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Abstract

In this paper we consider an insider with privileged information
that is affected by an independent noise vanishing as the revelation
time approaches. At this time, information is available to every trader.
Our financial markets are based on Wiener space.
In probabilistic terms we obtain an infinite dimensional extension

of Jacod’s theorem to cover cases of progressive enlargement of fil-
trations. The application of this result gives the semimartingale de-
composition of the original Wiener process under the progressively
enlarged filtration.
As an application we prove that if the rate at which the additional

noise in the insider’s information vanishes is slow enough then there
is no arbitrage and the additional utility of the insider is finite.
JEL: G140
Keywords: Insider trading; Enlargement of filtrations; Malliavin’s

calculus; Utility maximization; Arbitrage
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1 Introduction
Financial markets inherently have asymmetry of information. That is, there
are different types of traders whose behavior is induced by different types
of information they possess (or not). In the classical setting for financial
markets one assumes that all traders share the same information which allows
the study of non-arbitrage and equilibrium conditions. In this article we
are interested in finding settings where a continuous time financial market
can accept continuous differences in information between traders. These
differences can disappear at certain revelation times. Our conclusion is that
one can construct such markets and still achieve non-arbitrage under some
restrictions on the trading strategies of the informed agents.
One of the aspects of this complex problem is to study the effects of

changes in information of different agents. One can find literature in mathe-
matical economics as well as in stochastic process theory dealing with prob-
lems of this nature. In the latter area the most frequently used techniques
are based on the enlargement of filtrations. A basic reference on this topic
is the series of papers in the Séminaire de Calcul Stochastique (1982/83) of
the University Paris VI published in 1985.
In the past few years we have seen expanding interest in this area. Ar-

ticles where applications of the enlargement of filtrations technique is used
to portfolio optimization of an insider are Karatzas and Pikovsky (1996),
Imkeller (1996 ,1997), Amendinger et al. (1998), Grorud and Pontier (1998)
and Imkeller et al. (2001). The set up in most of these works is to con-
sider two small agents who optimize their logarithmic utility. One considers
the differential of utility between these two agents supposing that one of
the agents is better informed than the other. One of the important con-
clusions of this body of work is that if the differential is generated by the
initial knowledge of the value of a random variable then the additional utility
is the relative entropy of this random variable with respect to the original
probability measure, see for instance remark 2.5 in Karatzas and Pikovsky
(1996).
In most of these results the extra information of the insider can be clas-

sified into two types. In the first, the insider has direct access to the price of
the underlying at some time in the future T . In this case the utility differ-
ential is infinity and there is arbitrage which is realized at this future time
T . In the second, the insider knows the price of the underlying perturbed by
a remaining independent noise which is alive through the life of the trades.
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In this case the additional utility is finite due to the extra component of
noise. Nevertheless we encounter the somewhat odd situation that this extra
component of noise does not vanish even at the revelation time T .
In this sense all the previous results assume that the knowledge of the ad-

ditional information does not change through time. In mathematical terms
this amounts to dealing with an initial enlargement of filtrations by a ran-
dom variable. Related problems are often solved using some variant of a well
known theorem by Jacod, see Jacod (1985), and Grorud and Pontier (1998)
for a discussion of different conditions under which Jacod’s result holds true.
In this article we propose an infinite dimensional extension of this theorem
to cover cases of progressive enlargement of filtrations. This, in particular,
covers situations in which the differential of information may be a different
random variable at each time, but this difference is generated by an indepen-
dent stochastic process.
Most importantly, we consider the following type of example: a trader

with additional information consisting of the price at final time with some
blurring additional noise. This noise dynamically tends to 0 as final time gets
closer. So we deal with a trader whose additional information is continuously
getting clearer to him as time evolves.
As already mentioned, in other relevant papers, see section 3 in Karatzas

and Pikovsky (1996) and 4.3 in Amendinger et al. (1998), this amount of
blurring noise is fixed throughout the trading interval.
Other approaches to insider’s effects in financial markets are made by

Kyle (1985), and Back (1992) in the context of an equilibrium theory, with
different kind of traders acting in the market, and by Baudoin (2001), where
the true model of stock prices is partially observed and where the insider’s
extra information consists of the the law of some functional of the future
prices of stocks. Even though, in this latter case, enlargement of filtrations
techniques are not relevant due to the type of additional information being
considered, the author establishes a deep relationship with the case where the
extra information is the value of a functional of the future prices of stocks.
The results in our cornerstone examples state that if the rate at which the

blurring noise disappears is slow enough then there will be a finite additional
logarithmic utility and possibly no arbitrage.
This situation corresponds to a more natural situation where the infor-

mation retained by the insider is improving as times evolves. The minimum
rate at which the blurring has to go to zero in order to achieve no-arbitrage
could also be interpreted as the necessary noise that has to be generated by
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noise traders, see Back (1992), in order not to reveal the information the
insider possesses.
We corroborate the above results also for the case where the additional

information is the maximum of the value of the stock plus some blurring
noise. Technically this case is somewhat different from the previous one
since the arbitrage does not come from the behavior of the optimal strategies
at revelation time but as a consequence of the random time at which the
maximum is reached. Nevertheless the same conclusions as in the previous
example are valid here.
We consider financial markets driven by a Wiener process and we use

Malliavin’s Calculus to obtain the formula of the compensator, or the infor-
mation drift, generating a Wiener process in the enlarged filtration.
Another important difference with respect to previous papers is that we

work with different hypotheses about the random variables which constitute
the additional information. These hypotheses are easy to check using Malli-
avin’s Calculus.
For simplicity, we restrict our analysis to the case of a one-dimensional

model, although our approach can be easily extended to a multidimensional
framework.
The paper is organized in the following way. Section 2 is devoted to

finding a formula for the compensator of the Wiener process. In Section
3 we apply the previous results to several basic examples, while Section 4
deals with the analyzing the effects of the information drift in the additional
logarithmic utility and possibilities of arbitrage.

