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Abstract. Classical theories of financialmarkets assume an infinitely liquidmarket
and that all traders act as price takers. This theory is a good approximation for
highly liquid stocks, although even there it does not apply well for large traders or
for modelling transaction costs. We extend the classical approach by formulating
a new model that takes into account illiquidities. Our approach hypothesizes a
stochastic supply curve for a security’s price as a function of trade size. This leads
to a new definition of a self-financing trading strategy, additional restrictions on
hedging strategies, and some interesting mathematical issues.
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1 Introduction

Classical arbitrage pricing theory is formulated under two primary assumptions:
frictionless and competitivemarkets.A frictionlessmarket is one that has no transac-
tion costs (including taxes) and no restrictions on trade (e.g. short sale constraints).
A competitive market is one where any trader can buy or sell unlimited quantities of
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the relevant security without changing the security’s price. There is a large literature
studying arbitrage pricing theory with transaction costs or trading restrictions (see
Barles and Soner [3]; Constantinides and Zariphopoulou [6]; Cvitanic and Karatzas
[7]; Cvitanic et al. [9]; Jouini [23]; Jouini and Kallal [24]; Jouini et al. [25]; Soner
et al. [29]). In general, the standard theory applies but instead of a single arbitrage-
free price for a security there exists an interval of arbitrage-free prices. Hedging
strategies are modified, but the basic intuition remains unchanged. In contrast, the
literature studying the relaxation of the competitive market hypothesis is much less
extensive (see Back [1]; Cvitanic and Ma [8]; Jarrow [19],[20]; Bank and Baum
[2]). When the competitive market assumption is relaxed, however, the standard
theory can completely change. Market manipulation may become an issue and
option pricing becomes trader and market structure dependent.

The relaxation of the frictionless and competitive market hypotheses introduces
the notion of liquidity risk. Roughly speaking, liquidity risk is the additional risk
due to the timing and size of a trade. From a financial engineering perspective,
the need is paramount for a simple yet robust method that incorporates liquidity
risk into arbitrage pricing theory. The market microstructure literature (see Kyle
[26]; Glosten andMilgrom [15]; Grossman andMiller [16]), although conceptually
useful, is lacking in this regard. As a first solution to this problem, liquidity risk has
recently been incorporated into arbitrage pricing theory as a convenience yield (see
Jarrow and Turnbull [22]; Jarrow [21]). Convenience yields have a long history
in the context of commodity pricing. This solution to the problem successfully
captures that component of liquidity risk due to inventory considerations. And,
more importantly, it retains the price taking condition so that classical arbitrage
pricing theory can still be applied. Nonetheless, this convenience yield approach to
the inclusion of liquidity risk has an important omission. It doesn’t explicitly capture
the impact of different trade sizes on the price. Consequently, there is no notion of a
bid/ask spread for the traded securities in this model structure. This is a significant
omission because all markets experience price inelasticities (quantity impacts) and
bid/ask spreads. A simple yet robust method for including a quantity impact on the
traded security prices in arbitrage pricing theory is currently unknown.

The purpose of this paper is to develop a model for the inclusion of liquidity
risk into arbitrage pricing theory that incorporates the impact of differing trade
sizes on the price. As such, our approach is consistent with price inelasticities. We
do this by hypothesizing the existence of a stochastic supply curve for a security’s
price as a function of trade size, for which traders act as price takers. This condition
implies that the investor’s trading strategy has no lasting impact on the price process.
Following Heath et al. [18], we study conditions on the supply curve such that
there are no arbitrage opportunities in the economy (appropriately defined). Given
an arbitrage free evolution, we then discuss complete markets and the pricing of
derivatives. This structure can also be viewed as an extension of themodel in Jouini
[23] where the traded securities have two distinct price processes - a selling price
(the bid) and a buying price (the ask). Instead of two prices as in Jouini [23], we
have a continuum of stochastic processes indexed by trade size.

This paper provides a new perspective on classical arbitrage pricing theory
based on the insight that after its initiation, and before its liquidation, there is no
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unique value for a portfolio. Indeed, any price on the supply curve is a plausible
price to be used in valuing a portfolio. Among these, at least three economic
meaningful values can be identified: the marked-to-market value, the accumulated
cost of the portfolio, and the liquidation value (for a related discussion, see Jarrow
[19]). This non-uniqueness is important because it changes the mathematics used
in tracking a portfolio’s performance. The existing portfolio theory literature and
portfolio performance evaluation literature need to be modified accordingly. This
is a subject for future research.

The first fundamental theorem of asset pricing appropriately generalized, holds
in our new setting, while the second fundamental theorem fails. Herein, a martin-
galemeasure (appropriately defined) can be unique, andmarkets still be incomplete.
However, a weakening of the second fundamental theorem holds. Markets will be
approximately complete in our setting if a martingale measure is unique. Here, ap-
proximately complete is roughly defined to be as follows: given any randomvariable
(appropriately integrable), there exists a self-financing trading strategy whose liq-
uidation value is arbitrarily close (in an L2 sense) to the given random variable.
In an approximately complete market, we show that by using trading strategies
that are continuous and of finite variation, all liquidity costs can be avoided. This
occurs because trading strategies induce no path dependency in the evolution of
the price process. Hence, a large trade can be subdivided into infinitely many in-
finitesimal trades to avoid liquidity costs. Consequently, the arbitrage-free price of
any derivative is shown to be equal to the expected value of its payoff under the
risk neutral measure. This is the same price as in the classical economy with no
liquidity costs. However, in a world with liquidities, the classical hedge will not
be the hedge used to replicate the option. Both of these observations are consistent
with industry usage of the classical arbitrage free pricing methodology.

Our approach to liquidity risk can be implemented in practice and the stochastic
supply curve estimated from market data that contains the price of a trade, the size
of the trade, and whether it is a buy or a sell. Our approach to liquidity risk, appro-
priately generalized, can also be used to study transaction costs. Transaction costs
effectively make the traded security’s price dependent on the trade size. However,
transaction costs induce a supply curve for the security’s price distinct from that
assumed herein. In particular, our supply curve is C2 in the quantity purchased.
Transactions costs violate this condition at the origin. As such, our solution to the
problem is quite different from that used earlier in the literature to handle trans-
action costs, and it provides a new perspective on the existing results. We do not
pursue this line of study in this paper, but instead refer the interested reader to Çetin
[4].

Independently generated, the mathematics and theorems contained in Bank and
Baum [2] are remarkably similar to those contained herein.1 Bank and Baum study
a continuous time economy with a single large trader whose trades affect the price,
generalizing Jarrow’s [19,20] discrete time model. In Bank and Baum, the large

1 One difference is that in Bank and Baum a manipulative-free economy requires an equivalent
measure such that every point on the supply curve evolves as a martingale. In our model, an arbitrage
free economy requires only an equivalent measure such that the supply curve evaluated at the zero net
trade evolves as a martingale.
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trader faces a price process represented by a family of continuous semimartingales.
The family is indexed by the aggregate position of the large investor’s trading
strategy. They concentrate on the large trader’s real wealth, and characterize its
evolution using the Itô-Wentzell formula. The economic issue studied is the large
trader’s ability or lack thereof to manipulate the market, and in a manipulative free
economy, the valuation of contingent claims. Akin to our setting, continuous and
finite variation trading strategies play a key role in the analysis because they enable
the large trader to avoid market impact costs.

As just illustrated via the Bank and Baum paper, our approach is related to the
market manipulation literature. The difference is that under market manipulation,
the security’s price process can depend not only on the investor’s current trade,
but also on the entire history of their past trades. The elimination of this path
dependency condition in our structure excludes market manipulation and allows us
to use classical arbitrage pricing theory, appropriately modified (see Cvitanic and
Ma [8]; Jarrow [19]; Bank and Baum [2]). The extension of our model to the study
of market manipulation is a subject for future research.

An outline for this paper is as follows. Section 2 describes the basic economy.
Sections 3 and 4 study the first and second fundamental theorems of asset pricing,
respectively. Section 5 provides an example - the extendedBlack-Scholes economy.
Section 6 extends the analysis to discontinuous sample path evolutions for the
supply curve, and Sect. 7 concludes the paper.

2 The model

This section presents the model. We are given a filtered probability space
(Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions where T is a fixed time. P

represents the statistical or empirical probability measure. We also assume that F0
is trivial, i.e. F0 = {∅, Ω}.

We consider a market for a security that we will call a stock, although the
subsequent model applies equally well to bonds, commodities, foreign currencies,
etc. We will initially assume that ownership of the security has no cash flows
associated with it. Also traded is a money market account that accumulates value
at the spot rate of interest. Without loss of generality, we assume that the spot rate
of interest is zero, so that the money market account has unit value for all times.2

2.1 Supply curve

We consider an arbitrary trader who acts as a price taker with respect to an ex-
ogenously given supply curve for shares bought or sold of this stock within the
trading interval. More formally, let S(t, x, ω) represent the stock price, per share,
at time t ∈ [0, T ] that the trader pays/receives for an order of size x ∈ R given the
state ω ∈ Ω. A positive order (x > 0) represents a buy, a negative order (x < 0)
represents a sale, and the order zero (x = 0) corresponds to the marginal trade.

2 A numéraire invariance theorem is proved in the Appendix for the subsequent economy.
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By construction, rather than the trader facing a horizontal supply curve as in the
classical theory (the same price for any order size), the trader now faces a supply
curve that depends on his order size.3 Note that the supply curve is otherwise
independent of the trader’s past actions, endowments, risk aversion, or beliefs.
This implies that an investor’s trading strategy has no lasting impact on the price
process. This restriction distinguishes our economy from the situation where the
supply curve also depends on the entire history of the trader’s trades.

We now impose some structure on the supply curve.

