
Overcrowding Detection in Indoor Events using Scalable
Technologies

Unai Lopez-Novoa · Unai Aguilera · Mikel Emaldi · Diego
López-de-Ipiña · Iker Pérez-de-Albeniz · David Valerdi · Ibai Iturricha ·
Eneko Arza

Received: date / Accepted: date

Abstract The increase in the number of large scale
events held indoors (i.e. conferences and business events)

opens new opportunities for crowd monitoring and ac-
cess controlling as a way to prevent risks and provide
further information about the event’s development. In

addition, the availability of already connectable devices
among attendees allows to perform non-intrusive po-
sitioning during the event, without the need of spe-
cific tracking devices. We present an algorithm for over-

crowding detection based on passive Wi-Fi requests cap-
ture and a platform for event monitoring that integrates
this algorithm. The platform offers access control man-

agement, attendees monitoring and the analysis and vi-
sualization of the captured information, using a scal-
able software architecture. In this paper, we evaluate

the algorithm in two ways: first, we test its accuracy
with data captured in a real event, and then we anal-
yse the scalability of the code in a multi-core Apache
Spark-based environment. The experiments show that
the algorithm provides accurate results with the cap-
tured data, and that the code scales properly.

This work has been partially supported by the Basque Coun-
try Government under the Gaitek funding program (IG-
2014/00172) and the Spanish Ministry of Economy and Com-
petitiveness (grant number TIN2013-47152-C3-3-R).

U. Lopez-Novoa · U. Aguilera · M. Emaldi · D. López-de-
Ipiña
Deusto Institute of Technology, DeustoTech, University of
Deusto, Avda. de las Universidades 24, 48007, Bilbao, Spain
email{unai.lopez, unai.aguilera, m.emaldi, dipina}@deusto.es

I. Pérez-de-Albeniz · D. Valerdi
Fon Labs, Avda. Las Arenas 7, 48930, Getxo, Spain
email{iker.perez, david.valerdi}@fon.com

I. Iturricha · E. Arza
Aditium, Abadetxe Kalea 9, 48180, Loiu, Spain
email{i.iturricha, e.arza}@aditium.com

Keywords Overcrowding detection · Indoor location ·
Scalable data processing

1 Introduction

Conferences and business events are growing both in

number and size in the last years. According to the
latest Statistics Report of the International Congress
and Convention Association (ICCA) [11], the number

of meetings has grown exponentially by approximately
10% each year from 1963, reaching 173.432 in 2012. In
2014, Paris was the city holding the greatest number
of events: 214 in the whole year. In addition, the num-

ber of participants in these events usually ranges from
hundreds to thousands. According to the same ICCA
report, there was an average of 424 participants per
international conference in 2012.

These large scale meetings are usually held in build-
ings whose capacity is limited by several factors: the size
of the building, the number and size of its doors, the
availability of paths for impaired people, and so on. Ex-
ceeding the capacity of such buildings can be harmful if
emergencies happen, and the usual way to prevent such
issues is controlling the number of accesses through the
doors.

Controlling the entries and exits to the building is
a first step to prevent risks in large events, but it does
not provide the organizer with further information on
how the attendees are behaving. Even if the capacity
is not exceeded, important risks are taken if most of
the participants are located around a single spot, or if
the accesses are saturated. Such information could be
useful both while an event is being held and as an aid
to plan future meetings better.

Lopez-Novoa, U., Aguilera, U., Emaldi, M. et al. Overcrowding detection in indoor events using scalable technologies. Pers Ubiquit 
Comput 21, 507–519 (2017). This version of the article has been accepted for publication, after peer review (when applicable) and is 
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or 
any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00779-017-1012-6



2 Unai Lopez-Novoa et al.

In this paper we present a platform aimed to sup-

port event organizers with real-time valuable informa-

tion. In particular, it shows data from the access con-

trol system that registers the attendees, and the flow of

persons within the building. This last feature is com-

puted by an algorithm that, given tracking information

from the attendees in the event, calculates the potential

overcrowded spots. The tracking information that feeds

the algorithm are wireless frames captured by standard

Wi-Fi routers deployed along the monitored building.

We developed our software platform using the Cloud-

era1 framework, a suite of scalable data processing tools

that ensures reliability in scenarios with large data pro-

cessing needs. On top of these tools, we implemented

the overcrowding detection algorithm and the appli-

cation that visualizes the processed information in an

amenable way.

The remainder of the paper is structured as follows:

Section 2 details the system used to capture data in an

event, and Section 3 describes the algorithm to detect

overcrowding. Section 4 describes briefly the Cloudera

framework and Section 5 how we used it in this work.

We describe in Section 6 how we evaluated the accuracy

of our algorithm with a set of real data collected in

the 4YFN 2015 conference and in Section 7 how we

evaluated the scalability of the algorithm in an Apache

Spark environment. Finally, we describe in Section 8

tools and algorithms similar to what we presented and

we draw in Section 9 some conclusions and future lines

of work.

2 Data capture systems

This section describes the mechanisms used by our plat-

form to gather monitoring information in an event: wire-

less frame capture and attendee access control.

2.1 Wireless frame capture

The first step to device monitoring in our platform re-

quires a minimal instrumentation of the building where

an event takes place: Wi-Fi routers must be placed cov-

ering the meeting space prior to the beginning of the

event. Then, these routers will capture any attempt of

a Wi-Fi connection to them, e.g. from smartphones or

tablets.

Wi-Fi enabled devices periodically send probe re-

quests frames to find out what access points are in their

vicinity. These frames include information such as its

MAC address and its wireless connection capabilities

1 Cloudera - http://www.cloudera.com

Fig. 1: Device detection based on probe request.

