
HAL Id: hal-01470281
https://inria.hal.science/hal-01470281

Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Parallel Data Processing for Enabling
Large-Scale Sensor Applications
Milan Kabáč, Charles Consel, Nic Volanschi

To cite this version:
Milan Kabáč, Charles Consel, Nic Volanschi. Designing Parallel Data Processing for Enabling
Large-Scale Sensor Applications. Personal and Ubiquitous Computing, 2017, 21 (3), pp.457-473.
�10.1007/s00779-017-1009-1�. �hal-01470281�

https://inria.hal.science/hal-01470281
https://hal.archives-ouvertes.fr

Personal and Ubiquitous Computing manuscript No.
(will be inserted by the editor)

Designing Parallel Data Processing for Enabling Large-Scale
Sensor Applications

Milan Kabáč · Charles Consel · Nic Volanschi

Received: date / Accepted: date

Abstract Masses of sensors are being deployed at the
scale of cities to manage parking spaces, transporta-
tion infrastructures to monitor traffic, and campuses of
buildings to reduce energy consumption. These large-
scale infrastructures become a reality for citizens via
applications that orchestrate sensors to deliver high-
value, innovative services. These applications critically
rely on the processing of large amounts of data to ana-
lyze situations, inform users, and control devices.

This paper proposes a design-driven approach to
developing orchestrating applications for masses of sen-
sors that integrates parallel processing of large amounts
of data. Specifically, an application design exposes dec-
larations that are used to generate a programming frame-
work based on the MapReduce programming model.

We have developed a prototype of our approach,
using Apache Hadoop. We applied it to a case study
and obtained significant speedups by parallelizing com-
putations over twelve nodes. In doing so, we demon-
strate that our design-driven approach allows to ab-
stract over implementation details, while exposing ar-
chitectural properties used to generate high-performance
code for processing large datasets. Furthermore, we show
that this high-performance support enables new, per-
sonalized services in a smart city. Finally, we discuss

Milan Kabáč
Inria Bordeaux, France
E-mail: milan.kabac@inria.fr

Charles Consel
Bordeaux Institute of Technology & Inria Bordeaux
France
E-mail: charles.consel@inria.fr

Nic Volanschi
Inria Bordeaux, France
E-mail: eugene.volanschi@inria.fr

the expressiveness of our design language, identify some
limitations, and present language extensions.

Keywords data processing · programming frame-
works · sensors · map-reduce · orchestration

1 Introduction

Modern smart cities and smart territories [1] rely on
wide-area infrastructures, populating a variety of envi-
ronments with functionality-rich sensors. These smart
environments include wide-area transportation manage-
ment [2,3] and large-scale smart parking systems [4,5].
The emergence of smart environments validates large-
scale sensor infrastructures as robust platforms for de-
livering innovative services to citizens.

Nevertheless, the successful adoption of these in-
frastructures critically relies on the ability to develop
services. Currently, software development in this do-
main lacks programming models and methodologies to
address key domain-specific challenges. In particular,
masses of sensors produce large amounts of data that
require to be analyzed efficiently to timely deliver high-
value services to citizens and operators of smart envi-
ronments. When considering tens of thousands of mea-
surements, possibly accumulated over a period of time,
processing of such data volumes becomes a critical is-
sue. The pressure on processing only increases when
the added values of the services rely on real-time or
near-real-time analyses. In fact, the data volume to be
processed and the velocity requirements of the appli-
cations to be developed may necessitate parallel pro-
cessing [6]. For example, as cars rush into a city in the
morning, drivers should receive up-to-date information
about space availability in parking lots and estimations
about its future trends, even if this involves processing

2 Milan Kabáč et al.

massive amounts of data repeatedly. When efficiency
is paramount, it is a key challenge to develop an or-
chestrating application that exploits properties about
the sensors, optimizes the strategies to collect sensor
measurements, and crunches large amounts of data.

Beyond allowing to harness large-scale sensor infras-
tructures, the scalability of data processing is becoming
a key enabling factor for delivering personalized and/or
community-aware services [7,8]. Indeed, in such appli-
cations, not only do large amounts of sensor data have
to be handled, but they must also be combined with
massive data, contributed by user communities. These
computations must be performed repeatedly for each
user and still be delivered in a timely manner. Support
for efficient parallel processing can thus also pave the
way to the next level of smart city services for citizens,
in terms of added value.

Existing approaches dedicated to big data process-
ing provide limited ways to combine data processing
strategies with the application logic. Apache Pig [9]
and Hive [10] require developers to describe data pro-
cessing in SQL-like query languages with limited sup-
port for user-defined functions. Language libraries, such
as FlumeJava [11] allow developers to implement data
processing via high-level language abstractions. These
approaches provide data flow expressions and a set of
rich data types to implement data processing. Develop-
ers still need to decide when and where data processing
occurs, as well as how intermediate computations are
combined. In the case of large-scale orchestration, ap-
plications may have to analyze sensor data a number
of times using different algorithms, or combine them.
These needs put an additional burden on developers
since they have to introduce boilerplate code to sep-
arate library-specific code from the main application
logic, interconnect and coordinate computations, store
intermediate results, etc.

This paper proposes a design-driven approach to
developing orchestrating applications for masses of sen-
sors that integrates parallel processing of large amounts
of data. In doing so, we extend our previous work on
a design language dedicated to orchestrating sensors,
named DiaSwarm [12], which did not address high-perfor-
mance data processing. Our new approach provides the
developer with declarations expressing when and where
data processing occurs. The application design then
compiles into a programming framework, based on the
MapReduce programming model. This framework sup-
ports and guides the programming of the orchestration
logic, while abstracting over the parallel processing of
sensed data.

This article is an expanded version of a conference
paper [13]. It provides details about the implementa-

tion of our approach, an example of personalized service
enabled by our approach, and a review of the current
limitations of the approach together with some corre-
sponding language extensions.

1.1 Our contributions

High-level parallel processing model.
Our approach allows the developer to program against
a framework based on the MapReduce programming
model [14,15]. In doing so, the developer uses a well-
proven approach to processing large datasets, based on
a parallel implementation. We illustrate our approach
with a case study of a parking management system.

A generative programming approach.
The generated parallel-processing programming frame-
works have a carefully structured data and control flow,
which enables data processing to be implemented ef-
ficiently. Our compiler generates programming frame-
works that rely on the MapReduce model, exposing
structural parallelism of the implementation. This strat-
egy allows to cope with large datasets collected from
masses of sensors.

Implementation.
Our approach is implemented1 and takes the form of
a plugin for the Eclipse IDE2. The plugin comprises a
code generator, which currently produces programming
support for the Apache Hadoop platform3.

Validation.
Our implementation is validated with an experiment
that runs application computations over a large dataset
of synthetic sensor readings. The experiment demon-
strates that programming frameworks generated by our
approach exhibit scalable behavior.

Enabling personalized services.
We further illustrate the practical applicability of our
approach through an example of personalized service
for citizens of a smart city.

Exploring the design space.
Finally, we assess the expressiveness of DiaSwarm by
reviewing and reconsidering design choices. This results
in language extensions.

2 Background & Case Study

In this section, we provide a brief introduction of the
DiaSwarm language [12] dedicated to development of

1 http://phoenix.inria.fr/software/diaswarm
2 http://eclipse.org/
3 http://hadoop.apache.org/

http://phoenix.inria.fr/software/diaswarm
http://eclipse.org/
http://hadoop.apache.org/

Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications 3

orchestrating applications. DiaSwarm is a declarative
domain-specific design language, which follows the Sense/-
Compute/Control (SCC) paradigm promoted by Tay-
lor et al. [16]. DiaSwarm provides high-level, declara-
tive constructs to allow developers to deal with sensors
and actuators at design time, prior to programming the
application. Application design is processed by a com-
piler, which generates support for the developer that
takes the form of a programming framework [17]. The
generated programming framework reflects application
design and covers domain-specific functionalities, such
as service discovery, data gathering, component inter-
action and data processing. These dimensions are fully
administered by the framework to allow developers to
concentrate on the application logic.

Application design takes the form of a directed acyclic
graph (DAG) comprising devices (i.e., sensors and ac-
tuators) and application components, namely, contexts
and controllers. Context components receive data from
sensors via device sources. They refine raw data into ap-
plication values and may publish these values to con-
troller components. Controllers determine the devices
that need to be actuated, as well as the type of action
that needs to be triggered.

