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Abstract Over the past few years the semantics com-

munity has developed several ontologies to describe con-

cepts and relationships for Internet of Things (IoT) ap-

plications. A key problem is that most of the IoT related

semantic descriptions are not as widely adopted as ex-

pected. One of the main concerns of users and develop-

ers is that semantic techniques increase the complexity

and processing time and therefore they are unsuitable

for dynamic and responsive environments such as the

IoT. To address this concern, we propose IoT-Lite, an

instantiation of the semantic sensor network (SSN) on-

tology to describe key IoT concepts allowing interoper-

ability and discovery of sensory data in heterogeneous

IoT platforms by a lightweight semantics. We propose

10 rules for good and scalable semantic model design

and follow them to create IoT-Lite. We also demon-
strate the scalability of IoT-Lite by providing some

experimental analysis, and assess IoT-Lite against an-

other solution in terms of round trip time (RTT) per-

formance for query-response times. We have linked IoT-

Lite with Stream Annotation Ontology (SAO), to allow

queries over stream data annotations and we have also

added dynamic semantics in the form of MathML anno-

tations to IoT-Lite. Dynamic semantics allows the an-

notation of spatio-temporal values, reducing storage re-

quirements and therefore the response time for queries.

Dynamic semantics stores mathematical formulas to re-

cover estimated values when actual values are missing.
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1 Introduction

With the growing development of machine-to-machine

(M2M) communications and IoT deployments, interop-

erability between different platforms has become a key

issue in creating large scale IoT frameworks. Seman-

tic technologies suggest a suitable approach for inter-

operability by sharing common vocabularies, and also

enabling interoperable representation of inferred data.

IoT testbed providers have recently started to add se-

mantics to their frameworks allowing the creation of

the Semantic Sensor Web (SSW), which is an exten-

sion of the current Web in which information is given

well-defined meaning, enabling M2M communications

and interactions between objects, devices and people

[26].

Semantics often model domain concepts in great

detail. Although they can be applied for querying al-

most anything about objects, these complex models

are often difficult to implement and use, especially by

non-experts. They demand considerable processing re-

sources and therefore they are considered unsuitable for

constrained environments. Instead, IoT models should

be designed for the constraints and dynamicity of IoT

environments, especially recognizing the new trend to-

wards integrating semantic processing on constrained

devices such as M2M gateways or smartphones. At the

same time, they need to model the relationships and

concepts that represent and allow interoperability be-

tween IoT entities. Therefore, expressiveness versus com-

plexity is a challenge. One of the key issues in hetero-

geneous IoT ecosystems is accessing sensor data from
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different systems. Enabling a lightweight description of

sensors to efficiently manage annotation and discovery

of sensor data is essential.

It is important to note that semantic models are not

end-products. They are normally only part of a solution

and should be transparent to the end user. Semantic an-

notation models should be offered with effective meth-

ods, APIs and tools to process the semantics in order

to extract actionable information from raw data. Query

methods, machine learning, reasoning and data analy-

sis techniques should be able to effectively use these

semantics. Semantic modelling is only the initial part

of the whole design, and it has to take into account how

the models will be used; how the annotated data will

be indexed and queried with real-time data; and how

to make the data publication suitable for constrained

environments and large scale deployments when appli-

cations often require low latency and processing time.

We propose IoT-Lite, a lightweight semantic model

which is an instantiation of the Semantic Sensor Net-

work (SSN) ontology [8](see Figure 1). IoT-Lite is the

outcome of a research effort that focuses on loosely-

coupled discovery of real-time sensor data and seeks for

the minimum concepts and relationships that can pro-

vide answers to most of the end user queries. We have

focused on the typical queries for accessing the data

in the IoT based on our experience in the challenge

of analysing data for obtaining meaningful information

for end-users. We find that we do not need full descrip-

tions and complex relationships to satisfy user queries.

Some of the most commonly used semantic models on

the Web are simple models, such as Friend of a Friend,

(FOAF)1. Their simplicity encourages faster adoption

by end users, as they do not imply complex annotations

and they do not require complex processing methods.

Simpler models can also support providing faster re-

sponses to queries.

In this paper, we also propose guidelines for devel-

oping scalable and reusable semantic models in the IoT.

These guidelines leverage conventions followed by some

semantic modelling designers, such as the linked data

approach.

IoT-Lite does not intend to be a full ontology for

the IoT. Our aim is to create a core lightweight on-

tology that allows relatively fast annotation and pro-

cessing time. IoT-Lite can be a core part of a semantic

model in which, depending on the applications, different

semantic modules can be added to provide additional

domain and application specific concepts and relation-

ships. In this sense we have linked IoT-Lite to Stream

Annotation Ontology (SAO) [16], in order to allow the

annotation of aggregated data streams, which follows

1 http://www.foaf-project.org/

the philosophy of IoT-Lite in the sense of lightweight

ontology and fast response time to queries.