(e.g. whether 802.11b/g/n is supported) [17]. The fre-

quency of (passive) sending depends on the operating

system, applications, connectivity status, etc. of the de-

vice. In addition, active scans can be forced by the user

manually.

Wireless access points reply to these frames with

probe responses, which describe Wi-Fi capabilities of

the access points and the networks they populate [17].

This exchange of information prepares the connection

setup between the device and the access point. A rep-

resentation of this interaction is depicted in Figure 1.

Our solution is based on the capture of probe re-

quests by the access points. It captures the frame, ex-

tracts the MAC address (which uniquely identifies the

Wi-Fi enabled device), and adds the timestamp and

received power or Received Signal Strength Indication

(RSSI). This data is stored by the access point during

a pre-configured period of time. After this period ex-

pires, the access point groups it as per MAC address,

and hashes it to protect anonymity. Metrics like max-

imum, minimum, averaged received power, timestamp

of first and last frame,... are computed during collection

time as well.

The collected information is periodically sent to the

central server of our platform for its processing using a

JSON description file. An HTTPS connection is used,

as it provides additional security and prevents from con-

tent interception.

2.2 Attendee access control

Besides frames from wireless devices, our platform gath-

ers data coming from the physical access controls to

the buildings. These controls provide real time infor-

mation about the attendees that are entering/exiting

the event’s area. Each attendee carries its own Near

Field Communication (NFC) badge. When an attendee

registers his/her badge is personalized, i.e. his/her in-

formation is linked to the badge. The personalization

is both physical and logical. The badge is printed with

attendees’ personal information and the database is up-

dated with the badge’s unique ID.

Every time an attendee enters or exits the venue,

the badge is validated using NFC enabled smartphones.



Overcrowding Detection in Indoor Events using Scalable Technologies 3

The software in the smartphone connects to a server

that will be able to report who is inside the building at

a given time. One of the main benefits of this approach

is that all the information used to determine if a badge

is allowed or not, is editable in real time. This way, if

an attendee loses its badge, the staff can disable it.

The access control process is divided in three main

modules: accreditation, validation and management.

– The accreditation module manages the life-cycle of

an attendee, which can be in one of the following

states: pendant, if the attendee has not received

its access credential; identified, the attendee has re-

ceived is credential that enables to access the event

and, removed, if the attendee has been removed

from the system. In addition, this module controls

the NFC device (smartphone or contactless card)

used by attendees to access the event.

– The validation module decides whether users can

access the event’s area through a turnstile or other

controlled access with the NFC identifier.

– The management module orchestrates the access

control system and obtains data about the atten-

dees, which can be used to perform analytics by the

platform.

Every time an attendee enters or exits the area of

the event, the access control system sends a JSON ob-

ject to the processing server that contains the infor-

mation of the event. Multiple events occurring in some

predefined timespan can be aggregated to reduce the

volume of information sent to the platform.

The information provided in the JSON, for each ac-

cess action, is the following: action type, which describes

if the attendee enters or exits the area; an identifier of

the attendee; the name of the company provided by at-

tendee when registered into the event; the group that

the attendee belongs to (e.g speaker, staff, or general

attendee) and the timestamp of the action.

3 The overcrowding detection algorithm

This section describes the algorithm that, using the

data described in the previous section, calculates the

density of devices inside the area of the event. This

process is performed in two steps: device tracking and

density calculation.

3.1 Device tracking

The tracking algorithm takes the information periodi-

cally provided by the Wi-Fi routers and computes the

2D positions of the detected devices in the event area.

To that end, it uses as input:

– Hashed MAC address of each device, which identi-

fies it uniquely.

– Average signal level (RSSI) of all received transmis-

sions during the last reporting period.

– timestamp and frequency of the latest detected trans-

mission from the device.

We use Trilateration [6] as tracking algorithm, a

popular positioning technique whose main drawback is

that each device must be detected by three different

sensors for its position to be estimated. The system

uses a time window to aggregate the information com-

ing from different sensors in order to avoid the require-

ment of simultaneous detection. Therefore, the infor-

mation captured from the Wi-Fi sensors has a validity

period and it is discarded when it exceeds that period.

When three or more sensors detect the same device

within the configured time window, the system calcu-

lates its position in the defined area as follows: first,

the distance between the Wi-Fi router and the device

is computed using the Free Space Path Loss (FSPL)

equation:

FSPL(dB) = 20 log d + 20 log f − 27.55 (1)

where d represents the distance in meters between the

emitter and the receiver, f is the frequency of the trans-

mitted signal and FSPL provides the difference in dB

due to the propagation loss. This formula can be solved

to obtain the distance in meters d, knowing the fre-

quency of the signal and its strength, as:

d = 10
27.55−20 log f+PL

20 (2)

where PL provides the estimated loss of the signal be-

tween the emission and its reception, as measured by

the Wi-Fi receivers (the RSSI).

After obtaining the distance in meters from the client

device to each of the detecting sensors, trilateration is

applied. It computes the position of the detected de-

vice relative the Wi-Fi routers. This process has been

depicted in Figure 2, where R1, R2, R3 represent three

routers and P the position to be computed.

The process begins with the following equations:

d21 = x2 + y2 + z2

d22 = (x− a)2 + y2 + z2

d23 = (x− c)2 + (y − b)2 + z2
(3)

where d1, d2, d3 represent the distances d from the de-

vice to each router using the FSPL formula, and a, b, c



4 Unai Lopez-Novoa et al.

Fig. 2: Representation of the trilateration process

several distance metrics between the routers. Solving

this equation system leads to obtaining x, y, z, i.e., the

coordinates for the P point relative to the routers. Then,

a transformation is applied to make the position rela-

tive to the origin of coordinates used by the event.

