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1 Introduction

In their seminal paper on coherent risk measures, Artzner, Delbaen, Eber &
Heath [1] set forth axioms which should be satisfied by risk measures, and
called risk measures satisfying these axioms coherent. They showed that in a
finite probability space every coherent risk measure is characterized by a set
of probability measures, the risk associated with a random loss being just its
maximal expectation over the set of these measures. A position is acceptable
in [1] if its risk measure is non-positive. Unfortunately, the most common
risk measure, value-at-risk, does not satisfy the subadditivity axiom in [1]
and hence is not coherent.

In a similar vein, Carr, Geman & Madan [6] suggested that derivative
security pricing should take into account a variety of measures, which they
called valuation measures and stress measures. They defined acceptability of
a random variable, representing potential gain from a derivative position, to
mean that its expectation under each valuation measure is nonnegative and
its expectation under each stress measure should be greater than or equal
to a floor associated with that measure. When all the floors are zero, this
notion of acceptability agrees with that of [1] (taking into account that one
paper treats losses and the other treats gains). Carr et. al. [6] and Cerny &
Hodges [7] use these ideas to extend the concept of no-arbitrage pricing.

Föllmer & Schied [15] consider convex risk measures, a class which in-
cludes the risk measures treated by both [1] and [6]. They show that these
risk measures are like those of Carr, et. al. [6], except that their representa-
tion might require infinitely many measures and associated floors. Jaschke
& Küchler [17] further develop the properties of convex risk measures.

All these papers address a static situation: there is an initial date at
which risk is measured and a final date at which random losses or gains are
realized. The literature on dynamic risk measures is rather limited. In a se-
ries of papers [2], [3], [4], Artzner, Delbaen, Eber, Heath & Ku build coherent
risk measures on stochastic processes rather than on random variables. They
obtain a representation result for such risk measures, discuss computational
issues, and provide a multi-period extension of tail-value-at-risk. Basak &
Shapiro [5] consider a dynamic utility maximizer constrained to keep either
value-at-risk or tail-value-at-risk below a threshold at all times. Wang [23]
lists a set of axioms for dynamic risk measures and characterizes the class of
measures satisfying his axioms. Cvitanić & Karatzas [8] consider an agent
trading in a market driven by Brownian motion who has insufficient initial
capital to replicate a short position in a contingent claim he is forced to
hold, and thus resorts to minimization of a coherent risk measure of hedge
shortfall. Föllmer and Leukert [13] treat a similar situation, except asset
prices are semimartingales, and the particular coherent risk measure to be
minimized is the expected value of a convex function of hedge shortfall.

This paper considers a market with a semimartingale price process. We
take as given a finite set of valuation and stress measures as in [6], which we
call scenario measures. With each scenario measure there is an associated
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floor. These measures and floors determine if a random variable, represent-
ing the wealth of an agent at the final time, is acceptable. Section 2 describes
the model, including the notion of scenario measures and floors.

Section 3 contains the central result of the paper, the characterization
of random variables, representing the wealth of an agent at a time prior
to the final time, from which the agent can trade to final acceptability.
The representation is surprisingly simple and shows, in particular, that if
one cannot form a martingale measure as a convex combination of scenario
measures, then the final acceptability condition imposes no constraint on the
initial wealth. Ruling out this case, we show in Section 4 that the set of initial
positions from which final acceptability can be achieved is a closed half-line
[ξ(0),∞). We provide primal and dual linear programs for computing ξ(0).

In Section 5 we define buyer’s and seller’s prices for contingent claims.
These are like utility indifference prices, except they are based on a concept
of “risk-measure indifference.” The buyer’s and seller’s prices thus obtained
are within the interval of super-replication and sub-replication prices, and
in the case of a complete market, coincide with the expected payoff under
the martingale measure. Bounds for these prices are obtained in terms of
the linear programs of Section 4.

Section 6 contains an auxiliary result needed to represent strategies
which trade to final acceptability. In Section 7 we present a stochastic
volatility model in which the scenario measures correspond to different
levels to which the volatility reverts. In this example we provide a fairly
explicit representation for strategies which trade to acceptability. Section 8
concludes the paper.