Assumption 1 (Supply Curve)

1. S(t, x, ·) is Ft − measurable and non-negative.
2. x 	→ S(t, x, ω) is a.e. t non-decreasing inx, a.s. (i.e.x ≤ y impliesS(t, x, ω) ≤

S(t, y, ω) a.s. P, a.e. t).
3. S is C2 in its second argument, ∂S(t, x)/∂x is continuous in t, and

∂2S(t, x)/∂x2 is continuous in t.
4. S(·, 0) is a semi-martingale.
5. S(·, x) has continuous sample paths (including time 0) for all x.

Except for the second condition, these restrictions are self-explanatory. Condi-
tion 2 is the situation where the larger the purchase (or sale), the larger the price
impact that occurs on the share price. This is the usual situation faced in asset
pricing markets, where the quantity impact on the price is due to either information
effects or supply/demand imbalances (see Kyle [26]; Glosten and Milgrom [15];
Grossman and Miller [16]). This excludes the more familiar situation in consumer
products where there are quantity discounts for large orders. It includes, as a special
case, horizontal supply curves. This structure can also be viewed as a generaliza-
tion of the model in Jouini [23] where the traded securities have distinct selling and
buying prices following separate stochastic processes. Here, instead of two prices
as in Jouini [23], we have a continuum of stochastic processes indexed by trade
size.

Example 2.1 (Supply curve). To present a concrete example of a supply curve, let
S(t, x) ≡ f(t,Dt, x) whereDt is an n−dimensional, Ft-measurable semimartin-
gale, and f : Rn+2 → R+ is Borel measurable, C1 in t, and C2 in all its other
arguments. This non-negative function f can be viewed as a reduced form supply
curve generated by a market equilibrium process in a complex and dynamic econ-
omy. Under this interpretation, the vector stochastic processDt represents the state
variables generating the uncertainty in the economy, often assumed to be diffusion
processes or at least Markov processes (e.g. a solution to a stochastic differential
equation driven by a Levy process). This supply curve is time non-stationary. From
a practical perspective, the stationary supply curve formulation, f(Dt, x), may be
more useful for empirical estimation.

If the supply curve in this example assumes the form

S(t, x) = eg(t,Dt,x)S(t, 0)
3 In contrast, the trader is assumed to have no quantity impact due to his trades in the money market

account.
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where g : Rn+2 → R is Borel measurable, C1 in t, C2 in all its other arguments,
non-decreasing in x, with g(t,Dt, 0) = 0 , g(t,Dt, x) < 0 for x < 0 , and
g(t,Dt, x) > 0 for x > 0, then it is similar to the liquidity premium model used
in Jarrow and Turnbull [22]; Jarrow [21]. In Jarrow [21], the liquidity premium is
due to temporary restrictions on trading strategies imposed during extreme market
conditions, in particular, purchases/short sales are not allowed when the market
has a shortage/surplus. In the absence of these extreme conditions, there is no
liquidity premium and the supply curve is identically S(t, 0). More formally, the
function g(t,Dt, x) is piecewise constant in x: g(t,Dt) > 0 for x < 0 when there
are shortages, g(t,Dt) < 0 for x > 0 when there are surpluses, and g(t,Dt) = 0
otherwise. This setting does not lead to an arbitrage opportunity, however, because
one cannot short or purchase the stock at the times when these extreme conditions
arise. In Jarrow’s [21] model, the liquidity premium has the interpretation of being
a convenience yield.

2.2 Trading strategies

We start by defining the investor’s trading strategy.

Definition 2.1 A trading strategy is a triplet ((Xt, Yt : t ∈ [0, T ]), τ) where Xt

represents the trader’s aggregate stock holding at time t (units of the stock), Yt

represents the trader’s aggregate money market account position at time t (units
of the money market account), and τ represents the liquidation time of the stock
position, subject to the following restrictions: (a) Xt and Yt are predictable and
optional processes, respectively, with X0− ≡ Y0− ≡ 0, and (b) XT = 0 and τ is
a predictable (Ft : 0 ≤ t ≤ T ) stopping time with τ ≤ T and X = H1[0,τ) for
some predictable process H(t, ω).

We are interested in a particular type of trading strategy - those that are self-
financing. By construction, a self-financing trading strategy generates no cash flows
for all times t ∈ [0, T ). That is, purchase/sales of the stock must be obtained via
borrowing/investing in the money market account. This implies that Yt is uniquely
determined by (Xt, τ). The goal is to define this self-financing condition for Yt

given an arbitrary stock holding (Xt, τ).

Definition 2.2 A self-financing trading strategy (s.f.t.s.) is a trading strategy
((Xt, Yt : t ∈ [0, T ]), τ) where (a) Xt is càdlàg if ∂S(t, 0)/∂x ≡ 0 for all
t, and Xt is càdlàg with finite quadratic variation ([X,X]T < ∞) otherwise, (b)
Y0 = −X0S(0, X0), and (c) for 0 < t ≤ T ,

Yt = Y0 + X0S(0, X0) +
∫ t

0
Xu−dS(u, 0) − XtS(t, 0)

−
∑

0≤u≤t

∆Xu[S(u,∆Xu) − S(u, 0)] −
∫ t

0

∂S

∂x
(u, 0)d[X,X]cu. (2.1)
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Condition (a) imposes restrictions on the class of acceptable trading strate-
gies. Under the hypotheses that Xt is càdlàg and of finite quadratic variation, the
right side of expression (2.1) is always well-defined although the last two terms
(always being non-positive) may be negative infinity. The classical theory, under
frictionless and competitive markets, does not need these restrictions. An example
of a trading strategy that is allowed in the classical theory, but disallowed here, is
Xt = 1{S(t,0)>K} for some constant K > 0 where S(t, 0) follows a Brownian
motion. Under the Brownian motion hypothesis this is a discontinuous trading
strategy that jumps infinitely often immediately after S(t, 0) = K (the jumps are
not square summable), and hence Yt is undefined.

Condition (b) implies the strategy requires zero initial investment at time 0.
When studying complete markets in a subsequent section, condition (b) of the
s.f.t.s. is removed so that Y0 + X0S(0, X0) �= 0.

Condition (c) is the self-financing condition at time t. The money market
account equals its value at time 0, plus the accumulated trading gains (evaluated at
themarginal trade), less the cost of attaining this position, less the price impact costs
of discrete changes in share holdings, and less the price impact costs of continuous
changes in the share holdings. This expression is an extension of the classical
self-financing condition when the supply curve is horizontal. To see this note that
using condition (b) with expression (2.1) yields the following simplified form of
the self-financing condition:

Yt + XtS(t, 0) =
∫ t

0
Xu−dS(u, 0) (2.2)

−
∑

0≤u≤t

∆Xu[S(u,∆Xu) − S(u, 0)]

−
∫ t

0

∂S

∂x
(u, 0)d[X,X]cu for 0 ≤ t ≤ T.

The left side of expression (2.2) represents the classical “value” of the portfolio at
time 0. The right side gives its decomposition into various components. The first
term on the right side is the classical “accumulated gains/losses” to the portfolio’s
value. The last two terms on the right side capture the impact of illiquidity, both
entering with a negative sign.

To understand the origin of the liquidity terms, consider the following heuristic
derivation. Assume that X is a semi-martingale. Intuitively, the self-financing
condition is

dYt = −S(t + dt, dXt)dXt

= −S(t, 0)dXt − [S(t + dt, dXt) − S(t + dt, 0)]dXt

−[S(t + dt, 0) − S(t, 0)]dXt.

Because S is continuous, we can rewrite this last expression as

dYt = −S(t, 0)dXt − [S(t + dt, dXt) − S(t + dt, 0)]dXt − d[Xc, S]t.
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Decomposing X into its continuous and discontinuous parts, we rewrite this ex-
pression one more time:

dYt = −S(t, 0)dXt − [S(t + dt, dXc
t ) − S(t + dt, 0)]dXc

t

−[S(t,∆Xt) − S(t, 0)]∆Xt − d[Xc, S]t.

Because ∂S(·, x)/∂x is continuous and ignoring the higher order terms,

−[S(t + dt, dXc
t ) − S(t + dt, 0)]dXc

t = −∂S

∂x
(t, 0)d[X,X]ct .

Integration by parts gives

S(t, 0)dXt = −Xt−dS(t, 0) − d[Xc, S]t.

Using these two expressions yields the desired result:

dYt = Xt−dS(t, 0) − ∆Xt[S(t,∆Xt) − S(t, 0)] − ∂S

∂x
(t, 0)d[X,X]ct .

This heuristic derivation can be justified by a limiting argument based on simple
trading strategies (see the Appendix).

2.3 The marked-to-market value of a s.f.t.s. and its liquidity cost

This section defines the marked-to-market value of a trading strategy and its liq-
uidity cost. At any time prior to liquidation, there is no unique value of a trading
strategy or portfolio. Indeed, any price on the supply curve is a plausible price to be
used in valuing the portfolio. At least three economically meaningful possibilities
can be identified: (i) the immediate liquidation value (assuming that Xt > 0 gives
Yt+XtS(t,−Xt)), (ii) the accumulated cost of forming the portfolio (Yt), and (iii)
the portfolio evaluated at the marginal trade (Yt +XtS(t, 0)).4 This last possibility
is defined to be the marked-to-market value of the self-financing trading strategy
(X,Y, τ). It represents the value of the portfolio under the classical price taking
condition.

Motivated by expression (2.2), we define the liquidity cost to be the difference
between the accumulated gains/losses to the portfolio, computed as if all trades are
executed at the marginal trade price S(t, 0), and the marked-to-market value of the
portfolio.

Definition 2.3 The liquidity cost of a s.f.t.s. (X,Y, τ) is

Lt ≡
∫ t

0
Xu−dS(u, 0) − [Yt + XtS(t, 0)].

The following lemma follows from the preceding definition.

