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Abstract
Smart cities have emerged as a strategy to solve problems that current cities face, such as traffic, security, resource management,
waste, and pollution. Most of the current approaches are based on deploying large numbers of sensors throughout the city and
have some limitations to get relevant and updated data. In this paper, as an extension of our previous investigations, we propose a
robotic swarm to collect the data of traffic, pedestrians, climate, and pollution. This data is sent to a base station, where it is treated
to generate maps and presented in an immersive interface. To validate these developments, we use a virtual city called SwarmCity
with models of traffic, pedestrians, climate, and pollution based on real data. The whole system has been tested with several
subjects to assess whether the information collected by the drones, processed in the base station, and represented in the virtual
reality interface is appropriate. Results show that the complete solution, i.e., fleet control, data fusion, and operator interface,
allows monitoring the relevant variables in the simulated city.
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1 Introduction

The growth of cities is a fact worldwide: the population living
in urban areas will increase from 54 to 66% in the next
30 years (United Nations report [1]). This phenomenon can
lead to improvements in the management of resources,

distribution of goods, transportation, and utilization of energy.
Nevertheless, it can cause drawbacks such as traffic jams,
pollution, noise, and security issues. The acquisition, process-
ing, and visualization of urban data will be relevant to achieve
higher levels of efficiency and safety.

Smart cities were conceived to deal with these chal-
lenges [2]. This approach applies information and commu-
nication technologies to ensure the sustainable develop-
ment of urban areas, optimize the management of re-
sources, improve the quality of life, and promote the par-
ticipation of citizens. A prototypical smart city is focused
on monitoring the city, understanding its state, and
predicting its evolution [3].

The concept of smart cities is closely related to the con-
cept of Internet of Things (IoT). In fact, most of the pro-
posals involve the deployment of sensor networks through-
out the cities [4]. Normally, these sensors are fixed in de-
fined places and, therefore, only can collect data in these
locations. The consequences are the appearance of biases
in data and the reduction of the robustness of the whole
system. An approach to address this issue is the integration
of sensors in the public transportation system [5], which
allows taking measurements in more locations, but not to
control the sensor’s positions.
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The SwarmCity project1 proposes the use of a swarm of
aerial robots to monitor the state of a city, collecting relevant
data about traffic, pedestrians, climate, and pollution, among
others. The ultimate goal is to allow an operator, who can be
the city government or any citizen, to know the state of the
city, identifying relevant events and predicting future scenar-
ios. In the case of government, this knowledge is useful to
plan spaces, manage public services, and improve life quality.
In the case of citizens, it is useful to plan their daily activities,
such as traveling by private or public transport or avoiding
activities in extreme weather conditions.

Why aerial robots? Because they are fast, agile, and prac-
tical and have a limited impact on the daily life of citizens. The
use of drones in future smart cities, besides these clear advan-
tages, will also present some issues that must be properly
addressed [6]. Why a swarm? Because a group of simpler
and lighter robots can perform different tasks in a parallel
and robust way.

This paper presents the first integration of the SwarmCity
project including a city simulator with traffic, pedestrians,
climate, and pollution models; a simulated aerial swarm con-
trolled by a behavior-based algorithm; and an immersive in-
terface to allow operators to monitor the city. This system is
better described in Section 3, explaining the elements taken
from previous works and the main contributions of the present
one.

The paper aims at studying the feasibility of the SwarmCity
project concerning swarm intelligence, data fusion, and oper-
ator interface. Other aspects relevant for the implementation
of this system in the real-world, e.g., the deployment and
maintenance costs, drone load capacity and battery life, and
flight regulations, are out of the scope of this work.
Specifically, two relevant questions are answered: “Is the ro-
bot swarm able to measure the state of the city?” and “Are the
operators able to understand what is happening in the city?”

2 Related works

As mentioned above, smart cities collect data about traffic,
parking spaces, crowds, environmental conditions, and pollu-
tion, which can help to improve the management of public
services, urban policies, sustainability, resource and waste
management, and citizen participation. Most of the current
smart cities are based on networks of static sensors and cam-
eras, which are distributed in points of interest throughout the
city [12]. However, some recent projects integrate sensors in
public transportation systems, overcoming some of the issues

derived from fixed sensors [13]. Moreover, there are research
works that go further proposing crowdsourcing schemes, in
which the sensors are installed in private vehicles and mobile
devices [14]. The main contribution of the SwarmCity project
is the possibility to move the sensors through the city, which
allows measuring in the requested locations and times using
fewer sensors.

The system proposed in this paper has some precedents in
the literature. A complete survey on drones for improving
smartness of smart cities can be found in [15], which classifies
the applications of drones in seven categories: object detection
and tracking, distributed processing, surveillance, data collec-
tion, path planning and navigation, traffic monitoring, and
emergency services. Some of the tasks considered in this work
are traffic monitoring, pollution monitoring, accident detec-
tion, fire detection, and network connectivity. This demon-
strates that the variables considered in our work are relevant
for the management of cities, as well as that drones are prom-
ising to measure them.

Another survey focused on drones for consumer applica-
tions can be accessed in [16], including applications of data
relaying, monitoring and data collection, and product delivery,
as well as challenges related to location accuracy, power con-
sumption, communications issues, and public safety. This re-
veals a reality gap that must be considered by the SwarmCity
project, to develop algorithms in simulated scenarios that in
the future can be adapted to real ones. This reality gap encom-
passes not only some aspects related to the robotic platforms,
such as their autonomy in terms of flight capability and battery
life, but also some considerations in the algorithms of the
swarm intelligence, data collection and fusion, and operator
interface. In the present work, these latter challenges have
been taken into account, whereas the former ones are consid-
ered out of the scope of the project.

A final survey on drones integrated with IoT can be found
in [17], which considers multi-robot systems and utilization of
technologies such as 4G/5G networks, cameras, sensors, and
GNSS receivers. This work supports some of the proposals of
the SwarmCity project, such as the communications of the
fleet (e.g., drone-drone, station-drone, and drone-station),
and the sensors integrated with the robots (e.g., cameras and
environmental sensors).