Finally we propose the use of dynamic semantics,

and demonstrate a use-case in the form of MathML an-

notations that can be used together with IoT-Lite. Dy-

namic semantics can be used to represent formulas that

extrapolate missing values. By following the IoT-Lite

approach, dynamic semantics reduces the size of the

triple store and offers fast response times to queries. Un-

like other solutions such as the use of RESTful servers

to extrapolate missing values IoT-Lite stores all the in-

formation about the stream data together in one place,

the triple-store.

The remainder of the paper is organised as follows.

Section 2 describes the related work. Section 3 intro-

duces the 10 rules for good and scalable semantic model

design and presents the proposed model, IoT-Lite, for

representation of IoT elements. Section 4 provides a use

case scenario that illustrates the semantic annotation of

a sensor in our model. Section 5 details an evaluation of

the proposed model against a more detailed model. Sec-

tion 6 shows an example of the use of IoT-Lite together

with SAO. Section 7 introduces dynamic semantics and

an example with IoT-Lite. Finally, Section 8 concludes

the paper and describes the future work.

2 Related Work

There are several semantic descriptions designed for the

IoT domain. The SSN ontology [8] is one of the most

significant and widespread models to describe sensors

and IoT related concepts.

The SSN Ontology provides concepts describing sen-

sors, such as outputs, observation value, feature ob-

served, observation time, accuracy, precision, deploy-

ment configuration, method of sensing, system struc-

ture, sensing platforms and feature of interest. How-

ever it is a detailed description, containing concepts and

properties that enable flexible descriptions over a very

wide range of applications, but including non-essential

components for many use cases that can make the on-

tology heavy to query and process if it is used as it

is.

The IoT-A model2 and IoT.est [30] are some of the

many projects that extend the SSN ontology to rep-

resent other IoT related concepts such as services and

objects in addition to sensor devices. IoT-A provides an

architectural base for further IoT projects (see Figure

2). The only implementation of a purely IoT-A seman-

tic model known by the authors is described in [11].

2 www.iot-a.eu/
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Fig. 1: An overview of the proposed semantic model, IoT-Lite.

The IoT-A model is overly complex for fast user adap-

tation and responsive environments. The IoT.est model

extends the IoT-A model with extended service and test

concepts.

The Open Geospatial Consortium (OGC), through

its Sensor Web Enablement (SWE) group [7] has de-

veloped a set of standards to describe sensors and their

data. For example, SensorML3, which is an XML lan-

guage to describe the sensing process, and Observations

and Measurements (O&M), which is a UML model (with

an XML form) and from which the observation con-

cept in SSN was derived. While SensorML provides im-

portant syntactic descriptions using XML, it lacks the

expressibility provided by ontology languages such as

OWL. SemSOS [13] has mapped the XML tags of O&M

into OWL concepts. However it represents only obser-

vations and not other IoT related concepts. OMLite is

a new ontology that also re-states O&M as an ontology,

but likewise misses IoT concepts [9].

One of the ongoing works is OneM2M. OneM2M

has published a report for home automation, and de-

scribes concepts and relationships [23]. Another cur-

rent initiative is the Spatial Data on the Web Working

Group4, a joint effort between the World Wide Web

Consortium (W3C) and the Open Geospatial Consor-

tium (OGC) that aims to standardise key ontologies

for spatial, temporal and sensor data on the web [28].

Several projects also work on semantic descriptions for

3 http://www.opengeospatial.org/standards/sensorml
4 http://www.w3.org/2015/spatial/

the IoT, such as FED4FIRE5 that currently has a se-

mantic model focused on communications, VITAL6 for

smart cities, CityPulse7 with more focus on data [18]

and OpenIoT8, which is an extension of SSN.

Performance of ontologies for large data sets have

been addressed by different methods, such as by re-

designing the data storage model and leveraging ex-

pected query patterns [27]. Our proposed IoT-Lite on-

tology extends previous works and can be used in com-

bination with other techniques for querying performance

improvements, such as the dynamic semantics we pro-

pose in Section 7.

To summarise, existing published IoT ontologies are

either complex or domain-specific for sub-domains of

IoT. The creation of a lightweight ontology that allows

interoperability and discovery of sensory data in hetero-

geneous platforms with low complexity and processing

time is still an open issue.

The majority of current semantic annotation tech-

niques and semantic description frameworks are static

and are based on the assumption that the stored data

will not change over time. Researchers search for so-

lutions for dynamic data outside the semantic anno-

tations, such as by using RESTful servers [24] that

access real-time data or infer missing values (e.g.[15],

[20]). However, these solutions need to access several

servers and are not suitable for low connectivity net-

5 http://www.fed4fire.eu/
6 http://vital-iot.eu/
7 http://www.ict-citypulse.eu/
8 http://www.openiot.eu/
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Fig. 2: An overview of the IoT-A ontology.

works or high frequency queries. To the best of our

knowledge, none of the solutions includes the dynam-

icity inside the semantic descriptions. Other attempts

to handle dynamic data in semantics are based on rea-

soning. For example, Baader et al., have introduced the

temporized description logic, which provides semantic

reasoning with a temporal component [1]. Lopez et al.