2 An infinite dimensional extension of Jacod’s
Theorem

Consider a Wiener process W = {Wt, 0 ≤ t ≤ T} defined on a complete
probability space (Ω,F , P ). We denote by (Ft)t∈[0,T ] the natural filtration
generated by the Wiener process and the sets of P -measure zero.
Assume that the additional information until time t is given by a family

of random variables {Ls , s ≤ t}. Suppose that these random variables have
the following structure:

Lt = G(X,Yt),
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where X is an FT -measurable random variable, the process Y = {Yt, 0 ≤ t ≤
T} is independent of the σ-algebra FT , and G : R2 → R is a given measur-
able function. In that sense we can define Ht as the usual augmentation of
the filtration Ft ∨ σ(Ls, s ≤ t) (see Rogers and Williams (1979)).
The filtration (Ft)t∈[0,T ] gives the regular trader’s evolution of knowledge,

whereas the enlarged filtration (Ht)t∈[0,T ] describes the insider’s filtration.
The random variable X contains the additional information available to the
privileged trader, and the random variables Yt represent an additional noise
that perturbs this additional information. Therefore one expects in general
that YT = 0 and that the variance of the noise should decrease to zero as the
revelation time T approaches.
For each t ∈ [0, T ], we denote by Pt(ω, dx) a regular version of the

conditional law of a random variable X given the σ-field Ft, abbreviating
it sometimes by Pt(dx). We can choose this version in such a way that the
following conditions are satisfied:

1. For every Borel set B on the real line, {Pt(B), t ∈ [0, T ]} is an Ft-
progressively measurable process.

2. For every (t,ω) ∈ [0, T ]× Ω, Pt(ω, dx) is a probability measure on the
real line.

3. For any bounded and Ft-adapted process u and for any bounded and
measurable function f on R, we have

E

µ
f(X)

Z T

0

utdt

¶
= E

Z T

0

ut

µZ
R
f(x)Pt(dx)

¶
dt.

In order to establish the general formula for the compensator, we require
the random variable X to belong to a certain class L1 to be defined below.

Definition 1 We say that an FT -measurable random variable X belongs to
the class L1 if there exists a random kernel P (1)t (ω, dx) such that

1. For every Borel set B in the real line, {P (1)t (B), t ∈ [0, T )} is an Ft-
progressively measurable process.

2. For every (t,ω) ∈ [0, T ) × Ω, P (1)t (ω, dx) is a signed measure on the
real line.
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3. For every t ∈ [0, T ), E R t
0

¯̄̄
P
(1)
t

¯̄̄
dt < ∞, where

¯̄̄
P
(1)
t

¯̄̄
(ω) denotes the

total variation of the measure P (1)t (ω, ·).
4. For any bounded and Ft-adapted process u, for any bounded and mea-
surable function f on R, and for every t ∈ [0, T ), we have

E

µ
f(X)

Z t

0

utdWt

¶
= E

µZ t

0

ut

µZ
R
f(x)P

(1)
t (dx)

¶
dt

¶
.

In order to understand the above condition better, let X be an arbitrary
FT -measurable random variable. For any measurable and bounded func-
tion f on R we denote by Φf =

n
Φft , t ∈ [0, T ]

o
the Ft-predictable process

appearing in the Ito stochastic integral representation of f(X):

f(X) = E(f(X)) +

Z T

0

Φft dWt.

Therefore in order to construct the measure P (1)t (dx) in the above definition
one may use that

E

µ
f(X)

Z T

0

utdWt

¶
= E

µZ T

0

utΦ
f
t dt

¶
.

Therefore the problem may be solved if we can construct an adapted signed
measure P (1)t such that

Φft =

Z
R
f(x)P

(1)
t (dx),

for almost all (t,ω). At first, it may seem that the signed measure can be
defined using simple functions f and then expanding the defined measure to
the whole sample space if we have some continuity property. That is, if fn is
a sequence of measurable and uniformly bounded functions which converge
pointwise to f , then

lim
n→∞

E

Z T

0

¯̄̄
Φfnt − Φft

¯̄̄2
dt = 0.

Nevertheless, this continuity property does not imply directly the existence
of the kernel P (1)t (dx).
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A different approach to show the existence of this kernel is to use Clark-
Ocone’s formula, see for instance Nualart (1995), and deduce directly from
there the definition of the measure P (1)t . In fact we establish the following
proposition.

Proposition 2 Suppose that there exists a (localization) process h : [0, T ]×
Ω → R such that X ∈ D1,2 is such that for almost all (t,ω) ∈ [0, T ] × Ω,R T
t
h(l)DlXdl = 0 implies h(s)DtX = 0, s ∈ [0, T ] and the process

h(s)DtXR T
t
h(l)DlXdl

1[t,T ](s)

belongs to the domain of the divergence (here we define the quotient as 0 if
the denominator is 0). Assume also thatZ T

0

E

Ã
|
Z T

t

h(s)DtXR T
t
h(l)DlXdl

dWs|
¯̄̄̄
¯Ft

!
dt <∞. (1)

Then X belongs to L1 and

P
(1)
t (B) = E

Ã
1B(X)

Z T

t

h(s)DtXR T
t
h(l)DlXdl

dWs

¯̄̄̄
¯Ft

!
.

Proof. Fixed f ∈ C1b the Clark-Ocone formula for random variables
X ∈ D1,2 states that

f(X) = E(f(X)) +

Z T

0

E [Dt (f(X)) |Ft] dW (t).