Moreover, the literature contains some proposals about
monitoring cities using aerial robots, each one focusing on
a certain part of the system: drones, sensors, infrastructures,
and communications. A framework for monitoring smart cit-
ies with drones is presented in [18], using urban infrastruc-
ture and public transportation for charging batteries, allowing
communications and supporting tasks. Although the study of
[18] thoroughly analyzes urban scenarios to find the real
tasks, resources, and challenges, it does not address the de-
velopment and implementation of the proposed system in
simulated or real scenarios. The work described in [19] is

1 The SwarmCity project is being developed by the Robotics and Cybernetics
Research Group (RobCib) of the Centre for Automation and Robotics (CAR),
which is formed by the Technical University of Madrid (UPM) and Spanish
National Research Council (CSIC).
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focused on planning the routes of aerial robots to optimize
traffic monitoring, understanding this task as the periodic
observation of traffic over the different streets of the city.
This work considers a centralized architecture in which the
base station represents the city as a graph with nodes and
arcs, planning the paths through these arcs. Conversely, our
work considers a distributed system in which the agents have
to plan their trajectories having limited knowledge of the
whole mission. Another application of drones for traffic
monitoring is reported in [20], but the experiments are fo-
cused on the communications and video streaming between
the Unmanned Aerial Vehicles (UAVs) and the Ground
Control Station (GCS). Finally, the work described in [21]
considers an aerial swarm for monitoring multiple variables
of cities, focusing on the communications between agents
and the data processing algorithms.

Three missions for drones in urban scenarios are consid-
ered in [22]: power-line inspection, civil-defense protection,
and traffic monitoring. In this last case, drones are a promising
alternative to conventional tools for measuring space-time
variables, such as the traffic flow, speed, and density (also
used in our work). Some requirements for drone operations
in cities are posed in [23]: cameras with sufficient range, sat-
ellite positioning, hovering capability, automatic return in
emergencies, high autonomy, and long-range communications
(considered in our simulations). The accuracy of these plat-
forms measuring microscopic traffic data is analyzed in [24],
where some experiments detecting vehicles and pedestrians in
intersections reveal video stabilization and geographic regis-
tration as the two key factors. While geographic referencing is
considered in our simulations, video stabilization is not ad-
dressed, since it is important for the successful implementa-
tion on real platforms [25].

In addition to traffic and pedestrians monitoring, drones
are widely used for remote sensing applications [26], such as
measuring meteorological [27] and air quality parameters
[28]. While measuring meteorological variables (e.g., tem-
perature, relative humidity, pressure, solar radiation...) from
a drone does not imply relevant complications, measuring
the concentration of gases requires proper placement of the
sensors in the drone [29] or the use of a capsule to take
samples [30]. Given that these systems have been validated
in real applications, we have integrated them into our
simulations.

Regarding the control of aerial swarm and visualization of
urban data, most of the works in the literature use conven-
tional interfaces, but some recent works propose the applica-
tion of immersive techniques. The work in [31] shows that
VR is an appropriate technology to show spatial information
in the context of smart cities, but their authors use a conven-
tional screen to recreate virtual environments instead of an
immersive device. A higher degree of immersion is reached
in [32] employing a projector and 3D vision glasses. A

comparison among multiple immersive technologies [33] re-
veals that head-mounted displays provide the highest degree
of immersion, action presence, environmental presence, so-
cial presence, and engagement. Our work goes further taking
advantage of this device to create a complete VR-based
interface.

3 Developments

As introduced previously and shown in Fig. 1, the system
developed in this work consists of four modules with different
purposes:

– A city simulator that integrates models of traffic, pedes-
trians, climate, and pollution, described in Section 3.1.

– A drone swarm controlled by a behavior-based algorithm,
which has been optimized to monitor cars, pedestrians,
and environmental variables, as explained in Section 3.2.

– A base station that receives the measurements of drones
and builds maps of traffic, pedestrians, temperature, and
pollution, presented in Section 3.3.

– An operator interface that uses virtual reality (VR) to
visualize the information, and voice and gestures to inter-
act with the system, described in Section 3.4.

The four modules have been developed in different en-
vironments: the city simulator and operator interface using
the Unity game engine, the swarm intelligence in
MATLAB and the data fusion algorithms in Python.
Three computers are used to simulate the whole system:
one with Windows to simulate the city, another with Linux
for controlling the swarm and treating the data, and another
with Windows to run the interface. The four modules in the
three computers are communicated through the Robot
Operating System (ROS) [7], which manages the exchange
of information between them, e.g., the urban data from the
city to the interface, and the drones’ actions from the
swarm to the city.

In previous works, we developed the city simulator that
integrates models of traffic, pedestrians, climate, and pollu-
tion [8]; the behavior-based algorithm that allows the aerial
swarm to carry out search and surveillance tasks [9, 10]; and
the data fusion algorithm to build traffic maps from car de-
tections [11].

This work is an extension of [11] with the following con-
tributions: generalization from traffic data to complete urban
data; adaptation and optimization of the fleet control and data
fusion algorithms to work with pedestrians, climate and pol-
lution; and development and validation of an immersive inter-
face to allow an operator to monitor the city.
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3.1 City simulator

SwarmCity is a city simulator that reproduces a small
European city.2 As shown in Fig. 2, this city has a central
district, two residential neighborhoods, an industrial area, a
park and some public facilities, such as an airport, a train
station, and a stadium. Additionally, this simulator includes
models of traffic, population, climate, and pollution with be-
haviors that are inspired in real cities. For instance, the tem-
perature and humidity depend on the date and time, the levels
of pollution are higher in industrial areas than in residential
neighborhoods, and there are agglomerations of people in
workplaces in weekdays and leisure places during the
weekends.