[19] have implemented static mathematical formulas, as

rules, inside the semantic descriptions but these are not

dynamic as our solution. These formulas are static, they

do not have spatio-temporal components, and their exe-

cution is done with a low frequency. They are also more

restricted than ours, as they do not have the flexibility

of MathML in handling any mathematical description.

Furthermore, most of the current reasoning engines are

not efficient in dealing with high volumes of queries

with real time requirements (see for example [5], [3]).

Our dynamic semantics solution differs from the

previous works in dynamic semantic annotation, be-

cause the dynamicity is annotated inside the semantic

descriptions as a MathML formula. This formula can

be executed outside the semantic description, avoiding

the processing time of semantic reasoners, but at the

same time avoiding the need to access the data or the

abstraction of the data in different servers.

3 IoT-Lite: IoT Modelling and Semantic

Annotation

While most of the semantic models tend to describe the

concepts in great detail and represent various links in

IoT systems, we represent only the most used concepts

for data analytics in IoT applications, such as sensory

data, location and type. See Figure 1 for the model and

Figure 3 for an example of an annotated sensor. This

paves the way for creating scalable responsive systems

and reduces memory and computational cost of query

processing in large scale IoT applications.

In 2003 W3C published a list of sample “Good On-

tologies” following specific good practices9. The good-

ness of the ontologies was scored based on five aspects:

fully documented; dereferenceable; used by independent

data providers; possibly supported by existing tools;

and in use by two independent datasets.

IoT-Lite addresses these aspects to create a reusable

model. We have published the ontology with a web page

that fully documents the ontology (aspect 1) with a

permanent link10, and all the concepts in the ontology

9 http://www.w3.org/wiki/Good Ontologies
10 purl.oclc.org/NET/UNIS/fiware/iot-lite
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Fig. 3: An example of a sensor annotated with the proposed IoT-Lite ontology.

are described by a dereferenceable URI (aspect 2) [4].

The annotations are applied to IoT testbeds, Univer-

sity of Surrey SmartCampus [21] and SmartSantander

[25]. They are planned to be used by other indepen-

dent platforms in the open calls of the H2020 project

FIESTA-IoT11 (aspects 3 and 5). We plan to develop

annotation and validation tools for IoT-Lite, by extend-

ing our SAOPY annotation tool12[16] and the SSN val-

idator tool13 (aspect 4).

Although the above aspects are essential to cre-

ate interoperable and reusable ontologies they are not

enough to cover scalability, dynamicity and user adop-

tion issues. We propose a set of guidelines for developing

scalable ontologies.

1. Design for large-scale.

2. Think of who will use the semantics and design for

their neeeds.

3. Provide means to update and change the semantic

annotations.

11 http://fiesta-iot.eu
12 https://github.com/CityPulse/SAOPY
13 http://iot.ee.surrey.ac.uk/SSNValidation/

4. Create tools for validation and interoperability test-

ing.

5. Create taxonomies and vocabularies.

6. Re-use existing models.

7. Link data and descriptions to other existing resources.

8. Define rules and/or best practices for providing the

values for each property.

9. Keep it simple.

10. Create effective methods, tools and APIs to handle

and process the semantics.

In the design of IoT-Lite we have followed these

rules. We have designed a lightweight ontology consid-

ering the scalability (following rule 1) and will provide

tools for annotation and validation (rules 3 and 4), as

well as APIs and using existing tools for querying and

information processing (rule 10) as we mentioned pre-

viously. Semantics are only one part of the solution and

often not the end-product. Query methods, machine

learning, reasoning and data analysis techniques and

methods should be able to effectively use these seman-

tics.

We have designed IoT-Lite (see Figure 1) with a

clear purpose of defining only the most-used terms when
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searching for IoT concepts in the context of data ana-

lytics. We studied the most common uses of IoT on-

tologies (following rule 2) based on our experience with

other IoT ontologies used by applications for data an-

alytics. For example, an application that provides the

temperature on the move will query the ontology for the

temperature sensor service endpoint at each particular

location. The ontology needs the concept of sensor, the

quality it measures (temperature) coverage and end-

point. Other concepts are irrelevant in that query. The

ontology needs also to have these concepts easily acces-

sible, avoiding deep and distantly-connected terms of

the ontology that need complex queries to retrieve the

desired results. Therefore the simplicity of the ontology

is essential (rule 9). The most widely used semantic de-

scriptions on the Web are simple ones such as FOAF.

Another important aspect of semantic models is the

interoperability. In the design of IoT-Lite we followed

the linked data guidelines14. Our ontology is linked with

other ontologies (rule 6 and 7). We chose well-known

and widely used ontologies, expecting their publications

to be stable (e.g. SWEET and SSN). We avoid links to

uncommonly used ontologies in order to prevent incon-

sistencies in case of unexpected deletion of the linked

ontologies. In the context of interoperability it is also

important to use the same vocabulary to be able to

share and combine data from different sources. For that

reason, we have created a taxonomy of quantity kinds

and units which is published on the ontology webpage

and is a compilation of terms used in well-known ontolo-

gies such as qu15 and qudt16 (rule 5 and 7). IoT-Lite

is published with a webpage which fully explains the

terms used and provides examples (rule 8). This allows

reuse and linking with other ontologies.