Then, for any bounded Ft-adapted process u,

E

µ
f(X)

Z T

0

utdWt

¶
= E

Z T

0

utE [Dt (f(X)) |Ft] dt = E
Z T

0

utDt (f(X)) dt

=

Z T

0

E

Ã
utDtX

Z T

t

h(s)
Ds (f(X))R T
t
h(r)DrXdr

ds

!
dt

=

Z T

0

E

ÃZ T

t

h(s)DtXDs (utf(X))R T
t
h(r)DrXdr

ds

!
dt

= E

Z T

0

utE

Ã
f(X)

Z T

t

h(s)DtXR T
t
h(r)DrXdr

dWs

¯̄̄̄
¯Ft

!
dt.
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The result can be extended to any bounded and measurable function f by
an argument of approximation. Moreover, (1) implies condition 3. in the
definition of L1.
Localizations can be useful when the random variable X has undesirable

properties in certain smooth subsets of Ω. For more details on this, see
Nualart (1995).
In Imkeller et al. (2001), the authors have developed a Malliavin Calculus

for measure-valued random variables and have introduced P (1)t (dx) as the
kernel appearing in the Clark-Ocone stochastic integral representation of
the measure-valued random variable δX(ω). More precisely, suppose that δX
belongs to D1,2(M), whereM is the space of signed measures on the real line,
equipped with the total variation norm. Then, Proposition A.1 of Imkeller
et al. (2001) states that X belongs to the class L1 , and

P
(1)
t (dx) = E (Dt [δX ] |Ft) (dx).

The following proposition is a generalization of Theorem 2.1 in Imkeller
et al. (2001).

Proposition 3 Suppose that X is an FT -measurable random variable in the
class L1. Assume that for almost all (t,ω), the signed measure P (1)t (dx) is
absolutely continuous with respect to Pt(dx), and set

αt(x) =
P
(1)
t (dx)

Pt(dx)
.

We can choose a version of αt(x) which is P ⊗ B(R)-measurable, where P
denotes the Ft-progressive σ-field. Set

βt = E(αt(X)|Ht),

where we consider a progressively measurable version. Assume that
R T
0
|βs|ds <

∞ a.s., then Wt −
R t
0
βsds is a Wiener process with respect to the filtration

(Ht)t∈[0,T ].

Proof. We can choose a version of αt(x) which is P ⊗ B(R)-measurable
since any adapted process has a version that is progressively measurable, see
Meyer (1996). Let A ∈ Fs, h a bounded measurable function on Rn , and
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s1 ≤ · · · ≤ sn ≤ s < t. Set H = h(Ls1 , . . . , Lsn). Denote Y = (Ys1 , ..., Ysn)
and EY (·) the conditional expectation fixed Y = (ys1, ..., ysn). Then we have

EY ((Wt −Ws)1AH)

= E (1A(Wt −Ws) h(G(X, ys1), . . . , G(X, ysn)))

= E

µ
1A

Z t

s

Z
R
h(G(x, ys1), . . . , G(x, ysn))P

(1)
u (dx)du

¶
= E

µ
1A

Z t

s

Z
R
h(G(x, ys1), . . . , G(x, ysn))αu(x)Pu(dx)du

¶
= E

µ
1A

Z t

s

h(G(X, ys1), . . . , G(X, ysn))αu(X)du

¶
= EY

µ
1AH

Z t

s

αu(X)du

¶
.

If we take expectation with respect to Y we obtain

E ((Wt −Ws)1AH)

= E

µ
1AH

Z t

s

αu(X)du

¶
= E

µ
1AH

Z t

s

E(αu(X)|Hu)du

¶
.

Therefore Wt −
R t
0
βsds is a continuous local martingale in the filtration

(Ht)t∈[0,T [. Lévy’s characterization theorem and the condition
R T
0
|βs|ds <∞

a.s. imply the result.
This approach using random kernels and their absolute continuity is sim-

ilar to that of Yor (1995). As a corollary of the above proposition one also
obtains the classical version of the Theorem by Jacod.

Corollary 4 Denote by PX the law of the random variable X ∈ FT . Assume
that Pt ¿ PX for any t ∈ [0, T ) a.s., let

pt(x)(ω) =
dPt
dPX

(ω, x)

αt(x) =
d
dt
< p·(x),W >t

pt(x)
.
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Suppose that E
R t
0
|αs(X)|ds <∞ for any t ∈ [0, T ) and that R T

0
E(|αt(X)||Ht)dt <

∞ a.s . Then Wt −
R t
0
E(αs(X)|Ht)ds, 0 ≤ t < T is a Wiener process with

respect to the filtration (Ht) on [0, T ].

Proof. It is known that pt(x) = dPt
dPX

, t ∈ [0, T ), is a continuous local
martingale. Then, we have

E

µ
f(X)

Z t

0

u(s)dWs

¶
= E

µZ
R
f(x)

dPt
dPX

(x)

µZ t

0

u(s)dWs

¶
PX(dx)

¶
= E

µZ
R
f(x)

Z t

0

u(s)d < p·(x),W >s P
X(dx)

¶
.

From here it follows that

P (1)t (dx) =
d

dt
< p·(x),W >t P

X(dx).

Notice that P (pt(x) = 0) = 0 :

P (pt(x) = 0) = E(1{pt(x)=0}) = E(E(1{pt(x)=0}|Ft))
= E(

Z
{pt(x)=0}

pt(x)P
X(dx)) = 0.

As a consequence, αt(x) is well defined and it coincides with the Radon-
Nikodym density of P (1)t (dx) with respect to Pt(dx). Therefore the assump-
tions of the previous proposition are satisfied and we obtain the conclusion.