4 These three valuations are (in general) distinct except at one date, the liquidation date. At the
liquidation time τ , the value of the portfolio under each of these three cases are equal because Xτ = 0.
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Lemma 2.1 (Equivalent Characterization of the Liquidity Costs).

Lt =
∑

0≤u≤t

∆Xu[S(u,∆Xu) − S(u, 0)] +
∫ t

0

∂S

∂x
(u, 0)d[X,X]cu ≥ 0

where L0− = 0, L0 = X0[S(0, X0) − S(0, 0)] and Lt is non-decreasing in t.

Proof Thefirst equality follows directly from the definitions. The second inequality
and the subsequent observation follow from the fact that S(u, x) is increasing in x.

��
We see here that the liquidity cost is non-negative and non-decreasing in t. It

consists of two components. The first is due to discontinuous changes in the share
holdings. The second is due to the continuous component. This expression is quite
intuitive. Note that because X0− = Y0− = 0 , ∆L0 = L0 − L0− = L0 > 0 is
possible.

Remark 2.1

1. When X is of bounded variation, [X,X]cu is zero.
2. When X is continuous (that is, ∆Xu = 0 for u > 0), then the first term in the

liquidity costs equals its value at zero, i.e. L0.
3. WhenX is both continuous and of bounded variation, the liquidity costs of the

trading strategy equal L0.

3 The extended first fundamental theorem

This section studies the characterization of an arbitrage free market and generalizes
the first fundamental theorem of asset pricing to an economy with liquidity risk.

To evaluate a self-financing trading strategy, it is essential to consider its value
after liquidation. This is equivalent to studying the portfolio’s real wealth, as
contrasted with its marked-to-market value or paper wealth, see Jarrow [19]. Using
this insight, an arbitrage opportunity can now be defined.

Definition 3.1 An arbitrage opportunity is a s.f.t.s. (X,Y, τ) such that
P{YT ≥ 0} = 1 and P{YT > 0} > 0.

Before we begin, let us clarify the behavior of the stochastic integral at time t =
0. IfS is a semimartingale with decompositionSt = S0+Mt+At,M0 = A0 = 0,
where X is a càdlàg and adapted process, then

∫ t

0 Xs−dSs =
∫ t

0 Xs−dMs +∫ t

0 Xs−dAs. The initial term is X0−∆S0, which of course is 0, since X0− = 0.
On the other hand ifX itself is predictable then

∫ t

0 XsdSs = X0∆S0+
∫ t

0 XsdMs+∫ t

0 XsdAs. Some authorswrite
∫ t

0+ XsdSs to denote the stochastic integral without

its jump at 0. With this interpretation,
∫ t

0 XsdSs = X0∆S0 +
∫ t

0+ XsdSs. Note

that we assume S(·, 0) is continuous at t = 0, thus
∫ 0
0 XudS(u, 0) = 0 for all

predictable X that are S(·, 0)-integrable.
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Wefirst need to define somemathematical objects. Let st ≡ S(t, 0), (X−·s)t ≡∫ t

0 Xu−dS(u, 0), and for α ≥ 0, letΘα ≡ {s.f.t.s (X,Y, τ) | (X− · s)t ≥ −α for
all t almost surely }.
Definition 3.2 Given an α ≥ 0, a s.f.t.s. (X,Y, τ) is said to be α-admissible if
(X,Y, τ) ∈ Θα. A s.f.t.s. is admissible if it is α-admissible for some α.

Lemma 3.1 (Yt + XtS(t, 0) is a supermartingale). If there exists a probability
measure Q ∼ P such that S(·, 0) is a Q-local martingale, and if (X,Y, τ) ∈ Θα

for some α, then Yt + XtS(t, 0) is a Q-supermartingale.

Proof From Definition 2.3 we have that Yt +XtS(t, 0) = (X− · s)t −Lt. Under
the Q measure, (X− · s)t is a local Q-martingale. Since (X,Y, τ) ∈ Θα for some
α, it is a supermartingale (Duffie [12]). But, by Lemma 2.1,Lt is non-negative and
non-decreasing. Therefore, Yt + XtS(t, 0) is a supermartingale too. ��
Theorem 3.1 (A sufficient condition for no arbitrage) If there exists a probability
measureQ ∼ P such that S(·, 0) is aQ-local martingale, then there is no arbitrage
for (X,Y, τ) ∈ Θα for any α.

Proof Under this hypothesis, by Lemma 3.1, Yt +XtS(t, 0) is a supermartingale.
Note that Yτ + XτS(τ, 0) = Yτ by the definition of the liquidation time. Thus,
for this s.f.t.s., EQ[Yτ ] = EQ[Yτ + XτS(τ, 0)] ≤ 0. But, by the definition of an
arbitrage opportunity, EQ[Yτ ] > 0. Hence, there exist no arbitrage opportunities
in this economy. ��

The intuition behind this theorem is straightforward. The marked-to-market
portfolio is a hypothetical portfolio that contains zero liquidity costs (see Defini-
tion 2.3). If S(·, 0) has an equivalent martingale measure, then these hypothetical
portfolios admit no arbitrage. But, since the actual portfolios differ from these hy-
pothetical portfolios only by the subtraction of non-negative liquidity costs (Lemma
2.1), the actual portfolios cannot admit arbitrage either.

In order to get a sufficient condition for the existence of an equivalent local
martingale measure, we need to define the notion of a free lunch with vanishing risk
as in Delbaen and Schachermayer [11]. This will require a preliminary definition.

Definition 3.3 A free lunch with vanishing risk (FLVR) is either: (i) an admissible
s.f.t.s. that is an arbitrage opportunity or (ii) a sequence of εn-admissible s.f.t.s.
(Xn, Y n, τn)n≥1 and a non-negative FT -measurable random variable, f0, not
identically 0 such that εn → 0 and Y n

T → f0 in probability.5

To state the theorem, we need to introduce a related, but fictitious economy.
Consider the economy introduced previously, but suppose instead that S(t, x) ≡
S(t, 0). When there is no confusion, we denote S(t, 0) by the simpler notation st.
In this fictitious economy, a s.f.t.s.

(
X,Y 0, τ

)
satisfies the classical condition with

X0 = 0, the value of the portfolio is given by Z0
t ≡ Y 0

t + Xtst with Y 0
t =

5 Delbaen and Schachermayer [11] Proposition 3.6 page 477 shows that this definition is equivalent
to FLVR in the classical economy.
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(X · s)t − Xtst for all 0 ≤ t ≤ T , and X is allowed to be a general S(·, 0) ≡ s
integrable predictable process (see the remark following expression (2.1)). So, in
this fictitious economy, our definitions of an arbitrage opportunity, an admissible
trading strategy, and a NFLVR collapse to those in [11].

Theorem 3.2 (First fundamental theorem) Suppose there are no arbitrage oppor-
tunities in the fictitious economy. Then, there is no free lunch with vanishing
risk (NFLVR) if and only if there exists a probability measure Q ∼ P such that
S(·, 0) ≡ s is a Q−local martingale.

The proof is in the Appendix.

4 The extended second fundamental theorem

This section studies the meaning and characterization of a complete market and
generalizes the second fundamental theorem of asset pricing to an economy with
liquidity risk. For this section we assume that there exists an equivalent local
martingale measure Q so that the economy is arbitrage free and there is no free
lunch with vanishing risk (NFLVR).

Also for this section, we generalize the definition of a s.f.t.s (X,Y, τ) slightly
to allow for non-zero investments at time 0. In particular, a s.f.t.s. (X,Y, τ) in this
section will satisfy Definition 2.2 with the exception that condition (b) is removed.
That is, a s.f.t.s. need not have zero initial value (Y0 + X0S(0, X0) �= 0).6

To proceed, we need to define the space H2
Q of semimartingales with respect

to the equivalent local martingale measure Q. Let Z be a special semimartingale
with canonical decomposition Z = N +A,whereN is a local martingale under Q

and A is a predictable finite variation process. The H2 norm of Z is defined to be

‖Z‖H2 =
∥∥∥[N,N ]1/2∞

∥∥∥
L2

+
∥∥∥∥∫ ∞

0
|dAs|

∥∥∥∥
L2

where the L2− norms are with respect to the equivalent local martingale measure
Q.

Throughout this section we make the assumption that s(·) = S(·, 0) ∈ H2
Q.

Since we’re assuming s ∈ H2
Q, it is no longer necessary to require that X · s is

uniformly bounded from below.

Definition 4.1 A contingent claim is any FT− measurable random variable C
with EQ(C2) < ∞.

Note that the contingent claim is considered at a time T , prior to which the
trader’s stock position is liquidated. If the contingent claim’s payoff depends on

6 In this section we could also relax condition (b) of a trading strategy, Definition 2.1, to remove the
requirement that XT = 0. However, as seen below, it is always possible to approximate any random
variable with such a trading strategy. Consequently, this restriction is without loss of generality in the
context of our model. This condition was imposed in the previous section to make the definition of an
arbitrage opportunity meaningful in a world with liquidity costs.
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the stock price at time T , then the dependence of the contingent claim’s payoff
on the shares purchased/sold at time T must be made explicit. Otherwise, the
contingent claim’s payoff is not well-defined. An example helps to clarify this
necessity.

Consider a European call option on the stock with a strike price7 of K and
maturity T0 ≤ T .8 To write the modified boundary condition for this option
incorporating the supply curve for the stock, we must consider two cases: cash
delivery and physical delivery.