Each time the Wi-Fi routers collect new data from

a device, it is sent to the platform and the device’s

position is updated. The platform stores the updated

position of all detected devices. However, this informa-

tion can be outdated if no new updates are obtained

from three different sensors in the same time windows.

Therefore, the system adds a timestamp to the position

of each located device that can be used to know the an-

tiquity of the tracking information for each detected

device.

As a final note, we refer the interested reader to [20]

for a deeper explanation on the trilateration algorithm

and its limitations when used with signal strength mea-

surement.

3.2 Device density calculation

Using the information obtained in the previous step we

calculate the device density, which is used to estimate

the existence of overcrowded zones in the area of the

event.

The algorithm subdivides the area in a grid of cells

that are used as the finest granularity for the density

estimation (Figure 3a). If the density exceeds a prede-

fined threshold inside a cell, the platform triggers an

alarm to notify the event’s administrators. The param-

eters that define the area of the event, i.e. dimensions

and the size of a cell, are part of the configuration pro-

vided by the administrator for the event. The larger

the cells, the less precision the algorithm will have de-

tecting the position of the overcrowded zone. However,

configuring smaller cells increases the number of calcu-

lations required to be performed by the algorithm, as

the number of independent zones to be considered also

increases.

The algorithm for calculating the device density uses

two main working elements: First, the area of the event,

which is divided into cells using the configuration de-

fined by the administrators (the number of cells is de-

termined by the size of a single cell). Second, a set of

devices, each having a position and a associated radius

of error. The error is determined by the applied tracking

algorithm (trilateration in this case). This error defines

a circle, with its center located at the device’s estimated

position. The device could be located anywhere inside

the circle due to errors inherent to the tracking algo-

rithm.

(a) (b)

(c) (d)

Fig. 3: Density calculation process.

Every time that the position of one or more devices

change, due to the reception of new information from

the Wi-Fi sensors, the algorithm recalculates the de-

vice density for each of the grid’s cells. The process to

calculate the density works as follows:

– Using the circle defined by each device’s positions

and its associated error, the algorithm obtains the

list of intersecting cells. Each circle can intersect

with one or more cells inside the event’s area, mean-



Overcrowding Detection in Indoor Events using Scalable Technologies 5

ing that the device could be actually located inside

any of these cells. Knowing the cells intersecting

with each device’s circle, we calculate how much of

its area is shared with those these cells (Figures 3b

and 3c).

Supposing an equal probability distribution of the

device’s position inside its circle of error, this step

enables to obtain how the probability of the device

tracking is distributed among the intersecting cells.

It is more probable that the user is located in those

cells that have a bigger shared area with its error

circle, while the total probability always adds to one.

– The probability obtained for each intersection is ac-

cumulated in the corresponding cell. As this process

is repeated by all the located devices, the result is

a grid that contains the average occupation number

(number of devices) per cell (Figure 3d).

– Finally, the average density of a cell is obtained by

dividing the total occupation of a cell (obtained by

adding the contributions of all devices calculated for

all the devices in the previous step) by the area of

the cell.

This way, the algorithm generates a density matrix

that represents in which areas of an event the estimated

device density could exceed some predefined threshold.

In order to speed up the computation of the device-

cell intersection, R-tree[9] has been used. R-tree is a

tree-like data structure that reduces the number of per-

cell checks by using a binary search. If checks would

be performed in a naive way, each device should be

matched against each cell defined in the grid. In that

case, the total number of intersection checks would be

proportional to the number of cells and devices (N de-

vices x M cells). The usage of R-tree prunes those parts

of the area whose cells should not be taken into account,

effectively reducing the search space.

3.3 Distributed implementation

We implemented our algorithm in a distributed way

using the MapReduce paradigm [5]. MapReduce is a

programming model targeting parallel/distributed sys-

tems, and amenable to process large datasets. The com-

putation is specified in terms of map and reduce func-

tions: map tasks perform parallel workload, such as fil-

tering, and reduce tasks conduct consolidation or sum-

mary operations.

We consider two types of compute nodes: master

and worker. The master node will be in charge of run-

ning sequential and management operations, and worker

nodes will run the actual parallel workload.

The implementation of the algorithm has been struc-

tured in the following steps, and it has been depicted

in Figure 4:

1. The device tracking algorithm computes the posi-

tions of the detected devices. This is a sequential

operation and its results are scattered to the worker

nodes.

2. Using the calculated device positions, each worker

computes the device-cell interactions to create each

a partial density matrix. This is run as a map task.

3. A reduce task is executed to merge the partial ma-

trices. Their combination results in the final den-

sity, which represents the distribution of the de-

vices across the event area. Due to the nature of

MapReduce operations, part of the Reduce task is

conducted in the worker nodes in a parallel way.

As a final note, the task of computing the device

locations was initially developed as a parallel map op-

eration. However, initial tests showed that it took less

time to do it sequentially than in parallel, due to the

data scattering overheads. Thus, it was left as a sequen-

tial operation.

Fig. 4: Workflow of the distributed implementation.

4 The Cloudera framework

In this section we describe the software platform used

to gather, process and visualize the data: Cloudera, a

ready-to-use distributed computing platform that in-

cludes different Apache components on a linux system.

