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Abstract Searching through vast libraries of sound

samples can be a daunting and time-consuming task.

Modern audio sample browsers use mappings between

acoustic properties and visual attributes to visually dif-

ferentiate displayed items. There are few studies fo-

cused on how well these mappings help users search

for a specific sample. We propose new methods for gen-

erating textural labels and positioning samples based

on perceptual representations of timbre. We perform a

series of studies to evaluate the benefits of using shape,

color or texture as labels in a known-item search task.

We describe the motivation and implementation of the

study, and present an in-depth analysis of results. We

find that shape significantly improves task performance,

while color and texture have little effect. We also com-

pare results between in-person and online participants
and propose research directions for further studies.

Keywords timbre perception, texture synthesis,

color, shape, known-item search, media browsers

1 Introduction

Modern sample libraries can contain thousands of syn-

thesized or recorded sound samples. A common ap-

proach when searching for a sample is to filter the con-
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Université de Sherbrooke
NECOTIS, CIRMMT
ORCID : 0000-0002-3378-5794
E-mail: etienne.richan@usherbrooke.ca

Jean Rouat
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tents of the library based on keywords or categories and

then audition the resulting samples one by one.

Several media browsers have been developed to ac-

celerate this process by placing samples produced by

query results in a scatterplot visualisation, or a starfield

display [4]. Some implementations allow users to specify

what metadata or audio descriptors to use as the axes

of the display [9, 15], while others use dimensionality

reduction (DR) methods to project a high-dimensional

set of auditory features to a 2D space [16, 18, 24]. The

latter approach provides less meaningful axes, but can

produce an effective clustering of similar sounds. This

feature based generation of sample coordinates is often

augmented by a visual labeling method. These visual

labels can help the user to recognize types of sounds or

sounds that they have already auditioned. In existing

sample browsers, colors are mapped to timbre features

[9, 16, 17, 18], and shapes are used to either distinguish

categorical variables (e.g. instrument type) [9] or to vi-

sualize time-varying features [18, 25].

1.1 A novel sample browser with textural labels

We developed a sound sample browser which lets users

visually label sounds using textural images. It uses a

pretrained neural network model [34] for artistic style

transfer [19] to synthesize visual labels for all samples

in the library based on a reference set of sound-image

pairs. Users can simply choose textural images that

they wish to associate with certain sounds and the soft-

ware takes care of the rest. The advantage of using this

method is that no explicit mapping between sound de-

scriptors and visual parameters needs to be defined. We

think this is an interesting alternative to the more com-

mon approach of associating specific audio features to
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shape or color parameters. Our browser also uses di-

mensionality reduction of timbre features to place sam-

ples in the interface.

1.2 Research questions

While we wish to evaluate the design choices of our sam-

ple browser, to what degree any of these types of visual

labels improve sound search is still an open question.

We designed our study to address the following ques-

tions:

– Is there a difference between using color, shape or

texture as visual labels in an audio sample browser?

– Does our timbre feature based placement method

assist search, and if so, are these visual labels effec-

tive when the information provided by placement is

removed?

This article presents the design of the study as well

as methods for generating visual labels and placing mu-

sical samples based on their timbre features. We provide

in-depth analysis of results from a group of 15 par-

ticipants who were recruited to perform the study in

a controlled environment. We find that the placement

method and shape labels improve participant efficiency,

but do not significantly improve task completion time.

We also compare these results with a second group of

14 participants who performed the study remotely, but

find few commonalities between the two groups.

2 Related work

The field of information visualisation provides a rich re-

source of theory and guidelines for visual label design.

Borgo et al. [7] provide an extensive review of glyph

visualisation, a general form of label designed to com-

municate values visually. Chen and Floridi [13] propose

a taxonomy for four types of visual channels: geometric

channels (e.g. size, shape, orientation), optical channels

(e.g. hue, saturation, brightness, texture, blur, motion),

topological and relational channels (e.g. position, dis-

tance, connection, intersection) and semantic channels

(e.g. numbers, text, symbols).

While visualisation theory principles can be applied

to arbitrary sources of information, visualisations of

sound can benefit from visual metaphors that appeal

to intuitive associations we might make between acous-

tic and visual properties.

2.1 Cross-modal correspondences for timbre

visualisation

Studies of cross-modal correspondences provide useful

insights for audio interface design as they highlight as-

sociations between vision and audition that a large part

of the population might intuitively understand. The

kiki-bouba experiment [59] is an early study of such

correspondences which found that across cultures and

ages, most people associate the vocalized word “bouba”

with rounded shapes and “kiki” with pointed shapes.

Recently, an investigation of the cross-modal correspon-

dence of timbre and shapes [2] came to a similar conclu-

sion with regard to musical timbre.“Soft” timbres were

associated with round shapes, while “harsh”, brighter

timbres were associated with spiky shapes. The same

work also highlighted a tendency to associate the soft

timbres with blues and greens and harsh timbres with

reds and yellows.

