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Abstract
Prolonged and repetitive stress on muscles, tendons, ligaments, and nerves can have long-term adverse effects on the human 
body. This can be exasperated while working if the environment and nature of the tasks puts significant strain on the body, 
which may lead to work-related musculoskeletal disorders (WMSDs). Workers with WMSDs can experience generalized 
pain, loss of muscle strength, and loss of ability to continue working. Most WMSDs injuries are caused by ergonomic risks, 
such as repetitive physical movements, awkward postures, inadequate recovery time, and muscular stress. Fatigue can be 
seen as a detector of ergonomic risk, as the accumulation of fatigue can significantly increase the possibility of injury. Thirty 
participants completed a series of repetitive physical tasks over a six-hour period while wearing sensors to capture data related 
to heart rate and movement, while external embedded sensors captured ground reaction and hand exertion force. They also 
provided subjective ratings of fatigue at the start and end of the experiment. Classifiers for fatigue (high vs low) were con-
structed using three methods: linear discriminant analysis (LDA), k-nearest neighbor (kNN), and polynomial kernel-based 
SVM (P-SVM) and were validated using a tenfold cross-validation technique that was repeated a hundred times. Results 
of our supervised machine learning approach demonstrated a maximum accuracy of 94.15% using P-SVM for the binary 
classification of fatigue.
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1 Introduction

Musculoskeletal disorders (MSDs) occur due to injuries 
to muscles, tendons, ligaments, nerves, cartilage, and 
blood vessels [1]. Work-related musculoskeletal disor-
ders (WMSDs) occur due to the working environment 
and physical tasks that are required to be performed [1]. 

WMSDs can involve a wide range of disorders and symp-
toms, including local or generalized pain, loss or hyper-
sensitivity of sensation to touch, heat or pressure, loss of 
muscle strength, endurance, and/or flexibility, loss of abil-
ity to control movements, physical changes to muscle tone, 
and abnormal alignment of joints [1]. Compared to acute 
injuries, the mechanism of injury from WMSDs is based 
on the accumulation of microdamage, which can be caused 
by different ergonomic risks, from both workers and the 
workplace, including excessive force, repetition, awkward/
static postures, compression, vibration, cognitive demands, 
and low temperature [1, 2]. Certain industries are more sus-
ceptible to their workers being more at risk of developing 
WMSDs, including heavy and light manufacturing, mining, 
and food processing [3]. Physical ergonomic features of the 
work undertaken in such industries can contribute to the 
increased risk of developing WMSDs, including rapid work 
pace and repetitive motions, forceful exertions, non-neutral 
body postures, and vibrations [3]. WMSDs signify a large 
public health issue and economic burden to employers and 
workers, which affects health and safety, efficiency, and 

 * Chelsea Dobbins 
 c.m.dobbins@uq.edu.au

 Guobin Liu 
 guobin.liu@uq.net.au

 Matthew D’Souza 
 m.dsouza@uq.edu.au

 Ngoc Phuong 
 ngoc.h.phuong@boeing.com

1 School of Information Technology and Electrical 
Engineering, The University of Queensland, Brisbane, QLD, 
Australia

2 Boeing Research & Technology, Brisbane, QLD, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-023-01718-z&domain=pdf
http://orcid.org/0000-0001-9420-2452


2104 Personal and Ubiquitous Computing (2023) 27:2103–2120

1 3

productivity [4]. In Australia, WMSDs continue to be the 
most serious occupational health and safety problem that 
affected 6.9 million people in 2014–2015, with total costs 
of more than $24 billion AUD [1]. Furthermore, the con-
servative estimation of costs from WMSDs in the US are 
between $45 and $54 billion USD annually [5].

To minimize the probability of suffering WMSDs, it is 
essential to monitor and analyze ergonomic risks. Once 
detected, corresponding actions can be performed, such as 
calibrating the height of working surfaces, extending breaks 
between tasks, and decreasing the distance between tools 
and workers [2]. However, monitoring ergonomic risks is 
challenging due to the variability of the tasks and the way 
in which they are performed by individuals. Nevertheless, 
fatigue is seen as a reasonable indicator towards detect-
ing WMSDs, as maintaining a high level of fatigue, for 
an extended period of time, has been shown to contribute 
to WMSDs [1]. This paper illustrates a machine learning 
approach to detect fatigue based on multimodal data from 
wearable and embedded (non-wearable) sensors. An experi-
ment has been undertaken with thirty participants, who 
each performed four repetitive physical tasks that have been 
designed to simulate daily factory work with the purpose of 
inducing fatigue. Streams of multimodal human-centric data 
from wearable motion inertial measurement units (IMUs) 
and a heart rate sensor, as well as external force, have been 
collected. Self-reported levels of fatigue were also collected 
at the start and end of the experiment, via questionnaires.

This work provides a number of contributions to the area 
of personal and ubiquitous computing by developing a data 
processing pipeline that amalgamates multiple streams of 
multimodal data from wearable, physiological and external 
embedded sensors to detect fatigue. This includes:

1. Developing a new signal processing pipeline for mul-
timodal data fusion that is capable of synchronizing, 
integrating, and processing multiple data streams. This 
includes recording a combination of human-centric and 
external measures, which are sensitive to artefacts, and 
amalgamating these distinct data streams to a common 
time basis.

2. Implementing a personalized data labelling approach 
that takes into account individual differences about feel-
ings towards fatigue.

3. Providing a comparison of performance between multi-
ple machine learning algorithms to determine the most 
suitable approach for detecting fatigue when undertak-
ing repetitive tasks.

4. Providing a comparison of performance to ascertain 
the best type of sensors to utilize with different models. 
This is important to understand how different sensors 
and hardware contribute to the classification of fatigue.

As such, the work addresses the technical challenges that 
are involved in processing multiple streams of distinct data 
related to both human behavior and external factors in order 
to detect fatigue when participants are undertaking repetitive 
tasks. This has been demonstrated through the analysis of 
raw data using our data processing pipeline, which involves 
data synchronization, segmentation, resampling, filtering, 
feature extraction, and body fatigue classification. A per-
sonalized data labelling approach has been implemented to 
classify fatigue by taking into consideration individual dif-
ferences towards fatigue. In addition, we demonstrate and 
evaluate the most appropriate type of sensors and machine 
learning classification algorithms for identifying high and 
low periods of fatigue.