2 The model

2.1 Asset price process and trading strategies

We consider a market whose risk-free interest rate is equal to zero and which
has one risky asset. The first assumption can be achieved without loss of
generality by discounting asset prices. The inclusion of multiple risky assets
in the model studied here requires little more than notational changes.

The price of our risky asset is a special semimartingale

St = S0 + Mt + At, 0 ≤ t ≤ T, (2.1)

defined on a probability space (Ω,F , P). We denote by E the expectation
operator under the “objective probability measure” P. There is a filtration
{Ft}0≤t≤T satisfying the usual conditions of right-continuity and augmenta-
tion by P-null sets of F . We assume FT = F and F0 contains only the P-null
subsets of F and their complements. Relative to this filtration, M is a local
martingale and A is a predictable process of finite variation, both assumed
to be càdlàg. The initial price S0 > 0 is nonrandom, and M0 = A0 = 0. We
assume finiteness of the H2-norm of S, defined by

‖S‖2H2 , E [[M ]T ] + E
[(
|A|T )2

]
,

2



where |A|t denotes the total variation of A on [0, t]. This guarantees that S
is a square-integrable process and M is a square-integrable martingale. The
space of all special semimartingales with finite H2 norm is a Banach space
(see [20] for these and following claims).

We define the linear spaceH2(S) to be the set of all predictable processes
π satisfying

E

[∫ T

0

π2
u d[M ]u

]
+ E

(∫ T

0

|πu| d|A|u

)2
 < ∞. (2.2)

Then the process

(π · S)t ,
∫ t

0

πu dMu +
∫ t

0

πu dAu

is a special semimartingale, with local martingale part (π ·M)t ,
∫ t

0
πu dMu

and finite variation part (π ·A)t ,
∫ t

0
πu dAu. In fact, condition (2.2) implies

π · S ∈ H2 with ‖π · S‖2H2 equal to the quantity in (2.2). Furthermore,

E[π · S]T = E

[∫ T

0

π2
u d[M ]u

]
+ E

 ∑
0<u≤t

π2
u (∆Au)2

 ≤ ‖π · S‖2H2 < ∞.

See Dybvig & Huang [10] for a discussion of the relationship between port-
folio spaces of the form H2(S) and those which are defined by the weaker
condition (4.10) below in place of (2.2).

For any process Z, we define Zt , sup0≤u≤t |Zu|. The Davis-Burkholder-
Gundy inequalities assert the existence of universal constants K1 and K2

such that every local martingale Z satisfies

EZT ≤ K1E
(
[Z]1/2

T

)
, EZ

2

T ≤ K2E[Z]T .

Therefore, for π ∈ H2(S), we have

E
[
(π ·M)T

]
≤ K1E

(∫ T

0

π2
u d[M ]u

)1/2
 < ∞,

E
[
(π ·M)2T

]
≤ K2E

[∫ T

0

π2
u d[M ]u

]
< ∞.

Of course,

E
[
(π ·A)T

]
≤ K1E

[(∫ T

0

|πu| d|A|u

)]
< ∞,

E
[
(π ·A)2T

]
≤ K2E

(∫ T

0

|πu| d|A|u

)2
 < ∞.
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It follows that for π ∈ H2(S),

E
[
(π · S)T

]
< ∞, E

[
(π · S)2T

]
< ∞. (2.3)

For t ∈ [0, T ], we may replace the initial time point 0 by t in the above
to obtain the analogous spaces H2

t and H2
t (S). Of course H2

0 = H2.

Definition 1 For t ∈ [0, T ], a trading strategy on [t, T ] is a process π in
H2

t (S). If t = 0, we shall call π simply a trading strategy. We denote by
L2

t (P) the set of Ft-measurable random variables with finite second moments
under P. If π is a trading strategy on [t, T ] and X ∈ L2

t (P), we define the
wealth process starting at (t, X) generated by π to be

W t,X,π
u , X +

∫ u

t

πv dSv, t ≤ u ≤ T.