1. If the option has cash delivery, the long position in the option receives cash
at maturity if the option ends up in-the-money. To match the cash settlement,
the synthetic option position must be liquidated prior to time T0. When the
synthetic option position is liquidated, the underlying stock position is also
liquidated. The position in the stock at time T0 is, thus, zero.
If we sell the stock at time T0 to achieve this position, then the boundary
condition is C ≡ max[S(T0,−1) −K, 0] where∆XT0 = −1 since the option
is for one share of the stock. However, as we show below, one could also
liquidate this stock position just prior to time T0 using a continuous and finite
variation process, so that∆XT0 = 0. This alternative liquidation strategymight
be chosen in an attempt to avoid liquidity costs at time T0. In this case, the
boundary condition is C ≡ max[S(T0, 0) − K, 0]. Note that using this latter
liquidation strategy, the option’s payoff is only approximately obtained (to a
given level of accuracy) because liquidation occurs just before T0.

2. If the option has physical delivery, then the synthetic option position should
match the physical delivery of the stock in the option contract. With physical
delivery, the option contract obligates the short position to deliver the stock
shares. To match the physical delivery, the stock position in the synthetic
option is not sold. Unfortunately, our model requires the stock position to
be liquidated at time T0. Formally, physical delivery is not possible in our
construct. However, to approximate physical delivery in our setting, we can
impose the boundary condition C ≡ max[S(T0, 0) −K, 0] where∆XT0 = 0.
This boundary condition is consistent with no liquidity costs being incurred at
time T0, which would be the case with physical delivery of the stock.9

Definition 4.2 The market is complete if given any contingent claimC, there exists

a s.f.t.s. (X,Y, τ) with EQ
(∫ T

0 X2
ud[s, s]u

)
< ∞ such that YT = C.

To understand the issues involved in replicating contingent claims, let us mo-
mentarily consider a contingent claim C in L2(dQ) where there exists a s.f.t.s.

7 To be consistent with the previous construct, one should interpret K as the strike price normalized
by the value of the money market account at time T0.

8 Recall that interest rates are zero, so that the value of the liquidated position at time T0 is the same
as the position’s value at time T .

9 We are studying an economy with trading only in the stock and money market account. Expanding
this economy to include trading in an option expands the liquidation possibilities prior to time T .
Included in this set of expanded possibilities is the delivery of the physical stock to offset the position
in an option, thereby avoiding any liquidity costs at time T . Case 2 is the method for capturing no
liquidity costs in our restricted setting.
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(X,Y, τ) such that C = c+
∫ T

0 Xudsu where c ∈ R and EQ
{∫ T

0 X2
ud[s, s]u

}
<

∞. Note that EQ(C) = c since
∫ 0
0 Xudsu = X0∆s0 = 0 by the continuity of

s at time 0. This is the situation where, in the absence of liquidity costs, a long
position in the contingent claim C is redundant. In this case, Y0 is chosen so that
Y0 + X0s0 = c. But, the liquidity costs in trading this stock position are (by
Lemma 2.1):

Lt =
∑

0≤u≤t

∆Xu[S(u,∆Xu) − S(u, 0)] +
∫ t

0

∂S

∂x
(u, 0)d[X,X]cu ≥ 0.

We have from Definition 2.2 that

YT = Y0 + X0s0 +
∫ T

0
Xu−dsu − XT sT − LT + L0

and10
∫ T

0 Xu−dsu =
∫ T

0 Xudsu so that

YT = C − XT sT − LT + L0.

By assumption, we have liquidated by time T , giving XT = 0. Thus, we have

YT = C − (LT − L0) ≤ C.

That is, considering liquidity costs, this trading strategy sub-replicates a long po-
sition in this contingent claim’s payoffs. Analogously, if we use −X to hedge a
short position in this contingent claim, the payoff is generated by

Y T = −C − (LT − L0) ≤ −C

where Y is the value in the money market account and L is the liquidity cost
associated with −X . The liquidation value of the trading strategies (long and
short) provide a lower and upper bound on attaining the contingent claim’s payoffs.

Remark 4.1

1. If ∂S
∂x (·, 0) ≡ 0, then L· = L0 ifX is a continuous trading strategy. So, under

this hypothesis, all claims C where there exists a s.f.t.s. (X,Y, τ) such that
C = c +

∫ T

0 Xudsu with X continuous can be replicated. For example, if
S(·, 0) is a geometric Brownian motion (an extended Black-Scholes economy),
a call option can be replicated since the Black-Scholes hedge is a continuous
s.f.t.s.

2. If ∂S
∂x (·, 0) ≥ 0 (the general case), then L = L0 if X is a finite variation

and continuous trading strategy. So, under this hypothesis, all claims C where
there exists a s.f.t.s. (X,Y, τ) such that C = c +

∫ T

0 Xudsu with X of finite
variation and continuous can be replicated.

10
∫ T
0 Xudsu =

∫ T
0 Xu−dsu+

∑
0≤u≤T ∆Xu∆su and∆Xu∆su = 0 for allu since∆su = 0

for all u by the continuity of s.
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The remark above shows that if we can approximateX using a finite variation
and continuous trading strategy, in a limiting sense, we may be able to avoid all
the liquidity costs in the replication strategy. In this regard, the following lemma
is relevant.

Lemma 4.1 (Approximating continuous and finite variation s.f.t.s.) Let C ∈
L2(dQ). Suppose there exists a predictable X with EQ

(∫ T

0 X2
ud[s, s]u

)
< ∞

so that C = c +
∫ T

0 Xudsu for some c ∈ R. Then, there exists a sequence of
s.f.t.s. (Xn, Y n, τn)n≥1 withXn bounded, continuous and of finite variation such

that EQ
(∫ T

0 (Xn
u )2d[s, s]u

)
< ∞, Xn

0 = 0, Xn
T = 0, Y n

0 = EQ(C) for all n and

Y n
T = Y n

0 + Xn
0 S(0, Xn

0 ) +
∫ T

0
Xn

u−dsu − Xn
TS(T, 0)

−Ln
T → c +

∫ T

0
Xudsu = C (4.1)

in L2(dQ).

Proof Note that for any predictable X that is integrable with respect to s,∫ T

0 Xudsu =
∫ T

0 Xu1(0,T ](u)dsu since
∫ T

0 1(0,T ]Xudsu =
∫ T

0 Xudsu −X0∆s0
and ∆s0 = 0. Therefore, we can without loss of generality assume that X0 = 0.

Given anyH ∈ L (the set of adapted processes that have left continuous paths
with right limits a.s.) with H0 = 0, we define, Hn, by the following:

Hn
t (ω) = n

∫ t

t− 1
n

Hu(ω)du,

for all t ≥ 0, letting Hu equal 0 for u < 0. Then H is the a.s. pointwise limit of
the sequence of adapted processes Hn that are continuous and of finite variation.
Note that Hn

0 = 0 for all n. Theorem 2 in Chapter IV of Protter [27] remains
valid if bL is replaced by the set of bounded, continuous processes with paths
of finite variation on compact time sets. Let X with X0 = 0 be predictable and

EQ
(∫ T

0 X2
ud[s, s]u

)
< ∞. SinceX · s is defined to be the limk→∞ X

k · s, where
the convergence is in H2 andX

k
= X1{|X|≤k}, and using the above observation,

there exists a sequence of continuous and bounded processes of finite variation,

(Xn)n≥1, such that EQ
(∫ T

0 (Xn
u )2d[s, s]u

)
< ∞, Xn

0 = 0 for all n and∫ T

0
Xn

udsu →
∫ T

0
Xudsu,

inL2(dQ) (seeTheorems 2, 4, 5 and 14 inChapter IV of Protter [27] in this respect.)
Furthermore,TheoremA.4 andCorollaryA.2 in theAppendix allowus to choose

Xn
T = 0 for all n. Now, choose Y n = EQ(C) for all n and define Y n

t for t > 0
by (2.1). Let τn = T for all n. Then, the sequence (Xn, Y n, τn)n≥1 will satisfy

(4.1). Note that Ln ≡ 0 for all n and
∫ T

0 Xn
u−dsu =

∫ T

0 Xn
udsu. ��
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This lemma motivates the following definition and extension of the second
fundamental theorem of asset pricing.

Definition 4.3 Themarket is approximately complete if given any contingent claim
C, there exists a sequence of s.f.t.s. (Xn, Y n, τn) with
EQ
(∫ T

0 (Xn
u )2d[s, s]u

)
< ∞ for all n such that Y n

T → C as n → ∞ in L2(dQ).

Theorem 4.1 (Second fundamental theorem) Suppose there exists a
unique probability measureQ ∼ P such that S(·, 0) = s is aQ-local martingale.
Then, the market is approximately complete.

Proof The proof proceeds in two steps. Step 1 shows that the hypothesis guarantees
that a fictitious economy with no liquidity costs is complete. Step 2 shows that this
result implies approximate completeness for an economy with liquidity costs.

Step 1 Consider the economy introduced in this paper, but suppose that S(·, x) ≡
S(·, 0). In this fictitious economy, a s.f.t.s.

(
X,Y 0, τ

)
satisfies the classical con-

dition with Y 0
t ≡ Y0 + X0S(0, 0) +

∫ t

0 Xu−dsu − Xtst. The classical second
fundamental theorem (see Harrison and Pliska [17]) applies: the fictitious market
is complete if and only if Q is unique.

Step 2 By Step 1, given Q is unique, the fictitious economy is complete and, more-
over, s has the martingale representation property. Hence, there exists a predictable

X such that C = c +
∫ T

0 Xudsu with EQ
(∫ T

0 X2
ud[s, s]u

)
< ∞ (see Sect. 3 of

Chapt. IV of [27] in this respect). Then, by applying the lemma above, the market
is approximately complete. ��

Suppose the martingale measure is unique. Then, by the theorem we know that
given any contingent claim C, there exists a sequence of s.f.t.s. (Xn, Y n, τn)n≥1

with EQ
(∫ T

0 (Xn
u )2d[s, s]u

)
< ∞ for all n so that Y n

T = Y n
0 + Xn

0 S(0, Xn
0 ) −

Ln
T +

∫ T

0 Xn
u−dS(u, 0) → C in L2(dQ). We call any such sequence of s.f.t.s.,

(Xn, Y n, τn)n≥1 an approximating sequence for C.

