.me offers location-aware Web surfing through a

mobile Web site and a smartphone app. Local Browsing

adds the feature to browse by nearby tags, extracted from

Web sites delivered by SALT. Local Facebook extends

location tagging to social networks, allowing to run SALT

on one’s own and one’s friends’ timeline. Finally, we

evaluate SALT for technology acceptance of Webnear.me

through a formative user study. Through real user data,

collected during a 3 months pilot field deployment of

Webnear.me, we assess whether SALT is a proper instance

of ‘‘location of a Web site’’.

Keywords LBS � Location extraction � Location-

aware Web � Location tagging � Location-based

recommendation

1 Introduction

Mobile phones and mobile Internet are rapidly gaining

importance. There are currently more people having a

mobile phone than a computer, which shows the increasing

importance of mobile applications and services. Compared

to desktop applications, mobile applications have the

potential to provide features which cannot, or only hardly

be offered on a desktop computer, for instance, delivering

information depending on the user’s current location.

Location-based services (LBS) are expected to attain a user

base of 1.4 billion by 2014 [2].

LBS eventually deliver certain content to the user. Let

us consider two aspects of content: The first aspect is the

way the content ‘‘gets linked’’ to a location; whether this is

done in an unsupervised way or whether users have to

assign a location to the content manually. We provide a

classification of existing LBS in these two aspects in

Table 1. The second aspect is the type of content the LBS

links to: While LBS usually create content from scratch,

we believe that one of the most suitable types of content is

the existing World Wide Web (WWW). Web sites are

likely to constitute the largest source of information in the

Internet; in 2008, Google announced that their number of

indexed unique URLs exceeded one trillion.1 Using WWW

This paper is an extended and revised version of [16].

B. Hess (&) � F. Magagna � J. Sutanto

ETH Zürich, Weinbergstrasse 56/58, 8092 Zürich, Switzerland

e-mail: bhess@ethz.ch

F. Magagna

e-mail: fmagagna@ethz.ch

J. Sutanto

e-mail: jsutanto@ethz.ch 1 http://googleblog.blogspot.ch/2008/07/we-knew-web-was-big.html.

123

Pers Ubiquit Comput (2014) 18:1047–1060

DOI 10.1007/s00779-013-0718-3

http://googleblog.blogspot.ch/2008/07/we-knew-web-was-big.html

as a data source for LBS, however, requires Web pages to

be location-aware. In other words, we have to assign a

location, based on textual features of a Web page. This

requires to process the text and to find the location to which

the text relates. It is worthwhile to note that not all Web

pages have a location whereas some have several. For

example, the location of a restaurant would be the location

of the physical address on its Web site. Currently most

applications require the Web page owner or the shop owner

to manually enter his address to the system. In another

example, a blog-Web page that contains the sentence ‘‘I

have been to Paris’’ should be tagged with Paris as the

location. Whether ‘‘Paris Hilton’’ refers to a Hotel in Paris

or to a personage seems less trivial. If it in fact refers to a

hotel, the question remains if in Paris/France or in Paris/

Texas/USA. These questions have to be addressed in a

disambiguation process.

Considering the vast size of the WWW, and to avoid

that Web page owners have to manually tag their location,

a promising option is to tag Web sites in an unsupervised

manner. A resulting location layer above the classical

WWW would permit numerous novel applications. As it is

for most users easier to enter a URL than an IP address, it

will be easier to provide a location than memorizing the

corresponding URLs. And while traditional search engines

take as input a written search query, a search engine uti-

lizing the location layer will request a location as input. A

list of URLs will eventually be the output of both search

engine types.

In this paper, we aim at addressing numerous research

challenges en route toward the ‘‘location-aware Web’’.

Questions that we address are as follows: How to extract

locations from the Web in an unsupervised manner? Can

this be done with sufficient precision? Is this computa-

tionally efficient? What are potential applications and are

they accepted by users? Do the applications provide an

appropriate definition of ‘‘location of Web content’’?

We approach these questions by first presenting an

unsupervised location-tagging engine called SALT, which

extracts locations using textual analysis. After automatic

extraction, SALT is still capable of improving the results

using user feedback. We will also show that SALT delivers

improved precision compared to other open systems. With

performance evaluations, we demonstrate the feasibility to

run SALT efficiently on standard hardware.

To demonstrate the potential of SALT, we implement

three novel applications: Webnear.me is an application of

SALT for location-based search engines. It is implemented

as a mobile Web browser, augmented with two search

functions: ‘‘near.me’’ and ‘‘near.this’’. The former allows

to search Web sites by the user’s current location and the

latter to search by the location assigned to another Web

site. The second application, Local Browsing, requests

another input type: Instead of providing a location, the user

can browse by nearby keywords. Local Browsing delivers a

list of URLs depending on the locations of the selected

keywords. The third application, Local Facebook, addres-

ses a type of Internet content that is today faster growing

than Web sites: socially generated content. Local Facebook

makes use of SALT to index the wall of one’s own and

one’s friends’ wall on Facebook. This enables to cluster

posts by locations they belong to.

SALT eventually creates a database that provides a

mapping from geographic coordinates to Web sites, a service

not provided by the current WWW infrastructure. Related

research presented in Sect. 2 usually lacks to include user

aspects in their study. But it is ultimately up to the user to

decide if he accepts a location-aware Web, if he considers it

as useful and easy to use. We address this question through a

formative user study that included participants to complete

tasks with Webnear.me and other search engines. Afterward,

they were surveyed on perceived usefulness and ease of use

of Webnear.me for several search tasks. Related to user

acceptance is the requirement of locations to be correctly

assigned to Web sites. The underlying question is ‘‘What is

the location of a Web site?’’. SALT implies that the location

can be derived from textual information (e.g., addresses, city

names). Similar approaches make this assumption without

further verification. We attempt to approach this assumption

during three- month pilot field deployment of Webnear.me

and Local Browsing. There we observe user patterns, espe-

cially the distance of their locations to the location extracted

by SALT.