2.1 Case study

We illustrate the salient features of DiaSwarm with a
smart city application, which monitors the occupancy
of parking lots to guide cars to available parking spaces.
The application collects data from presence sensors,
which are buried under the ground and determine avail-
ability of parking spaces via magnetic field variations.
The application provides drivers with the number of
available parking spaces for each parking lot in the city.
This information is displayed on screens at the entrance
of parking lots. The application also suggests parking
lots to drivers entering the city to optimize the flow of
traffic. Finally, the application determines the average
occupancy level of each parking lot in 24 hours. The
occupancy level is provided to parking managers via
messages.

Fig. 1 presents a graphical view of the parking man-
agement application in SCC. The PresenceSensor de-
vice produces values via the presence source to the
subscribed context components, namely ParkingAvail-
ability, ParkingUsagePattern, and AverageOccupan-
cy. The ParkingAvailability context computes the
number of available parking spaces in parking lots and
publishes these values at regular intervals to the Par-
kingEntrancePanel controller, which in turn triggers
the update action to refresh the number of available
parking spaces on entrance screens. Parking suggestions

Fig. 1: The graphical view of the parking management appli-
cation.

for drivers are computed by the ParkingSuggestion
context, which is invoked every time the ParkingAvail-
ability context publishes a value. In this case, the
computation carried out by ParkingSuggestion con-
text requires also data from the ParkingUsagePattern
context. The resulting suggestions are published to the
CityEntrancePanelController, which refreshes these
suggestions on entrance panels. The average occupancy
level functionality is designed in a similar fashion with
the exception of providing computations over a 24-hour
period (i.e., AverageOccupancy context).

2.2 Preliminaries

Let us now briefly present the salient features of Dia-
Swarm declarations through fragments of the design
of our case study, displayed in Fig. 2. Note that we
omit details on controller components and actuators.
The complete design for the parking management ap-
plication and further information on DiaSwarm can be
found on our website.4

Service discovery.DiaSwarm service discovery is part
of the design phase. The language provides application-
specific high-level constructs for discovering objects in
the large. The grouped by clause allows sensor data to
be presented to applications through subsets of inter-
est. In the case of the, ParkingAvailability context,

4 http://phoenix.inria.fr/software/diaswarm

http://phoenix.inria.fr/software/diaswarm

4 Milan Kabáč et al.

parking spaces are gathered together in parking lots, as
shown in line 3. Similarly, in line 10, the AverageOc-
cupancy context groups presence values by parking lots
and computes average occupancy over 24 hours.

Data gathering. DiaSwarm provides three data deliv-
ery models, inspired by the domain of wireless sensor
networks [18], namely periodic, event-driven and query
driven. Data delivery declarations are called interaction
contracts. Examples are listed in lines 2 and 9, where
both ParkingAvailability and AverageOccupancy con-
texts require presence measurements to be provided ev-
ery 10 minutes. Thus, according to these interaction
contracts both context components will be activated
every 10 minutes with presence values. Furthermore,
the event-driven model provides data to context com-
ponents upon an event of interest (e.g., intrusion). The
query-driven model allows a context to request data
from devices and other contexts.

Programming frameworks. To enforce domain-specific
functionalities (e.g., service discovery) during program-
ming, Java programming frameworks are produced by
a compiler from DiaSwarm designs. These frameworks
provide an abstract class for each component, which in
turn requires developers to implement components by
subclassing every abstract class.

2.3 Data processing

Although high level, the DiaSwarm declarations sug-
gest data processing models. Specifically, an application
is reactive and consists of chains of component activa-
tions. A chain is executed when its initial activation
condition holds, which is always related to a sensor,
and depends on its delivery model: a sensor publishes
data spontaneously or is sampled periodically. The ex-
ecution of a chain ends if one or more actuators are
invoked or a component does not publish any value.
Additionally, when a component declaration groups val-
ues (e.g., grouped by parkingLot), it will process a
sequence of values, indexed by the grouping attribute
(i.e., parkingLot). For example, in the ParkingAvail-
ability component, the processing will receive values
from all the presence sensors, indexed by parking lot
identifiers (i.e., ParkingLotEnum). Additionally, this con-
struct allows values to be accumulated over a period of
time, as illustrated by the AverageOccupancy context
(line 8). The declaration in line 10 allows presence val-
ues, not only to be grouped by parkingLot, but also to
be accumulated over a 24-hour period (keyword every).

1 context ParkingAvailability as Availability[] {
2 when periodic presence from PresenceSensor <10 min>

3 grouped by parkingLot
4 with map as Boolean reduce as Integer
5 always publish;
6 }

8 context AverageOccupancy as ParkingOccupancy[] {
9 when periodic presence from PresenceSensor <10 min>

10 grouped by parkingLot every <24 hr>
11 with map as Presence reduce as Integer
12 always publish;
13 }

15 device PresenceSensor {
16 attribute parkingLot as ParkingLotEnum;
17 source presence as Boolean;
18 }
19

20 structure Presence {
21 presence as Boolean;
22 time as String;
23 }

Fig. 2: Excerpt of the parking management application design
in DiaSwarm.

3 Exposing Parallelism

The large amount of data collected from sensors calls
for efficient processing strategies. We now examine how
an application design influences the way data are pro-
cessed. This study allows us to propose extensions to
DiaSwarm and novel treatments of declarations to gen-
erate efficient parallel processing of large-scale datasets.

Our aim is to put in synergy design and program-
ming by leveraging design declarations to expose par-
allelism and allow efficient processing strategies to be
implemented. An ideal case study is the grouped by
directive because it partitions a large set of gathered
data and exposes a processing strategy that matches the
MapReduce programming model. Indeed, this program-
ming model is dedicated to processing large datasets
in a massively parallel manner [14,15]. It requires pro-
cessing to be split into two phases: Map and Reduce.
Following our approach, data processing needs to be re-
flected in the design phase. This is done by extending
the grouped by directive with an optional clause that
specifies what types of values are produced by both the
Map and Reduce phases. This is illustrated in Fig. 2,
where the ParkingAvailability declaration includes a
MapReduce clause that declares the Map phase to pro-
duce Boolean values and the Reduce phase to produce
Integer values.

The DiaSwarm compiler generates a programming
framework that requires the developer to provide an im-

Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications 5

1 public class ParkingAvailability extends AbstractParkingAvailability
2 implements MapReduce<ParkingLotEnum, Boolean, ParkingLotEnum, Boolean, ParkingLotEnum,

Integer> {
3 @Override
4 public void map(ParkingLotEnum parkingLot, Boolean presence, MapCollector<ParkingLotEnum, Boolean> collector

) {
5 if(!presence)
6 collector.emitMap(parkingLot, true);
7 }

9 @Override
10 public void reduce(ParkingLotEnum parkingLot,
11 List<Boolean> values, ReduceCollector<ParkingLotEnum, Integer> collector) {
12 int sum = 0;
13 for (int i = 0; i < values.size(); i++) {
14 sum++;
15 }

17 collector.emitReduce(parkingLot, sum);
18 }

20 @Override
21 protected List<Availability> onPeriodicPresence(Map<ParkingLotEnum, Integer> presenceByParkingLot) {
22 List<Availability> availabilityList = new ArrayList<Availability>();

24 for(Entry<ParkingLotEnum, Integer> parkingLot : presenceByParkingLot.entrySet()) {
25 Availability availability = new Availability(parkingLot.getKey(), parkingLot.getValue());
26 availabilityList.add(availability);
27 }

29 return availabilityList;
30 }
31 }

Fig. 3: An implementation of the ParkingAvailability context with MapReduce.

plementation for both the Map and Reduce phases of
the data processing. As shown in Fig. 3, this is done by
implementing map and reduce methods declared in the
generated MapReduce interface. In conformance with
the MapReduce model, the Map function is passed a
key and a value, which correspond to the parking lot
identifier (i.e., the attribute of the grouped by direc-
tive) and an availability status, provided by the cor-
responding sensor. The emitMap method is invoked to
produce each key/value pair result of the Map phase.
The framework-generated code groups the results of the
Map phase into a list that is then passed to the Reduce
phase. This phase sums up the set of values associated
with a given intermediate key and, subsequently, emits
the availability of a parking lot (emitReduce). The data
resulting from the MapReduce computation are pre-
sented to the developer in the form of a map (line 21).
The onPeriodicPresence method (line 21 to 30) wraps
data resulting from the MapReduce process into the
availabilityList sequence (line 26), which is returned
to subscribed components (i.e., ParkingEntrancePan-
elController, ParkingSuggestion).