Definition 4.4 Let C be a contingent claim and ΨC be the set of approximating
sequences for C. The time 0 value of the contingent claim C is given by

inf
{

lim inf
n→∞ Y n

0 + Xn
0 S(0, Xn

0 ) : (Xn, Y n, τn)n≥1 ∈ ΨC
}
.

Corollary 4.1 (Contingent claim valuation) Suppose there exists a unique prob-
ability measure Q ∼ P such that S(·, 0) = s is a Q-local martingale. Then, the
time 0 value of any contingent claim C is equal to EQ(C).

Proof Let (Xn, Y n, τn)n≥1 be an approximating sequence forC. Then,EQ(Y n
T −

C)2 → 0, and thus, EQ(Y n
T − C) → 0. However, since

EQ
(∫ T

0 (Xn
u )2d[s, s]u

)
< ∞ for all n,

∫ ·
0 X

n
u−dsu is a Q-martingale for each

n. This yields EQ(Y n
T ) = Y n

0 + Xn
0 S(0, X0) − EQ(Ln

T ). Combining this with
the fact that Ln ≥ 0 for each n and EQ(Y n

T − C) → 0 gives lim infn→∞ Y n
0 +
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Xn
0 S(0, X0) ≥ EQ(C) for all approximating sequences. However, as proven

in Lemma 4.1, there exists some approximating sequence (X
n
, Y

n
, τn)n≥1 with

L
n

= 0 for all n. For this sequence, lim infn→∞ Y
n

0 + X
n

0S(0, X0) = EQ(C).
��

Remark 4.2

1. The above value is consistent with no arbitrage. Indeed, suppose the contin-
gent claim is sold at price p > EQ(C). Then, one can short the contingent
claim at p and construct a sequence of continuous and of finite variation s.f.t.s.,
(Xn, Y n, τn)n≥1, with Y n

0 = EQ(C), Xn
0 = 0 and limn→∞ Y n

T = C in L2,
hence, in probability, creating a FLVR. However, this is not allowed since Q is
an equivalent martingale measure for s. Similarly, one can show that the price
of the contingent claim cannot be less than EQ(C).

2. Given our supply curve formulation, this corollary implies that continuous trad-
ing strategies of finite variation can be constructed to both (i) approximately
replicate any contingent claim, and (ii) avoid all liquidity costs. This elucidates
the special nature of continuous trading strategies in a continuous time setting.

5 Example (extended Black-Scholes economy)

To illustrate the previous theory, we consider an extension of the Black-Scholes
economy that incorporates liquidity risk. A detailed discussion of this example
along with some empirical evidence regarding the pricing of traded options in the
extended Black-Scholes economy can be found in Çetin et al. [5].

5.1 The economy

Let

S(t, x) = eαxS(t, 0) with α > 0 (5.1)

S(t, 0) ≡ s0e
µt+σWt

ert
(5.2)

where µ, σ are constants andW is a standard Brownian motion initialized at zero.
For this section, let the spot rate of interest be constant and equal to r per

unit time. The marginal stock price follows a geometric Brownian motion. The
normalization by the money market account’s value is made explicit in expression
(5.2). Expressions (5.1) and (5.2) characterize an extendedBlack-Scholes economy.
It is easy to check that this supply curve satisfies Assumption 1 in Sect. 2.

Under these assumptions, there exists a uniquemartingalemeasure forS(·, 0) =
s, see Duffie [12]. Hence, we know that the market is arbitrage-free and approxi-
mately complete.
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5.2 Call option valuation

Consider a European call option with strike price K and maturity date T on this
stockwith cash delivery. Given cash delivery, in order to avoid liquidity costs at time
T , the payoff11 to the option at time T is selected to beCT = max[S(T, 0)−K, 0].

Under this structure, by the corollary to the second fundamental theorem of
asset pricing, the value of a long position in the option is:

C0 = e−rTEQ(max[S(T, 0) − K, 0]).

It is well-known that the expectation in this expression gives the Black-Scholes-
Merton formula:

s0N(h(0)) − Ke−rTN(h(0) − σ
√
T )

where N(·) is the standard cumulative normal distribution function and

h(t) ≡ log st − logK + r(T − t)
σ
√
T − t

+
σ

2

√
T − t.

Applying Itô’s formula, the classical replicating strategy,X = (Xt)t∈[0,T ], implied
by the classical Black-Scholes-Merton formula is given by

Xt = N(h(t)). (5.3)

This hedging strategy is continuous, but not of finite variation.
In this economy, we have that (∂S∂x (t, 0) = αe0st = αst). Hence, although the

call’s value is the Black-Scholes formula, the standard hedging strategy will not
attain this value. Indeed, using this strategy, it can be shown that the classical Black-
Scholes hedge leads to the following non-zero liquidity costs (from expression
(2.1)):12

LT = X0(S(0, X0) − S(0, 0)) +
∫ T

0

α (N ′ (h(u)))2 su
T − u

du. (5.4)

In contrast, an approximate hedging strategy that is continuous andoffinite variation
having zero liquidity costs is the sequence of s.f.t.s. (Xn, Y n, τn)n≥1 with

Xn
t = 1[ 1

n ,T− 1
n )(t)n

∫ t

(t− 1
n )+

N(h(u))du, if 0 ≤ t ≤ T − 1
n
, (5.5)

Xn
t = (nTXn

(T− 1
n ) − nXn

(T− 1
n )t), if T − 1

n
≤ t ≤ T,

and Y n
0 = EQ(CT ). In the limit, this trading strategy attains the call’s time T

value, i.e. Y n
T = Y n

0 +
∫ T

0 Xn
u−dsu → CT = max[S(T, 0) − K, 0] in L2(dQ).

11 The strike price needs to be normalized by the value of the money market account.
12 Note that both LT and Y n

T are normalized by the value of the money market account.
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6 Discontinuous supply curve evolutions

This section extends the previous economy to allow stock price supply curves with
discontinuous sample paths.

6.1 The supply curve and s.f.t.s.’s

For this extension we replace Assumption 1 with

Assumption 2 (Supply curve)

1. S(t, x, ·) is Ft − measurable and non-negative.
2. x 	→ S(t, x, ω) is a.e. t non-decreasing inx, a.s. (i.e.x ≤ y impliesS(t, x, ω) ≤

S(t, y, ω) a.s. P, a.e. t).
3. S is C2 in its second argument.
4. S(·, 0) is a semi-martingale and ∂S(·, 0)/∂x has finite quadratic variation.

Remark 6.1 Sample path continuity of S(t, 0) is replaced by ∂S(·, 0)/∂x has finite
quadratic variation. In order for [∂S(·, 0)/∂x, [X,X]] to be well defined we need
this restriction. It will be satisfied, for example, ifS(t, x) = f(Dt, x)where f isC3

in its first argument, C2 in its second argument, and whereD is a semimartingale.

The definition of a trading strategy remains unchanged under Assumption 2.
The definition of a self-financing trading strategy is changed only marginally to
include possible jumps in the first partial derivative of the supply curve, i.e.

Definition 6.1 A self-financing trading strategy (s.f.t.s.) is a trading strategy
((Xt, Yt : t ∈ [0, T ]), τ) where (a) X is càdlàg if ∂S(t, 0)/∂x ≡ 0 for all t
, and X is càdlàg with finite quadratic variation ([X,X]T < ∞) otherwise, (b)
Y0 = −X0S(0, X0), and (c) for 0 ≤ t ≤ T ,

Yt = Y0 + X0S(0, X0) +
∫ t

0
Xu−dS(u, 0) − XtS(t, 0)

−
∑

0≤u≤t

∆Xu[S(u,∆Xu) − S(u, 0)] −
∫ t

0

∂S

∂x
(u−, 0)d[X,X]cu.

The justification of this definition, based on a limiting argument, is contained
in the Appendix.

6.2 The extended first fundamental theorem

Under Assumption 2, Theorem 3.1 extends. A similar proof applies.

Theorem 6.1 (A sufficient condition for no arbitrage) GivenAssumption 2, if there
exists a probability measureQ ∼ P such that S(·, 0) is aQ-local martingale, then
there is no arbitrage for (X,Y, τ) ∈ Θα for any α.
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6.3 The extended second fundamental theorem

Suppose there exists an equivalent local martingale measure Q for s ∈ H2
Q so

that the market is arbitrage free. Under Assumption 2, the definitions of a con-
tingent claim, a complete market, and an approximately complete market remain
unchanged. The extended second fundamental theorem of asset pricing still holds.
The same proof applies as in the original theorem. The original proof did not use
sample path continuity, but only the condition that the intercept of the supply curve
has totally inaccessible jumps.

Theorem 6.2 (Second fundamental theorem) AssumeAssumption 2. LetS(·, 0) =
shave totally inaccessible jumps. Suppose there exists auniqueprobabilitymeasure
Q ∼ P such that S(·, 0) = s is a Q-local martingale. Then, the market is
approximately complete.

7 Conclusion

This paper extends classical arbitrage pricing theory to include liquidity risk by
studying an economy where the security’s price depends on the trade size. Ex-
tended first and second fundamental theorems of asset pricing are investigated.
The economy is shown to be arbitrage free if and only if the stochastic process for
the price of a marginal trade has an equivalent martingale probability measure. The
second fundamental theory of asset pricing fails to hold in our setting. In our set-
ting, a martingale measure (appropriately defined) can be unique, and markets still
be incomplete. However, a weakening of the second fundamental theorem holds.
Markets will be approximately complete in our setting if the martingale measure
is unique. In an approximately complete market, derivative prices are shown to be
equal to the classical arbitrage free price of the derivative.