The following sections are structured as follows: In

Sect. 2, we give an overview of related work. In Sect. 3, we

introduce our location-tagging engine SALT and compare

its performance with Yahoo Placemaker, the only publicly

available tagging engine. Further we evaluate computation

time and memory requirements of SALT. In Sect. 4, we

present the applications Webnear.me, Local Browsing and

Table 1 Summary of the comparison between Webnear.me and Yahoo Placemaker

Location tagging

Manual Unsupervised

Linked content Not Web site Classical LBS (e.g., AroundMe), Flickr, Plazes, Yelp Flickr (via EXIF)

Web site Google places, Facebook pages, Yellow Pages Geosearch engines, (Our approach)

1048 Pers Ubiquit Comput (2014) 18:1047–1060

123

Local Facebook, followed by a formative user acceptance

study in Sect. 5. In Sect. 6, we present the results from a

three-month field deployment of Webnear.me. We con-

clude the paper in Sect. 7 with a discussion and potential

for further work.

2 Related work

Researchers define LBS as ‘‘services accessible with mobile

devices through the mobile network and utilizing the ability

to make use of the location of the terminals’’ [26]. LBS

typically consist of five components: mobile device, service

and/or application, positioning, communication, and the

content [8]. In our paper, we focus on applications and the

content for a location-aware Web, whereas we presume the

availability of mobile devices (i.e., smartphones) with

positioning (e.g., GPS, WLAN) and communication (e.g.,

UMTS, LTE) abilities. Example LBS that use Web sites as

content are the Yellow Pages, Google Places and Facebook

Places. They have in common that Web pages have to be

manually added to the system. There are also approaches

whereby the Web page owners can include the location

directly into the HTML-source: Opera Standards for geo-

coding [1] describe a possibility to extract geographic

information from a Web page by reading predefined HTML

tags added by the author of the Web page.

For automatically building a location layer over the

WWW, the requirement is a system that extracts locations

from Web sites. Some literature suggests to assign a

location to a Web site by locating the technical infra-

structure of a Web site [13]; the geographic location is then

assigned via (1) Server IP address lookup or (2) DNS

registry. Although this enables in some cases a rough

estimate, it is not certain that this location correlates with

the context at all. A user-centric approach is presented in

[10], where Web content is tagged depending on the

locations where users accessed it. We follow an approach

called geoparsing, which constitutes an active area of

research [17–19]. Geoparsing introduces the concept of

extracting location features from unstructured text or spe-

cial annotations [1]. The literature divides geoparsing in

three parts: (1) Parsing a textual document and identifying

geographic references, (2) resolving the ambiguity and (3)

finding the relevant scope. A common way to identify all

geographic references (geotags) is to cross-check the input

with a gazetteer [27]. A gazetteer is a database that stores

information about places and the connections between

them. In the geotagging process, all words are looked up in

the gazetteer. If the gazetteer contains the word, it gets

marked as geotag. There are also ideas to use Wikipedia as

Gazetteer [12, 21]. Semantic networks [14] can be helpful

to find implicit geographic references like ‘‘Eiffel Tower’’,

which refers to Paris. Ambiguities are usually split in cases

where geographic names are confused with non-geographic

ones (geo/non-geoambiguities) and in cases where two

geographic names are confused (geo/geoambiguities) [6].

The position in a text, the occurrence and the population of

a found geotag can be used to influence the disambiguation

process [5]. Advanced algorithms use tools from natural

language processing (POS, NER) to find locations and

resolve ambiguities [15, 24]. The text is analyzed and

divided into phrases, and the nouns are more accurately

determined with the aid of the syntax. [6, 7, 20] discuss an

algorithm that enables to assign a location even though it is

never literally mentioned in the context (e.g., if there are

some occurrences of ‘‘Texas’’ and some of ‘‘Washington

DC’’, the scope of a page is ‘‘USA’’). Our approach

achieves this during the scope scoring process.

Another stream of research considers the question how

user feedback or, in our case, user locations can be utilized

to refine (local) search. Location of users during mobile

search is investigated in [23]. The result is that 40 % of the

searches concern a close location. Other frequent searches

are in transit and concern the destination, or the search

depends on time. Such user behavior patterns are often

used for optimizing information retrieval (e.g., [3, 22, 25]).

Besides the ongoing research, there are a variety of

commercial products which offer text extraction, such as

MetaCarta, Digital Reasoning (GeoLocator) and SRA

(NetOwl). These applications are able to extract places

along with other entities (persons, time, organizations, time

or money). Moreover, publicly available systems such as

Yahoo! Placemaker offer a geoparsing Web service that

finds places in unstructured content like feeds, Web pages,

news and status updates. Placemaker identifies places and

disambiguates them to a location. However, compared to

our system, Placemaker does not deliver a precision up to

street level. Placemaker has for example been used in [7]

for location-based advertising or for a Google Chrome

extension that analyzes a Web site regarding its geographic

information. Geodoc is a semi-unsupervised system as it

requires the user to tag names manually and then auto-

matically extracts geographic information.

We challenge the state-of-the-art by showing the feasi-

bility to efficiently and accurately geoparse Web pages to

street-level precision using a worldwide gazetteer database

(with up to 16 million places). Other research is either

conceptual in nature [18, 19], shows a proof-of-concept for

recognizing 150,000 places [18] or a single country only

([17], Germany). Further, we strive to extend the pure-

algorithmic aspects usually considered in literature. Espe-

cially, we include mobile and desktop applications evalu-

ated with real users in order give a holistic view of the

location-aware Web, covering the extraction method,

applications and user evaluations.

Pers Ubiquit Comput (2014) 18:1047–1060 1049

123

3 Geoparsing with SALT

In this section, we present our approach to unsupervised

geoparsing: SALT. In Sect. 3.1 we describe the process to

extract geographic locations from Web pages. In Sect. 3.2

we proceed with analyzing the complexity of SALT, and

evaluate SALT regarding its performance (Sect. 3.3) and

precision (Sect. 3.4).

3.1 SALT process

Our geoparsing method SALT consists of three main parts:

parsing, geo-resolution and disambiguation. These parts are

followed by a final location assignment. A user feedback

functions to correct possibly wrongly tagged content and

influence the final assignment. In the following, we

describe all parts:

3.1.1 Parsing

In the first part, we parse the Web page and extract all

words. The parser works as follows: We grab the source of

a page and extract the content information using regular

expressions (removing HTML-, JavaScript- and XML-

tags). Alternatively, a common domain object model

(DOM) parser can be used to extract the contents of the

respective HTML tags. The output from our parser is a

table containing all words from the title, content and

metadata of a Web site. Summarized, we obtain a list of

words: W = w1,…,wn.