Although our example involves simple processing,
in practice, our design-driven generative approach re-
duces programming efforts by automatically generating
application-specific MapReduce programming frameworks.
Furthermore, the generated code keeps the development
process straightforward since it prevents specificities
of the MapReduce implementation (job scheduling/-
configuration/execution, distributed file system, APIs,
etc.) to percolate into the application logic.

4 Generating a Programming Framework

Our design-driven development approach facilitates the
processing of large datasets collected from sensor in-
frastructures by providing the developer with a cus-
tomized framework, following the MapReduce program-
ming model. In this section, we show how generative
programming is used to produce support for combining
an orchestrating application with an actual implemen-
tation of MapReduce, namely Hadoop.

Apache Hadoop is an open source implementation of
the MapReduce paradigm, which has gained increasing
attention over the last years and is currently being used

6 Milan Kabáč et al.

1 public class ParkingAvailabilityJob extends Configured implements Tool {

3 public static class ParkingAvailabilityMap extends MapReduceBase
4 implements Mapper<LongWritable, Text, Text, BooleanWritable> {
5 @Override
6 public void map(LongWritable key, Text value, OutputCollector<Text, BooleanWritable> output, Reporter

reporter) {
7 jobLauncher.doMap(key, value, output);
8 }
9 }

11 public static class ParkingAvailabilityReduce extends MapReduceBase
12 implements Reducer<Text, BooleanWritable, Text, IntWritable> {
13 @Override
14 public void reduce(Text key, Iterator<BooleanWritable> values, OutputCollector<Text, IntWritable> output

, Reporter reporter) {
15 jobLauncher.doReduce(key, values, output);
16 }
17 }

19 @Override
20 public int run(String[] args) {
21 JobConf conf = new JobConf(getConf(), ParkingAvailabilityJob.class);
22 conf.setInputFormat(TextInputFormat.class);
23 // Remaining configuration
24 }
25 }

Fig. 4: An example of the generated Hadoop MapReduce program for the ParkingAvailability context.

by a number of companies, including IBM, LinkedIn,
Facebook and Google [19]. In our approach, our com-
piler generates a MapReduce program that relies on
the Hadoop framework. Furthermore, this MapReduce
program defines default configuration parameters that
enable a job to be executed in Hadoop.

In the next three subsections, we explain how Hadoop
jobs are automatically generated, and how they are in-
tegrated in the control and data flow of the generated
framework. The subsequent section discusses the pos-
sible integration of big data processing backends other
than Hadoop, for supporting continuous stream pro-
cessing in addition to batch processing.

4.1 Setting up Hadoop jobs

Let us describe first how Hadoop jobs are automat-
ically generated, by examining the code generated for
the ParkingAvailability context, shown in Fig. 5. The
ParkingAvailabilityJob class defines a Hadoop Map-
Reduce program, which comprises the definition of both
the map and reduce methods along with code related
to the job configuration and execution. Both the Map
function and the Reduce function are implemented by
overriding the map and reduce methods of the respec-
tive Mapper and Reducer interfaces. Typically, when us-
ing the Hadoop MapReduce library, the definition of

ParkingAvailabilityJob
+run(args)
+main(args)

M
ap

R
ed

uc
e

M
ap

pe
r

R
ed

uc
er

ParkingAvailabilityParser

-parkingAvailability: MapReduce
+map(key, value, output)
+reduce(key, value, output)

ParkingAvailability
+map(key, value, context)
+reduce(key, value, context)
#onPresence(parkingLotIterator)

ParkingAvailabilityMap
+map(key, value, output)

ParkingAvailabilityReduce
+reduce(key, value, output)

Generated code Implementation Hadoop lib DiaSwarm lib

Fig. 5: The generated support for integrating Apache Hadoop.

the map and reduce methods resides in the MapRe-
duce program. In this case, however, the implementa-
tion of these operations has already been provided by
the developer in the ParkingAvailability class. The
MapReduce program invokes the user-defined map and
reduce methods via the ParkingAvailabilityParser
class, which keeps an instance of the ParkingAvail-
ability context. ParkingAvailabilityParser interprets
input data of the MapReduce program as corresponding
DiaSwarm types and invokes the required map/reduce
method. Consequently, results from the user-defined map/reduce
method are translated to the MapReduce program and
submitted via its output collector.

Fig. 4 shows the ParkingAvailabilityJob class, which
defines the MapReduce program for the ParkingAvail-
ability context. The compiler generates a minimal Map-
Reduce program for every context declared as Map-

Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications 7

Reduce at design time. The type of input data for a
generated MapReduce program is defined by the input
format, which defaults to TextInputFormat (line 22).
In our approach, sensor data is stored in the JSON for-
mat. In our case study, each presence status delivered
to the application is converted to JSON and occupies
precisely one line in the resulting dataset. Furthermore,
each presence entry is defined by the timestamp of the
event, device attributes (i.e., id, parking lot) and the
presence source. TextInputFormat fits such usage since
it splits the input dataset to provide the Map func-
tion with one line of text (i.e., one JSON entry) at
a time. In a MapReduce program, any key or value
type implements the Writable interface, which allows
Hadoop to serialize objects for transmission over the
network [20]. To facilitate the development of Map-
Reduce programs, Hadoop already provides Writable
wrapper classes for the majority of Java primitives (e.g.,
boolean → BooleanWritable). In addition, developers
may provide custom datatypes by defining classes im-
plementing the Writable interface. At this stage, design
declarations are of great importance since they allow
the compiler to interpret key and value types of the re-
sulting MapReduce program. For instance, as shown
in Fig. 2, the ParkingAvailability context declares
the output value type of the Map function as Boolean
(line 4). As a result, the compiler matches the Boolean
data type with the corresponding BooleanWritable wrap-
per class (Fig. 4, line 6). Moreover, an enumeration
is interpreted as a string and matched with the Text
wrapper class (Fig. 4, line 6). Finally, design declara-
tions using complex data types result in the genera-
tion of a custom wrapper class, which implements the
Writable interface and reflects the entire structure of
the datatype.

4.2 Managing control flow

The control flow of the generated framework depends
upon the declared interaction contracts between sen-
sors (devices) and the application logic (contexts and
controllers). In particular, the contexts include those
declared as MapReduce jobs, which are automatically
generated as shown above. Depending on the interac-
tion contracts specified, the following scheduling strate-
gies are chosen:

– If an “every” clause is specified with a period T , the
corresponding context is invoked with this periodic-
ity.

– Otherwise, if “when periodic” is specified with a pe-
riod T , the context is invoked with this periodicity.

– Otherwise, if “when provided” is specified, the con-
text is invoked any time the sensor produces a value.

– Otherwise, “when required” remains the only possi-
ble option. In this case, the context is invoked only
when explicitly requested by a higher-level context
declaring a “get” on the current context.

In our case study, the ParkingAvailability con-
text declares that data must be gathered from presence
sensors in a 10-minute time window, according to a pe-
riodic delivery model (Fig. 2, line 2). Data processing
takes place when the time window elapses; that is, ev-
ery 10 minutes, for our case study. At runtime, this job
is executed with respect to the gathered sensed data
and produces a result. The orchestrating application
recovers the result, which is passed to the context via
its callback method (e.g., onPeriodicPresence for Par-
kingAvailability).

4.3 Managing the data flow

Managing the data flow in the generated framework
involves (1) supplying data from sensors in suitable
data structures, according to context declarations (e.g.,
“group by” clauses), and (2) buffering data if needed,
to interface between sensor delivery models and the
scheduling strategies defined above.

The various clauses in context interaction contracts
are processed as follows by the compiler:

– If “when required” is specified in a contract, there
are no sensor values involved. Rather, such a con-
tract declares that the value produced by the con-
text is kept available for subsequent requests from
higher-level contexts, or by controllers. There is no
buffering of older values produced by the context:
only the last value produced is available to client
components. In such a contract, it is not possible to
specify a “grouped by” clause, nor “every” or “map
... reduce”.

– If “when provided” is specified, the context will re-
ceive all the values produced by the sensor or lower-
level context; no value is lost.