Giannakis and Smith [20] studied correspondences

between acoustic descriptors and visual parameters, fur-

thering work begun by Walker [54] on associations be-

tween pitch, loudness and visual features such as size,

position and lightness. With Sound Mosaics, they stud-

ied associations between synthesized timbres and tex-

tural images containing repeated elements with varying

parameters such as coarseness, distribution, and granu-

larity. They found strong associations between gran-

ularity and spectral compactness as well as between

coarseness and spectral brightness.

Grill and colleagues performed a study highlight-

ing several high-level perceptual qualities of textural

sounds [23] and proposed visualisations [22] as well as

methods for extracting descriptors [21] for each one.

Two of their proposed perceptual metrics, height and

tonality (measuring whether a sound is more tone-like

or noise-like), are quite similar to the timbral descrip-

tors for brightness and sprectral flatness. Both were vi-

sualised using color: height was mapped to a range of

hue and brightness ranging from bright yellow (high) to

dark red (low) and saturation was mapped to tonality.

Berthaut et al. [6] as well as Soraghan [51] studied

potential correlations between acoustic properties and

those of animated 3D objects. The former found a pref-

erence for associating the spectral centroid with color

lightness and tonality with texture roughness. The lat-

ter found that participants preferred to associate geo-

metrical resolution with attack time, spikiness with the

spectral centroid and visual brightness with the ratio

of even to odd harmonics. Both found that a common

preference among participants was much less obvious

when multiple mappings were in effect.
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When developing a sample browser incorporating

timbre visualisation, designers can either decide on im-

plementing a fixed subset of these acoustic to visual

mappings or provide options for users to modify the

mappings themselves. This second option may increase

the tool’s versatility, but is dependant on users’ knowl-

edge and interpretation of acoustic and visual descrip-

tors. This is what inspired us to develop our sample

browser with a simple method for users to associate

textures and timbres by selecting pairs of images and

samples.

2.2 Relevant work in audio browsers

Dimensionality reduction (DR) of low- and high-level

audio descriptors is a common practice in audio browser

research. A concise overview of commonly used DR

methods in audio browsers can be found in [47] and

[53]. Islands of Music [43] and MusicMiner [42] pop-

ularized using self-organizing maps (SOM) to organize

music libraries into topographic maps of musical gen-

res based on a large number of extracted low-level and

high-level features. As songs are generally associated

with visual metadata such as album covers and pictures

of the artists, these can be used to visually differentiate

and help users recognize specific songs.

CataRT [49], a tool for concatenative sound synthe-

sis and exploration, presents sound grains (very short

sound samples) in a starfield display. Originally allow-

ing users to choose audio descriptors to define each axis

and sample colors, it was later augmented with a com-

bination of DR methods to assist sound search in large

collections [48]. This tool seems to have been influen-

tial in the design of recent drum sample browsers and

sequencers. The Infinite Drum Machine [40] demon-

strated the creative possibilities of visualising t-SNE

DR of drum samples in a web-based drum machine,

while XO [60] is an example of a professional tool based

on similar principles. Both tools use color and place-

ment to differentiate sample timbre and allow users to

select regions of the sample space to associate with spe-

cific beats in a rhythm sequence. Sample color is used

to visualise the third dimension of the reduced space

in [40], while XO uses sample color to distinguish pre-

dicted drum types (e.g. kick, snare, cymbal).

Stober and Nürnberger developed MusicGalaxy [52],

a music browser proposing an innovative solution to

the commonly occurring issue with dimensionality re-

duction that some similar elements can be projected

to different regions of the reduced space. When focus-

ing on a specific song, its nearest neighbours in the

high-dimensional feature space are made obvious by

increasing their size. In subsequent user studies, this

method compared favorably to the more common “pan

and zoom” method of navigating large collections.

The following section describes the sample browsers

that are closest to ours in design that also incorporated

user studies in their development.

2.3 Studies of audio sample browsers

Heise et al.[24] developed SoundTorch, which uses a

SOM to organize environmental sound samples in 2D

space. Participants preferred their method to a list-

based interface. They later added a visualisation of the

temporal envelope as the contour of each element [25],

but did not study the effects of this additional visual

information on the effectiveness of the tool.

Frisson et al. [18] developed AudioMetro, which uses

t-SNE DR of audio features and a proximity grid to

place sound samples in a starfield display. They also use

color and shape labels to differentiate samples. They

map the timbre descriptor for brightness to the color

lightness channel, and the temporal evolution of sharp-

ness to the contour of the visual labels. Their study

mainly evaluated the effect of different methods of spa-

tial organisation of the sound samples, and they offer

little analysis of the effect of the labels. They remark

that simply using DR would often result in overlap-

ping samples, which they solved by displacing samples

to points on a regular grid. We encountered the same

problem but implemented a different solution using sim-

ulated springs to push samples apart (section 3.4), an

approach also found in [48].