3.1.2 Geo-resolution

The second part comprises resolving all geographic names

by looking up the parsed words in our gazetteer. We use two

existing open-source gazetteer databases: Geonames and

openStreetMap. Based on them, we build our own gazetteer

by combining and bringing them in one common form. This

contains names (one or multiple words) and parent infor-

mation (containing country, continent or region), along with

their geographic location. The next task is to recognize

names (multiple, subsequent words). In a naive approach,

one creates a table containing all names, split into separate

words. While iterating through the words in sequential order,

one looks for names starting with the current word and

checks the rest of the name in the next step. We implement a

more efficient approach using an efficient string matching

algorithm (Aho Corasick) to look up all geographic entries

simultaneously. After extracting all names from the content,

we start filtering. Since many very common stop words are

also associated with a location (like ‘‘life’’, a place in Ten-

nessee, USA), we ignore all single-word names that are stop

words. With this filtering we can remove many useless

results without significantly influencing the outcome.

Summarized, geo-resolution resolves W to a list of

geographic names with associate geographic coordinates

N = n1,…,nm, ni = (name, latitude, longitude).

3.1.3 Disambiguation

The aim of the disambiguation part is to resolve the

ambiguities in the list of geographic names N. Two com-

mon ambiguities are geo/non-geo and geo/geo. A geo/non-

geoambiguity occurs when a common word is also the

name of a location: e.g. ‘‘Paris Hilton’’ could refer to a

hotel in Paris or to a person. A geo/geoambiguity occurs

when two or more locations share the same name, for

example ‘‘London’’ points to the well-known capital of the

UK, but also to many other smaller cities all over the

world.

We perform disambiguation sequentially: Firstly, geo/

non-geoambiguous words receive a low value p [[0,1].

Secondly, geo/geoambiguities are resolved with a process

we name scope scoring, taking the values p as input for

each word.

• Regarding geo/non-geoambiguities, we notice that

many common words and expressions are stored in

the gazetteers (e.g. ‘‘The City’’ is an alternative name

for London, UK, but is not unique, since it could refer

to any city). Therefore, we maintain a database with

such expressions and flag all stop words, words from a

common dictionary, and common expressions. Another

issue arises from the fact that some names simply

cannot be uniquely linked to a location. Examples for

those words are ‘‘residence’’, ‘‘district’’, ‘‘center’’ and

‘‘city’’. Those words may be found in gazetteers. They

usually have a geographic meaning, but without

further context they are ambiguous. To address this

problem we add the possibility for a user to provide

feedback. The user can tag words or expressions. If a

sufficient number of users tag a word, we consider it

as stop word and remove it from the gazetteer. To

resolve some of the remaining ambiguities we also

consider the number of words a name consists of. The

more subsequent words are resolved as a name with

geographic meaning, the more likely it is that the

name is valid and the less ambiguities occur. As result

of the process so far, we assign initial values p to all

words. The p values are afterward utilized for geo/

geodisambiguation. As rules of thumb, we define the

following values: p = 0 for stop words, values

p = 0.7 for single-word names and p = 0.8 for all

names with more than one word. From the p value, we

subtract 0.2 if the word is contained in a common

dictionary.

1050 Pers Ubiquit Comput (2014) 18:1047–1060

123

• Geo/geoambiguities are resolved by determining the

main geographic scope of the document. A scope can

be a common city, state, or country. If, for example, the

input contains some mentions of ‘‘Dallas’’, ‘‘Houston’’,

and ‘‘Paris’’, the scope would be Texas, USA. The

possibility that ‘‘Paris’’ was a reference to Paris, France

is comparably low. For determining the scope, we

define a process that we call scope scoring (see the

example in Fig. 1): All geotags receive an initial value

p, determined by the geo/non-geodisambiguation step.

Their initial score is 0. We continue by creating a tree

consisting of the geotags’ parents. Parents are repre-

sented as ontology in the gazetteer. An example

parental path ranges from address to city, zip code,

county, state, country and continent. The parents of

Paris are ‘‘Texas‘‘ and ‘‘USA’’ in one scope, and ‘‘Île-

de-France’’ and ‘‘France’’ in the other. As simplified

example let us assume all initial p values are 0.7. This

value is then propagated up in the tree with a damping

factor d [[0,1]. As rule of thumb we take d = p. For

Paris, the value p� d = 0.49 is added to ‘‘Texas’’, and

the value p� d� d = 0.343 is added to ‘‘USA’’. This

procedure is repeated for Paris/Île-de-France/France, as

well as for all other geotags. We continue by computing

the average values of all paths in the tree. In our

example the path Paris/Texas/USA has a higher aver-

age than Paris/Île-de-France/France, and we are subse-

quently able to discard the ambiguous Paris, France.

The scope of Paris is in this case Paris/Texas/USA.

In summary, the entire disambiguation process selects

a subset of the geographic names, associated with the

scope and a score: Ndis � N; ni ¼ ðname; latitude; longitude;

scope; scoreÞ:

3.1.4 Final location assignment

At this stage, we have the following available information:

geographic names, their geographic coordinates, their

scope and a scope score. For the final assignment, we rank

all names by their scope score and number of occurrences.

The top ranked name (names in case of equal top scores) is

the suggested output by SALT, associated with the URL of

the Web page. In the example from Fig. 1, these are Paris,

Dallas and Houston (in Texas, USA). We further foresee a

feedback function that enables users to select the an

alternative name from the ranking as the more appropriate

one. The feedback can be added to the scores. We note that

the feedback process might be prone to users deliberately

giving ‘‘wrong’’ feedback. Therefore, we discard multiple

feedbacks from the same user.

3.2 Complexity

To estimate the complexity of SALT, we further discuss

each part of the method in detail. The first part essentially

comprises parsing the DOM of a HTML page. Modern

Web browsers prove be able to perform this ‘‘on-the-fly’’.

The challenge of the geo-resolution are frequent lookups

in large gazetteers (with up to 16 million entries). A naive

lookup method would query each input word, plus potential

pre- and suffix words. Even if the gazetteer is indexed (e.g.,

B-Tree index) and allows O(log(n)) search, the complete

geo-resolution will have more-than-linear complexity. As a

more efficient alternative, we implemented the string

matching algorithm by Aho and Corasick (AC) [4]. AC

stores the gazetteer names as patterns in a graph. Given a

Web page with l words, all patterns can be matched

simultaneously with complexity O(l ? m), where m is the

number of matched patterns. Note that the graph structure

of AC should reside in main memory to avoid long access

time during graph traversing.