Notice that Jacod’s theorem was established without the condition
E
R t
0
|αs(X)|ds <∞, t ∈ [0, T ) (see Jacod (1985)). In fact the theorem was

proved by assuming only that
R T
0
|αt(X)|dt < ∞ a.s. Nevertheless we can

prove an infinite dimensional extension of Jacod’s Theorem in a direct way.

Theorem 5 Denote by PX the law of the random variable X ∈ FT . Assume
that Pt ¿ PX for any t ∈ [0, T ) a.s., let

pt(x)(ω) =
dPt
dPX

(ω, x),

αt(x) =
d
dt
< p·(x),W >t

pt(x)
.
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Suppose that E(|αt(X)|) < ∞ for every t ∈ [0, T ), and, setting βt =

E(αt(X)|Ht), that
R T
0
|βs|ds <∞ a.s. ThenWt−

R t
0
βsds is a Wiener process

with respect to the filtration (Ht) on [0, T ].

Proof. Let A ∈ Fs, h a bounded measurable function on Rn , and
s1 ≤ · · · ≤ sn ≤ s < t. Set H = h(Ls1 , . . . , Lsn). Denote Y = (Ys1 , ..., Ysn)
and EY (·) the conditional expectation fixed Y = (ys1, ..., ysn). Let τ

p(x)
n =

inf{t, pt(x) ≥ n}. Note that for n ∈ N, τ p(·)n is measurable in (ω, x). Then we
have

EY

³
(W

t∧τp(X)n
−W

s∧τp(X)n
)1AH

´
= E

³
1A(Wt∧τp(X)n

−W
s∧τp(X)n

) h(G(X, ys1), . . . , G(X, ysn))
´

= E

µ
1A

Z
R
pt(x)(Wt∧τp(x)n

−W
s∧τp(x)n

) h(G(x, ys1), . . . , G(x, ysn))P
X(dx)

¶
=

Z
R
h(G(x, ys1), . . . , G(x, ysn))E

³
1A pt(x)(Wt∧τp(x)n

−W
s∧τp(x)n

)
´
PX(dx)

=

Z
R
h(G(x, ys1), . . . , G(x, ysn))E

³
1AE

³
pt(x)(Wt∧τp(x)n

−W
s∧τp(x)n

)|Fs
´´
PX(dx)

=

Z
R
h(G(x, ys1), . . . , G(x, ysn))E

1A Z t∧τp(x)n

s∧τp(x)n

< p·(x),W >u du

PX(dx)
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= E

1A Z
R
h(G(x, ys1), . . . , G(x, ysn))

Z t∧τp(x)n

s∧τp(x)n

< p·(x),W >u du

PX(dx)
= E

µ
1A

µZ t

s

Z
R
h(G(x, ys1), . . . , G(x, ysn))1[0,τp(x)n ]

(u) < p·(x),W >u P
X(dx)

¶
du

¶
=

Z t

s

E

µ
1A

Z
R
h(G(x, ys1), . . . , G(x, ysn))1[0,τp(x)n ]

(u)
< p·(x),W >u

pu(x)
Pu(dx)

¶
du

=

Z t

s

E

µ
E(1Ah(G(x, ys1), . . . , G(x, ysn)1[0,τp(x)n ]

(u)
< p·(x),W >u

pu(x)
|Fu)|x=X

¶
du

=

Z t

s

E

µ
1Ah(G(X, ys1), . . . , G(X, ysn)1[0,τp(X)n ]

(u)
< p·(X),W >u

pu(X)

¶
du

= E

1Ah(G(X, ys1), . . . , G(X, ysn) Z t∧τp(X)n

s∧τp(X)n

< p·(X),W >u
pu(X)

du

 .
Arguing now as in Proposition 3, we obtain thatWt−

R t
0
βsds is a continuous

local martingale in the filtration (Ht)t∈[0,T [. Lévy’s characterization theorem

and the condition
R T
0
|βs|ds <∞ a.s. imply the result.

The following proposition has an appropriate form to apply Malliavin’s
Calculus in the computation of β.

Proposition 6 Suppose that X is an FT -measurable random variable. As-
sume that there exists a B[0,T ] ⊗ FT -measurable process ξ = {ξt, t ∈ [0, T ]}
such that

R T
0
E(|ξt|)dt <∞, and that for any measurable and bounded func-

tion f we have

f(X) = E(f(X)) +

Z T

0

Φft dWt

Φft = E (f(X)ξt|Ft) , (2)

for almost all (t,ω). Then, X belongs to the class L1, the signed measure
P
(1)
t (dx) is absolutely continuous with respect to Pt(dx) for almost all (t,ω),

and the density αt(x) =
P
(1)
t (dx)

Pt(dx)
satisfies

αt(X) = E(ξt| Ft ∨ σ(X))
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for almost all (t,ω). Moreover,

βt := E(αt(X)|Ht) = E(ξt|Ht). (3)

Proof. Any Ft ∨ σ(X)-measurable application from Ω to R factorizes in
the form αt(ω, X(ω)) for an appropriate Ft ⊗ B(R)-measurable application
αt(ω, x) : Ω×R→ R. Let αt(ω, x) be the Ft⊗B(R)-measurable application
that verifies

αt(X) = E(ξt| Ft ∨ σ(X)),

where we omit the explicit dependence on ω. As in Proposition 3 we can
choose a version of αt(x) P ⊗ B(R)-measurable, where P denotes the pro-
gressive σ-field. Setting P (1)t (dx) = αt(x)Pt(dx) we obtain that X belongs to
the class L1. In fact,

E

µ
f(X)

Z t

0

utdWt

¶
= E

µZ t

0

E (f(X)ξt| Ft) utdt
¶

= E

Z t

0

E(E (f(X)ξt|Ft ∨ σ(X))| Ft) utdt

= E

Z t

0

E(f(X)αt(X)| Ft)utdt

=

Z t

0

E

µZ
R
f(x)utαt(x)Pt(dx)

¶
dt.