In their master’s thesis, Font [15] presented the re-

sults of queries to the Freesound database [17] using

a starfield display. Their study found that participants

were most successful at finding sounds when they could

choose sound descriptors as axes. This was compared

to placement obtained via PCA DR which they found

to perform worse than random placement.

None of these studies looked in-depth into the effect

of their choices of visual labels, so we made measuring

this effect the main objective of our study design.

3 Study design

The goal of our study is to determine whether and to

what extent different types of labels (shape, color, and

texture) help in the task of searching for a specific sam-

ple in a starfield display. The secondary objective is to

evaluate the effectiveness of our dimensionality reduc-

tion based placement approach (section 3.4). We de-

signed a known-item search task that would allow us to

test different combinations of labelling and placement
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methods. In order to obtain a baseline for comparison,

we create baseline variants for labels and placement.

The label baseline uses grey circles to represent each

sample and the placement baseline assigns random co-

ordinates to each sample.

3.1 Task design and interaction

The task interface (with baseline labels) is shown in

figure 1. In each task, 30 sounds are picked at random

from a dataset and one is designated as the target sound

the participant must find. Individual sound samples are

displayed as circular shapes arranged on a light grey

canvas. Samples are played by mousing over the cor-

responding element. Pressing the space bar plays the

target sound and clicking on the correct element com-

pletes the task. Before each task, the participant must

place their cursor in a corner of the canvas. This corner

rotates clockwise around the canvas between tasks in

order to vary the starting point.

Fig. 1 The task interface used in the study. Left : The inter-
mediary screen shown before each task. Right : An example of
a baseline task. Red outlines indicate an incorrectly clicked
sound while a green outline highlights the current playing
sound.

3.2 Sets of tasks to introduce and evaluate timbre

visualisation methods

Participants progress through the study by complet-

ing sets of tasks that introduce and evaluate the place-

ment method and the visual labels. They first com-

plete a practice task with baseline labels and random

placement, that can be repeated until they are cer-

tain they understand how the interface works. They

then complete a set of tasks with baseline labels and

random placement. This represents the worst-case sce-

nario, where no relevant information is being visualised.

The rest of the study progresses by alternating be-

tween familiarization and evaluation tasks. During fa-

miliarization tasks, participants are encouraged to take

their time and explore the set of samples while searching

for the target sound. During evaluation tasks, partici-

pants are instructed to find the target sound as quickly

as possible. We first introduce the dimensionality re-

duction (DR) based placement method with baseline

labels. We then introduce a visual labelling method

(color, shape or texture) with a set of tasks that uses the

DR placement. Finally, we test the effectiveness of the

labels on their own in a final set of tasks with the same

labelling method and random placement. Before each

set of tasks, participants read some brief instructions,

which can be found in the supplementary materials of

the paper (Online Resource 1, section 6).

The two placement methods (random and DR), and

four label types (baseline, color, shape and texture)

combine to form 8 different testing conditions. Partic-

ipants also complete three survey-style questionnaires

during the study referred to as Q0, Q1 and Q2. In

Q0, participants provide basic demographic information

(e.g. age, listening conditions, years of musical experi-

ence). In Q1 and Q2, participants are asked to rate the

extent to which they used different search strategies for

finding the target sound. They are also asked to rate

whether the positioning or labeling of the sounds helped

them in their search and how difficult they found the

task overall. See the supplementary materials (Online

Resource 1, section 5) for the full list of questions.

We designed the study to introduce and evaluate

each type of label individually. Table 1 summarises how

a participant would progress through the entire study.

For each set of task conditions, the same task will be

repeated 5-10 times (depending on the task) with dif-

ferent samples. We designed the study to take approx-

imately 30 minutes to complete.

Table 1 Series of tasks that participants complete while
progressing through the study.
P = Practice, Bx = Baseline labels. Lx = Color, shape or
texture labels, xDR= Dimensionality reduction placement,
xR= Random placement

Order 1 2 3 4 5 6 7 8

Task type Q0 P BR BDR LDR Q1 LR Q2

3.3 NSynth dataset and timbre feature extraction for

sample placement and label generation

We use musical samples from the NSynth dataset [14],

which consists of over 300,000 four-second samples pro-

duced by virtual instruments in commercial sample li-

braries. We are interested in differentiating timbre, so
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we use a subset of ∼800 samples with the same pitch

and velocity. We use samples at midi note 64, which

corresponds to musical note E4.