The disambiguation part is dominated by lookups of the

candidate names in common dictionaries (with about 2

million entries). Given the relatively small number of

candidate names, we consider O(log(n)) lookups in the

database to be sufficient. Finally, scope scoring requires

Fig. 1 Scope scoring process

Pers Ubiquit Comput (2014) 18:1047–1060 1051

123

construction of graphs. Usually, these graphs have a depth

of about 4 (number of geographic parents). After stop word

filtering, given the small number of candidates, scoring is

dominated by dictionary lookups with O(log(n)) search

complexity. Once the Web pages are indexed by SALT,

queries will usually request the k nearest pages to a given

location. The underlying K-nearest-neighbor problem can

be solved in O(k ? log(n)) time. Modern DBMS (e.g.

PostGIS) support this query type. LBS rely on this query

type and have shown that it can be efficiently performed in

practice.

3.3 Performance evaluation

Considering the large number of Web pages to process and

the large number of entries in gazetteers, execution time

and memory usage are crucial factors for practical appli-

cability. We evaluated execution time of SALT split by the

three main steps: parsing, geo-resolution and disambigua-

tion. The evaluations were done on standard hardware with

a quad-core 3.4 GHz Intel i7-3770 CPU and 32 GB of

main memory. The first evaluations measured execution

time while varying the number of words of the input Web

page. As input we selected a pool of pages (news articles

and yellow page entries) and randomly combined them to

the word count desired for evaluations. Figure 2 depicts the

results for both the naive and the Aho Corasick-based

method for geo-resolution. With the naive method, the total

execution is dominated by the geo-resolution and shows a

more-than-linear growth. The inferior performance with

naive geo-resolution can be explained with expensive

database lookups in the gazetteer for any word, plus pre-

and suffixes.

The situation improves significantly when using Aho

Corasick for matching the input with gazetteer words. The

total execution time is now dominated by the linearly

growing disambiguation process. An already rather com-

plex Web page with 5,000 words is processed in under one

second and a page with 15,000 words is processed in under

three seconds. Most of this execution time is spent for

disambiguation during I/O of database lookups. Execution

time could be further diminished by using an in-memory

database for this purpose.

The linear-complexity Aho Corasick method for geo-

resolution comes with a trade-off in memory usage: The

gazetteer database of Geonames contains 16 million

entries. A condensed gazetteer (Europe and US only)

contains approximately 5 million entries. Aho Corasick

requires them to be indexed in a graph. The graph should

reside in main memory to enable efficient traversing (for

string matching). We depict the influence of gazetteer size

to both memory usage and execution time of Aho Cora-

sick-based geo-resolution in Fig. 3.

Notice that even the full gazetteer fits in about 30 GB of

(main) memory, a reasonable size for standard modern

servers. Even with a page input size of 50,000 words, geo-

resolution is performed in a few milliseconds. We further

note that for larger gazetteers, the index could be easily

0

50

100

150

0 250 500 750 1000
web page words

tim
e

(s
)

variable
disambiguation
georesolution
parsing

0

1

2

0 5000 10000 15000

web page words

tim
e

(s
)

variable
disambiguation
georesolution
parsing

Fig. 2 Execution time with naive (above) and Aho Corasick-based

(below) geo-resolution, varying Web page words. Using a condensed

gazetteer of 5 million entries (above) and a worldwide gazetteer with

16 million entries (below)

gazetteer entries

tim
e

(m
s)

5
10

15

0
5

10
15

20
25

m
em

or
y

us
ag

e
(G

B
)

fo
r

in
de

x

0.0e+00 5.0e+06 1.0e+07 1.5e+07

Fig. 3 Execution time and index memory usage of Aho Corasick-

based geo-resolution, varying gazetteer entries. Execution time is

measured using a 50,000 word input

1052 Pers Ubiquit Comput (2014) 18:1047–1060

123

distributed among multiple servers using a map-reduce

based approach for lookup.

3.4 Precision: SALT compared to Yahoo Placemaker

We compared SALT with the only publicly available loca-

tion tagger: the Yahoo Placemaker. One of the differences

between SALT and Placemaker is that SALT provides street-

level accuracy while Yahoo Placemaker only at the city

level. In our experiment, we compared the different recog-

nition rates as follows: We counted how many times the

system could not recognize a location, how many times it is

right and how many times it is wrong. In this comparison, we

used the SALT system without the feedback feature.

The experiment setting was as follows. We crawled the

Swiss Yellow Pages for entries with a domain, and then

randomly selected 50 items from the Zurich area. Then two

researchers manually assessed the items independently and

assigned locations if available. Afterward we randomly

chose 50 entries. Table 2 shows that both systems have

similar wrong recognition rates. However, SALT more

often recognizes a location and generally achieves a higher

recognition rate.

4 Location-aware Web applications

To demonstrate the applicability of SALT to real-world

applications, we developed three applications making use

of online content and location extraction with SALT. These

applications address two types of content: Web sites and

social media. Web sites are hereby representing content

that has been created since the launch of the WWW,

bearing an enormous potential for re-use in LBS. Content

from social media is recently massively increasing.

Although social media platforms like Facebook offer fea-

tures for explicitly tagging user entries with location,

reliable algorithmic tagging methods are currently missing.

For instance, functions that filter posts of friends by a

location are not available.

We first describe a proposal for integrating the location

layer created by SALT in the existing Web infrastructure.

Then we present our applications: Webnear.me, Local

Browsing and Local Facebook.

4.1 Integration to the Web infrastructure

A comprehensive location-aware Web ultimately requires

an integration to the Web infrastructure. In essence, SALT

enables a mapping from Web pages (i.e., their URLs) to

locations. Another service which maps domain names (part

of the URL) is domain name system (DNS), resolving

domain names to IP addresses based on a distributed

hierarchical directory. DNS could be extended to also

accommodate geographic coordinates besides IP addresses.

An alternative to this is to establish a service parallel to

DNS. As in DNS, transport could be based on TCP or the

more lightweight UDP. A less intrusive integration is to

provide an open Web service (e.g., RESTful), from which

the locations can be obtained. Applications supporting this

Web service could relatively easily integrate location-

awareness for displayed Web pages. For indexing Web

pages with SALT, we suggest to use search bots in a

similar manner as they are used by search engines. In this

sense, given the availability of a sufficient number of

SALT servers, in the future, Web sites could even be

indexed on-the-fly when they are requested. Using the cli-

ents for extraction seems rather unrealistic given the high

memory demands of SALT.