The main goal of the Cloudera framework is to pro-

vide an out-of-the-box scalable analysis and visualiza-

tion system, without the need to install and configure

several tools required by a Hadoop/Spark environment

from scratch. From all the tools provided by Cloudera,

we have used the following to implement our solution:



6 Unai Lopez-Novoa et al.

– Flume [10] is a service that provides efficient gath-

ering and aggregation of data. It enables to process

a high volume of input data from different sources

and write them into multiple custom or predefined

consumers using a scalable and fault-tolerant pro-

cess. Flume is used in the proposed solution as the

entry point for all the data captured by the access

system and the Wi-Fi sensors.

– Hbase [8] and HDFS are respectively the database

and distributed file system used by Hadoop, which

allow the storage and management of high volumes

of data in a scalable way. In the proposed platform,

these tools are used to store the raw data captured

during the event and the results of the analytics

obtained after processing this data.

– Spark [24] is a framework for large-scale data pro-

cessing. It has been widely adopted to accomplish

Big Data processing tasks due to its ease of use,

flexibility and wide user community. It is used in

our platform to run the distributed implementation

of the overcrowding detection algorithm.

– SolR [19] is a search engine prepared to index high

volumes of data. It allows to search using text and

No-Sql based queries. SolR is used by many large

scale companies like Netflix, DuckDuckGo or eBay

to provide advanced search capabilities. In our plat-

form it is used to index raw data captured in an

event prior to its processing, and to feed the graphs

in the Hue visual front-end.

– Hue2 (Hadoop User Experience) is a Django3-based

front-end for the visual analysis of data. It is able to

load data from common SQL RDBMSs (e.g. MySql

or Oracle) or SolR indexing engine, and allows the

creation of dynamic dashboards. These dashboards

include interactive graphs that ease the analysis of

large scale data. It is used in our platform to vi-

sualize the monitoring information captured in an

event.

5 The Sicafe application

On the top of the Cloudera platform, we developed a

software application called Sicafe4in charge of the man-

agement and visualization of the received information.

The use of the Cloudera platform provides us with scal-

ability at platform level, as described in the previous

section. We depict in Figure 5 the architecture of Sicafe

using the described tools. In short, we coded a person-

2 Hue - http://gethue.com
3 Django - https://www.djangoproject.com

Fig. 5: Sicafe application architecture.

alized Flume configuration and a separate application

using some tools inside Cloudera.

The flume configuration consists of custom Handler

and Sink. The Handler is in charge of capturing the

JSON files sent to the listening Flume port and creating

a new Flume event with each one. The Sink takes each

of these events, analyzes it, and depending on its type,

writes it to a Hbase table or to a SolR index. Both

Handler and Sink are coded in Java and access to Hbase

and SolR using the Cloudera API and the SolR Rest

API respectively.

Each time a JSON file is received in the Flume lis-

tening port, the following events take place:

1. Data is read from the HTTP connection and parsed.

Both the wireless frame and access control data will

come in JSON format.

2. Data is analyzed and stored in Hbase/SolR.

3. Data is consumed by the Sicafe Application, pro-

cessed using the overcrowding detection algorithm

and visualized using Hue.

We created an application inside Hue that provides

the user with a visual way to manage all the configura-

tion and monitoring of an event. This application allows

the creation, modification and deletion of events, and

the customization of their parameters.

On the data visualization side, the Hue-based ap-

plication shows two main types of graphs. First ones

are interactive dashboards displaying statistics, such as

the historical entries or exits through the physical ac-

cess control. An example of these dashboards is shown

in Figure 7. The second graph is a map displaying the

position of (1) wireless frame capturing routers in the

event, (2) detected wireless devices and (3) areas sur-

passing a certain occupation threshold, i.e. a potential

overcrowding. An example of this map is shown in Fig-

ure 6, where (1) is shown as blue map markers, (2) as

blue dots and (3) as red circles. Using this web con-

sole the administrator of an event can make real time

monitoring of what is happening in the area, and once

the event has finished, analyze the occupancy data to

detect hotspots and trends.

4 Sicafe stands for SIstema de Control de Acceso y Flujo a
Eventos, the Spanish for Event flow and access control system



Overcrowding Detection in Indoor Events using Scalable Technologies 7

Fig. 6: Example map with attendees and alerts.

Fig. 7: Example dashboard with entries data.

On the implementation side, the algorithms described

in Section 3.2 have been implemented using R-tree5

and Shapely6 Python libraries. The Hue-based code is

a custom Django application with Hue v3.9, running

on Python 2.6.6. The map is shown using Leaflet7 and

the heat-map is drawn with the MaskCanvas8 plugin,

which provides scalable plotting for large amounts of

points.

6 Evaluating the accuracy of the algorithm

In this section, we analyze the accuracy of our algorithm

with data gathered from a real world scenario. In par-

ticular, we use the data collected in 4 Years From Now

(4YFN)9 business event that took place in Barcelona

the 2nd, 3rd and 4th of March 2015. 4YFN is a confer-

5 Rtree - https://pypi.python.org/pypi/Rtree
6 Shapely - https://pypi.python.org/pypi/Shapely
7 Leaflet - http://leafletjs.com
8 MaskCanvas - https://github.com/domoritz/leaflet-

maskcanvas
9 4YFN - https://4yfn.com

ence located within the Mobile World Congress (MWC)10,

whose aim is to provide a common place for business-

men of start-up enterprises to connect between them-

selves. The 2015 edition was located in the Montjuic

building of the Barcelona exhibition center, which has

usable space of around 19,000 m2 space.