Note that W t,X,π is in H2
t , and with (W t,X,π)T , supt≤u≤T |W t,X,π|u,

we have
E
[
(W t,X,π)T

]
< ∞, E

[
(W t,X,π)2T

]
< ∞. (2.4)

Definition 2 We denote by Ma (respectively, Ma
t ) the set of probability

measures Q satisfying

(i) Q � P and dQ
dP ∈ L2

T (P);
(ii) S is a local martingale under Q on [0, T ] (respectively, on [t, T ]).

We adopt the convention that Ma
T is the set of all probability measures Q

satisfying (i). We denote by Me (respectively, Me
t ) the set of probability

measures in Ma (respectively, Ma
t ) satisfying P � Q.

In order to rule out arbitrage, we make the following assumption.

Assumption 1 Me 6= ∅.

Proposition 1 For any t ∈ [0, T ], any Q ∈ Ma
t , any X ∈ L2

t (P), and any
trading strategy π ∈ H2

t (S), the wealth process W t,X,π is a martingale on
[t, T ] under Q.

Proof: Because S is a local martingale under every Q ∈ Ma
t and π ∈

H2
t (S), W t,X,π is a local martingale under every Q ∈ Ma

t ([16], p. 45,
(2.48)). To show that W t,X,π is a martingale under Q ∈ Ma

t , it suffices to
show that EQ(W t,X,π)T < ∞. The Cauchy-Schwarz inequality implies

EQ(W t,X,π)T = E
[
dQ
dP

(W t,X,π)T

]
≤
∥∥∥∥dQ

dP

∥∥∥∥
L2

T (P)

∥∥∥(W t,X,π)T

∥∥∥
L2

T (P)
,

which is finite by Definition 2(i) and the second part of (2.4). ♦

Corollary 1 The prices process S is a martingale under every Q ∈Ma.
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2.2 Scenario measures and floors

We have a finite number of scenario probability measures Pi, i = 1, . . . , d,
each of which is absolutely continuous with respect to P. Associated with
each scenario measure Pi there is a floor f i ∈ R. For i = 1, . . . , d, we define

Zi
T ,

dPi

dP
, Zi

t , E[Zi
T |Ft], 0 ≤ t ≤ T.

Assumption 2 Zi
T ∈ L2

T (P), i = 1, . . . , d.

Under Assumption 2, the martingale Zi
t , 0 ≤ t ≤ T , is square integrable

under P. In particular,

E
[
(Zi)2T

]
≤ K2E[Zi]T = K2E

[
(Zi

T )2
]

< ∞. (2.5)

Definition 3 A random variable X ∈ L2
T (P) is acceptable if EPi

X ≥ f i

for i = 1, . . . , d. The set of all such random variables is denoted AT . For
t ∈ [0, T ), a random variable X ∈ L2

t (P) is acceptable at time t if there
exists a trading strategy π on [t, T ] satisfying X +

∫ T

t
πu dSu ∈ AT . The set

of all time-t acceptable random variables is denoted At.

Note that X ∈ L2
T (P) implies EPi

X is defined because of Assumption
2. Note also that for 0 ≤ t ≤ T , At is a convex set, and X ∈ At and
Y ≥ X almost surely under P imply that Y ∈ At. Because one or more of
the floors may be negative, the set At may fail to be a cone, i.e., X ∈ At

and λ ≥ 0 does not necessarily imply λX ∈ At. The set A0 is either R, an
open half-line extending to ∞, or a closed half-line extending to ∞. In the
next section we rule out the second case and make an assumption which is
necessary and sufficient to rule out the first case.

3 Characterization of acceptable sets

The convex hull conv{Pi; i = 1, . . . , d} is the set of probability measures
of the form Q =

∑ c
λiPi, where the notation

∑ c indicates convex com-
bination, i.e., λi ≥ 0 for every i and

∑d
i=1 λi = 1. If X is acceptable and

Q ∈ conv{Pi; i = 1, . . . , d}, then EQX ≥ fQ, where

fQ , sup
{∑ c

λif i
∣∣∣ ∑ c

λiPi = Q
}

. (3.1)

For t ∈ [0, T ], we define

Ct , conv{Pi|i = 1, . . . , d} ∩Ma
t .