SwarmCity has been developed using the Unity game en-
gine and the City Adventure, Road & Traffic System and
Population Engine assets. Some research works use “Cities:
Skylines” to generate complete cities with thousands of agents
(people, vehicles, buildings...), such as [34] that simulates real
urban processes and [35] that studies real estate and city plan-
ning. Other ones use “SUMO: Simulation of UrbanMObility”
simulator [36], which provides microscopic and macroscopic
realistic data of traffic in a wide variety of road systems. We
considered the use of these existing resources but finally de-
cided to develop our city, using only open-source assets to
build a light and fast prototype.

Although we have created a scene with a specific city, the
project can be used to expand this city or create a new one
from scratch. For this purpose, roads, facilities, buildings, and
other urban elements must be designed, as well as traffic,
pedestrians, climate, and pollution behaviors must be defined.
The first task can be done intuitively using the unity interface,
whereas the second one requires changing parameters or
editing scripts. Nevertheless, the required effort is not great
because some modules can be reused and others easily
adapted. The main modules developed for this work are de-
scribed with more details below.

Currently, the city consists of 20 streets with different
lengths (between 50 and 800 m) and shapes (straight and
curves), and 22 intersections of various types (Ts, crosses,
and roundabouts) with different rules (semaphores and prior-
ity). At the beginning of the simulation, a number of cars set
by the user are spawned randomly on the roads. During the
simulation, every car moves throughout the city at a certain
speed that depends on the situation of traffic (light, heavy or
jam), the type of section (straight, curve, or intersection), and
the speed limit of the road (set by the user). When a car arrives
at an intersection, it decides randomly the path to follow, and,
depending on the situation, it moves immediately or waits
until it has priority. As in real cities, intersections tend to
accumulate cars, which can lead to traffic jams. Also, the user
can generate traffic jams and select their locations and times.

The traffic of SwarmCity was analyzed to check if the
model is realistic enough and, therefore, allows drawing rele-
vant conclusions. Traffic models study the relationships be-
tween moving vehicles and infrastructures, to understand
transport systems and optimize their designs. These models
combine theoretical and empirical techniques and normally
manage three variables: density, speed, and flow [37]. To an-
alyze the traffic of SwarmCity, the roads have been discretized
in square cells of S · S m2. In this way, every detected car will
be assigned to any of these cells, so that all the estimated
traffic variables will be referred to these cells.

Traffic density is the number of vehicles per length unit that
occupies a road section at a given moment. As described in
Eq. 1, this variable (k) can be computed in our scenario as the
number of cars detected in a cell (N) divided by the length of
the side of the cell (S) and the number of lanes in the road (L).

k ¼ N
L:S

ð1Þ

Traffic speed represents the distance covered per unit of
time. There are two approaches to obtain this variable from
the instantaneous speeds of the cars. On the one hand, time
mean speed takes into account the cars that go through a
certain point on the road during a given period. On the other

2 The city simulator can be downloaded from https://bitbucket.org/account/
user/robcib/projects/SC

Fig. 1 Overview of the system,
modules, and communications
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hand, space mean speed takes into account the cars that are
located in a certain section of the road at a given moment. In
this scenario, space mean speed is easier to implement because
the drones are continuously covering sections of roads.
Equation 2 shows the computation of traffic speed (V) as the
average value of the individual speeds (vi) of the vehicles
detected in a cell (N).

v ¼ 1

N
: ∑

N

i¼1
vi ð2Þ

Traffic flow is the number of vehicles that crosses a section
of road per unit of time. As represented in Eq. 3, this variable
(q) can be calculated as the product of traffic density (k) and
speed (v).

q ¼ k:v ð3Þ

The measurements of traffic variables after simulating
in SwarmCity for 8 h are collected in Fig. 3, which shows
the pairs of flow and density values of multiple cars in

different places and moments, together with the curves that
represent the maximum and average values of flow for
every density. This data is coherent with previous traffic
modeling works [38] because it includes multiple roads
with different features. For instance, the flow in the inter-
sections will be lower than in the streets, since the vehicles
have to reduce their speeds in these types of sections. In the
same way, the flow in the curved sections will be lower
than in the straight ones. Therefore, we can consider that
the traffic of SwarmCity is enough realistic to use the gen-
erated data for future investigations.

The pedestrians of SwarmCity are created in 12 areas of the
city and can follow hundreds of paths around them. Each of
these spawn points shown in Fig. 4 (a) is activated at a given
moment: e.g., the station and industry points at the beginning
and end of the working days, the park and stadium points
during the weekends, and the city center points both in work-
ing days and weekends. The number of people generated in
each of these spawn points is random within a range that can
be defined by the user.

Fig. 3 Flow-density relationship:
a data obtained from simulations
(blue circles), maximum (dark
gray) and mean curve (light gray)
and b explanation of the different
areas below the curve

Fig. 2 SwarmCity: a bird’s eye
view of the city with its different
areas and b a drone monitoring
traffic over a roundabout
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Finally, the climate model of SwarmCity is based on the
real data provided by the city of Madrid, Spain. This model
integrates the following variables: temperature, humidity, rain,
carbon oxides, sulfur oxides, nitrogen oxides, and solid parti-
cles. Each of the reference points shown in Fig. 4 (b) corre-
sponds to a real weather station placed in a similar point of
Madrid. As described in Eq. 4, the value of a climate variable
V in a certain point p depends on the values of that variable in
the reference points ps with s = {1, 2, 3…} and the distances
between the desired and reference points d(p, ps).