– If “when periodic ... <T>” is specified, the context
will receive values sampled with a periodicity of T
from the sensor or lower-level context.

– If “grouped by a” is specified, data must come from
a sensor device, and a must be one of the device at-
tributes. In this case, the sensor values are indexed
by the value of attribute a. If a “map ... reduce”
clause is also specified, key-value pairs <k, v> are
supplied to the map phase, where k is the value of
attribute a for the sensor that produced value v.

8 Milan Kabáč et al.

If no “map ... reduce” clause is specified, the con-
text receives pairs <k, list(v)>, where the v values
were produced by all the sensors whose attribute a

is equal to k.
– If “every <T>” is specified, data must come from a

sensor device. In this case, values from the sensors
(gathered as specified by its event-driven or periodic
delivery model) are accumulated during a period T

and then passed together in a single context invo-
cation.

In our case study, the AverageOccupancy context re-
ceives values sampled from all presence sensors every 10
minutes, indexed by parking lot, and accumulated over
periods of 24 hours. Data processing takes place every
24 hours, and invokes a MapReduce job to efficiently
cope with the size of the batched data.

4.4 Other data processing methods

Nowadays, the field of Big Data is attracting much at-
tention from research and industry. The tool-development
efforts devoted to dealing with rapidly emerging sources
of big data result in an abundance of open-source projects
[21]. Apache Hadoop is a widely-used tool to deal with
large-scale datasets because it provides a reliable and
scalable solution, maintained by a large community of
developers. Hadoop is a batch-processing tool, typically
used to analyze log files of large-scale systems, collected
over a long period of time. The order of magnitude of
these systems may range from hundreds of gigabytes to
terabytes and, possibly petabytes. Apache Spark [22] is
an alternative large-scale, data processing tool, which
is gaining popularity due to its promise to outperform
Hadoop by 10x [23]. Spark is an in-memory, data pro-
cessing framework, which builds upon fault tolerant ab-
stractions, manipulated using a rich set of operators,
called Resilient Distributed Datasets (RDDs) [24]. In
contrast with batch-processing tools, Apache Storm [25]
primarily targets the processing of unbounded streams
of data. Storm is an example of a CEP [26] system,
where the data flow through a network of transforma-
tion entities. An application topology forms a directed
acyclic graph, where stream sources (spouts) flow data
to sinks (bolts); it implements a single transformation
on the provided stream. In the context of large-scale
orchestration, the power of batch-processing tools can
be leveraged to analyze long-term datasets for trends in
the usage of the city’s infrastructure (e.g., parking lots)
and to identify structural degradation (e.g., buildings,
bridges). Stream processing tools, on the other hand,
are best-suited to deal with high-frequency sensor read-
ings, which typically involve tracking applications (e.g.,

vehicle position, parking place availability). In the fu-
ture, we intend to extend the parallel data-processing
compiler to integrate both Spark and Storm, allowing
developers to choose the right tool for their project.

5 Experimental Evaluation

To assess our approach, we have conducted a series of
tests to examine the overall behavior of the MapRe-
duce programming model for processing large amounts
of sensor data. To do so, we developed a prototype of
the parking management system, with Hadoop as the
target platform, and analyzed the scalability of our ap-
proach using various datasets. In addition, we evaluated
the design of the application and observed how specific
design choices may impact the overall performance of
an orchestrating application.

5.1 Experimental setup

The experimentation focuses on the average parking
occupancy feature of our case study. The AverageOc-
cupancy context processes sensor data synthesized for
a 24-hour period, calculates the average occupancy of
a parking lot, and notifies the parking manager via a
Messenger device.

Machines. The experiment was carried out on a clus-
ter of 12 nodes running within a private Eucalyptus [27]
cloud. Each node in the cloud corresponds to a m2.xlarge
type virtual machine instance with 2 CPUs, 2GB of
RAM and 10GB of disk space. Every instance ran the
DataStax Enterprise 4.6.1 [28] image, which is a big
data platform leveraging tools such as Apache Hadoop
and Apache Spark.

Datasets. We generated synthetic datasets to simulate
a city’s sensor infrastructure for the parking manage-
ment system. Each dataset contains sensor data, indi-
cating parking space occupancy, which is emitted every
10 minutes over 24 hours (i.e., 144 measurements per
sensor). We generated datasets for different sensor in-
frastructures, ranging from 10 000 to 200 000 sensors
per dataset, thus testing the MapReduce program with
datasets including up to 28 800 000 input records. The
values for presence sensors are generated randomly, not
according to any particular distribution. We did not
attempt to simulate a realistic occupation of parking
spaces, since the computation time in our prototype
application is independent from the distributions of oc-
cupation times, and we focus here on evaluating just
the scalability of the generated framework.

Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications 9

Fig. 6: Performance comparison between different cluster se-
tups.

5.2 Experimental results

Scalability. Fig. 6 shows the performance of our park-
ing management program. We compare its execution
time with respect to 3 cluster setups – one, six and
twelve nodes – and an increasing input dataset size.
As can be expected, the execution time of the one-
node setup increases the fastest, compared to the six
and twelve node setups. The six and twelve node se-
tups perform at par for the smallest dataset sizes (from
10 000 to 50 000 sensors) because their computing power
is under-used. As the size of the datasets increases,
the performance of these two setups gradually sepa-
rate, showing better performance for the twelve-node
setup. These preliminary results show that our compiler
generates MapReduce implementations that attain ex-
pected scalability. Furthermore, these results demon-
strate that declarations at the design level can benefit
performance by driving compilation strategies, such as
parallelization in our case study. This is achieved by in-
troducing high-level insights (MapReduce constructs)
in DiaSwarm.

Optimization through design. Beyond significantly
improving the execution time of an orchestrating ap-
plication, Hadoop opens up further optimization op-
portunities at the design level. For instance, in our
case study, the AverageOccupancy context processes a
dataset of presence values to produce the average oc-
cupancy of each parking lot for the last 24 hours. A
closer look at the application design reveals that the
computation provided by the AverageOccupancy con-
text could be achieved by leveraging the computation
of the ParkingAvailability context. The computed
availability of parking spaces could thus be provided
to the AverageOccupancy context at regular intervals,
defined by the data delivery contract (i.e., <10 min>)

1 context AverageOccupancy as ParkingOccupancy[] {
2 when provided ParkingAvailability // replaces line

9, Fig. 2
3 grouped every <24 hr> // replaces line 10, Fig. 2
4 always publish;
5 }

Fig. 7: The ParkingAvailability context factorizing the com-
putation performed by AverageOccupancy.

of the ParkingAvailability context. As a result, the
AverageOccupancy context would use the provided data
to calculate an average over the period of 24 hours.

The suggested design adjustments are depicted in
Fig. 7. As can be noticed, the design of the application
remains straightforward. More importantly, this design
prevents sensor readings from being processed multi-
ple times: the AverageOccupancy context factorizes the
computations performed by the ParkingAvailability
context. This caching strategy reduces the total time
and resources the application requires for data process-
ing. In fact, as shown in Fig. 7, the computation per-
formed by the AverageOccupancy context no longer in-
volves processing of a large dataset on a cluster (hence
the MapReduce clause is omitted).

This major optimization also has a direct impact
on application upkeep costs, since nowadays companies
delegate processing of large datasets to cloud comput-
ing platforms (e.g., Amazon Web Services) with a time-
of-use pricing model.

6 Enabling New Services

The experimental results reported in the previous sec-
tions show that the integration of the MapReduce pro-
gramming model in DiaSwarm and its Hadoop backend
fulfil the promise of handling large amounts of data
coming from massive sensor infrastructures. This sec-
tion demonstrates on a concrete application scenario
how the scalable data processing of our approach en-
ables the development of new services involving person-
alization and community awareness. The example ap-
plication is a community-aware extension of our parking
management application.

The ParkingManager application described in Sec-
tion 2 includes a context called ParkingSuggestion for
displaying parking suggestions on city entrance panels.
These suggestions are generic in that they are visible
to all the drivers entering the city and contain a se-
lection of parking lots having the best availability at
a given moment. However, the added value of parking
suggestions can be considerably enhanced by providing
personalized suggestions to each driver entering the city

10 Milan Kabáč et al.

Fig. 8: The graphical view of the community-aware parking
management application.

based on their intended destination and estimated time
of arrival. This important improvement can be done
by integrating the ParkingManager application with a
community-based navigation system such as Waze5 or
Google Maps6.