For a proof-of-concept implementation, we choose the

RESTful Web service option. The service is depicted in

Fig. 4 and accommodates the following main components:

(1) event handler (2) location-webpage storage and (3)

SALT.

The event handler manages all requests from the dif-

ferent interfaces. Consider a request for the location of a

given Web page: In this case the ‘‘location lookup’’ unit

(part of the event handler) invokes the location-Web page

Table 2 Summary of the comparison between Webnear.me and

Yahoo Placemaker

Not

rec.

Wrongly

rec.

Correctly

rec.

Precision

SALT 6 14 30 Street level

Yahoo placemaker 13 11 25 City level

loca�on-webpage storage SALT

Event handler

Web

Query engine Fedback handler Loca�on lookup

Applica�on

W
eb

 S
er

vi
ce

Webpage /
loca�on

getWebpage(lat,lng) /
lookupLoca�on(URL) /

sendFeedback(URL)

Fig. 4 Implemented architecture for the location-aware Web

Pers Ubiquit Comput (2014) 18:1047–1060 1053

123

storage which checks whether the requested Web page is

already in the database. In this case, the Web page location

is returned. Otherwise, the ‘‘location lookup’’ handler adds

the URL to a queue, processed by SALT. SALT eventually

stores the result in the location-Web page storage.

The ‘‘feedback handler’’ component allows applications

to return feedback to the received mapping (i.e., ‘‘right’’,

‘‘wrong’’, or an alternative location). The overall feedback

influences the ranking of possible locations in the location-

Web page storage.

The third part of the event handler is the ‘‘query

engine’’. This unit manages application requests to query

Web pages near a specific location. The respective queries

are sent to the location-Web page storage, implemented as

a geo-spatial database (MongoDB in our case). Below we

present the three applications in detail.

4.2 Location-aware Web browser: Webnear.Me

The first application we present is Webnear.me [11]. It is

developed as a platform-independent HTML5 Web site, a

Windows Phone 7 app, an Android app and a desktop

version in the form of a Mozilla Firefox plugin. The aim of

Webnear.me is to allow users navigating through the Web

not only via Web links and text input but also via locations.

The features are (1) displaying Web sites near the current

user-location (Webnear.me), and (2) displaying Web pages

near the currently visited Web page X (Webnear.this).

Visible to the user is the Firefox extension in the desktop

case and the HTML5-page in the mobile case (Fig. 5). The

extension is in form of an additional toolbar and consists of

four buttons and a text field. The aim of the text field is to

display the location of the current Web page visited by the

user. The user can interact with the extension by giving

feedback to the estimated location through pressing the

‘‘right’’, ‘‘wrong’’ or ‘‘let me correct’’ button. If the user

presses ‘‘let me correct’’, the extension opens a Web page with

a list of possible locations, from which the user can choose the

right one. Moreover, the user has the possibility to discover

Web pages which are geographically close to the current one.

By pressing the ‘‘discover’’ button, the browser opens a new

window which displays Web pages close the current one.

4.3 Keyword-based browsing: Local Browsing

The second application for the location-aware Web and

SALT is Local Browsing. It is developed as a native

Windows Phone 7 application. Local Browsing adds an

additional level between the mapping from locations to

Web sites: keywords. Compared to Webnear.me, which

allows to display the full list of Web sites corresponding to

a location, Local Browsing adds the feature to filter the

Web sites by keywords.

The basic functionality of the app is depicted in Fig. 6.

When the user starts the app, he is shown a list of keywords

that correspond to nearby Web sites. The keywords are

ordered by their proximity to the user location and their

number of hits. An example of such ordering would list the

tags ‘‘bar’’, ‘‘events’’ and ‘‘hotel’’ first. In addition, the user

can enter his own keywords. When one keyword is selec-

ted, the app displays all other tags that appear together with

the keyword, allowing to further refine the Local Browsing.

Once the user selected all keywords, a list of Web sites is

displayed, containing those Web sites that (1) are nearby

the user location and that (2) contain all selected keywords.

Local Browsing shares the same server infrastructure

with Webnear.me, described in the previous section. While

SALT extracts location information from Web sites, we

Fig. 5 Webnear.me Firefox extension (above) and the Windows

Phone mobile client (below)

Fig. 6 Local Browsing mobile app for windows phone with tags

(left) and results (right)

1054 Pers Ubiquit Comput (2014) 18:1047–1060

123

also extract often occurring keywords extracted from meta-

data and from textual content of the Web sites. These

keywords are mapped to the location extracted by SALT,

allowing to display a list of nearby keywords.

To sum up, Local Browsing allows for more selective

discovery of nearby content, while Webnear.me is more

focused on augmenting Web browsers with location-

awareness.

4.4 Location-based social networks: Local Facebook

The third application shifts the focus from applying SALT

to Web sites toward social networks. Social networks like

Facebook and Twitter are today among the most successful

Internet platforms, creating massive socially generated

data, which might partially have location-based relevance.

Although Facebook offers the feature to explicitly and

manually tag posts with location identifiers, there is no

unsupervised method in place, and own and friends’ posts

cannot be filtered by location. SALT is conceptually

applicable for all textual content, therefore also to social

networks like Facebook.

Local Facebook makes use of the official Facebook API

to gather posts from one’s own and one’s friends’ wall. On

each post, we run SALT to extract location information, if

available. For Local Facebook, we slightly modify the

server infrastructure: instead of creating a database that

maps locations to Web site URLs, we map locations to

Facebook posts. The stored records include an unique

identifier for the post and the timestamp of its creation.

This allows to gather the original posts and to order them

by a timeline as known from Facebook.

Local Facebook is an implementation example that

shows the flexibility of SALT to be used beyond Web sites.

5 Formative user study

In this section, we present a formative user study that has

been conducted to verify the acceptance of the SALT

algorithm, applied to the Webnear.me application. This

study consists of twelve participants, completing different

tasks with Webnear.me. Afterward, they were requested to

fill out a survey.

5.1 Experiment procedure

Four women and eight men participated in our experiment.