With the above prerequisites we have created an ex-

tension of SSN, which is considered the de facto stan-

dard of sensor networks ontologies. Furthermore, it is

currently on-track for formal standarization through

the OGC and the W3C[28]. SSN is not designed to be

necessarily used as it is in full form; it is a template to

be extended and instantiated. We have customised SSN

to make a lightweight ontology with the main concepts

being the three well-accepted items in the classification

of IoT entities [29]: Entities or objects; resources or de-

vices; and services, namely iot-lite:Object,

ssn:Device and iot-lite:Service. Figure 1 shows

an overview of the proposed information model. These

three concepts are the core concepts of the ontology and

are necessary in any ontology describing IoT.

14 http://linkeddata.org/
15 www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-
rec20.html
16 http://www.qudt.org/qudt/owl/1.0.0/quantity/

The relationships between these three concepts are

also well-known [10] [12], that is, an object (or entity)

iot-lite:Object has an attribute

iot-lite:Attribute which is associated with a de-

vice (or resource) iot-lite:Device, which is exposed

by a service iot-lite:Service. We built the rest of

the ontology around these three main concepts adding

the necessary concepts and relationships to provide re-

sponses to the standard queries. The objects can be

moving objects and therefore the relationship, or associ-

ation, between the objects and the devices are dynamic.

For example, a bicycle can be associated with a pollu-

tion sensor in one street, but when the bicycle moves

to another street it will be associated with a different

pollution sensor.

To allow the queries to be lighter, we have linked

most of the concepts of the ontology under one main

class (Device) and leave the other two classes lighter.

We have spotted at least three main classes of Devices

(ssn:Sensor, iot-lite:Actuator, iot-lite:Tag)

that we need to separate due to the differences that

applications can query for. For example, an application

that needs to know the temperature will query for sen-

sors, whilst if the application needs to switch on the

lights it will query for actuators. ssn:SensingDevice

is directly linked via properties or via inheritance of the

relevant properties to the concepts qu:QuantityKind,

qu:Units and iot-lite:Coverage. Therefore, we need

only three triples to link each sensing device with these

concepts (e.g. Sensor1 hasQuantityKind temperature).

In order to allow a common vocabulary to interop-

erate between different systems we need a taxonomy to

describe the measurements of the devices in terms of

the quantity kinds and units, such as temperature and

degrees Celsius. We have created this taxonomy using

individuals from well-know ontologies, such as qu-rec20
17 and qudt18.

The spatial dimension of the ontology is addressed

with the geo ontology19 based on WGS84 location coor-

dinates20. This simple ontology is widely used and there

are some available tools for discovery whether a point

belongs to an area, (circle, rectangle or polygon), and

extensions to SPARQL to deal with geolocations, such

as the OGC standard GeoSPARQL. We have added

relative locations to these geolocations to annotate lo-

cations such as a building or a floor in indoor scenarios,

where the geolocation is less intuitive. The relative lo-

cation also supports linking to resources such as GeoN-

17 http://purl.org/NET/ssnx/qu/qu-rec20
18 http://www.qudt.org/qudt/owl/1.0.0/quantity
19 http://www.w3.org/2003/01/geo/wgs84 pos
20 https://confluence.qps.nl/pages/viewpage.action?
pageId=29855173
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ames21 that are publicly available as part of the Linked

Open Data cloud22.

4 Use-case

In this section, we exemplify the use of the proposed

information model, IoT-Lite, using sensor information

from the Surrey testbed [22] developed within the EU

FP7 project Smart Santander23. The testbed consists

of 200 IoT nodes/devices provided with 6 sensors each

that measure temperature, sound, vibration, light, pres-

ence and energy consumption.

Figure 3 illustrates a sample describing the output

of one of the temperature sensors in the testbed using

the IoT-Lite ontology. This sensor is associated with the

temperature of a room. In this example it can be seen

that a table located in Room CII01 has an attribute,

temperature, which is associated with the temperature

sensor located in the same room. The temperature sen-

sor has a coverage that covers the the area of the room

(rectangle), defined by two points in the diagonal cor-

ners; measures the temperature with degrees Celsius

and a resolution of 0,01; and is exposed by a service with

endpoint http://surrey.ac.uk/sensor/roomCII01. We have

used the geolocation to annotate the latitude and the

longitude coordinates. However, we have also annotated

the relative altitude as floor1 for better human under-

standing. Listing 1 is an excerpt of the same tempera-

ture sensor annotation in a turtle format.

5 Evaluation

In order to validate the scalability and applicability

of IoT-Lite we performed some experiments using sen-

sory data from the University of Surrey’s SmartCam-

pus testbed. A web application developed in Java was

used to annotate the ontology individuals that repre-

sent the sensing devices and to store them in a set of

Jena TDB triple stores24, one for each dataset. We used

a Personal Computer (PC) running Windows 7 (x64)

operating system with a processor Intel(R) Core(TM)

i5-3470 CPU @ 3.20GHz 8GB RAM to act as a server

that hosts the web application. We sent remote queries

from a different PC located in another subnet. The aim

of this experiment was to measure the response time

of a common query. With IoT-Lite a common query is

defined as in Listing 2 as a query asking for the end-

point of the services that provide the temperature in a

21 http://www.geonames.org/
22 http://lod-cloud.net/
23 http://www.smartsantander.eu/
24 https://jena.apache.org/documentation/tdb/

@prefix qu: <http://purl.org/NET/ssnx/qu/qu#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix ssn: <http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#> .