V pð Þ ¼
∑N

s¼1

V psð Þ
d p; psð Þ

∑N
s¼1

1

d p; psð Þ
ð4Þ

A video of the city simulator with traffic, pedestrians, cli-
mate, and pollution can be found in this link: https://youtu.be/
YQ7wutNaqak

3.2 Swarm intelligence

The drone swarm is controlled by an algorithm originally
developed for a search task in an open environment [9] and
later adapted to perform traffic monitoring in SwarmCity [8].
Similarly to that works, the drones are considered to fly at a
constant height of 20 m, so they can detect cars and people
within a circle with a radius of 10 m. To organize the surveil-
lance, the area is split into cells of 14.1 × 14.1 m and the
drones move between their centers. Given that the amount of
energy available in the batteries of the drones is limited, there
are five recharging bases throughout the city. The agents visit
these bases in periods of 5–10 min, depending on the energy
consumption, and charge their batteries for 60 s, and then
continue with the task.

The behavior-based algorithm is distributed, so every drone
shares specific information with the others and individually
decides the next cell to visit. As can be seen in Fig. 5, the
algorithm is based on a network of seven behaviors (more
detailed information can be found in [8, 10]). The six first
behaviors (keep distance, keep velocity, energy saving, diag-
onal movement, collision avoidance, and surveillance) assign
scores to the cells surrounding the current one, whereas the
last one (final decision) computes the general score through
these partial scores. The seven behaviors are explained below:

– Keep distance: Similarly to birds and fishes in nature,
every agent tries to keep stable distances with the sur-
rounding ones. For this purpose, repulsive forces act
when the agents are closer than the equilibrium distance,
whereas attractive forces act when the agents are further
than that distance. See Fig. 6 (a).

– Keep velocity: In the same way, every agent tries to adopt
the velocities of the surrounding ones. In this case, the
influence of the other agents on a chosen one depends on
their distances: the lower distance, the higher influence.
See Fig. 6 (b).

– Energy saving: Every agent tries to consume the least
possible energy in every movement. This energy con-
sumption depends on the robot trajectory: keeping a

Fig. 5 Behavior-based algorithm adapted to surveillance tasks in the
context of smart cities

Fig. 4 Models: a spawn points
for pedestrians and b reference
points for the climate
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direction saves energy, whereas turning right or left in-
creases the consumption. See Fig. 6 (c).

– Diagonal movement: Diagonal movements reduce the
overlapping between sensor footprints in comparison to
the rest of possiblemovements. For this reason, the agents
prefer these movements against vertical and horizontal
ones. See Fig. 6 (d).

– Collision avoidance: Every agent gives priority to avoid
collisions against the others over any other consideration.
For this purpose, a strong penalty is used to avoid that two
agents move to the same cell. See Fig. 6 (e).

– Surveillance: This behavior allows to explore the city
monitoring the desired variables. It uses a map of phero-
mones to decide which direction to take next. Initially, the
concentration of pheromones is uniform through the
whole map. Then, every time an agent visits a cell, it
removes some quantity of pheromones, reducing the in-
terest to revisit that cell. However, the pheromones appear
again as time goes by, given that cells should be revisited
to get updated data. This behavior is slightly modified
depending on the type of data to be monitored:

– Traffic: Two layers of pheromones are used: a first one
(L1) for flying only over the roads, where the cars can be
detected, and a second one (L2) for visiting more fre-
quently the areas where a higher number of cars have
been observed.

– Pedestrians: Similarly to the traffic task, two layers of
pheromones are used: a first one (L1) for flying only over
the city blocks, and a second one (L2) for visiting more
frequently the areas with a higher density of pedestrians.

– Climate: In this case, a unique layer of pheromones is
used to uniformly explore the whole map measuring the
target variables (i.e., temperature and particles).

– Final decision: The previous behaviors generate scores
for the surrounding cells according to their criteria. The
final decision behavior computes a weighted addition of
these scores and selects the cell with the maximum one.

The seven behaviors above described and shown in Fig. 6
have 23 parameters to be tuned for the cars and pedestrians
observation, and 14 for the climate variables monitoring. The
keep distance behavior has three parameters, the keep velocity
one is influenced by a couple, and the surveillance one re-
quires a total of 14. As an example, the keep distance behavior
depends on the distance at which forces are not attractive nor

repulsive (ed0 ), the distance at which attractive and repulsive

forces are maximum (edmax ), and a distance coefficient that
defines the desired distance (βd). Moreover, the final decision
behavior is different from the rest, since it is a weighted sum
between the results of them, whose weights must be optimized
too. More details can be found in [9]. Those parameters must

be selected to maximize the efficiency of the algorithm.
Therefore, three different configurations will be obtained:
one to monitor cars, a second one to observe pedestrians,
and a third one to measure climate variables.

The algorithm for monitoring traffic was configured in a
previous work [8], optimizing the parameters in a simplified
simulator and validating the configurations in SwarmCity.
Although it was optimized to work with 10 drones and 150
cars, it achieves a good performance in a wide range of drones
and cars. Similarly, the algorithms for monitoring pedestrians
and climate have been optimized in the same lighter and faster
simulator, and then the five best configurations have been
tested in SwarmCity, selecting the best one. For this purpose,
two performance metrics are established—one for traffic and
people detection, and another for climate monitoring—and a
genetic algorithm is used to optimize them. More details of
these optimizations are presented in Section 4.1.

3.3 Data fusion

The problem of data fusion considers ND drones that are mov-
ing through the city while measuring the traffic, pedestrians,
temperature, and pollution. Every drone takes measurements
of these variables (md) every time t at its location (x, y). The
objective of the proposed algorithm is to fuse these measure-
ments (md(x, y, t)) obtained by the drones (d = {1,…,ND})
and build maps (M(t)) as similar as possible to the ground
truth measurements (Mref(t)). For this purpose, we developed
three basic methods to create a mapM at the time T from a set
of measurementsmd obtained in previous instants t < T, where
M and md can represent traffic, pedestrians, temperature, pol-
lution, or any other variable of interest.

– Method 1: This method builds the map taking into ac-
count the most recent measurements of the drones.
Initially, the map is a matrix with all the elements equal
to − 1. Then, when a drone obtains a measurement at a
certain location, it is added to the map replacing the pre-
vious value. The result is a map that contains the most
recent data for every cell, but may be vulnerable to the
noise produced by traffic disturbances and sensing errors.