Notice that so far the values of α are independent of the process Y .
Finally, in order to show (3), fix t ∈ [0, T ] such that E(|ξt|) < ∞ and take
B ∈ Ft, h a bounded measurable function on Rn, s1 ≤ · · · ≤ sn ≤ t and
set H = h(Ls1, . . . , Lsn). Then, using the same notation as in the proof of
proposition 3, we have

EY (ξt1BH)

= E (ξt1Bh(G(X, ys1), . . . , G(X, ysn))

= E(E(ξt|Ft ∨ σ(X))1Bh(G(X, ys1), . . . , G(X, ysn))

= E (αt1B(X)h(G(X, ys1), . . . , G(X, ysn))

= EY (αt(X)1BH) .

This implies (3).
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In general (2) is obtained through an integration by parts as we shall see
in the examples below. Therefore the process ξ need not be Ft-adapted.
The next proposition gives a general formula for β in the case of additive

noise. In the sequel we consider the particular case where G(x, y) = x + y
and Yt = ZT−t, Z being a continuous process with independent increments
whose marginal has density qt.

Proposition 7 Suppose that the assumptions of Proposition 3 hold. Let for
t ∈ [0, T ] the random variables Lt be given by Lt = X + Yt. Then we have
for t ∈ [0, T ]

βt =

R
R αt(x) qT−t(Lt − x)Pt(dx)R

R qT−t(Lt − x)Pt(dx)
=

R
R qT−t(Lt − x)P (1)t (dx)R
R qT−t(Lt − x)Pt(dx)

.

Proof. For t ∈ [0, T ] we may write, using the independence of FT and Y
βt = E(αt(X)|Ft ∨ σ(Ls : s ≤ t))

= E(αt(X)|Ft ∨ σ(Lt) ∨ σ(Yt − Ys : s ≤ t))
= E(αt(X)|Ft ∨ σ(Lt)).

Let Qt be the regular conditional probability of (X,X + Yt) given Ft. Then
for C ∈ B(R2)

Qt(C) =

Z
R2
1C(x, x+ y) qT−t(y)Pt(dx) dy =

Z
R2
1C(x, l) qT−t(l − x)Pt(dx) dl.

Hence for A ∈ B(R)

P (X ∈ A|Ft ∨ σ(Lt)) =

R
A
qT−t(Lt − x)Pt(dx)R

R qT−t(Lt − x)Pt(dx)
. (4)

Using αt(x) =
P
(1)
t (dx)

Pt(dx)
, we obtain

E(αt(X)|Ft ∨ σ(Lt)) =

R
R αt(x) qT−t(Lt − x)Pt(dx)R

R qT−t(Lt − x)Pt(dx)

=

R
R qT−t(Lt − x)P (1)t (dx)R
R qT−t(Lt − x)Pt(dx)

. (5)
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3 Examples
In the following examples we will treat particular cases. We will progressively
specify the characteristics of the model trying to stay as general as possible.
In every example we will compute the compensator βt = E(αt(X)|Ht).
Example 1 Let Lt = X + W̃g(T−t), where X = F (WT ), F : R→ R is

a continuously differentiable function and g : [0, T ] → [0,+∞) is a strictly
increasing bounded function with g(0) = 0. Note that we cannot apply
Proposition 7 directly since F is not necessarily invertible. Assume that
E(F 0(WT )

2) <∞. This is true, for example, if |F 0(x)| ≤ cecx2 and c < 1/T .
For any smooth function f with compact support we have

E (Dt (f(F (WT )))|Ft) = E (f 0(F (WT ))F
0(WT )|Ft)

=

Z
R
(f ◦ F )0 (Wt + x)φT−t(x)dx,

where φt denotes the Gaussian density with variance t. Integrating by parts
we get

E (Dt (f(F (WT )))|Ft) =

Z
R
(f ◦ F ) (Wt + x)

x

T − sφT−t(x)dx

= E

µ
f(F (WT ))

WT −Wt

T − t |Ft
¶
.

Hence, condition (2) of Proposition 6 is satisfied with ξt =
WT−Wt

T−t . This
implies that

βt = E(
WT −Wt

T − t |Ht).

For t ∈ [0, T ] we may write, using the conditional independence of {Wr, r <

s} and σ(Lr, r ≤ s) given Ws and the independence of W and fW
E(
WT −Wt

T − t |Ht) = E(
WT −Wt

T − t |Wt,σ(Ls : s ≤ t))

= E(
WT −Wt

T − t |Wt, F (WT ) + Yt),
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where Yt = W̃g(T−t). Let Qt be the regular conditional probability of (WT −
Wt, F (WT ) + Yt) given Wt = x. Then for C ∈ B(R2)

Qt(C) =

Z
R2
1C(y, F (x+ y) + z)φg(T−t)(z)φT−t(y) dzdy

=

Z
R2
1C(y, w)φg(T−t)(w − F (x+ y))φT−t(y) dwdy.

Hence for A ∈ B(R), t < T

P (WT −Wt ∈ A|Wt, Lt) =

R
A
φg(T−t)(Lt − F (Wt + y))φT−t(y) dyR

R φg(T−t)(Lt − F (Wt + y))φT−t(y) dy

and

βt =

R
R yφg(T−t)(Lt − F (Wt + y))φT−t(y) dy

(T − t) RR φg(T−t)(Lt − F (Wt + y))φT−t(y) dy
.