These community services can be integrated in Dia-
Swarm applications in the form of a software sensor
device called ParkingCommunityRadar, defined in Fig-
ure 9. This device produces data of type Expectation
when a trip is (re)computed in a community-based GPS
navigation application used by a driver, or when the es-
timated time of arrival for an ongoing trip changes sig-
nificantly. An instance of this software sensor is associ-
ated to each parking lot, as indicated by its parkingLot
attribute. For privacy reasons, the destination reported
to the ParkingCommunityRadar is not the ultimate des-
tination of the driver (e.g., precise GPS coordinates),
but rather the intended parking lot for leaving the car.
The device also features a SuggestParking action which
allows the application to send a personal parking sug-
gestion to a specific car driver. Drivers are identified
based on the user identifier in the navigation applica-
tion, or based on the license plate number, for instance.

Using this software sensor, personalized suggestions
can be sent to drivers by adding the PersonalParking-
Suggestion context to the ParkingManager application,
as shown in Figure 8. The new context is declared in
Figure 9.

The PersonalParkingSuggestion context receives
data from all the ongoing trips and sends personal park-
ing suggestions only when the intended parking lot is
predicted to be full at the estimated time of arrival. In

5 https://www.waze.com
6 https://www.google.com/maps/about/

1 structure Expectation { carID as String;
estArrivalTime as String; }

2 action SuggestParking {
3 suggestParking(carID as String, parkingLot as

ParkingLotEnum);
4 }
5 device ParkingCommunityRadar {
6 attribute parkingLog as String;
7 source carApproaching as Expectation;
8 action SuggestParking;
9 }
10 context PersonalParkingSuggestion as Suggestion[] {
11 when provided carApproaching from

ParkingCommunityRadar
12 grouped by parkingLot every <10 min>
13 with map as Expectation reduce as Demand
14 get ParkingUsagePattern
15 maybe publish;
16 }

Fig. 9: The PersonalParkingSuggestion context.

this case, an alternative nearby parking is suggested for
which better availability is predicted. The availability
predictions reuse the ParkingUsagePattern context de-
scribed in Section 2, which contains a predictive model
based on the parking usage history. We assume that
this model provides predictions at a granularity of 10
minutes, but coarser-grained models could be accom-
modated using interpolation.

The interaction contract of this context specifies
that destinations are collected in an event-driven model,
but processed only every 10 minutes. This allows to
check the future availability of the parking lots (ac-
cording to the predictive model) by cumulating parking
requests for the near future, from ongoing trips. Thus,
the destinations accumulated over the last 10 minutes
are first partitioned, according to the estimated time
of arrival in future intervals of 10 minutes. For each
such interval, the predicted availability of each parking
lot is compared to the number of estimated arrivals; if
the result shows a shortage of available parking spaces,
cars in exces are sent an alternative parking sugges-
tion. The cars to be redirected are the ones with the
latest estimated time of arrival. Indeed, assuming that
the estimated times and the predicted availabilities are
accurate, the redirected cars are precisely those that
will find a saturated parking lot. The other cars are not
notified in any way, saving the attentional resources of
the drivers.

According to the declarations in the context, a Map-
Reduce job is scheduled every 10 minutes to cope with a
large potential number of ongoing trips, while ensuring
timely notifications for possible redirections. The map
phase rounds estimated arrival times to the closest 10-
minute interval. The reduce phase computes the cumu-

Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications 11

lated demand on a parking lot for each time slice. Based
on the MapReduce result, the context compares the de-
mand with the predicted availability for each parking
lot to produce a (possibly empty) list of parking redirec-
tion suggestions. The output of the context is published
to the CommunityRadarController component, which
sends the corresponding notifications to the concerned
drivers via the ParkingCommunityRadar devices of the
overloaded parking lots.

This enhanced version of the parking management
application provides a personalized service to drivers,
preventing parking lots to be overloaded. Detection of
potential parking overload is based on community data
of ongoing trips, provided by drivers accepting to com-
municate their destinations in exchange for more reli-
able guidance to find available parking spaces. However,
this feature requires efficient computation support for
large data, ensured in our approach by MapReduce de-
sign annotations.

7 Extensions

The presentation of our approach and its evaluation
show that we offer a convenient and efficient way to ex-
press large-scale computations over massive sensor in-
frastructures, at the scale of the Internet of Things. Fur-
thermore, this processing power enables more personal-
ized services to be delivered to users, without compro-
mising service responsiveness. This section takes a step
back to address the current limitations of DiaSwarm in
terms of expressiveness. We review the underlying lan-
guage design rationale, and introduce language exten-
sions to lift these limitations. Some of these extensions
are implemented and released in our available proto-
type.7

7.1 Specifying intermediate keys

As shown in Section 3, the MapReduce programming
model is exposed at a high level of abstraction to devel-
opers. Indeed, they only have to declare that a context
such as ParkingAvailability is to be implemented in
the MapReduce model and provide the types of values
produced by the map and reduce phases (as in Fig-
ure 2). Then, the developers specify the map and reduce
computations (as in Figure 3), but are abstracted away
from implementation issues, specific to a MapReduce
backend engine, such as implementing and configuring
Hadoop jobs.

However, this high level of abstraction currently hides
not only implementation details of the backend, but

7 http://phoenix.inria.fr/software/diaswarm

Fig. 10: The general MapReduce programming model.

also some of the power of the MapReduce model it-
self. Specifically, the MapReduce model allows to use
two different sets of keys for indexing data in the map
and reduce phases, as shown in Figure 10. Currently,
the DiaSwarm language allows to specify only a single
key set — an attribute of sensor devices—, to group the
incoming data and its processing, along the map and re-
duce phases. This allows to use natural partitionings of
sensors, according to attributes such as their location.
We have chosen this strategy as it fits the major com-
mon case of large-scale sensing, while imposing minimal
effort on developers. Nevertheless, more complex Map-
Reduce computations could be specified if DiaSwarm
allowed to specify a different key for the intermediate
values, so as to exploit parallelism along another parti-
tioning dimension.

For instance, an application for computing a real-
time histogram of the target temperatures in all the
homes in a city equipped with a HVAC (Heating, Ven-
tilation and Air-Conditioning) system could group the
readings geographically by street blocks for the map
phase, but would use the discrete temperature value
(an integral number of Celsius or Fahrenheit degrees)
as a key in the reduce phase to compute the frequency
of each value.

To cope with this limitation of DiaSwarm we ex-
tended the language syntax to allow specifying the in-
termediate key of the reduce phase. These keys could
be used in the generated programming framework with
very small changes of the Hadoop backend.

7.2 Parallelizing higher-level contexts

DiaSwarm allows designing MapReduce contexts tak-
ing the input from many instances of a sensor device,
such as the ParkingAvailability context in Figure 2
taking its input from a large set of PresenceSensor de-
vice instances. Currently, it is not possible to specify a
map/reduce clause in DiaSwarm for a higher-level con-
text, that is, one which takes input from another con-
text, rather than from a sensor device. Indeed, declaring
a MapReduce context requires grouping incoming data
by a sensor device attribute, which does not exist when
data originates from a lower-level context. This choice

http://phoenix.inria.fr/software/diaswarm

12 Milan Kabáč et al.

has been taken during the design of the DiaSwarm lan-
guage for two reasons:

– contexts directly connected to a device produce re-
fined information that is usually much more concise
than the large raw dataset captured by sensors (this
semantics is also implied by the “reduce” phase of a
MapReduce context) — as a consequence, higher-
level context tend to operate on smaller datasets;

– the number of actuators in an application is typ-
ically much smaller than the number of sensors,
eliminating another potential need for computing
large datasets in higher-level contexts (such a large
dataset would be necessary if a massive amount of
actuator instances would have to be actuated differ-
ently by the application).

However, in some complex applications, the first as-
sumption may be violated, as some lower-level contexts
may also produce large datasets – perhaps not com-
puted by a MapReduce, but rather accumulating some
form of big data that cannot be summarized without
loosing its predictive value. Furthermore, the second as-
sumption may not be fulfilled in applications involving
a large number of actuators – this is indeed a natural
trend in personalized applications. When either situa-
tion arises, it could make it worth to also parallelize
some of the higher-level contexts in an application.