For each sample, we use a cochlear filterbank1 [3] to

extract three profiles related to the perception of tim-

bre: a spectral envelope, a roughness envelope (which

measures perceived auditory roughness over time) and

a temporal amplitude envelope. These timbre features

are used both to determine sample placement as well

as generate visual labels.

3.4 Sample placement through dimensionality

reduction

We obtain two-dimensional coordinates for the musical

samples through dimensionality reduction (DR) of the

extracted features. We first use PCA to reduce each pro-

file to a shorter feature vector, then apply UMAP [41] to

the concatenated vectors to produce a 2D arrangement

of the samples that represents the distances between

their high-dimensional timbre features. Recent related

work [16, 18] has used t-SNE [35] for dimensionality

reduction, however, we find that UMAP obtains com-

parable results in significantly less computation time.

During testing, samples would occasionally overlap

in the interface. To remedy this, before displaying each

task, we run a brief physical simulation by placing vir-

tual springs between samples causing them to push

away from each other if they are overlapping.

3.5 Visual label generation

Research on human visual perception has revealed that

separate pathways are used to process shape, color and

texture [12]. While this indicates that shape, color and

texture could be used to distinguish between visual

samples in a complementary fashion, this is not always

the case. Different types of visual information can also

interfere with each other [11], so we chose to test each

of these pathways separately.

We are interested in differentiating timbre, which

is often represented by continuous features describing

some of the spectral or temporal characteristics of the

sound. We generate labels that also vary continuously

by using mappings from timbral features to visual pa-

rameters. Figure 2 shows how the same set of samples

would appear for each type of visual label. Labels could

be of varying sizes, but in our studies, their diameter

was 64 pixels.

1 Available for download from https://github.com/

NECOTIS/ERBlet-Cochlear-Filterbank

3.5.1 Shape

We use the temporal envelope to generate our shapes

because it visualises the attack time and low-frequency

amplitude modulations in the signal, which are impor-

tant timbral descriptors [38]. We produce a unique shape

for each sound by mapping the amplitude of the tem-

poral envelope to the contour of a circular shape. We

downsample the envelope to obtain a 20ms temporal

resolution. This produces 200 distinct points for our 4

second samples. The radius of each point on a half-circle

is described by equation 1.

R (θ) = envelope[i], θ =
i · π
200

, i ∈ {0, 200} (1)

This half-circular shape is then rotated and mir-

rored along the x-axis to produce a symmetrical shape.

The topmost point of the shape represents the ampli-

tude of the envelope at the beginning of the sound

and the bottom-most point the amplitude at the end

of the sound. This method is comparable to [25], with

the main difference being that our approach produces

symmetrical shapes, which are known to be easier to

perceive and remember [55].

3.5.2 Color

For color, we use a simpler approach based on the co-

ordinates of the samples in the reduced 2D space. The

center of the spatial distribution of the entire set of sam-

ples is calculated and each sample is assigned a color

based on its position relative to the center. The hue is

determined by its angle relative to the center point and

the saturation is determined by its distance to the cen-
ter point. This can be imagined as laying a color wheel

over the entire sample distribution and picking a color

for each sample based on their location within it. Each

sample’s color reinforces the spatial information which

is based on timbral similarity.

3.5.3 Texture

We developed a software tool to synthesize textural

images for samples inspired by Li et al.’s method for

“universal” style transfer [34]. The method is based on

a pre-trained encoder-decoder neural network architec-

ture (provided by [34]). The encoder is an image clas-

sifier [50], while the decoder has been trained to re-

construct images from the activation patterns of the

encoder. Noise is fed into the encoder network and the

activation pattern is transformed to resemble that of a

reference texture. The decoder can then produce a new

image with textural properties that greatly resemble

https://github.com/NECOTIS/ERBlet-Cochlear-Filterbank
https://github.com/NECOTIS/ERBlet-Cochlear-Filterbank
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Fig. 2 The three types of visual labels for the same set of randomly selected sound samples. From left to right: shape, color,
texture.

the original image. Our sample browser uses an opti-

mized version of this architecture and provides a sim-

ple interface to extract, store, and interpolate between

textural representations.

For the samples used in the study, eight medioids

[27] are found in the timbre space and each one is man-

ually assigned a texture from the normalized Brodatz

texture database [1]. We use black and white texture

images in order to differentiate from the color method.

We choose visually distinct textures for each medioid,

and attempt to relate properties of the sounds to tex-

tural characteristics (e.g. a rapidly varying synth note

is labeled with a chaotic rootlike texture, while a per-

cussive mallet note is labeled with a texture of peb-

bles in an attempt to evoke the hardness of the mate-

rial being struck). Textures for all the other sounds in

the dataset are then produced by the texture synthesis

method by interpolating between these textures based

on their proximity to the medioids. Through this pro-

cess, samples are assigned textural images whose visual

properties vary in tandem with their timbral difference.