@prefix iot-lite:<http://purl.oclc.org/NET/UNIS/iot-lite/iot-lite#>

:temperatureSensorRoom13CII01 rdf:type owl:NamedIndividual ,

ssn:Sensor ;

iot-lite:type "SensorTelosB"^^xsd:string ;

iot-lite:id "telosB-001"^^xsd:string ;

geo:hasLocation :locationRoom13CII01 ;

iot-lite:exposedBy :ngsi10SensorRoom13CII01 ;

iot-lite:hasMetadata :resolution1024 ;

iot-lite:hasUnit qu:degree_Celsius ;

iot-lite:hasQuantityKind qu:temperature .

iot-lite:hasCoverage :areaRoom13CII01 ;

iot-lite:tableRoom13CII01 rdf:type iot-lite:Object ,

owl:NamedIndividual ;

iot-lite:description "http://Room13CII01/Tabl"^^xsd:anyURI ;

iot-lite:hasAttribute iot-lite:temperaturTableRoom13CII01 ;

geo:hasLocation :locationRoom13CII01 .

iot-lite:temperatureTableRoom12CII01 rdf:type iot-lite:Attribute ,

owl:NamedIndividual ;

iot-lite:isAssociatedWith :temperatureSensorRoom13CII01 .

:areaRoom13CII01 rdf:type iot-lite:Rectangle ,

owl:NamedIndividual ;

iot-lite:hasPoint :NEcornrRoom13CII01 , :SWcornrRoom13CII01 .

:NEcornerRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.59316"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.2434"^^xsd:float .

:SWcornerRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.59315"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.2433"^^xsd:float .

:locationRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.593154"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.243362"^^xsd:float .

:ngsi10SensorRoom13CII01 rdf:type iot-lite:Service ,

owl:NamedIndividual ;

iot-lite:endpoint "http://meassur/rom13CII01"^^xsd:anyURI ;

iot-lite:description "http://meassur/room13CII01"^^xsd:anyURI ;

iot-lite:serviceType "ngsi-10"^^xsd:string ;

:resolution1024 rdf:type iot-lite:Metadata ,

owl:NamedIndividual ;

iot-lite:value "0.01"^^xsd:float ;

iot-lite:metadataType "resolution"^^xsd:string .

Listing 1: An excerpt from a sensor annotation based

on IoT-Lite Ontology.
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particular area. As can be seen, the query is simple. It

contains just six triples due to the shallow depth of the

IoT-Lite ontology. Likewise the same query in IoT-A

contains ten triples (Listing 3).

SELECT ?sens ?endp

WHERE {

?sensDev iot-lite:hasQuantityKind qu-rec20:temperature;

iot-lite:isExposedBy ?serv;

iot-lite:hasCoverage ?cover.

?cover iot-lite:hasPoint ?point.

?point iot-lite:RelativeLocation "Desk2".

?serv iot-lite:endpoint ?endp.

}

Listing 2: Query performed in the experiments in IoT-

Lite ontology.

SELECT ?iotService ?endpHost ?endpPort ?endpPath ?endpProt

WHERE {

?iotService serv:hasOutput qu-rec20:temperature.

?iotService serv:hasServiceEndpoint ?endp.

?endp serv:endpointHost ?endpHost.

?endp serv:endpointPort ?endpPort.

?endp serv:endpointPath ?endpPath.

?endp serv:endpointProtocol ?endpProt.

?iotService serv:exposes ?res.

?res res:hasResourceType ssn:Sensor.

?res res:hasLocation ?loc.

?loc res:hasGlobalLocation ""GU1""

}

Listing 3: Query performed in the experiments in IoT-A

ontology.

We performed this query over different datasets. For

that purpose we created four datasets containing 200,

1.000, 10.000 and 100.000 sensors each. The IoT-Lite

ontology contains 116 triples by itself. When annotating

sensors, each new sensor needs just six triples, and in

total the number of triples in each data set are shown

in table 1.

To compare the ontology against other solutions we

performed the same experiments with IoT-A, another

instantiation of SSN aiming to define the architecture

of IoT. We chose IoT-A because we have used the IoT-

A ontology in one of our components, a discovery el-

ement for IoT entities. With this ontology we experi-

enced some of the problems mentioned in the introduc-

tion and this motivated us to develop IoT-Lite to re-

place IoT-A in the discovery component. Figure 2 shows

IoT-A. We queried IoT-A with a similar query to that

for IoT-Lite, but in this case we needed ten triples to

obtain the same results, i.e. the endpoints of services

that provide the temperature in a particular area. The

IoT-A ontology contains 346 triples by itself. The to-

tal number of triples of each data set are also shown in

table 1.