The paper is organized as follows. Related work is dis-
cussed in Sect. 2. Section 3 demonstrates the methodology, 
including the experiment details and data pre-processing 
procedures. Sections 4 and 5 demonstrate the data analysis 
procedures and the classification results from machine learn-
ing models with discussions. Finally, conclusions and future 
work are shown in Sect. 6.

2  Related work

This section provides an overview of related work in the 
area of sensor-based ergonomic monitoring systems. Current 
research into ergonomic analysis uses either wearable sen-
sors to capture motion and/or physiological data or embed-
ded sensor systems, to record external force that is being 
exerted on the human body.

2.1  Wearable sensor systems

Wearable sensors to measure physical activity involve iner-
tial measurement units (IMUs) and physiological sensors [6]. 
IMUs measure acceleration and angular velocity, while body 
part orientation can be deduced by mounting them to the 
human body. Valero et al. [7] used eight IMUs attached to 
the upper back, lower back, upper legs, arms, and lower legs 
to recognize back, shoulder, and knee activities. Scores have 
been allocated to each joint based on thresholds. A posture 
score can then be calculated as the weighted sum of joint 
scores. Results illustrated that risky postures can be detected 
by the system from their high posture scores. Rather than 
analyzing a task by joint angle thresholds, other researchers 
record motion data and pass them into ergonomic assessment 
tools to rate an activity. Vignais et al. [8] mounted six IMUs 
and two goniometers on participant’s upper body in order to 
perform a RULA assessment, which rates a task by the upper 
body posture and external load [9]. A RULA score was then 
generated successfully through sensor readings.
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Physiological sensors have also been widely used for per-
forming ergonomic analysis. A wearable sensor system has 
been proposed by Peppoloni et al. [10] that incorporated 
IMU and electromyography (EMG) sensors for the purpose 
of reconstructing upper limb motion and measuring hand 
exertion force against an object. Both a RULA score and 
Strain index were calculated based on this data. In addi-
tion, a wearable biosensor system has been implemented by 
Jebelli et al. [11] that measured photoplethysmogram (PPG) 
signal (to derive heart rate), electrodermal activity (EDA), 
and skin temperature. Features have been extracted from 
these physiological parameters and used to estimate workers’ 
physical demand, which has been labelled by an energy-
expenditure prediction program. Results demonstrated that 
the accuracies for binary and three-level physical demand 
classifications are 90% and 87%, respectively. Furthermore, 
four IMUs and one heart rate monitor have been applied by 
Maman et al. [12] to measure body fatigue during manual 
material handling tasks. Features from body motion and 
heart rate act as the input and a Borg score [13] recorded 
from participants’ perception acts as the output. A LASSO 
penalized regression model has been constructed to predict 
body fatigue every 10 min. The mean absolute deviation 
between recorded and predicted scores was 2.16, meaning 
that the result is accurate in the case that the recorded score 
is highly variable.

2.2  Embedded sensor systems

External force applied to the human body is one of the 
most common causes for WMSDs [2]. For instance, a plan-
tar pressure measurement approach has been proposed by 
Chen et al. [14]. The system converts pressure data to a 
grayscale image, which is then passed into a convolutional 
neural network with long- and short-term memory to recog-
nize postures. The recognition accuracy for five quasi-static 
postures was 100%, as there is a clear difference between 
plantar force distribution. As for sequential motions, the 
classification accuracies were 99%, 74%, 79%, and 92% for 
pushing/pulling, bending, carrying, and lifting, respectively. 
Furthermore, the number of repetitions for each activity 
were counted with an accuracy of over 80%. Furthermore, 
Chow and Dickerson [15] analyzed the factors that can 
affect manual force strength during two-handed standing, 
with maximal horizontal pushing and pulling, including 
shoulder capacity, handle height, exertion type, and handle 
orientation. A load cell and VICON motion capture sys-
tem were included in this study. The load cell was mounted 
to a metal pole to measure hand exertion force, while the 
VICON was responsible for tracking body postures. Results 
indicated that handle height and exertion type are two major 
factors that can affect manual force strength during push/
pull tasks. In addition, a force plate and two sets of motion 

capture systems were used by Plamondon et al. [16] to rank 
the importance of expertise, lifting height, and load weight 
in affecting the lifting tasks. Lumbar spine and knees were 
selected as the major joints to reveal the effect from these 
three factors. By constructing a statistical analysis model, 
results illustrated that lifting height and load weight are 
more important than expertise in influencing lumbar spine 
and knees. In addition, results also illustrated that the lower 
and heavier the box, the riskier the lifting task is.

In summary, both wearable and embedded sensors have 
separately been applied in the area of ergonomic analysis. 
Wearable sensors measure body motion and physiological 
data, while embedded sensors are mainly responsible for 
measuring the external force exerted on the human body. 
Such data can be processed to predict indirect parameters, 
identify ergonomic risks, calculate ergonomic scores, and 
detect body fatigue. However, little work incorporates data 
from both wearable and embedded sensors to detect fatigue. 
This is important because it can be postulated that fatigue 
detection can be more accurate by including not only human-
centric parameters but also external factors, such as external 
force.

3  Methodology

We propose a machine learning approach for detecting 
fatigue during aviation manufacturing tasks using a combi-
nation of wearable and embedded sensors. Manufacturing 
is one of the industries that has the highest rate of WMSDs 
and so provides an ideal use case for our scenarios [3]. The 
experiment has been designed based on guidelines devel-
oped by the National Institute for Occupational Safety and 
Health [17] and through consultation with industry partners. 
In order to test our approach, four physical tasks have been 
designed to simulate daily aviation factory work, includ-
ing two-handed box lifting, two-handed box carrying, two-
handed box pushing/pulling, and two-handed trolley push-
ing/pulling. Data have been recorded from wearable and 
embedded sensors while participants performed the tasks, 
including body motion, external force, and heart rate. The 
experiment setup and conditions are standard and gener-
alizable to ensure repeatability. Participant details, sensor 
platform, experiment protocol, and the data pre-processing 
approach will be discussed in this section.

3.1  Participants

The experiment included 30 participants (13 males 
and 17 females), with an age range from 20 to 54 years 
(mean = 25.67, SD = 6.66). Participants did not have a his-
tory of cardiovascular illness or any physical injuries prior 
to participating in the experiment. This experiment has 
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been approved by The University of Queensland Ethics 
Sub-Committee.