In particular, CT = conv{Pi|i = 1, . . . , d}. We further define

Xt ,
{
X ∈ L2

t (P)
∣∣EQX ≥ fQ ∀Q ∈ Ct

}
. (3.2)
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Assumption 3 We assume that C0 6= ∅.

Because Ma
t is nondecreasing in t, so is Ct. In particular, Assumption 3

guarantees that Ct 6= ∅ for all t ∈ [0, T ].
We can now state the central result of this paper. The proof is given

after two preparatory lemmas.

Theorem 1 For every t ∈ [0, T ], we have Xt = At.

For t ∈ [0, T ] and i = 1, . . . , d, we define a linear functional F i
t : H2

t (S) →
R by

F i
t (π) , EPi

∫ T

t

πu dSu = E

[
Zi

T

∫ T

t

πu dSu

]
∀π ∈ H2

t (S). (3.3)

Hölder’s inequality implies∣∣F i
t (π)

∣∣ ≤ ‖Zi
T ‖L2

T (P) · ‖π‖H2
t (S) ∀π ∈ H2

t (S). (3.4)

Lemma 1 (Farkas) Let (a1, . . . , ad) ∈ Rd be given. For t ∈ [0, T ], the
system of inequalities

F i
t (π) ≥ ai, i = 1, . . . , d, (3.5)

has a solution π ∈ H2
t (S) if and only if the following implication is true:∑ c

λiF i
t = 0 ⇒

∑ c
λiai ≤ 0. (3.6)

Proof: If (3.5) has a solution π ∈ H2
t (S), and for some (λ1, . . . , λd) ∈ Rd

+

satisfying
∑d

i=1 λi = 1 we have
∑ c

λiF i
t = 0, then

∑ c
λiai ≤

∑ c
λiF i

t (π) =
0, so implication (3.6) holds.

For the reverse implication, we establish the contrapositive. Assume
there is no solution to (3.5). We construct a vector (λ1, . . . , λd) ∈ Rd

+ such
that

∑d
i=1 λi = 1,

∑ c
λiF i

t = 0 and
∑ c

λiai > 0. To do this, we consider
the range space of (F 1

t , . . . , F d
t ) in Rd, i.e.,

L ,
{(

F 1
t (π), . . . , F d

t (π)
)∣∣π ∈ H2

t (S)
}

.

The failure of (3.5) to have a solution means that (a1, . . . , ad) /∈ L − Rd
+,

which is closed (Corollary 19.3.2 of [21]). Hence there exists a strongly
separating hyperplane, i.e., a vector (λ1, . . . , λd) ∈ Rd such that

d∑
i=1

λiai >
d∑

i=1

λi(F i
t (π)− ci) ∀π ∈ H2

t (S), ∀(c1, . . . , cd) ∈ Rd
+. (3.7)

Taking π ≡ 0 and ci large, we see that λi ≥ 0 for every i. Taking π ≡ 0 and
ci = 0 for every i, we see that

∑d
i=1 λiai > 0. In particular, (λ1, . . . , λd) is
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not the zero vector, and we can normalize it so
∑d

i=1 λi = 1, as desired.
Finally, taking ci = 0 for every i, we obtain

n∑
i=1

λiai >
d∑

i=1

λiF i
t (π) ∀π ∈ H2

t (S).

Since F i
t is linear, this implies

∑d
i=1 λiF i

t = 0. ♦
Lemma 2 Let t ∈ [0, T ] be given. Then

∑ c
λiF i

t = 0 if and only if the
measure Q ,

∑ c
λiPi is in Ma

t .