Appendix

A.1 Proof of the first fundamental theorem

This theorem uses Assumption 1, sample path continuity of S(t, x). The proof
proceeds in two steps. Step 1 constructs a fictitious economy where all trades are
executed at the marginal stock price. The theorem is true in this fictitious economy
by the classical result. Step 2 then shows the theorem in this fictitious economy is
sufficient to obtain the result in our economy.

Prior to this proof, we need to make the following observation in order to
utilize the classical theory. The classical theory (see [11] or alternatively [28] for
an expository version) has trading strategies starting with X0 = 0, while we have
trading strategies with X0− = 0 but not X0 = 0. Without loss of generality,
in the subsequent proof, we can restrict ourselves to predictable processes with
X0 = 0. Here is the argument. Recall su = S(u, 0). In our setup, choose Y 0 so
thatX0S(0, 0)+Y 0

0 = 0 andXtS(t, 0)+Y 0
t = X0S(0, 0)+Y 0

0 +
∫ T

0+ Xudsu =
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∫ T

0+ Xudsu. Define X̂ = 1(0,T ]X . X̂ is predictable, X̂0 = 0, and
∫ T

0+ Xudsu =∫ T

0 X̂udsu. The analysis can be done for X̂ .

A.1.1 Step 1. The fictitious economy

Consider the fictitious economy introduced in Sect. 3. Delbaen and Schachermayer
prove the following in Sect. 4 of [11]:

Theorem A.1 Given Assumption 1 and no arbitrage, there is NFLVR in the ficti-
tious economy if and only if there exists a measure Q ∼ P such that S(·, 0) is a
Q-local martingale.

Since the stochastic integral of a predictable process can be written as a limit
(uniformly on compacts in probability) of stochastic integrals with continuous and
finite variation integrands (see Appendix A.3 below), we have the following corol-
lary.13

Corollary A.1 Suppose there is no arbitrage opportunity in the fictitious economy.
Given Assumption 1, if there’s an (FLVR) in the fictitious economy, there exists a
sequence of εn-admissible trading strategies Xn, continuous and of FV, and a
nonnegative FT -measurable random variable f0, not identically zero, such that
εn → 0 and (Xn · S)T → f0 in probability.

The proof of this corollary is straightforward, and hence we omit it.

A.1.2 Step 2. The illiquid economy

In the economy with liquidity risk, restricting consideration to s.f.t.s. (X,Y, τ)
with X finite variation and continuous processes, by Lemma 2.1, we have that
Yt = (X · s)t − XtS(t, 0). At time T , we have YT = (X · s)T . This is the value
of the same s.f.t.s. in the fictitious economy. We use this insight below.

Lemma A.1 GivenAssumption 1, letX be anα-admissible trading strategywhich
is continuous and of FV in the fictitious economy. Then there exists a sequence of
(α + εn)-admissible trading strategies, in the illiquid economy, (Hn, Y n, τn)n≥1
of FV and continuous on [0, τn), such that Y n

T tends to (X · S)T , in probability,
and εn → 0.

Proof Let Tn = T − 1
n . Define

fn(t) = 1[Tn≤t≤Tn+1]
XTn

Tn − Tn+1
(t − Tn+1) (A.1)

so that fn(Tn) = XTn and fn(Tn+1) = 0. Note that fn(t) → 0, a.s.,∀t. Define

Xn
t = Xt1[t<Tn] + fn(t). (A.2)

13 In the original paper [11], there is a missing hypothesis in the statement of their theorem related
to this corollary. We include here and in other results as needed the missing hypothesis of no arbitrage.
We are grateful to Professor Delbaen for providing us with a counterexample that shows one does in
fact need this hypothesis [10].
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By this definition,Xn is continuous and of FV. Note that T is a fixed time and not
a stopping time, so Xn is predictable. Moreover,

(Xn · S)t = (X · S)t∧Tn
+
∫ t

0
fn(s)dS(s, 0). (A.3)

Notice that |fn(ω)| ≤ sup
t

|Xt(ω)| ≡ K(ω) ∈ R sinceX is continuous on [0, T ].

Thus, fn is bounded by an S(·, 0)-integrable function. Therefore, by dominated
convergence theorem for stochastic integrals (see [27], p.145)

∫
fn(s)dS(s, 0)

tends to 0 in u.c.p. on the compact time interval [0, T ], and thereforeXn ·S → X ·S
in u.c.p. on [0, T ].14

Now, let (εn)n≥1 be a sequence of positive real numbers converging to 0 such
that

∑
n εn < ∞. Define τn = inf {t > 0 : (Xn · S)t < −α − εn} ∧ T. τn is a

predictable stopping time by the continuity of S(·, x). Due to u.c.p convergence of
Xn · S to X · S, passing to a subsequence if necessary, we have the following:

P

(
sup

0≤t≤T
|(Xn · S)t − (X · S)t| ≥ εn

)
≤ εn. (A.4)

Notice that P(τn < T ) ≤ εn, i.e. τn → T in probability. Moreover, τn ≥ Tn

becauseXn = X up to time Tn. ChooseHn = Xn1[0,τn). Consider the sequence
of trading strategies (Hn, τn)n≥1. Note that (Hn ·S)t ≥ −α−εn for all t ∈ [0, τn]
since Hn

τn = 0 for all n. Therefore, (Hn, τn)n≥1 is a sequence of (α + εn)-
admissible trading strategies. The value of the portfolio at liquidation for each
trading strategy is given by

Y n
τn = Xn(τn) [S (τn,−Xn(τn)) − S(τn, 0)] + (Xn · S)τn (A.5)

since Hn is of FV and jumps only at τn for each n by the continuity of Xn.
Therefore, it remains to show Xn(τn) → 0 in probability since this, together
with τn → T in probability, will prove the theorem. Indeed,

∑
n P(τn < T ) ≤∑

n εn < ∞. Therefore, by by the first Borel-Cantelli lemma, P[τn < T i.o.] = 0,
which implies Xn(τn) = Xn(T ) = 0, with probability 1, for all but at most
finitely many n. ��
Lemma A.2 Suppose there is no arbitrage opportunity in the fictitious economy.
Given Assumption 1, there is NFLVR in the fictitious economy if and only if there
is NFLVR in the illiquid economy.

Proof Suppose there is NFLVR in the fictitious economy. Since, given any s.f.t.s.
(X,Y, τ) in the illiquid economy, Yτ ≤ (X ·S)τ , it follows there exists NFLVR in
the illiquid economy. Conversely, suppose there is FLVR in the fictitious economy.
In view of Corollary A.1, there’s a sequence, (Xn)n≥1, with eachXn continuous,
of FV, and εn-admissible trading strategies such that (Xn ·S)T → f0 in probability
where f0 is as before and εn → 0. However, by the previous lemma, there exists a
sequence of αn -admissible trading strategies, (Hn, Y n, τn)n≥1, where αn → 0,
in the illiquid economy such that Y n

τn → f0 in probability, which gives an FLVR
in the illiquid economy. ��
14 One can also show this using integration by parts.
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Theorem A.2 (First fundamental theorem) Suppose there is no arbitrage oppor-
tunity in the fictitious economy. Given Assumption 1, there is no free lunch with
vanishing risk (NFLVR) in the illiquid economy if and only if there exists a measure
Q ∼ P such that S(·, 0) is a Q-local martingale.

Proof By the previous lemma, (NFLVR) in the illiquid economy is equivalent to
(NFLVR) in the fictitious economy, which is equivalent to existence of a martingale
measure by TheoremA.1. ��

A.2 Construction of the self-financing condition for a class of trading strategies

The purpose of this section is to provide justification for Definition 2.2 and Defini-
tion 6.1 in the text. This proof uses only the weaker hypotheses of Assumption 2.

Let t be a fixed time and let (σn) be a sequence of random partitions of [0, t]
tending to identity in the following form:

σn : 0 = Tn
0 ≤ Tn

1 ≤ . . . ≤ Tn
kn

= t

where Tn
k ’s are stopping times. For successive trading times, t1 and t2, the self-

financing condition can be written as

Yt2 − Yt1 = − (Xt2 − Xt1) [S(t2, Xt2 − Xt1)] .

Note that Yt = Y0 +
∑

k≥1(YTn
k

− YTn
k−1

) for all n. Therefore, we’ll define Yt to
be the following limit whenever it exists:

Y0 − lim
n→∞

∑
k≥1

(XTn
k

− XTn
k−1

)S(Tn
k , XTn

k
− XTn

k−1
). (A.6)

Example A.1 In the classical case, S(t, x) = S(t, 0) for all x ∈ R. Thus, self-
financing condition becomes

Yt2 − Yt1 = −[Xt2 − Xt1 ]S(t2, 0)

and initial trades must satisfy Y (0) = −X(0)S(0, 0) instead. Therefore,

Yt = Y0 − lim
n→∞

∑
k≥1

(XTn
k

− XTn
k−1

)S(Tn
k , 0)

= Y (0) − lim
n→∞

∑
k≥1

XTn
k
S(Tn

k , 0) −
∑
k≥1

XTn
k−1

S(Tn
k , 0)


= Y (0) − lim

n→∞

∑
k≥1

XTn
k
S(Tn

k , 0)

−
∑
k≥1

XTn
k−1

(S(Tn
k , 0) − S(Tn

k−1, 0)) −
∑
k≥1

XTn
k−1

S(Tn
k−1, 0)


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= Y0 − XtS(t, 0) + X0S(0, 0)

+ lim
n→∞

∑
k≥1

XTn
k−1

(S(Tn
k , 0) − S(Tn

k−1, 0))

= −XtS(t, 0) +
∫ t

0
Xu−dS(u, 0).

Notice that the limit agrees with the value of Y (t) in classical case. So, we have a
framework that contains the existing theory.