These twelve participants used our system to fulfill dif-

ferent tasks. Participants were asked to imagine several

situations in which they used their mobile phone in the last

week. The participants were asked to do the task again as

follows: (1) with the system they used originally (Web

browser or search engine) and (2) with Webnear.me. We

recorded the log of operations in each system and surveyed

the participants after they completed all tasks. The goal of

the questionnaire was to find out about the acceptance of

the new technology used in Webnear.me. Our questions

focused on three different scopes: (1) the feature which

displays Web sites close the current position of the user

(Webnear.me), (2) the feature which displays Web sites

close to another one (Webnear.this), and (3) the application

and the location-aware Web in general. Figure 7 shows the

questions given to the participants. The participants had to

answer with a score (1–7) for each question. The questions

are based on the technology acceptance model (TAM) [9].

The TAM states that the perceived ease of use and the

perceived usefulness determine together the user’s accep-

tance of a new technology. In addition to TAM, we also

collected free opinions from the participants.

Fig. 7 Questionnaire results

Pers Ubiquit Comput (2014) 18:1047–1060 1055

123

5.2 Formative user study results

The results show that all participants noticed an added

value of the location-aware Web and the two features of

Webnear.me (Web sites close to the user and close to a

specific site). The participants perceive a higher usefulness

for the Webnear.this (avg: 6.08) than for the Webnear.me

feature (avg: 5.33). However, the participants perceived the

Webnear.this feature as slightly harder to use and under-

stand. In particular, the participants told that it was not so

easy to understand what the feature exactly does. After

explaining the aim and showing for what the feature is

good for, we received a much better feedback. Six partic-

ipants told us that they would like the feature especially for

discovering Web pages while they are waiting. For the

Webnear.me feature the participants told us that they

especially see an added value when they want to have fast

access to the homepage which is close to them. As example

one participants told that the application is great when he is

looking for a telephone number of somebody in the current

building. Finally, eight participants told that Webnear.me

is more entertaining than a search engine or classical Web

browsing.

6 Field evaluation

In a pilot field deployment, we are especially interested in

evaluating user access to online content tagged with SALT.

We aim at answering the question whether our applications

provide an appropriate definition of ‘‘location of Web

content’’. In the case of Webnear.me and Local Browsing,

the question refines to ‘‘What is the location of a Web

site?’’. In case of Local Facebook, the question refines to

‘‘What is the location of socially generated content?’’. We

remind that SALT bears the underlying hypothesis that

these locations can be derived from textual information.

One potential issue is geographic ambiguity and how

SALT is able to deal with it.

A second issue is less connected with algorithmic

inaccuracies but more with recommender issues: Applica-

tions like Webnear.me that list nearby content in a list view

should list the entries by relevance to the user. In the

simplest case, one could order the results by proximity of

the user location (puser) to the location extracted by SALT

(pSALT). However, this leaves out other parameters like the

number of hits to an item, or what other users near this item

were accessing. Research [10] has proposed to consider the

following user access patterns: local, multi-local, transit

and random. We take them into account and propose the

following evaluation components:

• Location of item i, extracted by SALT: pi
SALT

• Location of user: puser

• Number of hits for item i: hi

• Set of locations where item i was accessed in the past:

Pi
ACCESS.

Metrics Following the above components, we further

define the metrics that can be measured during a field

deployment:

• Aggregate distance between pi
SALT and Pi

ACCESS (aver-

age, minimum, maximum and distribution).

• Distribution and ‘‘locality’’ (pattern) of accesses to

individual Web sites

• Distribution and ‘‘locality’’ (pattern) of accesses from

individual users.

6.1 Field deployment procedure

The applications Webnear.me and Local Browsing were

given to 25 participants for a pilot field deployment during

three-month. Since all study participants are located in or

near Zurich, Switzerland, we emphasized tagging of Web

sites in Zurich. In total, there are 4,500 entries in the

database indexed by SALT. Out of these entries, 200 are

Web sites tagged in Pittsburgh, PA, USA. This was the

location of the Ubicomp 2012 conference, where Web-

near.me was an official demonstrator [11]. A specialty of

the version demonstrated and used at Ubicomp was the

availability of both a list and a map view for browsing

nearby Web sites. During the conference, visitors could

download and use the application on their own Android

smartphones, or use one of our demonstration smartphones

(Android and Windows Phone).

All participants agreed to be subject to an experiment,

since all actions were logged during the test period. Logged

parameters are: (anonymized) user id, timestamp, performed

action in the app and user location. Over a three-month test

period, a total of 486 usable log entries were collected. About

1,000 entries were discarded for the evaluation, since they

were either accesses to non-location-based Web sites, or the

entries did not contain valid user locations.

6.2 Field deployment results

During the deployment period, we collected about 1,500

user actions (out of which 486 are complete and fully

usable entries). Figure 8 shows density maps of tagged

Web sites and user accesses in the city center of Zurich.

The first observation is that, indeed, Web sites are more

evenly distributed than user accesses. Considering access

times, we suppose that most accesses originate from work,

study and home location of the participants. Other spots

were a public transport stations and shopping areas.

1056 Pers Ubiquit Comput (2014) 18:1047–1060

123

Distance between Web sites and user access Fig. 9

depicts a histogram of distances between Web sites tagged

with SALT and the locations of users accessing them.The

number of accesses generally decreases with increasing

distance since the items are ordered by distance. However,

we observe that Web sites further away (500m?) even

showed higher popularity (despite availability of nearer

ones). This can be explained with that users are often

already familiar with Web sites at their current location (at

work, at home). An application like Webnear.me is more

useful to discover new Web sites, which can be further

away from the current location. The data collected in

Pittsburgh, where Web sites were selected from a map,

eliminate a bias induced by ordering of the list. We observe

that although nearby Web sites still have the highest access

density, Web sites further away are in proportion more

often accessed. Compared to the study participants in

Zurich, many conference attendees in Pittsburgh were not

city locals. We would have therefore expected that they

would show higher access rates for content in very close

proximity. This indeed happened in the case of the list

view, however, not in the case of the map view.

Pattern of accesses to individual Web sites For illus-

trating the impact of the type of Web site on user locations,

we selected two Web sites with high hit rates: the Web site

of Coop, a major Swiss retail chain with several locations

in a city and the fast food chain Burger King with two

location in the Zurich inner city. Maps with the Web site

locations and the user access locations are depicted in

Fig. 10.