3.6 Technologies used

We use JATOS [31] to build and host our study on a

webserver, which allows us to easily distribute the study

to participants using a web link. JATOS studies are ex-

ecuted in the browser so no installation is required for

the participants. The filterbank, dimensionality reduc-

tion and label generation are implemented in Python,

and the resulting information is stored in a dictionary

JSON file that is loaded by the web application. Pre-

calculated shape and color information are stored as ar-

rays in the dictionary. Each sample entry also points to

a pre-generated JPEG texture file that is stored on the

webserver. We use jsPsych [32] and p5.js [39] to build

the interactive components of the study and toxiclibs.js

[28] for the spring physics simulation.

3.7 Collected data

The measures we use to evaluate and compare labelling

methods are summarized in table 2. We collect several

other data points from tasks, including the entire cur-

sor trajectory, cursor speed, the number of misidenti-

fied samples and the number of times the participant

listened to the target sound. The anonymised data col-

lected in our studies will be available in the supplemen-

tary materials repository [46].

Table 2 Recorded measures used to evaluate task perfor-
mance

Measure Description Units

Time Time taken to complete Seconds
the task

Hovered samples Number of samples the Count
cursor encountered

Distance Total distance the mouse Pixels
cursor travelled

In summary, we designed our study to evaluate the

effect of both visual labels and placement on searching

for musical samples using technologies allowing for sim-

ple and easy distribution to participants. The studies

we conducted using this design were approved by the

Comité d’éthique de la recherche - Lettres et sciences

humaines of the University of Sherbrooke (ethical cer-

tificate number 2018-1795).

4 Studies

We conducted our study with 3 different groups of par-

ticipants. The preliminary study did not lead to signifi-

cant conclusions, prompting us to perform a study in a

controlled environment with specifically qualified par-

ticipants. Based on feedback from this second study, we

decided to change the manner in which color labels were
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generated. We conducted a third iteration of the study

with two objectives in mind : testing the new color la-

bels and comparing the quality of results obtained in

controlled and uncontrolled environments.

4.1 Winter 2019: initial study

The precursor to this article [45] summarized the re-

sults from a group of 28 computer engineering students.

Students completed the study as part of coursework in

a class on human perception and performed the study

on their own computers. They were instructed to use a

computer mouse and earphones. Based on those results,

we concluded that it would be worthwhile to recruit a

group of participants with a minimum of 2 years mu-

sical experience to perform the study in a controlled

environment. We also realized the need for the baseline

task with random placement, which was originally not

part of the study. We only compared completion times

in this study, and decided to record more data points

in follow-up studies.

4.2 Summer 2019: qualified participants in a

controlled environment

15 participants were recruited from the music and engi-

neering faculties of the University of Sherbrooke. They

were required to have at least two years of recent experi-

ence working with sound in order to qualify them for the

task of differentiating sounds by timbre alone. Partici-

pants completed the study in a secluded area on tablet-

style laptops with a connected mouse and keyboard.

The testing stations were equipped with Sennheiser HD

280 Pro headphones, connected via a Rega EAR ampli-

fier and a Roland UA-1G USB interface.

Participants completed three passes of the study,

with each iteration testing a different labelling method.

Given that there are 3 types of labels, there are 6 per-

mutations of the order in which they could be tested.

These permutations were distributed between partici-

pants as evenly as possible.

4.3 Summer 2019: new color labels and online

participants

A second group of participants, recruited in the same

manner as the initial study, performed the study on

their personal computers. For our analysis, we used

results from 14 participants who reported more than

two years musical experience and having completed the

study in good listening conditions.

We changed the way in which color labels were gen-

erated to better correspond other work in the field, par-

ticularly [22] and [2]. Our new method uses direct map-

ping from timbral descriptors to the hue and saturation

of the circular labels. The spectral centroid (measuring

timbral brightness) is mapped to a gradient from blue

to red and spectral flatness (measuring tonality) is then

mapped to the color’s saturation. Shape and texture la-

bels remain unchanged.

5 Analysis methods

5.1 Data transformation

Initial inspection of the collected measures (comple-

tion times, hovered samples and total mouse cursor

distance) showed that distributions were quite heavily

right-tailed. After performing Box-Cox transformations

[8] on each set of measures, statistical models produce

normally distributed residuals2. Mean values and con-

fidence intervals are calculated in transformed values

and then back-transformed to their original units. His-

tograms of the collected measures and transformation

parameters are included in the supplementary materials

(Online Resource 1, section 2).

5.2 Statistical models used to determine the effect of

task conditions on performance

We use general linear mixed-effect models as they sup-

port the repeated measures that characterize our study

design and account for variance between participants.

The placement method and label type are modeled as

fixed effects and a unique identifier assigned to each

participant is modeled as a random effect. We report es-

timated marginal (least-squares) means and confidence

intervals. Analysis of variance (ANOVA) of fitted mod-

els estimates the probability of equal means.