The conference area was set-up with the monitor-

ing features described in Section 2. The capture routers

were located as depicted in Figure 6, and access control

spots were located in the main door of the building. We

provide a video on how this system worked in 4YFN11.

In order to validate the wellness of our device track-

ing algorithm, we compared the number of localized de-

vices with the number of attendees inside the building

(registered by the NFC system) along each day. Results

are depicted in Figures 8 and 9 for Monday and Tues-

day respectively. Data was collected for Wednesday as

well but results were similar and they were left out of

the paper due to space constraints.

These results show that the number of detected de-

vices by our algorithm is close to the number of real

attendees most of the time. In order to assess the rela-

tionship between these two metrics, we calculated the

statistical correlation between them using the Pearson

correlation coefficient. This coefficient provides the de-

gree of linear dependence between two variables, rep-

resented in a range between -1 and 1. In this case, the

resulting r-values are 0.782 and 0.786 for the data on

Monday and Tuesday respectively, which states a high

positive correlation between the number of devices and

attendees.

After this initial assessment, we must highlight an

issue derived from the comparison of detected devices

to actual attendees: some attendees might carry more

than one device with Wi-Fi switched on and some might

carry none. However, we calculated that on the assump-

tion of one wireless enabled device per assistant, the tri-

lateration algorithm would detect on average a 73.96%

of the attendees counted by the access control system.

In a step further, we note a number of devices de-

tected by the algorithm prior to the entry of the first

attendees. To our knowledge, those correspond to the

mobile devices of the organizing staff and other Wi-Fi

enabled devices that were located in the building for

exhibition purposes, such as Smart TVs. We also note

some outliers in the graphs depicted as peaks, the most

notable one being in the Monday graph at 4:40 PM.

These outlier peaks are due to minimal failures in the

capturing systems. In the case of the Monday-4:40 PM

peak, the routers were unable to capture frames for two

minutes, and the frames for the next two minutes were

10 MWC - https://www.mobileworldcongress.com
11 http://aditium.com/en/success-cases/4yfn-2015-2



8 Unai Lopez-Novoa et al.

Fig. 8: Comparison of number of attendees to detected wireless devices. Data from 4YFN 2015 Monday.

Fig. 9: Comparison of number of attendees to detected wireless devices. Data from 4YFN 2015 Tuesday.

Fig. 10: Average density in 4YFN 2015. Monday.

sent in a single JSON to the processing server. After

this issue, the system continued working properly.

We must state that, far from obtaining an exact

count of the participants, the main aim of the platform

is to detect overcrowding. An estimate of this can be

done by detecting the coarse movements of the atten-

Fig. 11: Average density in 4YFN 2015. Tuesday.

dees, thus, an exact count is not required. As a proof of

concept, we computed the average density distribution

of the detected devices in the event for Monday and

Tuesday. Results are shown in Figures 10 and 11 as a

heatmap were colors closer to red indicate higher den-

sity. We observe how both days the most visited places



Overcrowding Detection in Indoor Events using Scalable Technologies 9

were located on the most southern part of the building.

To our knowledge, this matches the trend of the atten-

dees, as the most popular stands were located in those

positions.

7 Evaluating the scalability of the distributed

implementation

In this section we carry out a performance evaluation of

the distributed implementation of the overcrowding de-

tection algorithm. The algorithm has been implemented

using Spark, and we want to find out whether it scales

with problem sizes larger than the one presented in

the previous section. To this end, we isolated the dis-

tributed implementation from the entire platform and

ran it as a separate application.

7.1 Settings used in the experiments

For this part of the work we created several synthetic

datasets that enabled us to conduct a wider evaluation

than the 4YFN 2015 dataset. We created this dataset

using the Random Waypoint algorithm [3], a popular

mobility model in ad-hoc networking research field that

simulates the movement of several entities in a defined

space, including location, velocity and acceleration con-

straints. In this experimentation we set that each entity

(wireless device) would move in a speed between 0.1 and

1.4 meters/second, and make random stops of up to 10

seconds. These values represent the standard walking

pattern for a human. We used the implementation of

this algorithm in the Pymobity12 library.

There are two main parameters in our evaluation

that impact directly the execution time: the dataset

12 Pymobility - https://github.com/panisson/pymobility

Fig. 12: Execution times for different dataset sizes.

size (the number of wireless frames to be processed) and

the number of cells in the grid. The larger the number

of frames or the smaller the cell size, the larger the

problem size.

Regarding the grid size, we defined an area of 138x138

meters (approximately the same area of the Fira Mon-

tjuic building where 4YFN 2015 conference took place)

and defined different configurations for the evaluation

grid: 6x6, 12x12, 24x24, 48x48 and 96x96 cells, which

lead to spaces with 36, 144, 576, 2304 and 9216 cells

respectively.

Regarding the input size, we created different datasets

with 100, 1000, 10000, 100000 and 1000000 devices us-

ing the Random Waypoint algorithm. In a real confer-

ence, it is unlikely to spot up to 100000 and 1000000

wireless-enabled working devices. We created these large

ones to test the scalability of the implementation.

On the hardware side, we have used a single dual-

socket server with two Intel Xeon E5640 CPUs, 49 GB

of DDR3 RAM memory and 6 TB of storage. Each CPU

has 4 cores @ 2.67GHz with Hyper-Threading enabled,

leading to a total of 16 physical threads. This server

runs Ubuntu Server 16.04 and Apache Spark version

2.0.1. In these tests we configured the server as a single

Spark worker with multiple cores.

7.2 Performance assessment

We initially conducted some scalability tests, running

the code with the configuration described in the pre-

vious section in order to measure its execution time.