For instance, if the parking suggestions of the Park-
ingManager application in Figure 1 would have to be
shown, not only at city entrances, but also on many
public displays all over the city, these suggestions would
have to be localized with respect to nearby parking lots
and to their predicted usage patterns. In this situation,
it would be a stringent requirement to parallelize the
ParkingSuggestion context along parking lots or pub-
lic displays, for example.

This current limitation could be removed by allow-
ing to group the output of array-valued contexts using
for instance a field of the indexed data structure (in our
case, the parking lot field in the array entries produced
by the ParkingAvailability context). Also, allowing to
specify a map/reduce clause on a controller component
could also open up many possibilities. This latter fea-
ture would require to allow grouping actuator devices
along one of their attributes, similar to how sensors are
currently handled in DiaSwarm.

7.3 Grouping by a computed attribute

The fact that sensor readings can only be grouped by
a sensor device attribute also implies other limitations

1 device CoSensor {
2 attribute parkingLot as ParkingLotEnum;
3 source pollution as Float;
4 }
5 context AverageCarPolution as Float[] {
6 when periodic presence from PresenceSensor <10 min>
7 grouped by parkingLot every <24 hr>
8 with map as Presence reduce as Integer
9 get pollution from CoSensor

10 always publish;
11 }

Fig. 11: Current syntax of DiaSwarm for grouping multi-
sensor measurements.

in the practical applicability of current DiaSwarm lan-
guage. More precisely, grouping values by a device at-
tribute works well when this attribute is of a large enu-
merated type, which is the case in many smart city
applications, such as the list of parking lots in a city,
or offices in a building, etc. However, other cases may
not fit with this model. For instance, a particular com-
ponent of a device attribute (such as the city code in
the licence plate number of a car) could be more suited
to cluster computations on sensor readings. Also, when
mobile sensor are used, with their current location ex-
pressed as GPS coordinates, it makes more sense to
cluster the readings with respect to regions delimited
as GPS intervals, instead of precise GPS positions.

This limitation could be removed by allowing in a
grouped-by construct, not only a device attribute name,
but also a general expression involving a device at-
tribute, such as grouped by department(plateNo) or
grouped by region(gpsLocation).

7.4 Grouping heterogeneous sensor readings

In DiaSwarm, the MapReduce computation declared by
a context can only process uniform sensor data, that is,
originating from all the different instances of a sensor
device. The context may of course get values from other
“secondary” sensor devices, but these values are only
taken into account after the map and reduce phases,
for computing the final value produced by the context.
For instance, Figure 11 shows a context computing the
average pollution produced by a car in a parking lot,
dividing the pollution sensed with a CO sensor at the
end of the day by the average number of cars present
during that day (see line 9). The pollution value in this
case is not available to the MapReduce computation,
but will only be passed as an extra argument to the
onPeriodicPresence method in Figure 3.

Some applications could benefit from performing par-
allel computations on heterogeneous sensor data. For

Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications 13

instance, a more accurate way to compute the aver-
age pollution in a parking lot would be to average all
the instant pollution values. This would require sensing
the CO level at the same time as when occupancy is
computed (i.e., every 10 minutes), accumulating these
simultaneous values over the computation period (24
hours), compute all the instant pollution values in the
map phase, and compute their average in the reduce
phase.

Removing this limitation would involve extending
the syntax of DiaSwarm to allow specifying the “get”
clause before the “grouped by” clause, thus expressing
that these sensor values should be grouped together.
It would also require that the generated programming
framework samples the value of each secondary sensor
each time a primary sensor is sampled, so as to ac-
cumulate complete snapshots of heterogeneous sensor
readings.

7.5 Optional map and reduce clauses

When a context is declared as being computed with a
MapReduce operator, the developer always has to spec-
ify a map and a reduce user-defined methods. However,
in many common cases, either the map or the reduce
are the identity function. This is not really a limitation
of the current DiaSwarm language, because it does not
forbid to implement such applications. Rather, some
unneeded effort can be avoided by making both the
map and reduce clauses optional, with the effect of au-
tomatically generating identity transformation. To do
so, we extended DiaSwarm to allow either phase to be
omitted in the declaration.

8 Discussion

This section discusses the applicability of our approach
to other scenarios, and some of its current limitations.

8.1 Applicability

The ParkingManager application used as our case study
allowed us to illustrate the approach and its use on
a concrete scenario. We deliberately chose an example
involving straightforward computations for clarity rea-
sons, enabling to show (1) concise and easy to under-
stand snippets of the generated framework (Fig. 4) and
(2) placeholders to be filled by developers (Fig. 3). Of
course, computing parking availability by summing up
unused spaces is not a compelling application for par-
allel processing. The extension to a personalized ser-
vice discussed in Section 6 gave a more accurate view

of realistic data-intensive applications. Real personal-
ized services related to parkings which have been pro-
posed include dynamic pricing schemes, where prices
are continuously computed and updated with respect
to sensing data streamed from the infrastructure, in
order to optimize parking usage [29]. The same kind
of dynamic pricing has been used for other scarce re-
sources in smart cities such as shared mobility systems
(pools of shared electric vehicles or bikes) in order to
optimize their geographical redistribution [30]. These
are concrete examples of real-time computations based
on massive sensor deployments that could benefit from
our domain-specific parallelization approach.

More data-intensive smart city services needing par-
allel computing will gradually appear following massive
deployments of sensors and actuators, for such domains
as traffic, weather, or energy consumption monitoring.

8.2 Limitations

One limitation of our approach is that it does not ad-
dress the physical placement of computations on net-
work nodes. In our current implementation, all com-
putations are performed in the cloud, after data are
gathered from all the sensors necessary to a given con-
text (as specified in a “when provided/periodic” clause).
The possibilities available in many sensor networks for
in-network processing or distributed computing are not
currently exploited. In principle, the graph of applica-
tion components might be used to automatically push
in the network some contexts that are “close” to sen-
sors. Another approach would consist of extending Di-
aSwarm to allow explicit hints to be formulated in a
declarative way. Optimizations of the underlying sen-
sor network, such as optimized routing, could be trig-
gered at different phases, e.g., at deployment time or
during runtime. We have proposed a vision including
such ideas elsewhere [31], but they are not currently
implemented in our prototype.

9 Related Work

In this section, we examine existing approaches that
address the development of applications orchestrating
sensors. We consider approaches from domains where
orchestration of sensors is a common concern. Further-
more, we highlight the differences between our approach
and large-scale data processing support.

Internet of Things (IoT). Patel et al. propose a
multi-stage, model-driven approach, dedicated to the
development of IoT applications [32]. This approach
provides support at different stages of the development

14 Milan Kabáč et al.

process. At design time, the approach offers a set of cus-
tomizable modeling languages for the specification of
an application. The approach is complemented by code
generation and task-mapping techniques for the deploy-
ment of node-level code onto devices. Even though this
approach is aimed to facilitate the development process
through guidance, Patel et al. do not provide details re-
garding the size of sensed data that are gathered and
processed. They do not discuss what support is gen-
erated to facilitate the programming process. This ap-
proach does not address how masses of sensors are han-
dled, nor does it present performance measurements to
assess how it scales up for large datasets.

Pervasive computing. The domain of pervasive com-
puting offers a number of approaches targeting the de-
velopment of orchestrating applications. PervML [33]
is a model-driven development approach that provides
a conceptual framework for context-aware applications.
The various aspects of a pervasive computing applica-
tion are modeled by different types of UML diagrams.
Dey et al. propose the Context Toolkit [34] that pro-
vides the programmer with building blocks to mediate
between the contextual aspects of the environment and
the application. Olympus goes beyond middleware in
providing a programming framework dedicated to the
development of pervasive computing systems [35]. Be-
cause it is based on a domain-specific framework, Olym-
pus raises the level of abstraction and facilitates the
development of applications. DiaSuite takes these ap-
proaches further by introducing a design language dedi-
cated to the Sense/Compute/Control paradigm [36,37].
A design is used to generate a dedicated programming
framework that guides, restricts, and supports the im-
plementation phase.

All the above-mentioned approaches have been de-
signed for the orchestration of objects in the small (i.e.,
offices, buildings, etc.). They do not address challenges
arising with large-scale infrastructures and do not pro-
vide strategies to tackle data-intensive processing.