– Method 2: This method builds the mapM computing the
mean of the measurements Mt in a certain time window
before the current time t = T −W, …, T, as defined by:

M ¼ 1

W
: ∑

T

t¼T−W
Mt ð5Þ

– If the drones take several measurements at a point and do
not come back during the time window, the mean of these
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measurements remains on the map. The time window W
can be tuned to minimize the error between the estimated
and real maps. This method provides more stability and
robustness but may take a long time to detect changes in
measured variables. As can be checked, the method 1 is a
particular case of the method 2 when W = 1.

– Method 3: Like the previous one, this method builds the
map M from the measurements Mt in a certain time win-
dow W, keeping the most recent measurements when
there are no more in this period. Moreover, this method
applies a weighted mean to give more importance to re-
cent measurements. As shown by Eq. 6, the weights are
generated through a negative exponential function whose
shape depends on a time constant Tc:

M ¼ ∑T
t¼T−We

−T−t
Tc :Mt

∑T
i¼T−We

−T−t
Tc

ð6Þ

– In this way, two parameters (W and Tc) must be tuned to
minimize the error between the estimated and real maps.
This method is still robust against noise and may adapt
better to changes. Method 2 is a particular case of method
3 with infinite Tc.

The three methods were optimized for traffic data in a pre-
vious work [11] and method 3 with W > 150 and Tc = 10 pro-
vided the best results. In this work, the three methods are opti-
mized for pedestrians and temperature/pollution data and their
results are compared in Section 4.2. The results for traffic, pe-
destrians, and temperature/pollution are expected to be differ-
ent, since the distribution of these variables and the fleet control
are not the same. If these results are not satisfactory, other
models will be studied, such as Kalman or particle filters.

3.4 Operator interface

An interface is required to show the data obtained by the
drones in the simulated city and processed by the data fusion

Fig. 6 Behaviors: a keep distance, b keep velocity, c energy saving, d diagonal movement, e collision avoidance
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algorithm in the base station. As previously explained, this
data is related to traffic, pedestrians, temperature, and pollu-
tion, and must be shown in maps with different ranges of
colors.

The interface has been developed using immersive technol-
ogies to enhance the perception and reduce the workload of
operators. Previous studies support this hypothesis in different
contexts, such as the training of industrial operators for assem-
bly tasks [39] and the control and monitoring of multi-robot
missions [40, 41]. In this case, immersion can improve the
understanding of the information, as well as allow to intuitive-
ly command the swarm.

Among the different immersive technologies, virtual reality
has been chosen against augmented reality (AR), since it is
more suitable for the exploration of extensive areas with large
amounts of data [42]. VR requires the integration of different
elements to deal with data description and management, dis-
play or rendering techniques and integration of users in simu-
lation loops [43]. In addition to virtual reality, the interface
provides operators with natural language and gestures com-
mands to configure the point of view and the shown
information.

The main purpose is to improve the capacity of operators to
monitor high numbers of robots and understand large amounts
of information, considering that they have not been extensive-
ly trained and have short periods. In this particular case, the
operators need to know what is happening in the city, where
are the drones, and where it is necessary to explore, whereas
the interface must achieve an understandable way to show
them all this information. Immersive interfaces must turn the
user subjective impressions into comprehensive and realistic
experiences. As a way of immersion, VR is called to be ap-
plied for supporting many tasks soon, such as education [44],
medical interventions, and industrial design [45].

The VR interfaces use specialized hardware to generate the
immersive experience, increasing the fidelity in the recon-
struction of scenarios and providing the operators with tools
for interaction. In this work, we used the HTC Vive head-
mounted device (HMD), as well as the Leap Motion hand
detector. The combination of both devices makes possible
the integration of the hands of operators in the VR scenario,
as well as the implementation of natural language to control
the interface.

The HTC Vive HMD is used to visualize the virtual city
with the relevant information and to manage the interface
voice control. It consists of a head-mounted display with
two screens and headphones, two base stations that allow
determining its position and orientation in the room, and two
controllers that can be used for interacting in the VR environ-
ment. Moreover, the LeapMotion is a small gadget formed by
two cameras and three LEDs, which can detect and render
both hands in VR environments. This device allows operators
to use their own hands instead of the HTC Vive controllers,

which gives way to a much more natural and intuitive inter-
action. Figure 7 shows the Leap Motion installed on the front
side of the HTC Vive glasses.

The VR environment was created by using Unity, a game
engine that is widely used in the videogame industry, and a set
of assets, packages produced by ourselves or third parties. The
Unity project reproduces the city with its buildings, roads, and
other equipment in the same locations. Apart from this main
structure, the interface integrates multiple maps (traffic, pedes-
trians, temperature, and pollution), so the operator can change
among the variables to evaluate the state of the city.

Among the assets used in this project, the Leap Rig pack-
age is especially relevant, since it includes the Hands Models
and Event Systems, which make possible the hand detection
and gesture control. First, the Hands Models asset detects all
the phalanges of the hands, allowing to know whether the
hands are opened or closed, as well as any other interesting
position. Second, Event System asset manages everything re-
lated to the representation of hands in the scene.

The interface hosts five maps: traffic, which represents the
traffic density in vehicles per kilometer; pedestrians, which
represents the number of people per 100 square meters; tem-
perature, which shows the temperature in Celsius degrees;
pollution, which shows the pollution particles in parts per
million; and maximum values, which points out the locations
with the highest values of traffic, pedestrians, temperature,
and pollution. All the maps instead the latter one use the same
range of colors and albedo: the lower values are represented in
green tones and more transparent, whereas the higher values
are shown in red tones and less transparent. Figure 8 shows the
interface with maps of different variables.