3.2  Sensor platform

The platform consisted of both wearable and embedded 
sensors (see Fig. 1). The wearable sensor system is respon-
sible for recording body motion and heart rate, while the 
embedded aspect measures ground reaction and hand exer-
tion force. During the pre-processing stage, data have been 
synchronized, segmented, resampled, and filtered, and fea-
tures have been extracted before undertaking the binary clas-
sification of fatigue.

The wearable aspect of the sensor platform was composed 
of six Shimmer3™1 inertial measurement units (IMUs) (see 
Fig. 2a) and a Shimmer3™ photoplethysmogram (PPG) opti-
cal pulse ear clip (see Fig. 2b). Shimmer3™ sensors were 
selected as the experiment required raw biometric data to be 
collected from different areas of the body in order to develop 
the signal processing pipeline and model classification.

In order to capture major body motion [7, 12, 18, 19], 
the Shimmer3™ IMU sensors were secured to six different 
areas of the body, including the hip, upper spine, left arm, 
right arm, right forearm, and right shank (see Fig. 3). These 
areas were chosen in order to provide maximum coverage 
of the entire body. Each Shimmer3™ IMU sensor measured 
3-axis acceleration and 3-axis angular velocity. In addition, 
the Shimmer3™ PPG-to-HR ear clip was clipped to the left 
ear lobe and was connected to the Shimmer3™ sensor on 
the left arm to measure blood volume pulse (BVP), which is 
used to derive heart rate (see Fig. 3a).

Based on previous work in activity recognition and ergo-
nomic analysis [20–22], 100 Hz has been selected as the 
sampling frequency to ensure continuous and sufficient data 
collection. Data was stored on the onboard SD card of each 
sensor and then exported to a PC after each task.

The embedded sensors used were a Sparkfun™2 load 
cell (see Fig. 4a) and a Bertec™3 force plate (see Fig. 4b). 
These sensors measured contact forces around the human 

Fig. 1  Sensor platform overview

Fig. 2  a Shimmer3™ 
GSR + unit. b Shimmer3™ 
PPG-to-HR ear clip

1 www. shimm ersen sing. com

2 https:// www. spark fun. com/ produ cts/ 14282
3 https:// www. bertec. com/ produ cts/ force- plates

http://www.shimmersensing.com
https://www.sparkfun.com/products/14282
https://www.bertec.com/products/force-plates
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body, which cannot be captured by wearable sensors. The 
load cell’s handle was attached to a box, which measured 
the hand’s exertion force against the box. The force plate 
measured 3-axis ground reaction force, 3-axis torso moment, 
2-axis center of pressure, and 2-axis center of gravity. The 
sampling rates for the load cell and the force plate were set 
up to 10 Hz and 100 Hz, respectively, where 10 Hz is the 
maximum frequency of the load cell. Both the load cell and 
force plate streamed data directly to a PC through a wired 
connection.

The Shimmer3™ sensors and load cell were utilized in 
all tasks, while the force plate was not included in tasks that 
required participants to move off the plate (i.e., two-handed 
trolley pushing/pulling). This is because the force plate was 
not able to measure the ground reaction force while the par-
ticipant was walking.

3.3  Experiment protocol

The experiment consisted of four repetitive physical tasks 
that have been designed to simulate real factory work and 
included two-handed box lifting, two-handed box carrying, 
two-handed box pushing/pulling, and two-handed trolley 

pushing/pulling. A description of each task has been pro-
vided as follows.

1. Two-handed box lifting: Participants lift a box from the 
ground to their hip height with two hands, hold on for 
approximately 3 s, and then lower it down to the ground.

2. Two-handed box carrying: Participants carry a box with 
both hands and move it from one chair to another. Two 
chairs are fixed at either side of the participant, at a dis-
tance of 60 cm from the centerline of the body.

3. Two-handed box pushing/pulling: Participants use both 
hands to push a box further away from them to a length 
of approximately 60 cm and pull it back. The box is 
placed on a table at a height of 90 cm. There is a handle 
attached to the box for pushing/pulling.

4. Two-handed trolley pushing/pulling: Participants walk 
and push a trolley away for 5 m and pull it back to the 
original position. The handle height for the trolley is 
80 cm.

Figure 5 illustrates the procedure that has been followed 
by the participants while they performed each task. Before 
each task began, baseline heart rate was recorded for 5 min, 

Fig. 3  Wearable sensor place-
ment: a front view; b right 
view; c back view; d left view

Fig. 4  a Load cell–200 kg, 
S-type (TAS501). b Force plate 
FP4060-NC
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while they rested. Participants then performed two rounds of 
each task utilizing light to heavy weights and also completed 
the Borg Scale Questionnaire [13], at the beginning/end of 
each round, which recorded their subjective rating of body 
fatigue. The load weights differed according to the task and 
included:

1. Two-handed box lifting: 3 kg and 5 kg.
2. Two-handed box carrying: 3 kg and 5 kg.
3. Two-handed box pushing/pulling: 3  kg, 10  kg, and 

20 kg.
4. Two-handed trolley pushing/pulling: 3 kg, 40 kg, and 

80 kg.

As the recorded data is from three independent data 
sources, it is essential to synchronize them to a common 
timeline and to avoid time drift, which is a significant issue 
as the sampling rates differ between devices. As such, a 
synchronization pattern was designed whereby during the 
pre-processing stage, the pattern was detected, and data 
aligned accordingly. As such, each participant performed 

the same pattern at the beginning and end of each round, 
which included three steps:

1. Stand still and upright at origin for 10 s.
2. Perform start signal by raising the body up slowly to 

stand on tiptoes and plunge downwards rapidly.
3. Stand still and upright at origin for 10 s.

Each round lasted for 10 min, and participants were 
required to do the task repetitively during this period. 
During each round, participants were allowed to control 
their posture and speed while performing the task. They 
were also permitted to stand upright at origin to rest if 
they could not sustain the task. A 5-min resting period 
after each round and a 10-min resting period after each 
task were also provided. Since lifting and carrying tasks 
can pose continuous pressure on the waist, the sequence 
of tasks was interwoven to avoid excessive and durable 
pressure on specific joints, so as not to cause injury. All 
participants followed this sequence during the experi-
ment—two-handed trolley pushing/pulling, two-handed 

Fig. 5  Task procedure
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box carrying, two-handed box pushing/pulling, and two-
handed box lifting.