We note that Coop has a dense network of branches. In

cities like Zurich, the distance between branches is about

1 km. If we consider the access to the Coop Web sites, we

observe that most of the user accesses lie in a distance of

not more than 500 m. While in Zurich this could be

accounted for the dense network of branches, this distance

also holds for smaller cities with less dense networks.

According to the terminology introduced in [10], this

constitutes a multi-local pattern.

Fig. 8 Locations of indexed Web sites (left) and location of users that access the Web sites (right)

Fig. 9 Histogram showing distances between Web site locations

(pSALT) and user access locations (pACCESS)

Pers Ubiquit Comput (2014) 18:1047–1060 1057

123

A different pattern may be observed when looking at the

pattern from the fast food chain Burger King. In Zurich

center, there are two Burger King branches. The access

locations in this case more distributed. Besides home and

work locations which represented most part of the accesses

to Coop originated, the accesses to Burger King also

originated from mobile locations and from train and tram

stations. The Burger King Web site was in those cases not

among the first listed in the Webnear.me and Local

Browsing application. A combination of the location

extracted by SALT with other components like the number

of hits would in this case make sense to boost the Web

site’s ranking. While Burger King and Coop are both well-

known brands, we observed that Web sites of smaller

businesses only received hits from relatively close loca-

tions. In this case, an ordering should give more weight on

the proximity (SALT) than the number of hits. A possible

solution to ensure that small businesses with a low total

number of hits but a relative high number of local hits are

not ranked too low is the following: instead of weighting

proximity to a Web site with its total number of hits, the

proximity should be weighted with the number of hits that

originate from close proximity.

Pattern of accesses from individual users The users

during the three-month test period showed repetitive pat-

terns of their own location, which confirms what is sug-

gested by related research. Another tendency we observed

in the later test period was that Web sites further away were

accessed more frequently. This can be explained with the

purpose of Webnear.me to explore unfamiliar Web sites

nearby. Compared to social media, Web sites do not change

very often and the number of Web sites is nearly static. If no

new Web sites are created, users will likely extend their

search for more distant Web sites. This factor should be

considered while ranking results obtained by SALT.

7 Conclusion and future work

In this paper, we presented a new approach on location-

based services: the location-aware Web. The idea is to use

location information available on Web sites to make them

usable for LBS. For this purpose, we developed SALT, a

location extraction engine. SALT has the advantage that,

compared to all other available location extractions sys-

tems, it can handle feedbacks and extract locations with a

Fig. 10 Web site locations and user accesses: coop (retailer, above), Burger King (below). Red pins mark Web site locations, blue pins mark user

locations (color figure online)

1058 Pers Ubiquit Comput (2014) 18:1047–1060

123

precision up to the street level. As our experiment showed,

SALT has a better recognition rate as compared to a similar

approach, Yahoo Placemaker. This holds even without

using the feedback feature of SALT. Regarding practical

applicability of SALT, our performance evaluations

showed the feasibility to run SALT in under one second for

already rather complex Web content.

Moreover, we presented three applications for SALT.

Two of them are use cases for the location-aware Web

while the third shows the applicability of SALT for social

networks. Webnear.me is a new type of augmented Web

browser using the location-aware Web technology. Web-

near.me introduces a new dimension of searching the Web,

whereby users can not only navigate via links or text inputs

but also navigate via a location. The location for navigation

can be from the user’s current location or from another

Web page. This new feature is interesting for people dis-

covering the Internet without precise target. Our user

acceptance study confirmed the usefulness of the location-

awareness feature. Moreover, users enjoy using the Web-

near.this function. According to the study participants, it

gives mobile information seeking an entertainment factor.

The second application, Local Browsing, replaces the idea

of an extended Web browser with added functionality that

allows filtering Web sites by keywords. The third appli-

cation, Local Facebook, shows the flexibility of SALT to

be also used for social media content. This adds the

functionality to Facebook to filter one’s own and one’s

friends’ wall by locations. Besides these three applications,

there are also numerous other applications possible. These

can, for example, employ new location filtering methods

like Local Browsing does. Or they could apply SALT to

other types of Internet content with location-based rele-

vance, like local questions or local Twitter tweets.

Using a field deployment, we investigated the question

whether SALT delivers appropriate locations for users that

use our applications. We observed that the user proximity

to the SALT location is indeed an important factor for

displaying nearby Web sites. However, there are other

factors that influence the importance of a specific Web site

for a user’s location. Our results give indications that the

type of Web site (e.g., restaurant, retailer) and the location

of the user (e.g., home, work, waiting at a location, mobile)

are important factors that should be considered for deliv-

ering relevant local Web sites. This affects not only the

location-aware Web but rather all kinds of LBS. Future

research could thus focus on finding optimal weightings for

information retrieval. This could include components like

the user proximity to the SALT location, the total number

of item hits and the relative number of item hits at a

location. Another future direction is the development of

sophisticated filters that allow to conveniently accessing

the desired Web sites. Local Browsing proposes one filter

method that allows users to filter Web sites by keywords

that have a local relevance.

Further future research could improve the system in two

ways. First, as we rely on user feedback to identify wrongly

assigned locations, we may encounter some users who

deliberately give wrong feedback to harm the overall sys-

tem performance. Future research could improve this

method by figuring out how to identify such users and

discard their feedbacks. Second, we use directories for

local Web sites, and tag Web sites that users visited on-the-

fly if they are not found in our database. Future research

should aim to crawl the Web sites with search bots similar

to those used in search engines. Regarding the pilot field

deployment, we highlight that larger scale field evaluations

should be done in future research for more generalized

statements on user behavior.

Acknowledgments The authors would like to thank Sebastian

Wendland, Samuel Zihlmann and Dominik Bucher for the design and

implementation of the Local Browsing application, as well as Thomas

Bürli and Benjamin de Capitani for implementing a prototype of

SALT. Further the authors thank Mihai Grigore for his help in

proofreading the manuscript.