As previously stated, the interaction of operators with the
interface is based on natural language and gestures. On the one
hand, the voice commands collected in Table 1 allow users to
interact with the interface, changing the active map and mod-
ifying the city. On the other hand, the gestures shown in
Table 2 and Fig. 9 are used to move on the scene and search

Fig. 7 Leap Motion hand detector with HTC Vive HMD. Source: Leap
Motion
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the best point of view. Finally, as shown in Fig. 10, the oper-
ators can teleport to a location in the city pointing with the
index finger at this location and saying the command “jump.”

A video of an operator using the interface to monitor the
city can be seen in this link: https://youtu.be/jWhyRjXLVEs.

4 Experiments

The experiments were performed to validate the whole sys-
tem: swarm control, data fusion, and operator interface. As
introduced above, we wanted to answer two questions: “Is
the robot swarm able to measure the state of the city?” and

“Are the operators able to understand what is happening in the
city?”

To answer the first question, the real and measured maps of
traffic, pedestrians, climate, and pollution are compared. For
this purpose, the behavior-based algorithm has been optimized
to search pedestrians and measure temperature/pollution (see
Section 4.1), as well as the data fusion algorithm to build maps
from the measurements of these variables (see Section 4.2).

To answer the second question, a set of experiments with
operators using the interface to monitor the city has been per-
formed. In these experiments, we have checked if the opera-
tors understand the most relevant events that happen in the
city, as reported in Section 4.3.

4.1 Swarm intelligence

As previously mentioned, the drones are controlled by a
behavior-based algorithm with 7 behaviors and 23/14

Fig. 8 Maps: a traffic (top view),
b temperature (top view), and c
maximum values (user view)

Table 1 Voice commands

Voice command Interface action

Traffic Shows the map of traffic.

Pedestrians Shows the map of pedestrians.

Temperature Shows the map of temperature.

Pollution Shows the map of pollution.

Maxima Show the map of maximum values.

Clean Remove the buildings to make the maps clearer.

Restart Recovers the buildings after they were cleaned.

Table 2 Gesture commands

Gesture command Interface action

Thumbs up/down The player ascends/descends in the scene.

Fists The player moves in the direction of his/her fists.
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parameters. Three variants of this algorithm are taken into
account: the first one for traffic monitoring, the second
one for pedestrians’ observation, and the final one for
climate/pollution monitoring. The three algorithms have
been optimized by using simplified simulators. The first
one creates cars that appear in certain points inside the
roads, stay during a time window in those positions and
then disappear. Afterward, new cars are created in differ-
ent positions. The second simulator is similar to the first
one, but creating pedestrians outside the roads. In the last
simulator, the swarm only covers the whole city equally,
without distinguishing between areas with or without
roads.

The algorithm has been optimized to maximize the effi-
ciency in every simulator:

– For cars/pedestrians monitoring, the efficiency is defined
as the number of cars/pedestrians observed during each
time window, divided by the total number of
cars/pedestrians.

– For climate monitoring, the efficiency is defined as the
minimum achievable mean age, divided by the mean age
of the information in the map. The age of the information
associated with a cell is defined as the time elapsed since
the last information was obtained. Given that the amount
of drones available is limited, the minimum achievable
mean age is simply estimated by:

ai ¼ 1

2

ASC

Na
:vn:2:Rf

ð7Þ

where ai is the ideal age, ASC is the area of the city, vn is the
nominal flying velocity, and Rf is the radius of the sensor
footprint.

The optimization of the algorithms has been performed
using a genetic algorithm, which is similar to the used in [8]
and has the following features:

– Individuals: The 23/14 parameters normalized between 0
and 1 (see Table 3).

– Population: 20 members initialized randomly.
– Fitness: Efficiency in the simplified simulator.
– Crossover: Roulette wheel technique with probabilities

proportional to fitness values.
– Mutation: Random with a probability dependent on the

diversity of the member compared to the population.
– Selection: the best 20 members from the 40 available.
– Termination: Maximum number of generations (20), gen-

erations without an improvement of 10% in the best
member (3) or generations without an improvement of
10% in the mean of the population (2).

The optimization of the algorithm for traffic was performed
in the previous work [8], providing the parameters shown in

Fig. 10 User shooting a ray for
teleport in the city

Fig. 9 Downmovement executed
by the user
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Table 3 and efficiencies of 26% in the simplified simulator and
25% in SwarmCity. The optimization for pedestrians finished
after 11 generations because there were no improvements in
the best member and mean of the population, reaching the
efficiencies shown in Table 4 (41% in the simplified simulator
and 11% in SwarmCity) with the configuration collected in
Table 3. Finally, the optimization for temperature/pollution
finished after 13 generations because there were no improve-
ments in the best member and mean of the population,
reaching the efficiencies shown in Table 4 (59% in the sim-
plified simulator and 48% in SwarmCity) with the configura-
tion collected in Table 3. In the case of pedestrians’ search, the
difference between the efficiencies in simplified and
SwarmCity simulators is remarkable and can be attributed to
the differences in the number of pedestrians (lower in
SwarmCity) and their distribution in the map (more heteroge-
neous in SwarmCity). However, we have observed that the

best members of the simplified simulator also achieve the best
scores in SwarmCity.

4.2 Data fusion

As already mentioned, three methods are proposed to fuse the
data provided by the drones and build maps of the target
variables. Method 1 takes the last measurements at every lo-
cation of the city to build the maps, whereas methods 2 and 3
respectively use means and weighted means in certain time
windows. In a previous work [11], the algorithm was opti-
mized for traffic data and method 3 with W > 150 and Tc =
10 provided the best results. In this section, the algorithm is
optimized for pedestrians and temperature/pollution data.