The entire experiment lasted for 6 h. Lifting and carrying 
tasks took approximately 60 min each to complete, while 
pushing/pulling tasks took around 90 min each to complete. 
As an incentive, after completing the experiment, partici-
pants were paid with a $50 (AUD) gift card to compensate 
their time for taking part in the experiment.

3.4  Data pre‑processing

The pre-processing stage included a number of steps to pre-
pare the data before it was classified. Figure 6 illustrates 
an overview of this process, which included data synchro-
nization, segmentation, resampling, filtering, and feature 
extraction. Details for each step will be expanded upon in 
the following sections. This stage has been undertaken using 
MATLAB R2019b [23].

3.4.1  Data synchronization and segmentation

As mentioned in Sect. 3.3, a synchronization pattern was 
performed by the participants at the beginning and end of 
each round, which generates a peak in the acceleration data. 
Figure 7 illustrates a flow chart for this stage.

As all the Shimmer3™ sensors have a consistent times-
tamp, data from each of them has been segmented through 
the reference timestamps at the points of the acceleration 
peaks. Figure 8 displays an example of the y-axis accelera-
tion of the Shimmer3™ sensor. It can be seen that there are 
acceleration peaks at the beginning and end of each round, 
which have been labelled by the green and red circles respec-
tively. Corresponding timestamps have then been extracted 
as the reference timestamps to segment data from all Shim-
mer3™ sensors.

During the synchronization pattern, at the point when 
the participants performed the start signal, the researcher 

Fig. 6  Data pre-processing procedure

Fig. 7  Data synchronization and 
segmentation procedure
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pressed a button on the load cell, which generated a peak in 
the hand exertion force data. Since the load cell and force 
plate’s data were recorded using the same PC, the times-
tamps at the hand exertion force peaks have been used to 
segment the embedded sensors’ data. Figure 9 depicts an 
example for extracting reference timestamps from the load 
cell data. There are peaks at the beginning and end of each 
round, which have been labelled by green and red circles, 
respectively. The timestamps were then used to segment the 
data from the force plate and load cell.

3.4.2  Data resampling and filtering

Once the data was synchronized to a common timeline, resa-
mpling the data was required as different sensors record data 
at different sampling rates. As such, the Shimmer3™ sen-
sors’ and force plate’s data have been resampled to 100 Hz 
[20–22]. Acceleration data from the Shimmer3™ sensors 

and the data from the force plate have then been filtered 
through a 2nd order zero-phase Butterworth low-pass filter 
with a cutoff frequency of 3 Hz [24–26]. Angular velocity 
data was filtered through a 2nd order zero-phase Butterworth 
high-pass filter, with a cutoff frequency of 0.1 Hz [27]. Fur-
thermore, the PPG signal was filtered through a 2nd order 
zero-phase Butterworth band-pass filter, with a cutoff fre-
quency ranging from 0.5 to 3.5 Hz [28, 29].

Additionally, outliers in the load cell data have been iden-
tified whereby the hand exertion force is greater than 10 kg 
(see Fig. 10). As these outliers cannot be removed by filter-
ing alone, a sliding window algorithm, with a window size 
equaling 20 samples, was developed based on experimenta-
tion to remove any outliers. For each window, if the sam-
ple’s absolute value was greater than two times the median 
absolute deviation, this was treated as an outlier and replaced 
by a null value. Finally, the null values were interpolated by 
their nearest valid sample. After the outliers were removed, 

Fig. 8  Example of Shimmer3 
sensor reference timestamps

Fig. 9  Load cell reference 
timestamps
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the load cell’s data was resampled to 100 Hz (to be consist-
ent with the other data) and filtered using a 2nd order zero-
phase Butterworth low-pass filter, with a cutoff frequency 
of 3 Hz [30, 31].

Physiological data was also recorded using the PPG 
sensor, which measured blood volume change inside the 
capillary vessels as blood flows through the vessels at each 
heartbeat. Therefore, the filtered PPG signal was utilized 
to derive heart rate in beats per minute [32, 33]. This was 
calculated using the time interval between adjacent peaks 
(see Fig. 11 and Eq. (1)). In Fig. 11, each red circle indicates 
a peak in the PPG signal, with a corresponding timestamp 
in milliseconds. Therefore, the seconds per beat have been 
calculated by the time difference between adjacent peaks, 
and then converted to beats per minute using Eq. (1).

3.4.3  Feature extraction

Features have then been extracted from each round of syn-
chronized data, using a 30-s window, with a 50% overlap-
ping area, and included both time- and frequency-domain 
features [11, 34]. This period was selected to ensure a suf-
ficient number of features were generated in the feature set in 
order to perform fatigue classification. Figure 12 illustrates 
the input data with corresponding features.

Motion data was recorded from each IMU, including from 
each axis (x, y, and z), as well as magnitude of body part 
acceleration and angular velocity. In addition, acceleration 
jerk and angular acceleration were also calculated, which 
are the first-order time derivative of acceleration and angu-
lar velocity (see Eqs. (2) and (3)) [12, 35]. In Eq. (2), �⃗a(t) 

(1)Heart rate(beats per minute) =
60

Δtpeak−peak(seconds)

represents the acceleration and j⃗(t) is the first order time 
derivative of the acceleration, which is the acceleration jerk. 
In Eq. (3), ��⃗𝜔(t) indicates the angular velocity and �⃗𝛼(t) is the 
first-order time derivative of the angular velocity, which is 
named as angular acceleration.

External force included the force plate and load cell data, 
with each axis of ground reaction force, torso moment, 
center of pressure, center of gravity, and hand exertion 
force. Heart rate was also included in the time-domain fea-
ture extraction process. Time-domain features included 10th, 
25th, 50th, 75th, 90th percentiles, mean, standard deviation, 
inter-quartile range, kurtosis, mean absolute deviation, and 
autocorrelation. In total, 1056 and 11 features were extracted 

(2)Acceleration jerk j⃗(t) =
d �⃗a(t)

dt

(3)Angular acceleration �⃗𝛼(t) =
d��⃗𝜔(t)

dt

Fig. 10  Load cell outliers

Fig. 11  Filtered PPG signal with detected peaks
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from the body motion and heart rate data, respectively. For 
external force, 11 features were extracted from the two-
handed trolley pushing/pulling tasks, as the force plate 
was not included, while 121 external force features were 
extracted for each of the other tasks.