In order to avoid false perceptions of the round time

trip (RTT) due to jitter, we sent the query ten times to

each dataset. Figure 4 shows the boxplot results of these

10 queries for each dataset. We can see that the RTT

of the query/response is acceptable for every dataset in

IoT-Lite. Even when the dataset contains 100.000 indi-

viduals the mean of the RRT is below 200 milliseconds.

We can also see that the time of the RTT is less in IoT-

Lite than in IoT-A in all the cases, and particularly

in large datasets, such as 100.000 sensors, the time of

IoT-A is more than twice the time of IoT-Lite. IoT-Lite

performs better than Iot-A for large scale annotations

of sensors.

6 Extending IoT-Lite with Data Aggregation

When dealing with IoT applications one of the impor-

tant issues to take into account is the immense amount

of data generated. Most applications could work prop-

erly with less data, efficiently aggregated. With the

same aim as IoT-Lite, the SAO ontology (Stream An-

notation Ontology) was created in order to deal with

huge amount of IoT data in a efficient manner [18]. The

SAO ontology provides annotation means to represent

aggregated data in a lightweight ontology [16].

To demonstrate both the extensibility of IoT-Lite

and the use of our ontology for IoT data analytics we

have linked it with the SAO ontology as shown in Fig-

ure 5. In order to show the connections between both

ontologies clearly we have represented only the main

classes of both ontologies in Figure 5. We took advan-

tage of the common base in SSN of both, SAO and

IoT-Lite. SAO is linked with SSN through the class

ssn:Sensor which is a superclass of ssn:SensingDevice.
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Table 1: Number of triples in each dataset

datasets: number of sensors 200 1000 10000 100000

number of triples in IoT-Lite 1486 6926 68126 680126
number of triples in IoT-A 1866 7946 76346 760346

Fig. 4: Boxplot of the Round Time Trip (RTT) of the queries required to retrieve the endpoint of a temperature sensor in a
certain location depending on the size of the triplestore with both ontologies IoT-Lite and IoT-A.

Therefore the link is straightforward via the property

ssn:observedBy.

With this connexion, IoT-Lite allows to access the

raw data via an endpoint, data can be in any format,

semantic or not, as shown previously in Listing 1; IoT-

Lite also allows access to aggregated semantic data.

Listing 4 shows an example in turtle of the same sensor

shown in Listing 1, but this time annotated with SAO

ontology and with a sampling frequency of one hour.

In this example we have sampled the data taking one

sample every hour, although SAO permits various other

aggregation algorithms.

7 Extrapolating Data via Dynamic Semantics

Data stored in a triple-store can have a coarser granu-

larity than needed by one application. The coarse gran-

ularity of the data may be due to constraints in the

sensors, such as on their capacity to store data or the

frequency to read or send data; or constraints in the

network such as communication bandwidth or storage

[2]. Some times the raw data has finer granularity and

a posteriori, either sampling or aggregation algorithms

are applied in order to reduce the amount of data stored.

In other cases the sensors only provide coarse granular-

ity. In all these cases we can interpolate the data by

applying any interpolation or recovery algorithm that

infers the missing values. Thus, the application can have

coarser granularity than the triples.

In semantics, annotations are typically static, i.e.

they store static values. Dynamic streams can be anno-

tated with semantics, but in a static manner, i.e. anno-

tating the stream values as they are produced, but once

the values are annotated they become static values. In

order to have dynamic annotated values, we have devel-

oped the dynamic semantics. Dynamic semantics aims

at having more flexibility in the ontologies. Our first

approach in this sense is to store formulas linked to the

data values that allow users to derive dynamic values

out of static values given the right parameters and for-

mula. For example, if we have the measurements of the

traffic in a city coming from sensors set up in different

points of the city and stored only every three hours, and

we have a good simulation model for traffic which we

can store inside the triple-store, we can interpolate the

stored values to obtain a traffic value at any place and

any sparse time in the city on demand only by reading

data from the triple-store.
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Fig. 5: IoT-Lite linked with SAO ontology for data aggregation and Formulas ontology for recovery or interpolation of data

The dynamic semantics use-case discussed here uses

MathML25 to store the formulas as data property liter-

als. MathML is a W3C recommendation for a mark-up

language to describe mathematical expressions and it is

widely used. This solution keeps all the information in

the same description thus avoiding access to different

servers to access calculations. Furthermore, there exist

several readers and converters that express MathML ex-

pressions in different languages, such as Java, Python

or C++, and vice-versa. The method could be used not
only for interpolation, but also for forecasting into fu-

ture extrapolation.

To demonstrate the usability of dynamic semantics

we present a case study in a smart city. We have per-

formed an experiment with the public traffic data26 ob-

tained from the city of Aarhus in Denmark. The dataset

consists of traffic data measured every 5 minutes using

135 sensors located in different parts of the city. The

data is organised in pairs of sensors providing infor-

mation regarding the geographical location of sensors,

time-stamp and traffic intensity such as average speed

and vehicle count. Figure 6 shows the location of some

of the sensors in Aarhus on a Google Map.