Four 1-h-long simulations with 10 drones monitoring pe-
destrians and temperature/pollution were performed to gener-
ate data and test multiple configurations of the algorithm. As

Table 3 Configurations of the algorithm for traffic, pedestrians, and temperature/pollution monitoring

Parameter Description Traffic Pedestrians Temp/
Pol

Surveillance

ϕL1
0 Init. phe. value, L1 187.3 105.2 123.6

ϕL2
0 Init. phe. value, L2 66.6 48.5 –

SL1roads Source of phe., roads 27.0 26.4 18.5

SL1no−roads Source of phe., no-roads 4.80 7.06 (18.5)

SL2 Source of phe., targets 1.6 6.07 –

DL1
roads Diff. coeff., no-roads 0.64 0.17 0.40

DL1
no−roads Diff. coeff., roads 0.49 0.87 (0.40)

DL2
roads Diff. coeff., no-roads 2.92 1.56 –

DL2
no−roads Diff. coeff., roads 1.07 1.58 –

δL1 Drop of phe., L1 − 0.09 − 0.60 −0.85
δL2 Drop of phe., L2 − 0.44 − 0.31 –

βΦ Evaluating mode 0.16 0.50 0.64

Δttargets Time window 212.2 134.8 –

Rtargets Inhibit radius 16.7 57.13 –

Keep distanceed0 ed ∣ Ft
i
j ¼ 0 13.6 11.8 24.2edmax

ed ∣ Ft
i
j is maximum 49.7 28.0 50.0

βd Distance coeff. 0.92 0.50 0.40

Keep velocity

αv Distance coeff. 4.96 −0.22 −5.1
Velocity control

vn Nominal velocity 7.6 10 4.0

Final decision

αE Energy cost coeff. 157.8 94.3 134.2

αDM Diagonal movement
coeff.

105.2 18.4 112.6

αD Keep distance coeff. 85.4 75.0 66.0

αV Keep velocity coeff. 74.6 50.5 105.0
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can be seen in Fig. 11, four maps are obtained every second:
two that show the real pedestrian concentration and tempera-
tures in the city, and two that collect and process the values
measured by the drones. As in the previous work, the real
maps have been averaged in a time window of 30 s, to deter-
mine permanent situations instead of instantaneous phenome-
na. As shown in Eq. 8, we can define the error e as the differ-
ence between real and estimated maps (Mref and M):

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NP

: ∑
i; jð Þ:M Pð Þ≥0

Mref Pð Þ−M Pð Þ� �2s
ð8Þ

Only the NP points with measurements (P ∣M(P) ≥ 0)
are taken into account. This variable is useful to measure
the performance of data processing algorithms but may
produce disturbances when evaluating swarm control algo-
rithms. For instance, a configuration that leads the drones
to be static at certain points could produce less error than
another that allows a wider exploration of the map, if the
second one does not visit periodically all the points and
keeps non-updated data.

We applied the three methods with different parameters:
method 2 with W = {10, 20, 30, 40, 50, 60, 90, 120, 150,
180, 210, 240, 300, 360, 420, 480, 540, 600}s and method 3
with the same time windows W and Tc = {10, 50, 100, 500,
1000}s. The errors for pedestrians and temperatures obtained
with the proposed methods and their dependence on the time
windows are shown in Fig. 12. As can be seen, the best results
for pedestrians are provided by the method 2 with
W ∈ [120,180], whereas in the case of temperature are provid-
ed by the method 2 with W < 40. Therefore, method 3 with
W = 150 and Tc = 10 is used for traffic monitoring and method
2 with W = 120 and W = 30 for pedestrians and temperature
monitoring hereinafter.

4.3 Operator interface

A set of experiments were performed to validate the
immersive interface developed to monitor the state of
SwarmCity. For this purpose, 33 volunteers were recruited
from the university, including BSc, MSc and PhD students
with ages between 20 and 32. In these experiments, each

Fig. 11 Real and measured maps
of pedestrians and temperatures
during one of the simulations

Table 4 Efficiencies of the five best members in pedestrians and
temperature/pollution

Configuration Simulator SwarmCity

Pedestrians

1 0.41 0.11

2 0.41 0.08

3 0.41 0.07

4 0.41 0.05

5 0.41 0.05

Temp/Pol

1 0.59 0.48

2 0.58 0.48

3 0.58 0.46

4 0.58 0.45

5 0.58 0.44
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volunteer had to perform one mission, monitoring the city for
4 min and answering a questionnaire about the observed
phenomena.

Three missions were created for the experiments:

– Mission 1: A car breaks down in the city center, causing
an important traffic jam. The temperatures are slightly
higher in the south than in the rest of the city. The rest
of the variables are not relevant.

– Mission 2: An accident in a factory causes a fire that
increases the temperature and pollution in the indus-
trial area. The traffic is higher in the city center, but
there are no jams. The rest of the variables are not
relevant.

– Mission 3: A festival takes place in the park, gathering
hundreds of people in that place. The traffic is slightly
denser in the city center, whereas the temperatures are a
little bit higher in the industrial area. The rest of the var-
iables are not relevant.

The questionnaires had the following structure:

– Personal information: Name, gender, age, studies, email,
and experience with video-games and virtual reality
(from 0 to 10).

– Performance in the mission:

– Mission 1: Most relevant phenomenon (jam), area with
higher traffic (center), map with more variability (traffic),
and area with higher temperatures (south).

– Mission 2: Most relevant phenomenon (fire), area with
higher traffic (center), most similar maps (temperature
and pollution), and area with higher temperatures (south).

– Mission 3: Most relevant phenomenon (festival), area
with higher traffic (center), area where more drones are
needed (park), and area with more pedestrians (park).

– Evaluation of the interface:

– Workload: Experienced mental demand, physical de-
mand, temporal demand, effort, performance, and frustra-
tion (from 0 to 10).

– Interface: Evaluation of visualization elements (city,
maps, displays...) and interaction tools (voice, gestures,
movements...) and proposal of changes for the next ver-
sion of the interface.

As mentioned above, every volunteer performed one mis-
sion and answered four questions about it. The results are
shown in Table 5. The participants obtained a mean score of
7.73 over 10 with a standard deviation of 2.53, which reveals
that their understanding of the scenario was high. This can be
considered a good result considering that the volunteers were
performing this task for the first time and some of them had
not got prior experience with virtual reality. This result vali-
dates not only the immersive interface but also the selection of
information.