Acceleration data from each IMU was also used in the 
frequency-domain feature extraction stage. Frequency 
domain features included the DC component, spectral 
energy, spectral entropy, peak frequency, and peak power. 
Figure 13 illustrates the procedure of frequency-domain 
feature extraction. Acceleration data from each IMU was 
processed by fast Fourier transform (FFT) to calculate the 
power spectral density (PSD). The DC component was 
then calculated at the point where frequency equaled 0 Hz. 
After that, the DC component was removed by subtracting 
the acceleration data by their mean values. FFT and PSD 
have been recalculated to extract spectral energy, spectral 
entropy, peak frequency, and peak power. Spectral energy 
is the sum of squares of the frequency components’ magni-
tudes, with its calculation shown in Eq. (4), while spectral 
entropy measures the spectral power distribution, which is 
the sum of normalized frequency components multiplied by 
their logarithm values (see Eq. (5)) [36].

(4)SE =
∑N

i=1
F(n)2

(5)SEN = −
∑N

i=1
F̂(n) ∗ log(F̂(n))

F(n) is the magnitude of  nth FFT frequency component 
and F̂(n) is the normalized value of F(n) (see Eq. (6)).

This phase resulted in the extraction of 120 frequency-
domain features. Overall, 1198 features were extracted from 
the two-handed trolley pushing/pulling task, while 1308 
features were extracted for each of the other tasks. To miti-
gate individual differences, features from each round, per 
participant, were then normalized and combined into one 
datasheet.

4  Data analysis

The data analysis stage was composed of three phases, 
including data labelling, dimensionality reduction, and body 
fatigue classification.

4.1  Data labelling

The Borg Scale questionnaire [13] was utilized to capture 
subjective ratings of body fatigue at the beginning (pre) and 
end (post) of each round. This questionnaire included 15 
exertion levels, ranging from 6 to 20, which participants 
used to rate their current fatigue level. For instance, a rating 
of 6 corresponds to relaxing tasks, such as reading a book, 
while 20 indicates exhausting tasks, such as running a race. 

(6)F̂(n) =
F(n)

∑N

i=1
F(n)

Fig. 12  Feature set

Fig. 13  Frequency-domain feature extraction procedure
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The scores from this questionnaire were processed to calcu-
late a change score (post-round–pre-round). As such, change 
scores related to fatigue were used as subjective labels for 
the data to describe the level of fatigue each participant felt 
during each round. Figure 14 illustrates the data labelling 
procedure. Data were labelled as high or low fatigue on a per 
round, per task, per participant basis. Those rounds where a 
change score equaled zero were excluded, as a change in the 
level of fatigue did not occur. A personalized threshold was 
then calculated for each participant’s round of data based 
on the calculated mean of all the non-zero change scores for 
each round. Those rounds whereby (a) the change scores 
were greater than the threshold have been labeled as high 
fatigue, (b) those that scored lower than the threshold were 
labeled as low fatigue, and (c) those that equaled the thresh-
old were discounted.

The data labelling procedure resulted in an imbalanced 
dataset (see Table 1), which can decrease model perfor-
mance, as the model tends to predict the majority class bet-
ter than the minority class [37]. To rectify this issue, it was 
necessary to balance the classes before classification. In this 
instance, random Under-Sampling (RUS) was implemented 
to randomly remove samples from the majority class (in this 
instance the low class) in order to balance it with the number 
of samples in the minority class (the high class) [38].

4.2  Dimensionality reduction

The dataset contained more than 1000 features that were 
extracted from the various streams of sensor data. However, 
some of them may be correlated with others and/or irrel-
evant. When performing fatigue classification, these features 
may also incorporate noise into the predictor, increase com-
putational cost, and reduce model performance. Therefore, 
dimensionality reduction was undertaken using principal 

component analysis (PCA), with 95% of variance being 
explained, to minimize the number of features, while main-
taining the most discriminant information in the feature set. 
The number of features before/after PCA for all results can 
be found in Appendixes 1–3.

4.3  Body fatigue classification

The classification analysis involved investigating the types 
of sensors that are most appropriate for detecting fatigue. As 
such, the analysis comprised of three main phases:

1. Investigation of the variety of sensors, including sep-
arate analysis of embedded, wearable and both wear-
able + embedded

2. Exploration of the contribution of each individual wear-
able sensor to the system’s performance

3. Optimization of the wearable sensors to reduce the num-
ber of sensors required in the system, which included

As such, this analysis involved creating several individual 
binary models using parametric and non-parametric super-
vised machine learning algorithms. Parametric methods 
aim at summarizing the relationship between labels and 
features, while non-parametric methods do not make any 
strong assumptions between them. In other words, it can 

Fig. 14  Data labelling proce-
dure

Table 1  Number of samples 
per class

Class label Number 
of sam-
ples

High 8355
Low 9629
Removed 5417
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learn any form of training data [40]. A mixture of paramet-
ric and non-parametric methods have been implemented 
in the analysis to evaluate their performance and included 
linear discriminant analysis (LDA) [41], k-nearest neighbor 
(kNN) with k equaling 5 [41], and polynomial kernel-based 
SVM (P-SVM) [42]. Hyperparameters for each method have 
been tuned using grid search based on the highest accuracy. 
The tuned hyperparameters for all results can be found in 
Appendix 4. This analysis has been undertaken using RStu-
dio v1.3.1093 [39].

For each analysis, and to avoid bias in the prediction, the 
models were trained and validated utilizing repeated tenfold 
cross-validation, with 100 repetitions [43]. Performance has 
then been compared within and between datasets based on 
three parameters, including:

1) Accuracy: The ratio of correct predictions over all pre-
dictions.

2) F1 score: The measurement of classification accuracy by 
balancing precision and recall.

3) Balance error rate (BER): The average of the errors on 
each class.

4.3.1  Classification of wearable vs embedded sensors

The purpose of these classification models was to assess the 
optimum type of sensors to detect fatigue by analyzing wearable 
vs embedded sensors. Table 2 illustrates that the performance 
of the models based only on using the embedded sensors. The 
performances are modestly comparable using P-SVM and kNN, 
which have produced similar accuracies of 59% and error rates 
of 41%. LDA performed the worst with a lower accuracy of 46% 
and a higher error rate of 54%. Additionally, P-SVM and kNN 
generated similar  F1 scores of 60%, which is approximately 15% 
higher than the value from LDA. This pattern demonstrates that 
using only embedded sensors is not sufficient to classify fatigue.