For significance testing in survey responses, we use

the Mann-Whitney U test [36] when comparing between

two groups and the Kruskal-Wallis one-way analysis of

variance [29] when comparing more than two groups.

5.3 Packages and notebooks

We provide R notebooks for reproducing our results in

the supplementary materials repository [46] and a list

of R packages used in appendix A.

2 For a linear regression model to be considered appropri-
ate, the distribution of prediction errors (residuals) should
resemble a normal distribution [37].
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6 Results

We evaluate the effect of different labels and placement

methods by comparing means of the recorded measures

of task performance. We interpret P-values under 0.05

as strong evidence that the difference between means is

significant (not due to chance) [56].

6.1 Controlled study with qualified participants

We first investigate the effect of the placement method,

followed by that of the labels. Finally we present survey

responses of interest.

6.1.1 Effect of placement method

Table 3 shows the mean measures grouped by place-

ment method and by label type. In figure 3 we plot

these means with 95% confidence intervals. We observe

that for tasks with baseline labels, participants hov-

ered 3 less samples with dimensionality reduction (DR)

placement compared to random placement. Tasks with

shape labels also show an ∼4 sample improvement with

DR placement. For color and texture labels, while mean

values of samples hovered are lower with DR placement,

the difference is not statistically significant. The differ-

ences in time and distance between placement methods

are insignificant for basline tasks. For all label types

aside from the baseline, the distance travelled by the

mouse cursor with random placement is approximately

700 to 800 pixels longer than with DR placement. There

is also a significant difference in completion times (ap-

proximately 3-4 seconds) in tasks with shape and tex-

ture labels.
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Fig. 3 Means of task measures grouped by label type and
placement. 95% confidence intervals shown as error bars.

6.1.2 Effect of labeling methods

We analyse the effect of labelling methods by compar-

ing them to the baseline tasks. Table 4 summarizes the

Table 3 Means of measures grouped by placement and la-
beling methods. Bold p-values indicate when the difference of
mean measures between placement methods is significant.
DR = placement by dimensionality reduction.

Measure Label Placement p-value

DR Random

Time (s)
Baseline 12.3 12.7 0.54
Shape 10.7 14.3 0.0008
Color 11.6 13.7 0.051
Texture 11.6 15.7 0.0005

Hovered
samples Baseline 14.9 17.9 0.04

Shape 8.7 12.5 0.004
Color 13.8 15.7 0.16
Texture 13.5 15.3 0.30

Distance
(pixels) Baseline 2807 3094 0.12

Shape 2313 3123 0.0005
Color 2765 3588 0.002
Texture 2681 3403 0.009

Table 4 Mean difference of measures for tasks with labels
compared to baseline, grouped by placement method. Positive
values indicate an improvement. Bold p-values indicate that
the difference from the baseline is significant.
B = mean of measures with baseline labels
L = mean of measures with shape, color or texture labels
DR = placement by dimensionality reduction.

Measure Label Placement

DR Random

B − L p-val. B − L p-val.

Time (s)
Shape 1.59 0.18 -1.58 0.26
Color 0.76 1.0 -0.9 1.0
Texture 0.73 0.96 -2.91 0.03

Hovered
samples Shape 6.1 4e-07 5.5 0.002

Color 1.1 0.89 2.3 0.52
Texture 1.3 0.33 2.7 0.13

Distance
(pixels) Shape 494 0.04 -30 1.0

Color 41 1.0 -493 0.20
Texture 120 0.94 -307 0.61

differences between means. Our main takeaway from

these results is that with shape labels, participants need

to investigate significantly fewer samples before finding

the target sound. Compared to the baseline, partici-

pants visited ∼6 less samples in tasks with shape labels

before finding the target sound.

Times are not significantly changed when adding

visual labels, except in the case of texture labels with

random placement, where participants took ∼3 seconds

longer to find the target sound.
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6.1.3 Effect of iteration

Given that participants complete the study multiple

times, we are curious whether they improve at the dif-

ferent tasks over time. Overall, we do not see a sig-

nificant effect of iteration on measures. However, in the

first set baseline tasks with DR placement, there is a sig-

nificant difference between completion times (p=0.0078)

and mouse speed (p=0.00020) compared to subsequent

iterations. We hypothesize that participants were still

becoming accustomed to using the interface during this

first task in the study. There are no significant differ-

ences between iterations for tasks with random place-

ment. When inspecting the data visually across iter-

ations, there is a noticeable downward trend for tasks

with labels and DR-based placement times, but the dif-

ferences do not pass significance testing.