Notice that y
T−tφT−t(y) = −φ0T−t(y). Hence, integrating by parts yields

βt =

R
R(Lt − F (Wt + y))F

0(Wt + y)φg(T−t)(Lt − F (Wt + y))φT−t(y) dy

g(T − t) RR φg(T−t)(Lt − F (Wt + y))φT−t(y) dy

=
1

g(T − t)E(YtF
0(WT )|Wt, F (WT ) + Yt).

In the particular case where F is affine, i.e., F (x) = λx+ a, λ 6= 0, with
a ∈ R, we have

βt =
λ

g(T − t)E(Yt|Wt,λWT + a+ Yt)

=
λ

g(T − t)E(Yt|λ(WT −Wt) + Yt)

=
(λ(WT −Wt) + Yt)λ

g(T − t) + (T − t)λ2 .

Example 2. Let X = M = max0≤t≤T Wt, F (x, y) = x+ y, Yt = W̃g(T−t)
and Lt = M + W̃g(T−t), t ∈ [0, T ]. For abbreviation, set Mt = max0≤s≤tWs,
t ∈ [0, T ], and

βt,T = max
t≤s≤T

(Ws −Wt) .

17



Then

M =Mt ∨
¡
βt,T +Wt

¢
.

For any bounded and measurable function f on R we can write

f(M) = f(M)
¡
1{M=Mt} + 1{M>Mt}

¢
= f(Mt)1{M=Mt} + f

¡
βt,T +Wt

¢
1{βt,T+Wt>Mt}.

From this decomposition we can find a regular version of the conditional law
of M given Ft, t ∈ [0, T ]. Indeed,

E (f(M)|Ft) = E
³
f(Mt)1{M=Mt} + f

¡
βt,T +Wt

¢
1{βt,T+Wt>Mt}|Ft

´
= f(Mt)RT−t(Mt −Wt) +

Z ∞

Mt−Wt

f(x+Wt)rT−t(x)dx,

where rt andRt denote the density and the distribution function, respectively,
of the maximum of the Wiener process in the interval [0, t], which are given
by

rt(x) =

r
2

πt
exp

µ
−x

2

2t

¶
, x > 0

and

Rt(y) =

Z y

0

rt(x)dx, y ≥ 0.

Hence,

Pt(dx) = δMt(dx)RT−t(Mt −Wt) + rT−t(x−Wt)1(Mt,∞)(x)dx. (6)

On the other hand, one can show that

P
(1)
t (dx) = −δMt(dx)rT−t(Mt −Wt) +

x−Wt

T − t rT−t(x−Wt)1(Mt,∞)(x)dx.

(7)

18



In fact, by Clark-Ocone’s formula we obtain for any smooth function f with
compact support

E[Dt(f(M))|Ft] = E[f 0(M)DtM |Ft] = E[f 0(M)1{M>Mt}|Ft]
= E[f 0(βt,T +Wt)1{βt,T+Wt>Mt}|Ft]
=

Z ∞

Mt−Wt

f 0(x+Wt)rT−t(x)dx.

Integrating by parts yields

E[Dt(f(M))|Ft] = −f(Mt)rT−t(Mt −Wt)

+

Z ∞

Mt−Wt

f(x+Wt)
x

T − trT−t(x)dx,

which implies (7). Therefore by application of Proposition 6 one obtains that
W is a Ht-semimartingale, t ∈ [0, T ], and that

αt(x) = − rT−t(Mt −Wt)

RT−t(Mt −Wt)
1(x =Mt) +

x−Wt

T − t 1(Mt,∞)(x).

From these formulas, Proposition 7 allows to deduce the following repre-
sentation of β. We obtain for t ∈ [0, T ]

βt =
−rT−t(Mt −Wt) qT−t(Lt −Mt) +

R∞
Mt
rT−t(x−Wt)

x−Wt

T−t qT−t(Lt − x)dx
RT−t(Mt −Wt) qT−t(Lt −Mt) +

R∞
Mt
rT−t(x−Wt) qT−t(Lt − x)dx .

(8)

Now similar techniques as in the previous example will be used in order to
assess the integrability properties of β. First of all, we note that

rT−t(x−Wt)
x−Wt

T − t = −
∂

∂x
rT−t(x−Wt), x > Wt.

We use this formula to integrate by parts the second expression in the nu-
merator of the representation of βt. The result obviously isZ ∞

Mt

rT−t(x−Wt)
x−Wt

T − t qT−t(Lt − x)dx
= rT−t(Mt −Wt) qT−t(Lt −Mt)

+
1

g(T − t)
Z ∞

Mt

rT−t(x−Wt) (Lt − x) qT−t(Lt − x) dx.
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Substituting this in (8) gives the alternative representation

βt =
1

g(T − t)

R∞
Mt
rT−t(x−Wt) (Lt − x) qT−t(Lt − x)dx

RT−t(Mt −Wt) qT−t(Lt −Mt) +
R∞
Mt
rT−t(x−Wt) qT−t(Lt − x)dx.

(9)

Then from (4) and (6) we have that

βt =
1

g(T − t)E(Yt1{M>Mt}|Ht) =
1

g(T − t)E(Yt1{M>Mt}|Ft ∨ σ(Lt)).