As opposed to the embedded sensors, Table 3 illustrates 
that using only the wearable sensor dataset increases perfor-
mance of the P-SVM and kNN algorithms with acceptable 
accuracies of 93% and 72% and low error rates of 28% and 
7%, respectively. Once again, LDA performed the worst with 
an accuracy of 39% and a high error rate of 61%. The  F1 score 
result follows the same trend as the accuracy and error rate. 

P-SVM produced the highest score of 93%, followed by kNN 
of 73% and LDA of 39%. This demonstrates that the wearable 
sensors are better suited to classify fatigue than utilizing only 
the embedded sensors.

In an effort to further improve the findings, Table 4 illus-
trates that utilizing both the wearable and embedded sensors 
marginally improved the results. Once again, P-SVM and kNN 
performed the best with accuracies of 94% and 74%, high  F1 
scores of 94% and 74%, and low error rates of 6% and 26%, 
respectively. This is a significant improvement over the embed-
ded results and a negligible improvement over the wearable sen-
sors dataset. LDA performed the worst using this dataset, with 
poor performance of 39% accuracy, a low  F1 score of 38%, and 
a high error rate of 62%. This pattern demonstrates that a sim-
ple linear parametric model is not sufficient to classify fatigue 
across all datasets. In this instance, fatigue classification seems 
better suited to nonparametric machine learning algorithms.

4.3.2  Classification of individual wearable sensors

The results in Sect. 4.3.1 demonstrated that using both wear-
able and embedded sensors or only wearable sensors, exhib-
ited improved performance over using only the embedded 
sensors. Based on these results, the purpose of this classifi-
cation was to compare the results from each individual wear-
able sensor (see Table 5). As the embedded sensors did not 
produce adequate results on their own, and their inclusion 
with the wearable sensors only provided a marginal improve-
ment, they have been omitted from further analysis. Table 5 
illustrates that P-SVM again performed the best across all 
sensors. The placement at the right forearm produced the 
best result of 64%, while heart rate produced the worst at 
51%. There was very little variation in the accuracies of the 

Table 2  Classification performance utilizing only the embedded sen-
sors

Bold entries denotes the best performing results

Classifier Accuracy F1 BER

LDA 45.86% 46.02% 54.14%
kNN 59.08% 60.04% 40.92%
P-SVM 59.05% 62.54% 40.95%

Table 3  Classification performance utilizing only the wearable sen-
sors

Bold entries denotes the best performing results

Classifier Accuracy F1 BER

LDA 39.04% 39.15% 60.96%
kNN 72.12% 73.35% 27.88%
P-SVM 93.18% 93.22% 6.82%

Table 4  Classification performance utilizing both wearable and 
embedded sensors

Bold entries denotes the best performing results

Classifier Accuracy F1 BER

LDA 38.54% 38.65% 61.46%
kNN 74.10% 74.50% 25.90%
P-SVM 94.15% 94.18% 5.85%
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sensors around the body that were used to detect movement 
(omitting heart rate), which ranged from 63 to 64%.

4.3.3  Classification of wearable sensors

The results in Sect. 4.3.2 demonstrated that individually the 
wearable sensors produced sub-optimal results. Based on 
these results, the purpose of this classification was to opti-
mize the system to minimize the number of wearable sensors 
used, while maintaining model performance. As the heart rate 
sensor’s results were barely above chance this sensor has been 
omitted from further analysis. Table 6 illustrates the perfor-
mance of the models using only the wearable motion sensors. 
Once again, the performance of the P-SVM model surpassed 
the two other models, with the highest accuracy of 93%, and 
lowest error rate of 7%. The LDA model performed the worst, 

with the lowest accuracy of 39%, and the highest error rate 
of 61%. kNN’s performance was intermediate, with a modest 
accuracy of 72% and error rate of 28%.

Table 6 demonstrated the results of removing the physi-
ological sensor and using only the wearable motion sensors. 
The next stage of the analysis is to minimize the number of 
wearable motion sensors. This analysis first included exam-
ining the correlation between the sensors and to remove 
those that were highly correlated (see Fig. 15). Using Pear-
son’s correlation, Fig. 15 demonstrates that the left arm 
and right arm (0.7), hip and upper spine (0.61), and right 
forearm and right arm (0.57) had moderate to high correla-
tions. According to feedback from the participants, the upper 
spine sensor was extremely uncomfortable to wear during 
the experiment. As such, this sensor has been removed first, 
and the model’s performance has been re-evaluated.

Table 7 illustrates the performance of the models with the 
upper spine sensor removed. Once again, the performance of 
the P-SVM model surpassed the two other models, with the 
highest accuracy of 91%, and lowest error rate of 9%. The 
LDA model performed the worst, with the lowest accuracy 
of 40%, and the highest error rate of 60%.

Table 5  Classification performance of individual wearable sensors

Bold entries denotes the best performing results

Sensor position/performance 
measure

LDA kNN P-SVM

Right forearm Accuracy 44.59% 61.54% 64.28%
F1 45.15% 62.68% 64.39%
BER 55.41% 38.46% 35.72%

Hip Accuracy 47.02% 61.40% 63.85%
F1 47.28% 58.88% 63.57%
BER 52.98% 38.60% 36.15%

Right arm Accuracy 46.87% 60.76% 63.65%
F1 47.48% 61.93% 63.71%
BER 53.13% 39.24% 36.35%

Left arm Accuracy 46.68% 61.72% 63.62%
F1 47.13% 63.22% 63.68%
BER 53.32% 38.28% 36.38%

Upper spine Accuracy 46.88% 61.84% 63.24%
F1 47.37% 60.76% 63.13%
BER 53.12% 38.16% 36.76%

Right shank Accuracy 43.91% 60.91% 62.96%
F1 44.05% 61.51% 63.09%
BER 56.09% 39.09% 37.04%

Heart rate Accuracy 48.34% 50.39% 51.29%
F1 47.26% 50.41% 52.13%
BER 51.66% 49.61% 48.72%