First, we fixed the grid size to 96x96 cells and variated

the number of devices, and then, we fixed the input size
to 1000000 devices and variated the grid size. Results

for these two tests have been depicted in Figures 12 and

13 respectively.

Fig. 13: Execution times for different grid sizes.



10 Unai Lopez-Novoa et al.

Table 1: Shuffle Read and Writes for different input sizes and core configurations. All values are reported in kB.

1 Core 2 Cores 4 Cores 8 Cores 16 Cores
Input

devices
Input

data size
Read Write Read Write Read Write Read Write Read Write

100 7.71 8.84 8.84 8.72 8.72 10.14 10.14 12.49 12.49 16.74 16.74
1000 78.13 44.72 44.72 59.20 59.20 72.29 72.29 79.41 79.41 88.98 88.98

10000 791.02 69.25 69.25 132.22 132.22 238.40 238.40 376.35 376.35 548.13 548.13
100000 8007.81 72.24 72.24 144.35 144.35 286.31 286.31 563.09 563.09 1083.11 1083.11

1000000 81054.69 72.24 72.24 144.47 144.47 288.95 288.95 577.84 577.84 1155.25 1155.25

First, we note that the obtained execution times in

these tests are acceptable for the purpose of overcrowd-

ing detection. In the case of 10000 or 100000 devices

with the largest grid sizes, a delay of several minutes

seems reasonable. In addition, we can observe how the

algorithm benefits from the use of many cores and that

every core configuration scales well. We report in Ta-

ble 2 the speed-up values for the largest problem size

(1000000 devices and 96x96 cells), compared to the ex-

ecution time using 1 core. We can be satisfied for the

values with 2, 4 and 8 cores, where the number of cores

nearly matches the obtained speed-up. This is not so

for the 16-core execution, but we must note that the

extra power comes from the use of 8 HyperThreaded

cores, and not 16 full ones.

After this black-box assessment, we go deeper into

the parameters of our code that affect performance. Our

application is configured as a single Spark job with 2

stages. The first stage runs the compute-intensive part

of the algorithm (including map and reduce operations),

and the second one reads the result of the previous one

and generates the output matrices. We measured that

the first stage covered around 99% of the execution time

in every test.

The information exchange between stages is done

through Shuffling operations, handled by Spark[13]. The

larger the number of bytes in shuffle operations, the

more overheads in the application. We show in Table 1

the number of bytes that are read and written in these

Shuffle operations for several runs with the largest grid

size (96x96 cells) and different input sizes. The values

have been taken from the logs generated by Spark.

From the numbers in the table we can see how pro-

cessing small datasets requires shuffling an amount of

data larger than the input. However, this only happens

for datasets of few kilobytes. In the case of larger in-

puts, the shuffled data turns out to be proportionately

Table 2: Speed-up values over the 1 core configuration

for the largest problem size.

2 Cores 4 Cores 8 Cores 16 Cores
1.99x 3.87x 7.28x 9.58x

smaller, which benefits the scalability of the code. In

particular, processing the largest dataset (81054.68 kB

∼ 79.1 MB) requires shuffling 144,48 kB (72.24 read kB

+ 72.24 write kB) for 1-core execution, and 2.25 MB

(1155.25 read kB + 1155.25 Write kB) for the 16-core

execution. These overheads seem acceptable, as the size

of shuffled data is in every case less than an order of

magnitude smaller compared to the input data.

Besides the amount of shuffled data, there is another

Spark parameter that affects performance: the number

of partitions that the data is split into. Spark assigns

one or several partitions to each worker core, and the

incorrect configuration of this parameter could incur in

a performance degradation or a misuse of the comput-

ing resources (e.g. less partitions than available cores).

In our code, we set this parameter to the default value

provided by Spark: a number of partitions equal to the

number of cores. This provided a sufficient performance

in our tests, and we consider that a deep exploration of

the effects of this parameter falls out of the scope of

this paper. More on how to tune the partitioning can

be found in 13.

Next, we measured the hardware resource consump-

tion of our code in the testing server. To that end

we used a combination of collectd14 to retrieve perfor-

mance metrics, Prometheus15 as a lightweight database

to store these metrics and Grafana16 to create a dash-

board that visualizes this information. We ran the per-

formance monitoring tools for the tests with different

input sizes and core configurations, and all the execu-

tions exhibited similar patterns. We report the results

just for the largest problem size (1000000 devices input

dataset and 96x96 cells grid) in Figures 14, 15, 16 and

17 for CPU usage, memory usage, disk read throughput

and write throughput respectively.

In the first of the performance graphs, we can ob-

serve that the CPU consumption exhibits normal trends.

In the case of memory consumption, we observe how it

13 http://blog.cloudera.com/blog/2015/03/how-to-tune-
your-apache-spark-jobs-part-1
14 collectd - https://collectd.org
15 Prometheus - https://prometheus.io
16 Grafana - http://grafana.org



Overcrowding Detection in Indoor Events using Scalable Technologies 11

Fig. 14: CPU usage for the largest problem size and different core configurations.

Fig. 15: Memory usage for the largest problem size and different core configurations.

Fig. 16: Disk read throughput for the largest problem size and different core configurations.

increases as the application is running, but within an

acceptable range. We see how it gets below 100 MB for

the 1-core execution, and it reaches nearly a 1GB of

occupied RAM for the 16-core execution. These values

seem acceptable for the largest problem size. Regard-
ing the I/O throughput (Figures 16 and 17), we can

observe how the pressure on the disk increases almost

linearly for all the core configurations, both for read

and write operations. In every core configuration, peak

values reach 6 Mbps and 2 Mbps for read and write

operations respectively. Given that every modern hard

drive provides a minimum of 50 Mbps of throughput for

read and write tasks [12], we can claim that I/O does

not seem to be a bottleneck nor a scalability limiting

factor.