Example 3. Let (Xt)t∈[0,T ] be a one dimensional time homogeneous
Markov process with transition density pt(x, y), x, y ∈ R, t ∈ [0, T ], deter-
mined by a stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt. (10)

Assume that the density function is continuously differentiable in x and y
and that there is a function γt(y, x), x, y ∈ R, which is also continuously
differentiable in x and y such that we have

∂

∂y
pt(y, x) = γt(y, x)

∂

∂x
pt(y, x), x, y ∈ R, t ∈ (0, T ). (11)

Let then X = XT , the final value of the Markov process. Let Lt = X +
W̃g(T−t), t ∈ [0, T ], and use the notations of Example 1. This time the Markov
property yields for A ∈ B(R), t ∈ [0, T ] the equation

P (X ∈ A|Ft) =
Z
A

pT−t(Xt, x) dx,

whence the conditional density of X given Ft is given by
Pt(dx) = pT−t(Xt, x)dx, x ∈ R. (12)

Now we compute the signed measure P (1)t (dx) by Proposition 6. In fact,

Φft = E (Dtf(XT )| Ft) = DtE (f(XT )| Ft)
= Dt

Z
R
f(x)pT−t(Xt, x) dx

=

Z
R
f(x)DtpT−t(Xt, x) dx

=

Z
R
f(x)σ(Xt) γt(Xt, x)

∂

∂x
pT−t(Xt, x)dx.
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Therefore

P
(1)
t (dx) = σ(Xt) γt(Xt, x)

∂

∂y
pT−t(Xt, x)dx.

One can use Proposition 7 to obtain the compensator β. First we use inte-
gration by parts to compute the numeratorZ
R
qT−t(Lt − x)P (1)t (dx)

= σ(Xt)

Z
R
qT−t(Lt − x) γt(Xt, x)

∂

∂x
pT−t(Xt, x) dx

= σ(Xt)

Z
R
pT−t(Xt, x) [

∂

∂x
γt(Xt, x) + γt(Xt, x)

Lt − x
g(T − t)] qT−t(Lt − x) dx

= σ(Xt)

Z
R
[
∂

∂x
γt(Xt, x) + γt(Xt, x)

Lt − x
g(T − t) ] qT−t(Lt − x)Pt(dx). (13)

Hence,

βt =
σ(Xt)

R
R[

∂
∂x
γt(Xt, x) + γt(Xt, x)

Lt−x
g(T−t) ] qT−t(Lt − x)Pt(dx)R

R qT−t(Lt − x)Pt(dx)
.

4 Additional utility and arbitrage possibili-
ties

Consider, for the sake of simplicity, a Black-Scholes model with one stock
with risk St. That means, St satisfies the stochastic differential equation

dSt = µStdt+ σStdWt (14)

with some parameters σ > 0, µ ∈ R and initial condition S0. We also consider
a riskless stock Bt = exp{rt}, where r is the instantaneous interest rate.
If we take the logarithmic utility function and we try to maximize the

expected utility of the terminal wealth of traders, for fixed initial wealth, the
difference between regular traders (R) and insiders (I) is given by

max
π∈I-portfolio

E(ln(Wπ
T ))− max

π∈R-portfolio
E(ln(Wπ

T ))
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where Wπ
T is the value of the portfolio π, and I(R)-portfolios are the sets of

admissible portfolios for the insiders (regular traders). It can be shown by
slightly extending the techniques developed in Amendinger et al. (1998) that
this difference is given by

1

2
E(

Z T

0

β2tdt), (15)

and that the optimal portfolio is such that the amount of money invested in
the risky asset is given by

µ+ σβt − r
σ2

Wπ
T (16)

In this section we also study possible arbitrage opportunities. As usual,
we shall say that a portfolio π is an arbitrage opportunity if Wπ

0 = 0 and
P{Wπ

T ≥ 0} = 1 with P{Wπ
T > 0} > 0. To avoid ”doubling strategies” we

shall impose the condition Wπ
t ≥ C a.s. for some constant C ∈ R and for

any t ∈ [0, T ], that is we only admit the so called tame portfolios.
In the insider filtration, Ht, and under the conditions of the previous

propositions, we can write

dSt = (µ+ σβt)Stdt+ σStdW
∗
t

whereW ∗
t = Wt−

R t
0
βsds is anHt-Brownian motion. Suppose that

R T
0
β2tdt <

∞ a.s and that there exists a probability measure Q∗ equivalent to P such
that Wt = W

∗
t +

R t
0
βsds is an Ht-Brownian motion. Now, again

dSt = µStdt+ σStdWt

but where Wt is an Ht-Brownian motion with respect to Q∗. It is obvious
now that there exits a probability measure Q equivalent to Q∗ such that

dSt = rStdt+ σStdŴt

where Ŵt is an Ht-Brownian motion with respect to Q. By composing the
two steps we have a probability measure Q equivalent to P , such that

Ŵt =W
∗
t +

Z t

0

(
µ− r
σ

+ βs)ds
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is an Ht-Brownian motion with respect to Q. Then, according to Corollary
2 in Levental and Skorohod (1995) there will not be arbitrage opportunities
with tame portfolios. So, we simply have to know whether or not there is a
probability measure Q∗ equivalent to P such that Wt = W

∗
t +

R t
0
βsds is an

(Ht)-Brownian motion with respect to Q∗.
Example 1 Suppose that Lt = X + W̃g(T−t), where X = F (WT ), with

E(F 0(WT )
2) <∞. We have shown that

βt =
1

g(T − t)E(YtF
0(WT )|Wt, F (WT ) + Yt),

where Yt = W̃g(T−t). Hence, applying Cauchy-Schwarz’s inequality we obtain

E(β2t ) ≤
1

g(T − t)2E(Y
2
t F

0(WT )
2) =

1

g(T − t)E(F
0(WT )

2).