Proof: It is clear that Q � P for any Q of the form Q =
∑ c

λiPi.
Furthermore, because each Zi ∈ L2(P), dQ/dP also belongs to this set.
Thus Q ,

∑ c
λiPi ∈Ma

t if and only if S is a martingale on [t, T ] under Q.
We first assume that

∑ c
λiF i

t = 0 and prove the martingale property
for S. Chose t ≤ u1 ≤ u2 ≤ T and A ∈ Fu1 . Define πv = I(u1,u2](v)IA, which
is predictable because it is left-continuous, and hence is in H2

t (S). Then

EQ [IASu2 ]− EQ [IASu1 ] =
∑ c

E
[
λiZi

T

(
Su2 − Su1

)
IA

]
=
∑ c

λiEPi

∫ T

t

πu dSu

=
∑ c

λiFt(π) = 0.

This shows that EQ[Su2 |Fu1 ] = Su1 .
For the converse, suppose S is a martingale under Q. Then so is

∫ u

t
πv dSv,

t ≤ u ≤ T , for every π ∈ H2
t (S) (Proposition 1). It follows that∑ c

λiF i
t (π) =

∑ c
λiEPi

∫ T

t

πv dSv = EQ
∫ T

t

πv dSv = 0 ∀π ∈ H2
t (S).

♦

Proof of Theorem 1: The theorem requires a proof only for t ∈ [0, T ).
For such a t, let X ∈ At be given. We can thus find π ∈ H2

t (S) satisfying

EPi

[
X +

∫ T

t

πv dSv

]
≥ f i, i = 1, . . . , d. (3.8)

Therefore, for any Q ∈ Ct, EQX = EQ
[
X +

∫ T

t
πv dSv

]
≥ fQ, and hence

X ∈ Xt.
For the reverse containment, we begin with X ∈ Xt. We must prove

existence of π ∈ H2
t (S) satisfying (3.8), i.e., satisfying F i

t (π) ≥ ai, i =
1, . . . , d, where ai = f i − EP i

X. According to Lemma 1, it suffices to ver-
ify implication (3.6). Assume that (λ1, · · · , λd) have been found such that∑ c

λiF i
t = 0. Then the probability measure Q defined in Lemma 2 is in

Ma
t . By virtue of its membership in Xt, the random variable X satisfies

EQX ≥ fQ. Therefore,∑ c
λiai =

∑ c
λif i−

∑ c
λiEPi

X ≤ fQ−EQX ≤ 0. ♦
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4 The acceptance set at time zero

According to Theorem 1, the acceptance set at time zero is

A0 ,
{
x ∈ R |for some π ∈ H2(S), F i

0(π) ≥ f i − x, i = 1, . . . , d
}

= X0 = [ξ(0),∞), (4.1)

where

ξ(0) , sup
{∑ c

λif i
∣∣∣ ∑ c

λiPi ∈Ma
}

= sup
{

fQ∣∣Q ∈ C0

}
. (4.2)

The supremum in (4.2) is not over the empty set because of Assumption 3.
We define

Λ ,

{
λ = (λ1, . . . , λd) ∈ Rd

+

∣∣∣∣∣
d∑

i=1

λi = 1 and
d∑

i=1

λiPi ∈Ma

}
. (4.3)

This is a closed set. To see this, let {λn} = {(λ1
n, . . . , λd

n)}∞n=1 be a sequence
in Λ converging to a limit λ = (λ1, . . . , λn). Let Qn ,

∑d
i=1 λi

nPi. According
to Corollary 1, S is a martingale under each Qn, i.e., for 0 ≤ u ≤ t ≤ T and
A ∈ Fu,

d∑
i=1

λi
n

∫
A

Su dPi =
∫

A

Su dQn =
∫

A

St dQn =
d∑

i=1

λi
n

∫
A

St dPi.

Letting n →∞, we see that S has the martingale property under
∑d

i=1 λiPi,
i.e., λ ∈ Λ.