As a conclusion for this section, we can state from

these tests that our code exhibits good scalable perfor-

mance. The source code of the distributed implementa-

tion is publicly available in 17.

17 Overcrowding algorithm source code -
https://github.com/morelab/overcrowd-simulator

8 Related work

The literature shows many works that have applied Wi-

Fi technologies to estimate people movements and den-

sity in some area, and in this section we will mention

the most relevant ones from our point of view. In [16]

authors use a passive Wi-Fi tracking system to estimate

people’s trajectories by using routers distributed along

the area of interest. The users’ movements is inferred

from their connection to different access points along

their movement and not by trying to positioning them

in specific location. Barbera et al. [2] apply an approach

based on probe request gathering, similar to ours, in or-

der to estimate the social relations among participants

in a 3-months long campaign. In [18], Schauer et al.

use sensing technologies to estimate the crowd density

inside some specific areas of an airport and the flux

of travelers from one region to the other. However, in

this last work the density estimation is performed in

two wide areas, without the fine granularity that our

approach tries to achieve.

Besides Wi-Fi, other near-range technologies, such

as iBeacons [7] based on Bluetooth Low Energy (BLE),

enable to improve the location accuracy with other con-



12 Unai Lopez-Novoa et al.

Fig. 17: Disk write throughput for the largest problem size and different core configurations.

straints. For example, [22] describes the usage of Bluee-

toth technology to track a visitor flow map during its

visit to an outdoor fair in Ghent, while [23] also uses

Bluetooth technology to estimate crowd density in a

large area by using scanning devices distributed across

the place of the event. Using Bluetooth for the devel-

opment of our work would have been possible but the

choice of Wi-Fi was done for two main reasons: first, the

wider range of space that a single Wi-Fi hotspot covers

compared to the range using Blueetooth, and second,

the ease to obtain and deploy Wi-Fi enabled routers,

compared to Bluetooth ones.

Related to these last works, we would like to point

the interested reader to the contribution by Liu et al.

[14], were they conduct an excellent survey on the many

ways of indoor positioning using different techniques

that can be adapted to improve the estimation of at-

tendees location.

In addition, there are some other approaches in the

literature that use Computer-based vision to estimate

the density of people in some area by obtaining data

from CCTV systems [15],[21]. However, these approaches

require the installation of costly camera monitoring equip-

ment that is not always available in all the infrastruc-

tures. Our approach uses the information provided by

more affordable devices that are already part of the

communications infrastructure.

On the data processing side, the platform proposed

in this work is constructed using a distributed archi-

tecture based on Cloudera. We have selected it because

of its maturity and our previous expertise on manag-

ing big data clusters with this distribution. We found

other works in the literature that use the Cloudera

toolset with different purposes: Cassavia et al. [4] use

the Flume-HBase-SolR-Hue pack to gather Tourism re-

lated data and then conduct fast faceted text search

and visualize the results using Hue. In [1], the authors

state how HDFS-Hue is used to fast index and search

information in the University of Maryland Library.

There are also some alternatives to the Cloudera

toolset to be considered for data processing. Horton-

works HDP18 or MapR19 are ready-to-use Hadoop dis-

tributions which provide a full stack of Hadoop tools

out of the box, similar to Cloudera. Another interesting

software toolset is the Elastic stack20, which provides

the Logstash tool to manage logs (analog to Flume),

the Elasticesarch JSON based indexer (analog to SolR)

and the tool for creating dashboards, Kibana (analog

to Hue).

9 Conclusions and future work

In this paper we have presented an algorithm for over-

crowding detection, integrated into a platform aimed at

localizing attendees in large indoor events. The localiza-

tion process is non intrusive for the attendees, as we set

a series of wireless routers along the monitored building

to capture wireless frames from Wi-Fi enabled devices.

These captures are sent to a processing server, which

estimates the position of wireless devices using the al-

gorithm described in Section 3. The processing software

platform is built on top of the Cloudera platform, which

provides a set of scalable tools. On top of these tools,

we built an application that displays the processed in-

formation in a user friendly way in real time.

We have evaluated the wellness of the overcrowding

detection algorithm in two ways: first, we have mea-

sured the accuracy of the system with real data gath-

ered from an indoor business event in 2015 that at-

tracted several hundreds of attendees. Some routers

were placed along the building and collected informa-

tion from the wireless devices. We calculated that the

relationship between the number of localized devices

and the number of attendees is statistically significant,

and that under the assumption of one wireless device

per attendee, our algorithm locates a 73.96% of the at-

tendees present in the building. We generated a heatmap

representing the most crowded points of the event as

well. Second, we tested the scalability of the algorithm

in an Apache Spark environment. We observed that the

18 HDP - http://hortonworks.com/hdp
19 MapR - https://www.mapr.com
20 Elastic Stack - https://www.elastic.co



Overcrowding Detection in Indoor Events using Scalable Technologies 13

code scaled close to linearly, reaching up to 7.28x of

speed-up in a 8-core execution with a large dataset.

We analyzed the data access patterns of the code and

we measured the usage of memory and disk I/O, and

found no significant bottleneck. After these tests, we

concluded that the code shows a proper scalable be-

haviour.