Table 6  Classification performance of wearable motion sensors

Bold entries denotes the best performing results

Classifier Accuracy F1 BER

LDA 39.11% 39.23% 60.89%
kNN 71.64% 72.98% 28.36%
P-SVM 93.17% 93.20% 6.83%

Fig. 15  Correlation of wearable motion sensors

Table 7  Classification performance of wearable motion sensors with-
out upper spine

Bold entries denotes the best performing results

Classifier Accuracy F1 BER

LDA 40.10% 40.22% 59.90%
kNN 71.12% 72.62% 28.88%
P-SVM 90.95% 90.98% 9.05%
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The other highly correlated sensor was on the right arm 
and so the next stage of the analysis was to remove this 
sensor as well and re-evaluate the system’s performance. 
Table 8 illustrates the performance of the models with the 
upper spine and right arm sensors having been removed. 
Once again, the performance of the P-SVM model surpassed 
the two other models, with the highest accuracy of 88%, 
and lowest error rate of 12%. The LDA model performed 
the worst, with the lowest accuracy of 41%, and the highest 
error rate of 59%.

5  Discussion

We show the results of binary fatigue classification using 
a variety of data streams, including body motion, external 
force, and heart rate. Four repetitive physical tasks (two-
handed box lifting, two-handed box carrying, two-handed 
box pushing/pulling, and two-handed trolley pushing/pull-
ing) were designed to simulate daily factory work to collect 
human-centric data from wearable and embedded sensors. 
Data was then pre-processed before features were extracted. 
In an effort to reduce the number of features in each dataset, 
PCA was utilized to eliminate redundant features so that each 
dataset was composed of only the discriminate features. The 
analysis then involved implementing several models to exam-
ine the optimum sensors and algorithms to use for detect-
ing fatigue. This is important for the ubiquity of the system 
so that more accurate models can be developed that do not 
include redundant sensors that contribute very little to the 
overall result. Overall, the results demonstrate that P-SVM 
consistently outperformed other algorithms, while LDA 
was the worst. This can be attributed to the design of the 
algorithms. LDA was found to not be able to handle a com-
plicated dataset with hundreds of features well. In contrast, 
P-SVM is a complex machine learning method that is capable 
of solving difficult classification problems. However, kNN is 
a tradeoff between LDA and P-SVM, as it has a lower compu-
tational cost than P-SVM, without diminishing performance.

The first analysis included evaluating the sensors in terms 
of their broad categories of embedded (Table 2), wearable 
(Table  3) and both wearable + embedded (Table  4). The 
results of the embedded sensor dataset were relatively poor, 

achieving a maximum accuracy of 59% using both kNN and 
P-SVM. However, P-SVM did produce a marginally higher 
 F1 score of 63% over kNN (60%), which demonstrates that 
this classifier was better at correctly detecting genuine fatigue 
when it occurred. The wearable sensors, which included heart 
rate, and the wearable + embedded datasets produced similar 
results with maximum accuracies of 93% and 94%, respec-
tively. These results demonstrate a 34% increase in accuracy 
over just using the embedded sensors. The inclusion of the 
embedded sensors only increased performance by 1% over the 
wearable sensors, which demonstrates that wearable sensors 
alone are sufficient for detecting fatigue.

The first set of results demonstrated that the embedded 
sensors contributed very little to the overall performance of 
the system. With this in mind, the second analysis aimed to 
understand how each individual wearable sensor contrib-
uted to the system’s performance (Table 5). Individually, the 
accuracy ranged from 51 to 64%. On its own, heart rate pro-
duced the lowest accuracy that ranged from 48% (LDA) to 
51% (P-SVM), which represents a 42% decrease over using 
all the wearable sensors together (Table 3). In terms of the 
wearable sensors that were used to capture motion, individu-
ally these sensors produced accuracies that were on aver-
age 30% lower than using all the wearable sensors together 
(Table 3). The results in Table 5 ranged from 63% (right 
shank) to 64% (right forearm). The results demonstrate that 
individually the wearable sensor’s ability to satisfactorily 
distinguish fatigue is inadequate and so a combination of 
sensors is required to detect fatigue with a reasonable degree 
of accuracy.

The final analysis sought to build on the individual 
analysis by minimizing the number of wearable sensors 
used to determine a minimally viable set of sensors that 
could be used to adequately detect fatigue (Tables 6, 7, 
and 8). This process included first removing the worst 
performing sensor (heart rate) and then the highly cor-
related wearable motion sensors. Firstly, using only the 
wearable motion sensors (Table 6), the accuracy did not 
change at 93% and remained steady to those in Table 3, 
which did include heart rate. This illustrates that heart 
rate wasn’t contributing to the results. In terms of the 
wearable motion sensors, the arms, hip, and upper spine 
had the highest correlation with each other (Fig.  15). 
As the upper spine sensor was uncomfortable to wear, 
this was removed first. Compared to Table 6, results in 
Table 7 illustrated that removal of the upper spine sen-
sor marginally reduced the accuracy to 91%, which is a 
negligible decrease of 2% and illustrates that the upper 
spine also was not a strong contributor to the results. 
Additionally, the right arm sensor was removed due to its 
correlation with multiple sensors. The results whereby the 
upper spine and right arm were removed (Table 8) still 
produced a respectable maximum accuracy of 88%, which 

Table 8  Classification performance of wearable motion sensors with-
out upper spine and right arm

Bold entries denotes the best performing results

Classifier Accuracy F1 BER

LDA 41.18% 41.30% 58.82%
kNN 70.65% 71.87% 29.35%
P-SVM 88.12% 88.17% 11.88%
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compared to Table 6 is a decrease of 5%. These results 
are important to understand the ubiquity of the system for 
deployment in an aviation manufacturing environment as 
too many wearable sensors can be obtrusive and cause 
discomfort, while deployment of embedded solutions can 
incur a high infrastructure cost.

Table 9 illustrates a comparison between our work and 
previous studies in the area. Previous studies utilized joint 
angles that have been derived from IMUs to identify risky 
postures [8]. However, using joint angles alone does not 
provide the necessary granularity for detecting WMSDs, 
as they are caused by a combination of factors, including 
body motion and external force. Rather than using joint 
angles, this study aims to understand the nature of the 
data using body motion, physiological and external force 
measurements.