Because Λ is closed (and obviously bounded), the suprema in (4.2) are
attained. In particular, ξ(0) is finite, and the set Λ(0) defined by (4.4) below
is nonempty. We define

Λ(0) ,
{

λ ∈ Λ
∣∣∣∑ c

λif i = ξ(0)
}

, (4.4)

I1 , { i ∈ {1, . . . , d}| ∃λ ∈ Λ such that λi > 0}
I2 , { i ∈ {1, . . . , d}| ∃λ ∈ Λ(0) such that λi > 0} .

Like Λ(0), the sets I1 and I2 are nonempty.

4.1 Strongly relevant measures

We call a scenario measure Pi for which i ∈ I1 strongly relevant because it
appears on the right-hand side of (4.2), even though it may not be used in a
convex combination which attains the maximum in (4.2), i.e., even though
it may not be in I2. Assumption 3 is that there exists at least one strongly
relevant measure. If i ∈ I1 and the floor f i were replaced by a sufficiently
large value, then i would also be in I2 and ξ(0) would increase. (We will
modify floors in the next section.) In contrast, for a scenario measure Pi for
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which i /∈ I1, no matter how large we make the associated floor f i, the set
A0 = [ξ(0),∞) is unaffected. Starting from initial wealth ξ(0), we can always
find a trading strategy π ∈ H2(S) such that x+

∫ T

0
πu dSu ∈ AT , regardless

of the value f i. However, the set of trading strategies which accomplish this
depends the measures Pi and floors f i for i /∈ I1. Thus, although these are
not strongly relevant, they are still relevant to the problem of acceptable
trading.

Remark 1 It is perhaps surprising that a scenario measure which is not
strongly relevant (at time zero) can become relevant at a later time. That is,
there may be an index i such that Pi never appears in a convex combination
of scenario measures which is inMa, but Pi appears in a convex combination
of scenario measures which is in Ma

t for some t > 0. For example, suppose
there are only two scenario measures. The first is P1 ∈Ma. To construct the
second, let Q be a probability measure equivalent to P1 such that EQST

2
6=

S0. In particular, S is not a Q-martingale on [0, T/2]. Define the second
scenario measure P2 by

dP2

dP1
, EP1

[
dQ
dP1

∣∣∣∣FT
2

]
.

Then

E
∑ cλiPi

ST
2

=
∑ c

λiEPi

ST
2

= λ1S0 + λ2EP1
[
dP2

dP1
ST

2

]
= λ1S0 + λ2EP1

[
dQ
dP1

ST
2

]
= λ1S0 + λ2EQST

2
,

and this is different from S0 unless λ2 = 0. Therefore,
∑ c

λiPi ∈ Ma

implies λ2 = 0, so 2 /∈ I1. On the other hand, because dP2

dP1 is FT
2
-measurable,

for T
2 ≤ u ≤ t ≤ T and A ∈ Fu, we have∫

A

Su dP2 =
∫

A

Su
dP2

dP1
dP1 =

∫
A

St
dP2

dP1
dP1 =

∫
A

St dP2,

so P2 ∈Ma
T
2
.

4.2 Linear programs

The number ξ(0) is the value of the linear program

(P) maximize
∑ c

λif i

subject to
∑ c

λiPi ∈Ma.
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There is an associated dual program

(D) minimize y

subject to EPi

X ≥ f i, i = 1, . . . , d,

y − EQX ≥ 0 ∀Q ∈Ma,

X ∈ L2
T (P).

To see that these programs stand in the weak duality relationship, let
λ = (λ1, . . . , λd) be a vector of nonnegative numbers summing to 1 so
that

∑ c
λiPi ∈ Ma, i.e., λ is a feasible solution for (P), and let y ∈ R,

X ∈ L2
T (P) be a feasible solution for (D). Then∑ c

λif i ≤
∑ c

λiEP i

X = E
∑ cλiPi

X ≤ y.

The value in (D) may be written as infX∈AT
supQ∈Ma EQX, and we have

just seen that this quantity dominates ξ(0), the value in (P). In fact, these
two quantities are equal (there is no duality gap), as the following theorem
shows.