6.1.4 Questionnaire results

The responses to many questions did not show signifi-

cant differences between label types. This section high-

lights the most interesting responses. A full list of the

questions can be found in the supplementary materials

(Online Resource 1, section 5).
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Fig. 4 Responses to the questions about the perceived con-
sistency of the labelling and placement methods

Figure 4 shows Likert plots of responses to ques-

tions about the perceived consistency of the placement

of samples and the labelling methods in labelled tasks

with DR placement. When rating label consistency, par-

ticipants are quite evenly divided on texture labels, and

lean towards color being more consistent. In the case

of shapes, none rated their consistency below 3. When

asked to rate whether similar sounds were located closer

together, more participants responded with lower rat-

ings after tasks with shape labels (p=0.032).
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Fig. 5 Responses to the questions about the perceived help-
fulness of the labels and the sample placement

Figure 5 shows Likert plots of ratings of the per-

ceived helpfulness of the placement of the samples dur-

ing labeled tasks with DR placement. After tasks with

color and texture labels, ratings skew towards the place-

ment being helpful, but after tasks with shape labels

they rate the placement as being less helpful (p= 0.04).

This indicates that participants were paying less atten-

tion to the placement when shape labels were provided.

Participants are quite evenly divided between positive

and negative responses when rating the helpfulness of

all of the label types.

6.2 Online study

Participants performed this study on their own com-

puters, and were less experienced than participants in

the previous study. While we used the same minimum

experience criteria for both studies, 10 out of the 15

participants in the controlled environment study had

at least 10 years of musical experience while 13 out of

the 14 participants in this study had between 2 and 5

years of experience.

6.2.1 Effect of placement methods

Figure 6 shows mean measures grouped by placement

and labeling method with 95% confidence intervals. The

only significant difference between placement methods

is found in tasks with texture labels, where participants

moved their cursor over ∼1200 more pixels searching for

the target sound when positions were randomized. The

exact means and p-values are provided in the supple-

mentary materials (Online Resource 1, section 3, table

S1).
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Fig. 6 Means of measures grouped by label type and place-
ment. 95% confidence intervals shown as error bars.

6.2.2 Effect of labeling methods

Table 5 shows the differences between labelled tasks

and the baseline. There are two significant differences

in completion times: on average, tasks with color labels

and DR placement took 2.5 seconds longer than the

baseline, while tasks with texture labels and random

placement took 3 seconds longer than the baseline. 5

less samples were visited on average in tasks with color

labels and random placement compared to the baseline.

Finally, when comparing mouse travel distance, in tasks

with texture labels and random placement, participants

covered ∼1100 more pixels than the baseline.

Table 5 Mean difference of measures compared to baseline,
grouped by placement method. Positive values indicate an
improvement. Bold p-values indicate that the difference is
significant.
B = mean of measures with baseline labels
L = mean of measures with color, texture or shape labels
DR = placement by dimensionality reduction.

Placement

DR Random

Measure Label B − L p-val. B − L p-val.

Time
Shape -0.1 1.0 -0.4 0.97
Color -2.5 0.05 0.8 0.82
Texture -1.1 0.56 -3.0 0.05

Hovered
samples Shape 1.0 0.96 3.1 0.50

Color -1.4 0.92 5.0 0.05
Texture -1.3 0.93 -2.7 0.71

Distance
Shape 71 0.99 -131 0.98
Color -333 0.72 272 0.82
Texture -150 0.95 -1136 0.02

7 Discussion

We designed our study to address the following two

questions on the effectiveness of visual labels and sam-

ple placement in sound sample browsers.

7.1 Does our timbre feature-based placement improve

search, and if so, are visual labels still effective when

the information provided by placement is removed?

In the controlled study with qualified participants, we

see significant differences in all three measures (com-

pletion time, hovered samples and cursor travel dis-

tance distance) when comparing our dimensionality re-

duction (DR) placement and random placement (table

3). In baseline tasks, the only significant effect of sam-

ple placement was a lowering of the number of hovered

samples. However, in tasks with labels, we see a signifi-

cant reduction in mouse travel distance when using the

DR placement. This could be explained by participants

jumping between visually similar labels when positions

are random, in contrast to performing a sort of nearest-

neighbour or grid-like search pattern with baseline la-

bels. We expected completion times in baseline tasks

to significantly differ between placement methods, but

they did not. This indicates that the tasks with random

placement were easier than we expected.

As to whether labels remained effective after place-

ment information was removed, we saw that the num-

ber of hovered samples with shape labels was ∼6 sam-

ples lower when compared to the baseline (table 4).

Additionally, the number of hovered samples is signif-

icantly lower when comparing DR and random place-

ment within the shape label tasks (∼4 less), so we can

conclude that these two methods were complementary.

In the online study, we do not see the same effect of

placement methods on participant performance. This

could be explained by the fact that participants com-

pleted fewer tasks with DR placement overall and may

not have had enough time to learn to use the place-

ment effectively. This somewhat contradicts our con-

clusion from the analysis that the effect of iteration in

the controlled environment study was negligible.