Fig. 12 Errors obtained between real and estimated maps using the three methods

Table 5 Performance of
the operators in the
missions (from 0 to 10)

Mission Mean Std. Dev.

Mission 1 8.4091 1.6855

Mission 2 7.7273 3.0526

Mission 3 7.0455 2.6968

Total 7.7273 2.5282
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Moreover, the volunteers declared the workloads collected
in Fig. 13. The six variables related to workload have been
taken from the NASATask Load Index (NASA-TLX) [46], a
widely used assessment tool for the workload perceived when
performing a task. Mental demand quantifies the required
mental and perceptual activity, whereas physical demand
quantifies the required physical activity. Temporal demand
measures the time pressure felt by the operator due to the pace
of tasks. Performance represents how successful was the op-
erator in performing the task, and effort indicates how hard
had the operator to work to accomplish it. Finally, frustration
determines if the operator felt irritated, stressed and annoyed,
or content, relaxed and complacent during the task. As can be
seen, all the variables that impact positively on workload are
below 5/10, whereas the performance is slightly above this
threshold. The total workload for the operators, obtained as
the mean of these variables, has a mean of 3.56with a standard
deviation of 1.71.

Regarding the visualization of the information, seven op-
erators described the interface as good, five as clear, and two
as intuitive. Nevertheless, the operators also mentioned some
drawbacks: the color code is complex (2), buildings hide some
parts of maps (2), the menu is not enough visible (1), the
location in the map is sometimes hard, and maps cannot be
combined (1).

Regarding the interaction with the interface, four operators
described the interface as good, four as intuitive, and one as
effective. The voice commands were evaluated positively by
two operators, whereas the gestures were mentioned positive-
ly by one. However, the operators also revealed some prob-
lems: the movements are slow (2), the flight can be improved
(2), the jump does not work properly (2), the detection of

hands sometimes fails (1), and ascend/descend movements
can be improved (1).

Finally, the operators made some suggestions for the next
version of the interface: changes in the color code (2), im-
provements in the laser pointer (2), faster (1) and agile (1)
movements, combination of motions (1), possibility to see
past states of the maps (1) and a mini-map with the location
of the operator in the city (1). All these suggestions will be
taken into account in future works.

4.4 Discussion

The experiments were performed to validate the complete
system consisting of swarm intelligence, data fusion, and op-
erator interface. These tests were used to optimize both the
behavior-based algorithm that controls the swarm and the data
fusion method that creates the maps. Two research questions
were asked about the capability of the swarm to determine the
state of the city and the ability of operators to know this state.

The behavior-based algorithm has shown remarkable flex-
ibility since it can be adapted to diverse scenarios with rapid
optimization. In previous work, the algorithm was optimized
to search cars leading the drones to fly over the roads, whereas
in this work, it has been optimized to search pedestrians
allowing them to fly over the blocks, as well as to uniformly
cover the city to measure environmental variables. The effi-
ciencies obtained in both simulators, as well as the quality of
the collected data, demonstrate the performance of this algo-
rithm. A limitation of the optimization has been revealed in
the pedestrians’ search: if the optimization scenario is consid-
erably different from the application one, the efficiency of the
algorithm may decline. Therefore, accurate models of the

Fig. 13 Workload of the
operators in the missions
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different variables are required to adequately optimize the pa-
rameters of the algorithm.

Moreover, the data fusion algorithm used to build maps
from drone measurements has shown similar flexibility. This
method can be adapted to map discrete (e.g., detections of cars
and pedestrians) and continuous variables (e.g., climate and
pollution parameters) just by choosing a method and tuning its
parameters properly. The high similarity between the real and
measured maps of traffic, pedestrians, and temperature dem-
onstrates the appropriateness of this algorithm.

Finally, the interface uses virtual reality to immerse the
operators in the city and show them the maps, as well as voice
and gesture commands to configure the displayed informa-
tion. The tests performed with operators demonstrate that the
interface allows them to understand the state of the city with
an acceptable workload. The volunteers evaluated positively
their experience and proposed some changes for the interface.
These results validate not only the quality of the interface but
also the performance of the swarm control and data fusion
algorithms, given that the information obtained by these algo-
rithms is enough for the operators to understand the state of
the city.

These results reveal that the two research objectives have
been addressed successfully. The system has been validated in
a small simulated city using a fleet of ten drones, but it can be
scaled to larger simulated cities just by adding more drones.
Nevertheless, more work is required to overcome the reality
gap and apply these developments to a real robot fleet in a real
smart city.

5 Conclusions

In this paper, a prototype of a monitoring system for smart
cities based on an aerial robotic swarm is proposed, devel-
oped, and validated in simulation. The main contributions of
the work are applying a behavior-based algorithm optimized
to monitor pedestrians, climate, and pollution in cities, devel-
oping a data fusion algorithm to build maps from these mea-
surements taken by the drones, and using an immersive inter-
face to allow an operator to monitor the state of the city. As far
as we know, our interface is the first that has this degree of
immersion and is devoted to monitoring a smart city.

The experiments performed with operators monitoring the
city show the performance of the proposed system. On the one
hand, it has been demonstrated that the robot swarm con-
trolled by a behavior-based algorithm is a suitable tool to find
the relevant information of a city. On the other hand, it has
been proven that the operators using an immersive interface
can perceive the state of the city, discovering the behavior of
different variables and detecting the most relevant events.

In future works, the behavior-based algorithm will be
adapted to perform other tasks in the city: e.g., search for

parking sites and assign them to vehicles, support the cleaning
of streets, and transport packages among different locations.
Besides, some well-known models for data fusion, such as
Kalman and particle filters, will be tested to improve the qual-
ity of maps. Finally, a set of tools for commanding the fleet
will be implemented in the interface, such as setting areas of
interest and target variables to the swarm.
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