Theorem 2 Let λ(0) ∈ Λ(0) be given, and define Q(0) ,
∑ c

λi(0)Pi. Let
π ∈ H2(S) be given so that W 0,ξ(0),π ∈ AT (existence of π is implied by
(4.1)). For all Q ∈Ma and all X ∈ AT , we have

ξ(0) = EQW
0,ξ(0),π
T = EQ(0)W

0,ξ(0),π
T ≤ EQ(0)X. (4.5)

In particular,

ξ(0) = sup
Q∈Ma

inf
X∈AT

EQX = inf
X∈AT

sup
Q∈Ma

EQX = EQ(0)W
0,ξ(0),π
T . (4.6)

Proof: According to Proposition 1, W
0,ξ(0),π
T is a martingale for every

Q ∈Ma, which implies

ξ(0) = EQW
0,ξ(0),π
T = EQ(0)W

0,ξ(0),π
T . (4.7)

For X ∈ AT , we have

EQ(0)X =
∑ c

λi(0)EPi

X ≥
∑ c

λi(0)f i = ξ(0). (4.8)

From (4.7) and (4.8) we obtain (4.5). Then (4.5) implies

inf
X∈AT

sup
Q∈Ma

EQX ≤ sup
Q∈Ma

EQW
0,ξ(0),π
T

= EQ(0)W
0,ξ(0),π
T (4.9)

= inf
X∈AT

EQ(0)X

≤ sup
Q∈Ma

inf
X∈AT

EQX.

The reverse inequality infX∈A(T ) supQ∈Ma EQX ≥ supQ∈Ma infX∈A(T ) EQX
is trivial. Therefore equality holds in (4.9), and combining this with (4.7),
we obtain (4.6). ♦
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Remark 2 The super-replicating price of a lower bounded random variable
X is the infimum of the set of x such that there exists a trading strategy π
satisfying W 0,x,π

T ≥ X almost surely. Here π is required to satisfy∫ T

0

π2
u d[M ]u < ∞,

∫ T

0

|πu| d|A|u < ∞ P-a. s. (4.10)

rather than the stronger condition (2.2), and π must also be such that
W 0,x,π

t ≥ 0 is lower bounded uniformly in (t, ω) ∈ [0, T ] × Ω. Kramkov
[18] shows that the super-replicating price of X is the supremum over all
equivalent martingale measures Q of EQX. Kramkov’s [18] set of equivalent
martingale measures is larger than our Me because [18] does not require
the square-integrability of our Definition 2(i). However, Kramkov [19] shows
that the square integrability restriction of Defintion 2(i) does not affect the
supremum of EQX. Our set Ma may be larger than our set Me, but yields
the same supremum because there exists a measure Qe ∈Me (Assumption
1) and for every Q ∈ Ma and ε ∈ (0, 1), the measure εQe + (1 − ε)Q is in
Me. Consequently, at least for lower bounded random variables X ∈ AT ,
the term supQ∈Ma EQX appearing in (4.6) is their super-replicating price.

Corollary 2 If π ∈ H2(S) satisfies W
0,ξ(0),π
T ∈ AT , then

EPi

W
0,ξ(0),π
T = f i ∀i ∈ I2, (4.11)

EQW
0,ξ(0),π
T = fQ ∀Q ∈Ma ∩ conv{Pi; i ∈ I2}. (4.12)

Proof: For i ∈ I2, there exists Q =
∑ c

λjPj ∈Ma with
∑d

j=1 λjf j = ξ(0)
and λi > 0. We have∑ c

λjf j = ξ(0) = EQW
0,ξ(0),π
T =

∑ c
λjEPj

W
0,ξ(0),π
T ≥

∑ c
λjf j ,

and since λi > 0, we must have EPi

W
0,ξ(0),π
T = f i.

Now suppose Q =
∑ c

λiPi ∈ Ma, where λi ∈ I2 for all i appearing in
this convex combination. We have just established EPi

W
0,ξ(0),π
T = f i for all

i in this convex combination, so

ξ(0) = EQW
0,ξ(0),π
T =

∑ c
λiEPi

W
0,ξ(0),π
T =

∑ c
λif i ≤ fQ.