Theorem A.3 For X càdlàg and has finite quadratic variation (QV), the value in
the money market account is given by

Yt = −XtS(t, 0) +
∫ t

0
Xu−dS(u, 0) −

∫ t

0
S(1)
x (u−, 0)d[X,X]cu

−
∑

0≤u≤t

[S(u,∆Xu) − S(u, 0)]∆Xu. (A.7)

where S(n)
x is the n-th partial derivative of S with respect to x.

Proof Expression (A.6) is

Yt = Y0

− lim
n→∞

∑
k≥1

(
XTn

k
− XTn

k−1

)
S(Tn

k ,
(
XTn

k
− XTn

k−1

)
)

= −X(0)S(0, X0)

− lim
n→∞

∑
k≥1

(
XTn

k
− XTn

k−1

) [
S(Tn

k ,
(
XTn

k
− XTn

k−1

)
) − S(Tn

k , 0)
]

− lim
n→∞

∑
k≥1

(
XTn

k
− XTn

k−1

)
S(Tn

k , 0)).

We know from Example A.1 that the last sum converges to −X0S(0, 0) +
XtS(t, 0) − ∫ t

0 Xu−dS(u, 0). Let A = A(ε, t) be a set of jumps ofX that has a.s.
a finite number of times s, and let B = B(ε, t) be such that

∑
s∈B(∆Xs)2 ≤ ε2,

where A and B are disjoint and A ∪B exhaust the jumps ofX on (0, t], see proof
of Itô’s formula in [27]. Thus,

lim
n→∞

∑
k≥1

(
XTn

k
− XTn

k−1

) [
S(Tn

k ,
(
XTn

k
− XTn

k−1

)
) − S(Tn

k , 0)
]

= lim
n→∞

∑
k,A

(
XTn

k
− XTn

k−1

)(
S(Tn

k ,
(
XTn

k
− XTn

k−1

)
) − S(Tn

k , 0)
)

+ lim
n→∞

∑
k,B

(
XTn

k
− XTn

k−1

)(
S(Tn

k ,
(
XTn

k
− XTn

k−1

)
) − S(Tn

k , 0)
)
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where
∑

k,A denotes
∑

k≥1 1[A∩(Tn
k−1,T

n
k ] �=∅], and

∑
k,B denotes∑

k≥1 1[B∩(Tn
k−1,T

n
k ]=∅] Since A has only finitely many elements, ω by ω, the first

limit equals ∑
u ∈A

[S(u,∆Xu) − S(u, 0)]∆Xu. (A.8)

Applying Taylor’s formula to each S(Tn
k , ·), the second limit becomes

lim
n→∞

∑
k,B

S(1)
x (Tn

k , 0)
(
XTn

k
− XTn

k−1

)2

+ lim
n→∞

∑
k,B

(
XTn

k
− XTn

k−1

)
R
(
Tn
k ,
∣∣∣XTn

k
− XTn

k−1

∣∣∣)
= lim

n→∞

∑
k≥1

S(1)
x (Tn

k , 0)
(
XTn

k
− XTn

k−1

)2

− lim
n→∞

∑
k,A

S(1)
x (Tn

k , 0)
(
XTn

k
− XTn

k−1

)2

+ lim
n→∞

∑
k,B

(
XTn

k
− XTn

k−1

)
R
(
Tn
k ,
∣∣∣XTn

k
− XTn

k−1

∣∣∣)
= lim

n→∞

∑
k≥1

S(1)
x (Tn

k−1, 0)
(
XTn

k
− XTn

k−1

)2

+ lim
n→∞

∑
k≥1

[
S(1)
x (Tn

k , 0) − S(1)
x (Tn

k−1, 0)
] (

XTn
k

− XTn
k−1

)2

− lim
n→∞

∑
k,A

S(1)
x (Tn

k , 0)
(
XTn

k
− XTn

k−1

)2

+ lim
n→∞

∑
k,B

(
XTn

k
− XTn

k−1

)
R
(
Tn
k ,
∣∣∣XTn

k
− XTn

k−1

∣∣∣) , (A.9)

whereR is the remainder term in Taylor’s formula. The sum of the first three limits
converges to15∫ t

0
S(1)
x (u−, 0)d[X,X]u +

[
S(1)
x (·, 0), [X,X]

]
t
−
∑
u∈A

S(1)
x (u, 0)(∆Xu)2

=
∫ t

0
S(1)
x (u−, 0)d[X,X]u +

∑
0<u≤t

∆S(1)
x (u, 0)(∆Xu)2

−
∑
u∈A

S(1)
x (u, 0)(∆Xu)2. (A.10)

15 Note that the assumption thatS(1)
x (·, 0) has a finiteQV is not neededwhenS

(1)
x (·, 0) is continuous.

In this case, the second limit is zero. This follows from the fact that X has a finite QV and S
(1)
x (·, 0)

is uniformly continuous, ω by ω, over the compact domain [0, T ].
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Now we will show as ε tends to 0, the last term in (A.9) vanishes. Assuming
temporarily that |S(2)

x | < K < ∞ uniformly in x and t,∣∣∣R(Tn
k ,
∣∣∣XTn

k
− XTn

k−1

∣∣∣)∣∣∣
≤ sup

0≤|x|≤
∣
∣
∣XT n

k
−XT n

k−1

∣
∣
∣

∣∣∣S(1)
x (Tn

k , x) − S(1)
x (Tn

k , 0)
∣∣∣ ∣∣∣(XTn

k
− XTn

k−1

)∣∣∣
≤ sup

0≤|y|≤|x|≤
∣
∣
∣XT n

k
−XT n

k−1

∣
∣
∣

∣∣∣S(2)
x (Tn

k , y)x
(
XTn

k
− XTn

k−1

)∣∣∣
≤ K

(
XTn

k
− XTn

k−1

)(
XTn

k
− XTn

k−1

)
,

where the second inequality follows from the MeanValue Theorem. Therefore, the
last sum in (A.9) is less than or equal to, in absolute value,

K lim
n→∞

∑
k,B

(∣∣∣XTn
k

− XTn
k−1

∣∣∣)3

< K lim
n→∞ sup

k,B
|XTn

k
− XTn

k−1
|
∑
k

(∣∣∣XTn
k

− XTn
k−1

∣∣∣)2

≤ Kε[X,X]t.

Note that ε can be made arbitrarily small andX has a finite QV. Furthermore, since
all summands are positive, as ε → 0, (A.8) converges to∑

0<u≤t

[S(u,∆Xu) − S(u, 0)]∆Xu

and (A.10) converges to∫ t

0
S(1)
x (u−, 0)d[X,X]u +

∑
0<u≤t

∆S(1)
x (u, 0)(∆Xu)2

−
∑

0<u≤t

S(1)
x (u, 0)(∆Xu)2

=
∫ t

0
S(1)
x (u−, 0)d[X,X]u −

∑
0<u≤t

S(1)
x (u−, 0)(∆Xu)2

=
∫ t

0
S(1)
x (u−, 0)d[X,X]cu.

For the general case, let V x
k = inf{t > 0 : S(2)(t, x) > k}. Define S̃(t, x) :=

S(t, x)1[0,V x
k ).Therefore, (A.7) holds for S̃, for each k. Now, a standard argument

using set unions, as in the proof of Itô’s formula in [27], establishes (A.7) for S.
��
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A.3 Approximating stochastic integrals with continuous and of FV integrands

The next lemma (Lemma A.3) is well known and can be found in ♣[?]♣.

Lemma A.3 LetX be a special semimartingale with the canonical decomposition
X = N + A, where N is a local martingale and A is predictable. Suppose S has
totally inaccessible jumps. Then A is continuous.

Wemake the following assumption. (Note that this assumption is satisfied in all
classical market models studies, since [for example] a Lévy process has only totally
inaccessible jumps, and indeed by a classic theorem of P.A.Meyer, all “reasonable"
strong Markov processes have only totally inaccessible jumps.)

Assumption 3 S(·, 0) has only totally inaccessible jumps.

We recall a few definitions.

Definition A.1 Let X be a special semimartingale with canonical decomposition
X = N̄ + Ā. The H2 norm of X is defined to be

‖X‖H2 =
∥∥∥[N̄ , N̄

]1/2
∞

∥∥∥
L2

+
∥∥∥∥∫ ∞

0

∣∣dĀu

∣∣∥∥∥∥
L2

.

The space H2 of semimartingales consists of all special semimartingales with
finite H2 norm.

Definition A.2 The predictable σ-algebraP onR+ ×Ω is the smallest σ-algebra
making all processes in L measurable where L is the set of processes that have
paths that are left continuous with right limits.We letbP denote bounded processes
that are P-measurable.
Definition A.3 Let X ∈ H2 with X = N̄ + Ā its canonical decomposition, and
let H, J ∈ bP . We define dX(H, J) by

dX(H, J)≡
∥∥∥∥∥∥
(∫ T

0
(Hu−Ju)2 d

[
N̄ , N̄

]
u

)1/2
∥∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ T

0
|Hu−Ju| ∣∣dĀu

∣∣∥∥∥∥∥
L2

Fromhere on,we suppose s ∈ H2 with the canonical decomposition s = N̄+Ā.

Theorem A.4 Let ε > 0. For any H bounded, continuous and of FV, there exists
Hε, bounded, continuous and of FV, with Hε

T = 0 such that ds (H,Hε) < ε.