In particular, we will study the patterns of vehicu-

lar traffic and focus on traffic data in the early hours

of business days. We will store this model as a formula

in our ontology. The first step in our experiment is to

25 https://www.w3.org/TR/MathML3/
26 http://www.odaa.dk/dataset/realtids-trafikdata

Fig. 6: One of the main roads that connect the city centre of
Aarhus with the surrounding towns. The dots represent the
location of the traffic sensors. We use sensor 1 and sensor 3 to
infer the prediction model and sensor 2 for testing purposes.

create the prediction model for traffic patterns. This

includes two linear interpolation models, one for the

spatial dimension and the other for the temporal di-

mension of the prediction model.

To infer the model we captured the traffic data from

Aarhus for a period of two months (August to Septem-
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@prefix qu: <http://purl.org/NET/ssnx/qu/qu#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix ssn: <http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#> .

@prefix iot-lite:<http://purl.oclc.org/NET/UNIS/iot-lite/iot-lite#>

@prefix sao: <http://example.com#> .

@prefix tl: <http://purl.org/NET/c4dm/timeline.owl#> .

:temperatureSensorRoom13CII01 rdf:type owl:NamedIndividual ,

ssn:Sensor ;

iot-lite:type "SensorTelosB"^^xsd:string ;

iot-lite:id "telosB-001"^^xsd:string ;

geo:hasLocation :locationRoom13CII01 ;

iot-lite:hasUnit qu:degree_Celsius ;

iot-lite:hasQuantityKind qu:temperature .

iot-lite:hasCoverage :areaRoom13CII01 ;

iot-lite:tableRoom13CII01 rdf:type iot-lite:Object ,

owl:NamedIndividual ;

iot-lite:description "http://Room13CII01/Tabl"^^xsd:anyURI ;

iot-lite:hasAttribute iot-lite:temperaturTableRoom13CII01 ;

geo:hasLocation :locationRoom13CII01 .

iot-lite:temperatureTableRoom12CII01 rdf:type iot-lite:Attribute ,

owl:NamedIndividual ;

iot-lite:isAssociatedWith :temperatureSensorRoom13CII01 .

:areaRoom13CII01 rdf:type iot-lite:Rectangle ,

owl:NamedIndividual ;

iot-lite:hasPoint :NEcornrRoom13CII01 , :SWcornrRoom13CII01 .

:NEcornerRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.59316"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.2434"^^xsd:float .

:SWcornerRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.59315"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.2433"^^xsd:float .

:locationRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.593154"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.243362"^^xsd:float .

:temperatureSensorRoom13CII01Observation-001 rdf:type owl:NamedIndividual ,

sao:Point ;

sao:value "24.0"^^xsd:double ;

sao:time [ a tl:Instant ;

tl:at "2016-09-02T10:00:00"^^xsd:dateTime ;

tl:duration "PT1H"^^xsd:duration

] ;

ssn:observedBy :temperatureSensorRoom13CII01 .

Listing 4: An excerpt from a sensor annotation based on

IoT-Lite Ontology linked to the aggregated data coming

out of the sensor with an aggregation algorithm

ber 2014). The dataset is available online on the EU

FP7 CityPulse Project datasets Web page27. We mea-

sure the traffic (number of vehicles) entering the city of

Aarhus through a main road. We took the data from

two sensors separated by 3600 meters (sensor1 and sen-

sor 3 in Figure 6), on working days within a 3 hour time

period where the traffic gradually increases in the early

hours of the morning before working hours. This data

(pattern) is represented with the formula:

Vx = LastV ehicleCount +

0.126603432701 ∗ (currentT imeInMinutes− 180) +

0.000765329644997 ∗ (CurrentLocation)

This formula is described based on spatial and tem-

poral dependencies. We include this mathematical ex-

pression in the formula module of the semantic model

(see Figure 5). Later on, when a user accesses the traf-

fic data, the formula from the semantic descriptions can

provide the user with an estimation of the current value

of the traffic data at an specific location and also pro-

vide an estimate value for other adjunct locations (as-

suming a model has been constructed to generate those

values).

In order to write and read the semantic annotations

we have used the libSBML library [6] that performs the

translations between Python code and MathML. LibS-

BML is a specific library for writing and manipulating

the Systems Biology Mark-up Language (SBML) [14]

that describes models of biological processes. Although

the library is intended for biological processes, it has a

complete translation tool for MathML that can be used

in any domain.

In the semantic description, we have represented the

interpolation prediction of the number of vehicles for-

mula as a MathML formula. Listing 5 shows an excerpt

of the formula in turtle28.