Wireless sensor networks (WSN). Gupta et al.
propose sMapReduce [38], a programming pattern in-
spired by the MapReduce programming model for map-
ping application behavior onto a sensor network and
enabling complex data aggregation. sMapReduce di-
vides the network-level user program into sMap and
Reduce functions; this strategy respectively associates a
behavior to sensor nodes and executes data aggregation
over the network. Compared to our approach, sMapRe-
duce remains lower-level since it provides network-level
programming abstractions and introduces the network
topology in computations.

Often, programming applications for WSNs is done
at a low level, requiring the developer to have exten-
sive knowledge about the underlying layers (network,
hardware, OS). Mottola and Picco [39] surveyed a num-
ber of programming approaches for WSNs aimed to fa-
cilitate the programming of layers underlying applica-
tions; these approaches target sensor nodes, communi-
cation operations, routing strategies, etc. These works
are complementary to ours in that they provide high-
level abstractions that can be used by our compiler to
target frameworks for WSNs. However, they do not pro-
vide support dedicated to dealing with large datasets
produced from massive-scale sensor infrastructures.

Large-scale data processing. Apache Pig [9] and
Apache Hive [10] are widely used as high-level platforms
for analyzing large-scale datasets. These platforms pro-
vide SQL-like declarative query languages (i.e., PigLatin
& HiveQL) to express data analysis programs. These
tools are well-suited for offline data analysis, but re-
quire some effort for running scripts from application
code (e.g., setting up a connection with a JDBC server).
Sawzall [40] used by Google is a high-level scripting
language for automating analyses on large data sets
on top of the MapReduce execution model. Sawzall
is not publicly available but is reported to improve
the programming significantly, compared to C++ pro-
gramming of MapReduce. High-level language libraries,
such as FlumeJava [11], provide high-level abstractions
dedicated to parallel processing; they provide support
for user-defined functions, compared to SQL-like ap-
proaches.

Compared to the above-mentioned supports, our ap-
proach integrates, at the design level, two domain-specific
fundamental dimensions: large-scale orchestration of sen-
sors and large-scale data processing. The integrated na-
ture of our approach allows developers to easily combine
results from various computations. The design-driven
nature of our approach is supported by high-level dec-
larations, exposing such domain-specific information as
service discovery and data delivery. Declarations are an-
alyzed to determine data and control flow information,
which in turn, is used to generate efficient, parallel-data
processing frameworks.

10 Conclusion

We have proposed a design-driven approach to develop-
ing orchestrating applications for masses of sensors that
integrates parallel processing of large amounts of sensed
data. Our new approach provides the developer with de-
sign declarations expressing when and where data pro-
cessing occurs. A compiler takes an application design

Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications 15

as input and produces a programming framework based
on the MapReduce programming model. The generated
framework supports and guides the programming of the
orchestration logic, while abstracting over the parallel
processing of sensed data.

We have demonstrated that our approach creates
synergy between design and programming, allowing seam-
less introduction of high-performance computing strate-
gies, as illustrated by the MapReduce programming
model. We illustrated our approach with a case study
of a parking management system. This case study was
used to conduct an experiment on Apache Hadoop,
demonstrating how our design-driven approach can be
leveraged to parallelize the processing of large datasets
and obtain significant speedups.

In the future, we intend to support the processing
of unbounded streams of data, typical of sensors. Our
declarative approach will allow us to design orchestrat-
ing applications that mix the processing of both large
datasets and unbounded data streams, allowing us to
abstract away these aspects.

References

1. S. Garcia-Ayllon and J. L. Miralles, “New strate-
gies to improve governance in territorial management:
Evolving from smart cities to smart territories,”
Procedia Engineering, vol. 118, pp. 3 – 11, 2015. [On-
line]. Available: http://www.sciencedirect.com/science/article

/pii/S1877705815020512

2. Y. Mizuno and N. Odake, “Current Status of Smart Sys-
tems and Case Studies of Privacy Protection Platform
for Smart City in Japan,” in 2015 Portland International
Conference on Management of Engineering and Technol-
ogy (PICMET), Aug 2015, pp. 612–624.

3. M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and
R. Morris, “Smarter Cities and Their Innovation Chal-
lenges,” Computer, vol. 44, no. 6, pp. 32–39, June 2011.

4. Libelium, “Smart City project in Santander to moni-
tor Parking Free Slots,” March 2016. [Online]. Available:
http://www.libelium.com/smart_santander_parking_smart_city.

5. Worldsensing SL, “Worldsensing and SIGFOX announce
the world’s largest Intelligent Parking deployment with
Micronet, the SIGFOX Network Operator for Russia,”
March 2016. [Online]. Available: http://www.worldsensing.com
/news-press/press-release-worldsensing-and-sigfox-announce-the-

worlds-largest-intelligent-parking-deployment-with-micronet-

the-sigfox-network-operator-for-russia.html.
6. K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon,

“Parallel Data Processing with MapReduce: A Survey,”
SIGMOD Rec., vol. 40, no. 4, pp. 11–20, December 2012.

7. C. Patsakis, R. Venanzi, P. Bellavista, A. Solanas, and
M. Bouroche, “Personalized medical services using smart
cities’ infrastructures,” in Proceeding of the 2014 IEEE
International Symposium on Medical Measurements and
Applications (MeMeA). IEEE, 2014, pp. 665–669.

8. R. Seeliger, C. Krauss, A. Wilson, M. Zwicklbauer, and
S. Arbanowski, “Towards personalized smart city guide
services in future internet environments,” in Proceedings
of the 24th International Conference on World Wide
Web, ser. WWW ’15 Companion. New York, NY,

USA: ACM, 2015, pp. 563–568. [Online]. Available:
http://doi.acm.org/10.1145/2740908.2743905

9. The Apache Software Foundation, “Apache Pig,” March
2016. [Online]. Available: https://pig.apache.org.

10. The Apache Software Foundation , “Apache Hive,” March
2016. [Online]. Available: https://hive.apache.org.

11. C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum, “FlumeJava:
Easy, Efficient Data-Parallel Pipelines,” in Proceedings
of the 31st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’10).
ACM, 2010, pp. 363–375.

12. M. Kabáč and C. Consel, “Orchestrating Masses of Sen-
sors: A Design-Driven Development Approach,” in Pro-
ceedings of the 2015 ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Ex-
periences (GPCE 2015). ACM, 2015, pp. 117–120.

13. M. Kabáč and C. Consel, “Designing Parallel Data
Processing for Large-Scale Sensor Orchestration,” in
13th IEEE International Conference on Ubiquitous
Intelligence and Computing (UIC 2016), Toulouse,
France, Jul. 2016, best Paper Award. [Online]. Available:
https://hal.inria.fr/hal-01319730

14. R. Lämmel, “Google’s MapReduce programming model -
Revisited,” Science of Computer Programming, vol. 70,
no. 1, pp. 1–30, Oct. 2008.

15. J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, Jan. 2008.

16. R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Soft-
ware Architecture: Foundations, Theory, and Practice.
Wiley Publishing, 2009.

17. M. Fayad and D. C. Schmidt, “Object-Oriented Applica-
tion Frameworks,” Commun. ACM, vol. 40, no. 10, pp.
32–38, Oct. 1997.

18. S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman,
“A Taxonomy of Wireless Micro-Sensor Network Mod-
els,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 6,
no. 2, pp. 28–36, Apr. 2002.

19. The Apache Software Foundation, “Hadoop Wiki
PoweredBy,” March 2016. [Online]. Available:
http://wiki.apache.org/hadoop/PoweredBy.

20. T. White, Hadoop: The Definitive Guide. O’Reilly Me-
dia, Inc., 2012.

21. The Apache Software Foundation, “Projects Directory,”
March 2016. [Online]. Available: https://projects.apache.org
/projects.html?category#big-data.

22. The Apache Software Foundation , “Apache Spark,”
March 2016. [Online]. Available: http://spark.apache.org.

23. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster Computing with Work-
ing Sets,” in Proceedings of the 2nd USENIX Confer-
ence on Hot Topics in Cloud Computing (HotCloud’10).
USENIX Association, 2010, pp. 10–10.

24. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing,” in Proceed-
ings of the 9th USENIX Conference on Networked Sys-
tems Design and Implementation (NSDI’12). USENIX
Association, 2012, pp. 2–2.