Therefore we conclude,

E(

Z T

0

β2tdt) ≤ E(F 0(WT )
2)

Z T

0

dt

g(t)
,

and E(
R T
0
β2tdt) <∞ if

R T
0

dt
g(t)

<∞. This condition is satisfied, for instance,
in the case g(s) = Ksp with 0 < p < 1,K > 0.
Let us take

X = log(ST ) = log S0 + µ̃T + σWT ,

with µ̃ = µ− σ2/2. Then F is a linear function and as a consequence,

βt =
σ2(WT −Wt) + σW̃g(T−t)
σ2(T − t) + g(T − t) =

σ(Lt − log(St)− µ̃(T − t))
σ2(T − t) + g(T − t) ,

and

E

Z T

0

β2tdt =

Z T

0

σ2

σ2(T − t) + g(T − t)dt

Since β is a Gaussian proces E(
R T
0
β2tdt) < ∞ is a sufficient condition (see

Lipster and Shiryaev (1997)) to guarantee the existence of Q∗, then if we
take g(s) = Ksp with 0 < p < 1, there are no arbitrage opportunities. But
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if g(s) = Ksp with p ≥ 1 we have, by the law of the iterated logarithm and
because W and W̃ are independent, thatÃ
σ2(WT −Wt) + σW̃g(T−t)
σ2(T − t) + g(T − t)

!2
= 0((T − t)−1 log log(1/(T − t))) a.s., when t→ T,

and since Z T

0

t−1 log log(1/t)dt =∞

Z T

0

β2tdt =∞ a.s.

Levental and Skorohod (1995) have constructed an arbitrage opportunity for
this situation as exhibited in the proof of Theorem 1 of their paper.
Moreover, note that if 0 < p < 1,

σ2(WT −Wt) + σW̃g(T−t)
σ2(T − t) + g(T − t) = 0((T − t)−p/2√(log log(1/(T − t)p))) a.s., when t→ T.

Then limt→T |βt| = ∞ a.s and by (16), the insider becomes a large trader
when the revelation time T approaches.
Example 2 Suppose that Lt = M + W̃g(T−t), where M = max0≤t≤T Wt,

and set Mt = max0≤s≤tWs. We have shown that

βt =
1

g(T − t)E(Yt1{M>Mt}|Ft ∨ σ(Lt))).

Applying Cauchy-Schwartz’s inequality yields

E(β2t ) ≤
1

g(T − t)2E(Y
2
t 1{M>Mt}) ≤

1

g(T − t)2E(Y
2
t ) =

1

g(T − t) .

Again E(
R T
0
β2tdt) < ∞ if

R T
0

dt
g(t)

< ∞. This condition is satisfied, for in-
stance, in the case g(s) = Ksp with 0 < p < 1, K > 0.
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A sufficient condition to guarantee the existence of Q∗ is the Novikov
condition:

E(exp{1
2

Z T

0

β2tdt}) <∞.

In this case we have

β2t ≤
1

g(T − t)2E(Y
2
t |Ft ∨ σ(Lt))

≤ 1

g(T − t)2E( sup0≤t≤T
Y 2t |Ft ∨ σ(Lt))

then writing Ut =E(sup0≤t≤T Y
2
t |Ft∨σ(Lt)), and assuming that

R T
0

1
g(T−t)2dt <∞ we have

E(exp{1
2

Z T

0

β2tdt})

≤ E(exp{1
2

Z T

0

Ut
g(T − t)2dt})

≤ E(exp{sup0≤t≤T Ut
2

Z T

0

1

g(T − t)2dt})

≤ E( sup
0≤t≤T

(exp{Ut
4

Z T

0

1

g(T − t)2dt})
2)

≤ 4E(exp{UT
2

Z T

0

1

g(T − t)2dt}) <∞,

since UT = E(sup0≤t≤T (Y
2
t )|FT∨σ(LT )) = E(sup0≤t≤T (Y 2t )|FT ) = E(sup0≤t≤T (Y 2t )) <

∞.
Note that

R T
0

1
g(T−t)2dt <∞ is satisfied, for instance, in case g(s) = Ksp

with 0 < p < 1/2, K > 0. In these cases there are no arbitrage opportunities.
Example 3. This example can be seen as a generalization of the previous

ones, disregarding the case where the function F is not one-to-one in example
1. The stochastic equation (10) can be consider as a generalization of the
Black-Scholes model, where we assume implicitily the existence of a riskless
asset, B(t) that evolves as
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dB(t) = B(t)r(t)dt, B(0) = 1,

where r(t) is an Ft-adapted process that represents the instantaneous interest
rate. Suppose that Z T

0

µ
b(Xt)− r(t)

σ(Xt)

¶2
dt <∞ a.s.,

then we could argue as before to study the arbitrage opportunities in the
insider filtration, but we only shall consider the utility gain of the insider.
Let us next apply Cauchy-Schwarz’s inequality to the result of the integra-

tion by parts appearing in (13) and integrate with respect to the conditional
law of Lt given Ft. We obtain

E(β2t ) =

Z
R

E

Ã
(
R
R
qT−t(y − x)P (1)t (dx))2R
R
qT−t(y − x)Pt(dx)

!
dy (17)

≤ E

µZ
R

Z
R

σ(Xt)
2[

∂

∂x
γt(Xt, x) + γt(Xt, x)

y − x
g(T − t) ]

2 qT−t(y − x)Pt(dx) dy
¶

= E

µ
σ(Xt)

2 [
∂

∂x
γt(Xt, XT ) + γt(Xt, XT )

Yt
g(T − t) ]

2

¶
.

To transform line 2 into line 3, one has to recall the joint law of (XT ,XT+Yt).
Therefore we conclude

E(

Z T

0

β2tdt) ≤
Z T

0

E

µ
σ(Xt)

2 [
∂

∂x
γt(Xt,XT ) + γt(Xt, XT )

Yt
g(T − t) ]

2

¶
dt,

and therefore

E(

Z T

0

β2tdt) <∞ (18)

if

g(s) = Ksp with0 < p < 1, K > 0,

and

sup
0≤t≤T

E(σ(Xt)
2 γt(Xt,XT )

2) <∞, sup
0≤t≤T

E(σ(Xt)
2 ∂

∂x
γt(Xt,XT )

2) <∞.
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