Our first step in a future work will be to test other

indoor positioning algorithms. Despite its simplicity,

the trilateration algorithm gives good performance for

our purposes. However, other approaches, such as bilat-

eration, could provide a higher rate of detected devices

and more accurate results. In a further step, we would

like to test our platform in new indoor events and con-

duct deeper analytics on collected data. Being built on

top of scalable technologies, we could face higher data

input rates, process them in real time and try to link

them with data from social media, such as Twitter.

Acknowledgements The authors would like to thank Dr.
Carlos Pérez-Miguel for his aid in this work and the anony-
mous reviewers for their insightful comments.

References

1. Abdul Rasheed MM (2013) Fedora commons with

apache hadoop: A research study. Code4Lib Jour-

nal 22

2. Barbera MV, Epasto A, Mei A, Perta VC, Stefa J

(2013) Signals from the crowd: Uncovering social

relationships through smartphone probes. In: Pro-

ceedings of the 2013 Conference on Internet Mea-

surement Conference, ACM, New York, NY, USA,

IMC ’13, pp 265–276

3. Bettstetter C, Resta G, Santi P (2003) The

node distribution of the random waypoint mobility

model for wireless ad hoc networks. IEEE Transac-

tions on Mobile Computing 2(3):257–269

4. Cassavia N, Dicosta P, Masciari E, Sacca D (2015)

Improving tourist experience by big data tools.

In: 2015 International Conference on High Perfor-

mance Computing Simulation (HPCS), pp 553–556

5. Dean J, Ghemawat S (2008) Mapreduce: simplified

data processing on large clusters. Communications

of the ACM 51(1):107–113

6. Fang BT (1986) Trilateration and extension to

global positioning system navigation. Journal of

Guidance, Control, and Dynamics 9(6):715–717

7. Fard HK, Chen Y, Son KK (2015) Indoor position-

ing of mobile devices with agile ibeacon deploy-

ment. In: 2015 IEEE 28th Canadian Conference

on Electrical and Computer Engineering (CCECE),

pp 275–279

8. George L (2011) HBase: the definitive guide.

O’Reilly Media, Inc.

9. Guttman A (1984) R-trees: A dynamic index struc-

ture for spatial searching. In: Proceedings of the

1984 ACM International Conference on Manage-

ment of Data, ACM, New York, NY, USA, SIG-

MOD ’84, pp 47–57

10. Hoffman S (2013) Apache Flume: Distributed Log

Collection for Hadoop. Packt Publishing Ltd

11. International Congress and Convention Associa-

tion (2015) ICCA Statistics Report: The Interna-

tional Association Meetings Market 2014. Tech.

rep., ICCA

12. Kasavajhala V (2011) Solid state drive vs. hard disk

drive price and performance study. Tech. rep., Dell

PowerVault Storage Systems

13. Li M, Tan J, Wang Y, Zhang L, Salapura V (2015)

Sparkbench: A comprehensive benchmarking suite

for in memory data analytic platform spark. In:

Proceedings of the 12th ACM International Con-

ference on Computing Frontiers, ACM, New York,

NY, USA, CF ’15, pp 53:1–53:8

14. Liu H, Darabi H, Banerjee P, Liu J (2007) Sur-

vey of wireless indoor positioning techniques and

systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews)

37(6):1067–1080

15. Lo BPL, Velastin SA (2001) Automatic congestion

detection system for underground platforms. In:

2001 International Symposium on Intelligent Mul-

timedia, Video and Speech Processing, pp 158–161

16. Musa ABM, Eriksson J (2012) Tracking unmodified

smartphones using wi-fi monitors. In: Proceedings

of the 10th ACM Conference on Embedded Net-

work Sensor Systems, ACM, New York, NY, USA,

SenSys ’12, pp 281–294

17. O’hara B, Petrick A (2005) IEEE 802.11 handbook:

a designer’s companion. IEEE Standards Associa-

tion

18. Schauer L, Werner M, Marcus P (2014) Estimat-

ing crowd densities and pedestrian flows using wi-fi

and bluetooth. In: Proceedings of the 11th Interna-

tional Conference on Mobile and Ubiquitous Sys-

tems: Computing, Networking and Services, ICST,

Brussels, Belgium, Belgium, MOBIQUITOUS ’14,

pp 171–177

19. Shahi D (2015) Apache Solr: A Practical Approach

to Enterprise Search, Apress, Berkeley, CA

20. Shchekotov M (2014) Indoor localization method

based on wi-fi trilateration technique. In: Proceed-

ings of the 16th Conference of Open Innovations

Association FRUCT, pp 177–179



14 Unai Lopez-Novoa et al.

21. Velastin SA, Boghossian BA, Lo BPL, Sun J,

Vicencio-Silva MA (2005) Prismatica: toward am-

bient intelligence in public transport environments.

IEEE Transactions on Systems, Man, and Cyber-

netics - Part A: Systems and Humans 35(1):164–

182

22. Versichele M, Neutens T, Delafontaine M,

de Weghe NV (2012) The use of bluetooth for

analysing spatiotemporal dynamics of human

movement at mass events: A case study of the

ghent festivities. Applied Geography 32(2):208 –

220

23. Weppner J, Lukowicz P (2013) Bluetooth based

collaborative crowd density estimation with mobile

phones. In: 2013 IEEE International Conference on

Pervasive Computing and Communications (Per-

Com), pp 193–200

24. Zaharia M, Chowdhury M, Franklin MJ, Shenker

S, Stoica I (2010) Spark: Cluster computing with

working sets. In: Proceedings of the 2Nd USENIX

Conference on Hot Topics in Cloud Computing,

USENIX Association, Berkeley, CA, USA, Hot-

Cloud’10, pp 10–10