25. The Apache Software Foundation, “Apache Storm,”
March 2016. [Online]. Available: http://storm.apache.org.

26. G. Cugola and A. Margara, “Processing Flows of Informa-
tion: From Data Stream to Complex Event Processing,”
ACM Comput. Surv., vol. 44, no. 3, pp. 15:1–15:62, Jun.
2012.

http://www.sciencedirect.com/science/article/pii/S1877705815020512
http://www.sciencedirect.com/science/article/pii/S1877705815020512
http://www.libelium.com/smart_santander_parking_smart_city
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://www.worldsensing.com/news-press/press-release-worldsensing-and-sigfox-announce-the-worlds-largest-intelligent-parking-deployment-with-micronet-the-sigfox-network-operator-for-russia.html
http://doi.acm.org/10.1145/2740908.2743905
https://pig.apache.org
https://hive.apache.org
https://hal.inria.fr/hal-01319730
http://wiki.apache.org/hadoop/PoweredBy
https://projects.apache.org/projects.html?category#big-data
https://projects.apache.org/projects.html?category#big-data
http://spark.apache.org
http://storm.apache.org

16 Milan Kabáč et al.

27. Hewlett-Packard, “HP Helion Eucalyptus,” March 2016.
[Online]. Available: http://www.eucalyptus.com.

28. DataStax, “DataStax Enterprise,” March 2016. [Online].
Available: http://www.datastax.com.

29. D. Mackowski, Y. Bai, and Y. Ouyang, “Parking Space
Management via Dynamic Performance-Based Pricing,”
Transportation Research Procedia, vol. 7, pp. 170–191,
2015.

30. J. Pfrommera, J. Warrington, G. Schildbach, and
M. Morari, “Dynamic Vehicle Redistribution and On-
line Price Incentives in Shared Mobility Systems,”
IEEE TRANSACTIONS ON INTELLIGENT TRANS-
PORTATION SYSTEMS, vol. 15, no. 4, AUGUST 2014.

31. M. Kabáč, C. Consel, and N. Volanschi, “Leveraging
Declarations over the Lifecycle of Large-Scale Sensor
Applications,” in 13th IEEE International Confer-
ence on Ubiquitous Intelligence and Computing (UIC
2016), Toulouse, France, Jul. 2016. [Online]. Available:
https://hal.inria.fr/hal-01319731

32. P. Patel, A. Pathak, D. Cassou, and V. Issarny, “Enabling
High-Level Application Development in the Internet of
Things,” in S-CUBE’13: 4th International Conference on
Sensor Systems and Software, Jun. 2013.

33. E. Serral, P. Valderas, and V. Pelechano, “Towards the
Model Driven Development of Context-aware Pervasive
Systems,” Pervasive Mob. Comput., vol. 6, no. 2, pp. 254–
280, Apr. 2010.

34. A. K. Dey, G. D. Abowd, and D. Salber, “A Concep-
tual Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications,” Hum.-
Comput. Interact., vol. 16, no. 2, pp. 97–166, Dec. 2001.

35. A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Camp-
bell, and M. D. Mickunas, “Olympus: A High-Level
Programming Model for Pervasive Computing Environ-
ments,” in Proceedings of the Third IEEE International
Conference on Pervasive Computing and Communica-
tions (PERCOM ’05). IEEE Computer Society, March
2005, pp. 7–16.

36. D. Cassou, E. Balland, C. Consel, and J. Lawall, “Lever-
aging Software Architectures to Guide and Verify the
Development of Sense/Compute/Control Applications,”
in Proceedings of the 33rd International Conference on
Software Engineering (ICSE ’11). ACM, 2011, pp. 431–
440.

37. B. Bertran, J. Bruneau, D. Cassou, N. Loriant, E. Bal-
land, and C. Consel, “DiaSuite: a Tool Suite To Develop
Sense/Compute/Control Applications,” Science of Com-
puter Programming, vol. 79, pp. 39–51, Jan. 2014.

38. V. Gupta, E. Tovar, L. M. Pinho, J. Kim, K. Laksh-
manan, and R. Rajkumar, “sMapReduce: A Program-
ming Pattern for Wireless Sensor Networks,” in Proceed-
ings of the 2nd Workshop on Software Engineering for
Sensor Network Applications (SESENA ’11). ACM,
2011, pp. 37–42.

39. L. Mottola and G. P. Picco, “Programming Wireless Sen-
sor Networks: Fundamental Concepts and State of the
Art,” ACM Comput. Surv., vol. 43, no. 3, pp. 19:1–19:51,
2011.

40. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “In-
terpreting the Data: Parallel Analysis with Sawzall,” Sci.
Program., vol. 13, no. 4, pp. 277–298, Oct. 2005.

http://www.eucalyptus.com
http://www.datastax.com
https://hal.inria.fr/hal-01319731

Designing Parallel Data Processing for Enabling Large-Scale Sensor Applications 17

A DiaSwarm grammar

DomainModel =
(IncludeSpec
| ActionDef
| AbstractElement)*;

AbstractElement =
StructDef
| EnumDef
| DeviceDef
| ContextDef
| ControllerDef;

IncludeSpec = 'include' STRING;

StructDef = 'structure' ID '{' (StructFieldDef ';')+
'}';

StructFieldDef = ID as DataTypeRef;

EnumDef = 'enumeration' ID '{' ID (',' ID)* '}';

VariableDef = ID as DataTypeRef;

DataTypeRef =
(StructDef
| EnumDef
| PrimitiveTypeRef) (ListTag)?;

ListTag = '[]';

PrimitiveTypeRef =
'Integer'

| 'Boolean'
| 'String'
| 'Float'
| 'Binary';

DeviceDef = 'device' ID ('extends' DeviceDef)?
'{' (AttributeDef | SourceDef | ActionImpl)* '}';

AttributeDef = 'attribute' ID 'as' DataTypeRef ';' ;

SourceDef = 'source' ID 'as' DataTypeRef
('indexed' 'by' VariableDef (',' VariableDef)*)? ';'

;

ActionImpl = 'action' ActionDef ';' ;

ActionDef = 'action' ID '{' (OrderDef)+ '}';

OrderDef = ID '('(VariableDef(',' VariableDef)*)?')'
';' ;

ContextDef = 'context' ID 'as' DataTypeRef
('indexed' 'by' VariableDef (',' VariableDef)*)?

'{' (InteractionContractDef)* '}';

InteractionContractDef =
'when'
('required' (PullInteractionContract)?

| ('provided' PushInteractionContract
BehaviorPublication)

| ('periodic' PushInteractionContract
BehaviorPublication)) ';';

PullInteractionContract = ('get'
(SourceRef | ContextDef))?
(',' (SourceRef | ContextDef))*;

PushInteractionContract = DataRequirement
(PullInteractionContract)?;

DataRequirement = DataSource
('grouped' 'by' AttributeDef
('every' Periodicity)?)?
('with'
(('map' 'as' (DataTypeRef | '<'DataTypeRef ','

DataTypeRef '>'))?
&
('reduce' 'as' DataTypeRef)?))?;

DataSource = SourceRef | ContextDef (Periodicity)?;

SourceRef = SourceDef 'from' DeviceDef;

Periodicity = '<' INT TimeUnit '>';

BehaviorPublication = 'always' 'publish'
| 'no' 'publish'
| 'maybe' 'publish';

TimeUnit = 'hr' | 'min' | 's';

ControllerDef = 'controller' ID
'{' (ControllerBehaviorDef)* '}' ;

ControllerBehaviorDef = 'when' 'provided' ContextDef
('get' ContextDef (',' ContextDef)*)?
'do' ActionRef (',' ActionRef)* ';' ;

ActionRef = ActionDef 'on' DeviceDef;

ID = '^'?('a'..'z'|'A'..'Z'|'_')
('a'..'z'|'A'..'Z'|'_'|'0'..'9')*;

INT = ('0'..'9')+;

STRING =
'"' ('\\' . /* 'b'|'t'|'n'|'f'|'r'|'u

'|'"'|"'"|'\\' */
| !('\\'|'"'))* '"' |

"'" ('\\' . /* 'b'|'t'|'n'|'f'|'r'|'u
'|'"'|"'"|'\\' */

| !('\\'|"'"))* "'";

	Introduction
	Background & Case Study
	Exposing Parallelism
	Generating a Programming Framework
	Experimental Evaluation
	Enabling New Services
	Extensions
	Discussion
	Related Work
	Conclusion
	DiaSwarm grammar