Heart rate has also been widely applied to ergonomic 
analysis. Most research measures heart rate using electro-
cardiogram (ECG) sensors [12, 44]. Although ECG is the 
gold standard for measuring the heart via electrodes attached 
to the chest [45], the utilization of such devices in a real-
world factory setting is not suitable. For instance, if these 
devices are worn for an extended period of time throughout 
the day, their attachment to the skin can degrade over time 
[46]. However, our approach uses a PPG sensor for opti-
cal sensing, which is more comfortable, can be worn for a 
long duration and is a sensor that is found in the majority 
of smartwatches. Although we have taken raw PPG from 
the ear, the approach can be adapted to a real-world setup, 
where the use of smartwatches to obtain similar data is an 

interesting avenue to further explore. In contrast to [12, 44, 
47, 48] who labelled their data using a subjective rating 
at the end of the task, our approach to labelling the data 
included applying the results of processing subjective fatigue 
levels to obtain a change score between the start and end of a 
task that represented the level of exertion for each task. This 
has been beneficial because fatigue fluctuates and changes 
from the beginning of a task to the end and thus calculation 
of change scores better represented the physical demand of a 
task. Additionally, a fixed threshold of fatigue classification 
has been implemented in [11, 12, 44, 47, 48] that has been 
used for all participants. This can lead to bias and unrep-
resentative results as fatigue and feelings of fatigue differ 
between individuals. Therefore, we have labelled the data 
based on the change scores for each participant, which takes 
personal differences into consideration and thus provides a 
more personalized approach. Furthermore, our maximum 
classification accuracy of 94.15% provides an improvement 
over previous work [11, 44, 48]. Research shown in [11, 48] 
used physiological data only for physical demand classifica-
tion, while we included more types of data sources, which 
provided more aspects of body-related information.

Our proposed approach has implications for advancing 
the area of fatigue detection, by transforming raw human-
centric data into in-depth body-related information. While 
capturing data is relatively straightforward, processing 
enormous amounts of multimodal sensor data is challeng-
ing. This paper addresses these issues through the devel-
opment of a data processing pipeline that synchronized 
independent data streams together on a common time basis 

Table 9  Comparison between 
previous studies

Article Sensor measurements Output Accuracy

This study IMUs–body motion
PPG–heart rate
Force plate–ground reaction force
Load cell–hand exertion force

Body fatigue
(Borg scale/personalized threshold)

88.12–94.15%

[8] (2013) IMUs and goniometers–joint angles RULA score –
[11] (2019) PPG–heart rate

EDA–skin conductance
Skin temperature

Physical demand
(energy expenditure program)

90%

[12] (2017) IMUs–body motion
ECG–heart rate

Body fatigue
(Borg scale/fixed threshold)

79% (specificity)

[14] (2017) Force plate–plantar pressure Quasi-static postures
Dynamic postures

100%
92%

[15] (2016) Load cell–hand exertion force
VICON–body motion

Manual force strength –

[44] (2020) IMUs–body motion
ECG–heart rate

Body fatigue
(Borg scale/fixed threshold)

87.90%

[47] (2017) RSP–breathing rate
PPG–heart rate
EDA–skin conductance

Body fatigue
(Borg scale/fixed threshold)

75%

[48] (2017) PPG–heart rate
EEG–brainwave signal
Skin temperature

Body fatigue
(Borg scale/fixed threshold)

82.60%
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for the purpose of detecting fatigue. This has great poten-
tial to reduce WMSDs by providing a method of capturing 
body-related information and analyzing this data to improve 
workers’ situational awareness of their body conditions. 
This is important to facilitate them in actively calibrating 
their method of performing tasks. For example, by taking 
longer breaks, adjusting their body postures, and controlling 
their motion speed. While the results are promising there 
are some limitations. For instance, the dimensions of the 
force plate meant that this sensor could not be used in all 
the tasks. As such, it was excluded from tasks that required 
the participants to move off it, such as two-handed trolley 
pushing/pulling. Moving forward, results will also need to 
be visualized within the system to enable real-time ergo-
nomic monitoring that provides feedback to workers. This 
feedback can be delivered through smart devices, such as 
smartphones and smartwatches, as a method of alerting them 
once they have sustained a high body fatigue level for an 
extended duration. In this way, workers will have a clearer 
insight into their workload distribution during a shift. This 
will greatly improve the health and safety of workplaces 
by empowering workers to be in control of their health to 
avoid excessive workloads. Lastly, factory-wide situational 
awareness of operations can be hugely improved through the 
collection of body fatigue levels, which can systematically 
analyze the effect of tasks towards a group of workers. For 
example, if most workers display a high body fatigue for a 
certain task, then the task can be redesigned to ensure its 
ergonomic safety.

6  Conclusions and future work

WMSDs pose a negative and long-term effect on both produc-
tivity and workers’ health. This paper presents a machine learn-
ing approach for detecting fatigue utilizing body part motion, 
external force, and physiological data. An experiment has been 
conducted to simulate daily factory work and data has been 
collected from thirty participants while they performed a series 
of manual physical tasks. A data processing pipeline has then 
been implemented to pre-process multimodal data and extract 
features for the machine learning models. Results indicated that 
the P-SVM model was able to provide a maximum accuracy of 
94.15% for the binary detection of fatigue when utilizing the 
dataset that combined both wearable and embedded sensors, 
which is an improvement over similar work in this area.

While the results are encouraging, future work aims to build 
on this work to further improve the system. For instance, in this 
study, six wearable and two embedded sensors were included 
to measure different body parameters and provide system-
atic fatigue detection. Although the results were promising, 
deploying that many sensors, per worker, in the real world can 
be costly, obtrusive, and uncomfortable, and it may disturb or 

impede them doing their job. Future work therefore aims to 
explore the efficacy of commercial devices while undertaking 
such tasks. Moreover, it is impractical to deploy force plates 
and load cells in a factory environment, due to the high cost and 
impracticalities of gathering data, as workers need to remain 
on the plate in order to gather data. Therefore, optimizing the 
sensor configuration is required before it can be considered in a 
real-world application. Additionally, the current system works 
offline. A further line of enquiry would be to improve the system 
to construct a real-time feedback loop that includes a visualiza-
tion component, which can detect and display the current level 
of fatigue as workers complete their tasks. Furthermore, com-
pared to a laboratory environment, a real factory environment 
can pose different types of external signal interference, including 
noise and high temperature. As such, it is essential to test and 
validate the system’s performance in a real factory environment.
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