Once we have the observations and formulas anno-

tated in the semantic descriptions, when a user makes

a query on the number of vehicles on the road between

sensor 1 and sensor 3, both the value taken at sensor

1 and the formula is returned and then he can use the

MathML expression to calculate estimated values for

nearby locations or for future value predictions. In our

example we send a query from our application writ-

ten in python to the triple-store; read the last value

taken at sensor 1 at 3:00 am GMT (which is around

5:00am local time) together with the formula; convert

the MathML into a python formula (using the library

SBML in our python application); calculate the current

27 http://iot.ee.surrey.ac.uk:8080
28 http://www.w3.org/TR/turtle/
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form:formulaTrafficGrenavejarhusMorning rdf:type form:Formula ,

owl:NamedIndividual ;

form:hasFormulaValue """<?xml version=\"1.0\" encoding=\"UTF-8\"?>

<math xmlns=\"http://www.w3.org/1998/Math/MathML\">

<apply>

<plus/>

<apply>

<times/>

<cn> 0.126603432701 </cn>

<apply>

<minus/>

<ci> currentTimeInMinutes </ci>

<cn type=\"integer\"> 180 </cn>

</apply>

</apply>

<apply>

<times/>

<cn> 0.000765329644997 </cn>

<ci> CurrentLocation </ci>

</apply>

</apply>

</math>""" .

Listing 5: Formula in the semantic description written

in turtle.

value at our location (simulated to be at the place of

sensor 2) and the current time (5:00 GMT); and get the

expected number of cars at that position at that time,

which is around 16 cars.

Dynamic semantics, therefore, can store

spatio-temporal values in a triple-store. Dynamic se-

mantics has the advantage over other solutions (such

as the use of a RESTful servers that calculate the cur-

rent value from the formula), that all the information

is stored in one place, in the triple-store, giving a faster

query-response time and a simpler service as the client

only accesses one server. Our solution can also work in

networks with low connectivity, as we can download the

triple-store when we have enough bandwidth and read

it locally when needed.

8 Conclusions

In this study we proposed a lightweight semantic IoT

model, IoT-Lite. The model is an extension of SSN

with shallow depth, appropriate for real time sensor

discovery. We have proposed and followed a set of on-

tology design guidelines for dynamic and responsive en-

vironments. We have demonstrated that the annota-

tion of new sensors in IoT-Lite requires only 6 triples,

and that the RTT of a query-response is in the range

of milliseconds, even for large datasets. We have also

assessed our proposal against another instantiation of

SSN, IoT-A, and we have demonstrated that IoT-Lite

performs better than IoT-A, in terms of memory re-

quirements, computational time and RTT for a query-

response, reducing the time by half for large datasets,

such as for 100000 sensors. We have also linked IoT-

Lite with SAO ontology, which performs stream anno-

tations allowing the aggregation of values, and therefore

reducing the data values coming out from sensors. This

solution can reduce the stream data triple-store and re-

duce the query-response time for stream data. Further-

more, we have proposed dynamic semantic annotations

to store formulas written in MathML into a triple-store.

We discussed an example of using dynamic semantics

in a smart city and store spatio-temporal values in the

triple-store. This solution reduces the space used in the

triple-store and keeps all the information together in

one place and therefore, gives a faster query-response

time.

Further work will provide IoT-Lite tools for anno-

tation and validation, similar to SAOPY29 and SSN

validator [17]. We will also use the IoT-Lite based de-

scriptions to provide interoperability in developing IoT

and smart city applications and services. We will con-

tinue incorporating more functionalities to our dynamic

semantics solution.
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Castro R, Corcho O, Cox S, Graybeal J, Hauswirth

M, Henson C, Herzog A, et al (2012) The SSN on-

tology of the W3C semantic sensor network incu-

bator group. Web Semantics: Science, Services and

Agents on the World Wide Web 17:25–32

9. Cox SJ (2016) Ontology for observations and sam-

pling features, with alignments to existing models.

Semantic Web (Preprint):1–18

10. De S, Barnaghi P, Bauer M, Meissner S (2011) Ser-

vice modelling for the internet of things. In: Com-

puter Science and Information Systems (FedCSIS),

2011 Federated Conference on, IEEE, pp 949–955

11. De S, Elsaleh T, Barnaghi P, Meissner S (2012)

An internet of things platform for real-world and

digital objects. Scalable Computing: Practice and

Experience 13(1)

12. Haller S (2010) The things in the internet of things.

Poster at the (IoT 2010) Tokyo, Japan, November

5:26

13. Henson CA, Pschorr JK, Sheth AP, Thirunarayan

K (2009) Semsos: Semantic sensor observation ser-

vice. In: Collaborative Technologies and Systems,

2009. CTS’09. International Symposium on, IEEE,

pp 44–53

14. Hucka M, Bergmann F, Keating SM, Schaff JC,

Smith LP (2010) The systems biology markup lan-

guage (sbml): language specification for level 3 ver-

sion. Nature proceedings
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25. Sanchez L, Muñoz L, Galache JA, Sotres P, San-

tana JR, Gutierrez V, Ramdhany R, Gluhak A,

Krco S, Theodoridis E, et al (2014) Smartsan-

tander: IoT experimentation over a smart city

testbed. Computer Networks 61:217–238

26. Sheth A, Henson C, Sahoo SS (2008) Semantic sen-

sor web. Internet Computing, IEEE 12(4):78–83

27. Stocker M, Shurpali N, Taylor K, Burba G, Rönkkö
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