7.2 Is there a difference between using color, shape or

texture as visual labels in an an audio sample browser?

In our controlled study with qualified participants, we

found that shape labels significantly lowered the num-

ber of hovered samples compared to the baseline (table

4). We interpret the reduced number of hovered sounds

as an improvement in participants’ ability to visually



A proposal and evaluation of new timbre visualisation methods for audio sample browsers 11

differentiate samples, and thus avoid listening to irrel-

evant samples. Interestingly, this gain in efficiency did

not translate to a significant gain in time, which could

be explained by participants spending more time visu-

ally processing the scene. We did not find any differen-

tiation between color labels and the baseline, so we can

conclude that our approach to coloring samples in this

study was ineffective. In their written comments, some

participants expressed that the labels produced by the

color mapping were in opposition with their precon-

ceived associations between colors and timbres. Textu-

ral labels did not differentiate from baseline tasks ex-

cept in the case where participants took significantly

longer to complete tasks with random placement. This

indicates to us that the visual complexity of the tex-

tures was slowing them down. Many participants ex-

pressed that colored textures would have been much

easier to differentiate.

The responses to the survey questions did not pro-

vide much additional insight into the differences be-

tween labeling approaches. They do however correlate

with our previous observation that shape labels affected

participants differently than the other two label types.

In the online study, the lower number of hovered

samples in tasks with colored labels and random place-

ment (table 5) indicates that the new color labels could

be helping participants find the target sound more ef-

fectively. This improvement is not present in the tasks

with color labels and DR placement. In contrast with

the previous study, shape does not seem to have much

effect in reducing the number of hovered sounds when

compared to the baseline.

7.3 Comparing the controlled study to the online

study

Comparing both studies, the ranges of measures ob-

tained are quite similar, but the measures from the on-

line study have a higher variance than those from the

controlled environment study (figures 3, 6), making it

difficult to draw many conclusions from the results.

The difference in experience noted in section 6.2

could explain why we do not find many commonalities

in the results from the two studies and suggests that

our minimum criteria for experience should be raised.

Given that we do not observe similar effects of visual-

isation methods within the two groups, we are unsure

whether we can recommend collecting data with this

study in an uncontrolled environment. So far, our stud-

ies have been exploratory with small group sizes and

our interpretations of results should be considered with

this in mind. We remain optimistic that distributing

this study online to a sufficient number qualified indi-

viduals would have a good chance of producing useful

results.

7.4 Further work

In the studies we conducted, texture labels seemed to

hinder participants more than help them. While we

believe our new method for associating timbre to vi-

sual textures could prove useful for visualizing sounds

in other contexts, future studies of this type of task

could omit texture labels and concentrate on shapes

and colors. Further work could look into whether a com-

bination of shape and color information can outperform

shape alone. A significant advantage of using color is

that it is much more tolerant to large changes in scale,

while shapes need to be a minimum size in order to be

visually distinct.

Increasing the number of samples presented in each

task would raise the overall difficulty and potentially ac-

centuate the differences between the visualisation meth-

ods being tested. We will likely also reduce the number

of questions in future versions of the study, which would

allow us to increase the number of tasks while maintain-

ing the same overall duration. This study design could

also be used to compare various methods of generating

shapes. For example, we considered using the spectral

envelope for shapes, as it contains other important tim-

bral information such as the distribution of harmonic

partials. A variant of our study worth developing would

allow participants to customize each visual labelling

system. This would help mitigate some issues related

to visual accessibility as our current colour schemes do
not take colour blindness into account. It would also

give participants the advantage of already understand-

ing the underlying labelling system.

8 Conclusion

We have conducted three studies using the study design

presented in this article. Based on results from our first

group, we decided upon minimal qualifications for par-

ticipants and updated the study. Using the web based

JATOS framework allowed us to quickly iterate on the

study design and easily share it with our participants.

Our second study brought qualified participants into a

controlled environment and revealed a significant im-

provement when using shape labels, while texture and

color labels did not provide noticeable advantages over

the baseline. The final study produced few significant

results, but provided some indications that our new col-

ored labels are a step in the right direction.
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Adding shape labels did not significantly improve

task completion times, but did reduce the number of

sounds visited before finding the correct one. It seems

that the gain in efficiency of listening to less samples

was offset by the extra time spent processing the ad-

ditional visual information. We observed that this im-

provement persisted when information provided by the

dimensionality reduction placement was removed, and

that the two methods were complementary.

We consider our study design to have succeeded in

allowing us to test a variety of placement and labelling

methods and we were able to measure their individual

and combined effects. We hope other researchers will

use our open-source implementation of the study3 as a

starting point to pursue their own research questions

related to sample browsers and sound search.
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