References

1. Opera standards for geocoding (2009) Location-based publishing

and services. http://dev.opera.com/articles/view/location-based-

publishing-and-services/

2. Gartner identifies 10 consumer mobile applications to watch in

2012 (2010). http://www.gartner.com/it/page.jsp?id=1544815

3. Agichtein E, Brill E, Dumais S (2006) Improving web search ranking

by incorporating user behavior information. In: proceedings of the

29th annual international ACM SIGIR conference on research and

development in information retrieval, SIGIR ’06, pp 19–26 ACM,

New York, NY, USA. doi:10.1145/1148170.1148177

4. Aho AV, Corasick MJ (1975) Efficient string matching: an aid to

bibliographic search. Commun ACM 18(6):333–340

5. Odon de Alencar R, Davis Jr C, Gonçalves M (2010) Geo-

graphical classification of documents using evidence from wiki-

pedia. In: proceedings of the 6th Workshop on geographic

information retrieval, p 12. ACM

6. Amitay E, Har’El N, Sivan R, Soffer A (2004) Web-a-where:

geotagging web content. In: proceedings of the 27th annual

international ACM SIGIR conference onresearch and develop-

ment in information retrieval, pp 273–280. ACM

7. Anastácio I, Martins B, Calado P (2010) Using the geographic

scopes of web documents for contextual advertising. In: pro-

ceedings of the 6th workshop on geographic information retrie-

val, p 18. ACM

8. Dao D, Rizos C, Wang J (2002) Location-based services: tech-

nical and business issues. Gps Solut 6(3):169–178

9. Davis F (1989) Perceived usefulness, perceived ease of use, and

user acceptance of information technology. MIS Q, pp 319–340

10. Hess B, Gasimov A, Sutanto J (2011) A universal approach that

makes legacy online content location-based. In: proceedings of

the 10th international conference on mobile and ubiquitous

multimedia, pp 127–133. ACM

11. Hess B, Magagna F, Sutanto J (2012) Discovering the web by

location with webnear.me. In: proceedings of the 2012 ACM

Pers Ubiquit Comput (2014) 18:1047–1060 1059

123

http://dev.opera.com/articles/view/location-based-publishing-and-services/
http://dev.opera.com/articles/view/location-based-publishing-and-services/
http://www.gartner.com/it/page.jsp?id=1544815
http://dx.doi.org/10.1145/1148170.1148177

conference on ubiquitous computing, UbiComp ’12, pp 538–538.

ACM, New York, NY, USA. doi:10.1145/2370216.2370298

12. Hill L (2000) Core elements of digital gazetteers: placenames,

categories, and footprints. Res Adv Technol Digit Libr

pp 280–290

13. Lakhina A, Byers J, Crovella M, Matta I (2003) On the geo-

graphic location of internet resources. Sel Areas Commun IEEE J

21(6):934–948

14. Leveling J, Hartrumpf S, Veiel D (2006) Using semantic

networks for geographic information retrieval. In: Peters C

et al. (eds) Accessing multilingual information repositories,

pp 977–986. Springer, Berlin. http://link.springer.com/chapter/10.

1007%2F11878773_109

15. Lieberman M, Samet H, Sankaranayananan J (2010) Geotagging:

using proximity, sibling, and prominence clues to understand

comma groups. In: proceedings of the 6th workshop on geo-

graphic information retrieval, p 6. ACM

16. Magagna F, Hess B, Sutanto J (2012) Building location-aware

web with salt and webnear.me. Procedia Comput Sci 10:601–608

17. Markowetz A, Chen Y, Suel T, Long X, Seeger B (2005) Design

and implementation of a geographic search engine. In: 8th

international workshop on the web and databases (WebDB)

18. McCurley KS (2001) Geospatial mapping and navigation of the

web. In: proceedings of the 10th international conference on

World Wide Web, pp 221–229. ACM, Hong Kong. doi:10.1145/

371920.372056

19. Morimoto Y, Aono M, Houle M, McCurley K (2003) Extracting

spatial knowledge from the web. In: applications and the internet,

2003. Proceedings. 2003 Symposium on, pp 326–333. IEEE

20. Qin T, Xiao R, Fang L, Xie X, Zhang L (2010) An efficient

location extraction algorithm by leveraging web contextual

information. In: proceedings of the 18th SIGSPATIAL interna-

tional conference on advances in geographic information sys-

tems, pp 53–60. ACM

21. Quercini G, Samet H, Sankaranarayanan J, Lieberman M (2010)

Determining the spatial reader scopes of news sources using local

lexicons. In: proceedings of the 18th SIGSPATIAL international

conference on advances in geographic information systems,

pp 43–52. ACM

22. Teevan J, Dumais ST, Horvitz E (2005) Personalizing search via

automated analysis of interests and activities. In: proceedings

of the 28th annual international ACM SIGIR conference on

research and development in information retrieval, SIGIR ’05,

pp 449–456. ACM, New York, NY, USA. doi:10.1145/1076034.

1076111

23. Teevan J, Karlson A, Amini S, Brush AJB, Krumm J (2011)

Understanding the importance of location, time, and people in

mobile local search behavior. In: proceedings of the 13th inter-

national conference on human computer interaction with mobile

devices and services, MobileHCI ’11, pp 77–80. ACM, New

York, NY, USA. doi:10.1145/2037373.2037386

24. Tobin R, Grover C, Byrne K, Reid J, Walsh J (2010) Evaluation

of georeferencing. In: proceedings of the 6th workshop on geo-

graphic information retrieval, p 7. ACM

25. Tseng V, Lin K (2006) Efficient mining and prediction of user

behavior patterns in mobile web systems. Inf Softw technol

48(6):357–369

26. Virrantaus K, Markkula J, Garmash A, Terziyan V, Veijalainen J,

Katanosov A, Tirri H (2001) Developing gis-supported location-

based services. In: web information systems engineering. Pro-

ceedings of the second international conference on, vol 2,

pp 66–75. IEEE

27. Zubizarreta Á, de la Fuente P, Cantera J, Arias M, Cabrero J,

Garcı́a G, Llamas C, Vegas J (2009) Extracting geographic

context from the web: georeferencing in mymose. In: Boughanem

M et al (eds) Advances in information retrieval, Lecture notes in

Computer Science, vol 5478. Springer, Berlin, pp 554–561

1060 Pers Ubiquit Comput (2014) 18:1047–1060

123

http://dx.doi.org/10.1145/2370216.2370298
http://link.springer.com/chapter/10.1007%2F11878773_109
http://link.springer.com/chapter/10.1007%2F11878773_109
http://dx.doi.org/10.1145/371920.372056
http://dx.doi.org/10.1145/371920.372056
http://dx.doi.org/10.1145/1076034.1076111
http://dx.doi.org/10.1145/1076034.1076111
http://dx.doi.org/10.1145/2037373.2037386