Proof Define

Hm
t = Ht1[0,Tm] + HTm

T − t

T − Tm
1(Tm,T ]

where Tm = T − 1
m .We’ll first show ds

(
H,H1[0,Tm]

)→ 0 asm → ∞.
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To show

∥∥∥∥(∫ T

0

(
Hu(ω) − Hu(ω)1[0,Tm]

)2
d
[
N̄ , N̄

]
u

(ω)
)1/2

∥∥∥∥
L2

→ 0, first

observe that [N̄ , N̄ ] = 〈N̄ , N̄〉 + M , where 〈N̄ , N̄〉 is the compensator, hence
predictable, of [N̄ , N̄ ] andM is a local martingale. SinceM is a local martingale,
there exists a sequence (Tn)n≥1 of stopping times increasing to ∞ such thatMTn

is a martingale for each n. Thus, given a bounded G, G · MTn is a martingale
implying E[(G · MTn)t] = 0 for all t. Moreover,

|(G · MTn)t| ≤ |G| · [N̄ , N̄ ]Tn
t + |G| · 〈N̄ , N̄〉Tn

t

≤ |G| · [N̄ , N̄ ]t + |G| · 〈N̄ , N̄〉t (A.11)

where the first equality is the triangle inequality and the second follows from [N̄ , N̄ ]
and 〈N̄ , N̄〉 being increasing. Furthermore,G1[0,Tn] converges toG hence byDom-
inated Convergence Theorem for stochastic integrals,G ·MTn converges toG ·M
in ucp. Moreover, by (A.11), since G is bounded and [N̄ , N̄ ] and 〈N̄ , N̄〉 are inte-
grable,E[(G·MTn)t] converges toE[(G·M)t]byordinaryDominatedConvergence
Theorem. Therefore, E[(G · M)t] = 0 for all t. Hence, we have

E
[
G · [N̄ , N̄ ]t

]
= E

[
G · 〈N̄ , N̄〉t

]
.

Jump times of [N̄ , N̄ ] are those of N̄ , which are totally inaccessible as a corollary
to the previous lemma. Therefore, by the same lemma, 〈N̄ , N̄〉 is continuous. Now,∫ T

0

(
Hu(ω)−Hu(ω)1[0,Tm]

)2
d〈N̄ , N̄〉u(ω)≤

∫ T

0
(Hu(ω))2 d〈N̄ , N̄〉u(ω)<∞,

for allm, for almost all ω. Thus, by Lebesgue’s Dominated Convergence Theorem∫ T

0

(
Hu(ω) − Hu(ω)1[0,Tm]

)2
d〈N̄ , N̄〉u(ω) → 0, a.s..

since 〈N̄ , N̄〉 is continuous. Moreover,∥∥∥∥((H − H1[0,Tm]
)2 · file 〈N̄ , N̄

〉)1/2
∥∥∥∥
L2

≤
∥∥∥(H2 · 〈N̄ , N̄

〉)1/2∥∥∥
L2

< ∞

sinceH ·s ∈ H2.A second application of Dominated Convergence Theorem yields∥∥∥∥∥∥
(∫ T

0

(
Hu(ω) − Hu(ω)1[0,Tm]

)2
d
〈
N̄ , N̄

〉
u

(ω)

)1/2
∥∥∥∥∥∥
L2

→ 0.

Since, for any bounded |G|,E [G · [N̄ , N̄ ]t
]

= E
[
G · 〈N̄ , N̄〉t

]
, for all t,∥∥∥∥∥∥

(∫ T

0

(
Hu(ω) − Hu(ω)1[0,Tm]

)2
d
[
N̄ , N̄

]
u

(ω)

)1/2
∥∥∥∥∥∥
L2

→ 0,
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too. By the previous lemma, Ā is continuous as well, so∥∥∥∫ T

0

∣∣Hu − Hu1[0,Tm]
∣∣ ∣∣dĀu

∣∣∥∥∥
L2

→ 0 by a similar argument. Hence,

ds
(
H,H1[0,Tm]

)→ 0 asm → ∞.

It remains to show ds

(
HTm

T−t
T−Tm

1(Tm,T ], 0
)

→ 0, as m → ∞. First note

that ∫ T

0
H2

Tm
(ω)

(
T − u

T − Tm

)2

1(Tm,T ]d
〈
N̄ , N̄

〉
u

(ω)

≤
∫ T

0
Kd

〈
N̄ , N̄

〉
u

(ω) < ∞

where K =
∥∥max0≤t≤T H2

t (ω)
∥∥

∞ < ∞ since H is bounded. Thus, by the
Dominated Convergence Theorem,∫ T

0
H2

Tm
(ω)

(
T − u

T − Tm

)2

1(Tm,T ]d
〈
N̄ , N̄

〉
u

(ω) → 0, a.s..

Moreover, another application of the Dominated Convergence Theorem yields

lim
m→∞ E

[∫ T

0
H2

Tm

(
T − u

T − Tm

)2

1(Tm,T ]d
〈
N̄ , N̄

〉
u

]
= 0.

A similar argument shows∥∥∥∥∥
∫ T

0

∣∣∣∣HTm

(
T − u

T − Tm

)∣∣∣∣ 1(Tm,T ] |dAu|
∥∥∥∥∥
L2

→ 0

which completes the proof. ��
Corollary A.2 Let ε > 0. For anyH , bounded, continuous and of FV, there exists
Hε, bounded, continuous and of FV, withHε

T = 0 such that ‖H · s − Hε · s‖L2 <
ε.

Proof This follows from a combination of TheoremA.4 and Theorem 5 of Chapter
IV in [27]. ��

A.4 A Numéraire invariance theorem

This proof only uses the weaker supply curve Assumption 2. Let (S(·, x)x∈R, B)
represent an economywhere S(·, x) is the stock price process per share for an order
of size x and B is a strictly positive semimartingale representing bond price. We
define the discounted stock price process S̄(·, x) = S(·,x)

B . We have shown that
for a trading strategy (X̄, Ȳ , τ̄) in the economy (S̄(·, x)x∈R, 1), the self-financing
condition is

Ȳt = (X̄− · s̄)t − X̄ts̄t − L̄1
t − L̄2

t , for 0 ≤ t ≤ τ̄ (A.12)



Liquidity risk and arbitrage pricing theory 29

where s̄ := S̄(·, 0), L̄1
t =

∑
0≤u≤t ∆Xu[S̄(u,∆Xu) − S̄(u, 0)] and L̄2

t =∫ t

0
∂S̄
∂x (u−, 0)d[X,X]cu . Using similar arguments, one can show that for a trading

strategy, (X,Y, τ) in the economy (S(·, x)x∈R, B), the self-financing condition is

BtYt = (X− · s)t − Xtst − L1
t − L2

t + (Y− · B)t, for 0 ≤ t ≤ τ, (A.13)

where s, L1 and L2 are defined similarly. L1 and L̄1 are submartingales being
increasing processes, thus their càdlàg versions exist. We’ll use these càdlàg ver-
sions and therefore they are semimartingales of finite variation (FV) and, thus, Y
being càdlàg is justified. The proof below is similar to the theorem on numéraire
invariance for the classical case, which can be found in [14], or alternatively in [28]
for the most general classical setting.

Theorem A.5 Let X be a predictable càdlàg process with finite QV and τ be a
predictable stopping time. (X,Y, τ) is a s.f.t.s. in the economy (S(·, x)x∈R, B) if
and only if it is a s.f.t.s. in (S̄(·, x)x∈R, 1).

Proof GivenX and τ , (X,Y, τ) is a s.f.t.s. in (S(·, x)x∈R, B) if Y satisfies (A.13).
Similarly, (X, Ȳ , τ) is a s.f.t.s. in (S̄(·, x)x∈R, 1) if Ȳ satisfies (A.12). Moreover,
Y and Ȳ are uniquely determined given X and τ . Therefore, it remains to show
Y = Ȳ . Note that L1 and L2 are of FV. Thus,

1
B
L1 = L1

− · 1
B

+
1
B

· L1

= L1
− · 1

B
+
∑

0≤u≤t

∆Xu[S(u,∆Xu) − S(u, 0)]
1
Bu

= L1
− · 1

B
+ L̄1

1
B
L2 = L2 · 1

B
+

1
B

· L2 = L2 · 1
B

+
∂S̄

∂x
(·, 0) · [X,X]c

= L2 · 1
B

+ L̄2

1
B

(Y− · B) =
1
B−

· (Y− · B) + (Y− · B)− · 1
B

+
[

1
B
, Y− · B

]
=

1
B−

Y− · B + (Y− · B)− · 1
B

+
[

1
B
, Y− · B

]
1
B

(X− · s) =
1
B−

X− · s + (X− · s)− · 1
B

+
[

1
B
,X− · s

]
= X− · (

1
B−

· s) + (X− · s)− · 1
B

+
[

1
B
,X− · s

]
= X− · s̄ − X−s− · 1

B
− X− ·

[
1
B
, s

]
+(X− · s)− · 1

B
+
[

1
B
,X− · s

]
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= X− · s̄ − X−s− · 1
B

−
[

1
B
,X− · s

]
+(X− · s)− · 1

B
+
[

1
B
,X− · s

]
= X− · s̄ − X−s− · 1

B
+ (X− · s)− · 1

B

Dividing both sides of expression (A.13) by B and by using the above expressions
and rearranging the terms yield

Y = X− · s̄ − Xs̄ − L̄1 − L̄2

+
(
(X− · s)− − X−s− − L1

− − L2 + (Y− · B)−
) · 1

B

+
1
B−

Y− · B +
[

1
B
, Y− · B

]
= Ȳ + B−Y− · 1

B
+

1
B−

Y− · B +
[

1
B
, Y− · B

]
= Ȳ + Y− ·

(
B− · 1

B
+

1
B−

· B +
[

1
B
,B

])
= Ȳ + Y− · (1)
= Ȳ

��
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