Recalling the definition (3.2) of X0 = [ξ(0),∞), we see that ξ(0) ≥ fQ.
Equation (4.12) follows. ♦

Corollary 2 implies that if we start at ξ(0), the boundary point of A0 =
[ξ(0),∞), then any wealth random variable W

0,ξ(0),π
T ∈ AT we can attain

at the final time will be on the boundary of AT in the sense that there will
be a binding constraint of the form (4.11) (recall that I2 6= ∅). Indeed, one
can show that W

0,ξ(0),π
t will be on the boundary of At for all t ∈ [0, T ] in

the sense that

EQW
0,ξ(0),π
t = fQ ∀Q ∈Ma

t ∩ conv{Pi|i ∈ I2}.
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5 Pricing contingent claims

In this section we consider a contingent claim C ∈ L2
T (P). An agent who is

short α units of this claim must make payment αC at time T . If 0 ≤ t ≤ T
and X ∈ L2

t (P) is the value of the agent’s portfolio at time t, then the agent
will seek a trading strategy π ∈ H2

t (S) such that

X +
∫ T

t

πu dSu − αC ∈ AT .

The set of random variables X ∈ L2
t (P) for which such a trading strategy

exists will be denoted At(α). In particular, AT (α) consists of those random
variables X ∈ L2

T (P) satisfying

EPi

X ≥ f i + αEPi

C, i = 1, . . . , d.

For 0 ≤ t < T , At(α) is the set of random variables X ∈ L2
t (P) for which

there exists a trading strategy π ∈ H2
t (S) satisfying X+

∫ T

t
πu dSu ∈ AT (α).

Thus the sets At(α) are of the same form as the sets At of Definition 3 with
the floors f i in that definition replaced by f i(α) , f i + αEPi

C. Following
(3.1), for Q ∈ conv{Pi|i = 1, . . . , d} we define

fQ(α) = sup
{∑ c

λif i(α)
∣∣∣ ∑ c

λiPi = Q
}

= fQ(0) + αEQC.

Note that fQ(0) was earlier called simply fQ. Following (3.2) we also define

Xt(α) , {X ∈ L2
t (P)|EQX ≥ fQ(α)∀Q ∈ Ct}.

Theorem 1 has the following corollary.

Corollary 3 For every t ∈ [0, T ], we have Xt(α) = At(α).

The results of Section 4 imply that

A0(α) = X0(α) = [ξ(α),∞),

where

ξ(α) , sup
{∑ c

λif i(α)
∣∣∣ ∑ c

λiPi ∈Ma
}

= sup
{
fQ(α)|Q ∈ C0

}
.

With Λ defined by (4.3), we set

Λ(α) ,
{

λ ∈ Λ
∣∣∣∑ c

λif i = ξ(α)
}

.

An agent who does not hold a position in the contingent claim C needs
initial capital ξ(0) in order to trade to an acceptable position at time T . If
the agent is short C, she will instead need initial capital ξ(1). If she is long
C, she will need initial capital ξ(−1). This leads to the following definitions.
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Definition 4 The seller’s price of the contingent claim C is

p(1) , ξ(1)− ξ(0), (5.1)

and the buyer’s price is

−p(−1) , ξ(0)− ξ(−1). (5.2)

Remark 3 If there is only one equivalent martingale measure Q ∈ Me, the
buyer’s and seller’s price are both EQC. To see this, note first of all that Ma

must be the singleton {Q}. If there were a second measure Q′ in Ma, then
1
2 (Q + Q′) would be a second equivalent martingale measure. According to
Assumption 3, C0 6= ∅, and hence C0 = {Q}. It follows that ξ(α) = fQ(α) =
fQ(0) + αEQC, so p(1) = −p(−1) = EQC.

Remark 4 In the case of multiple equivalent martingale measures, the quan-
tity supQ∈Me EQC (see Remark 2) dominates p(1). Indeed,

ξ(1) = sup
Q∈C0

(
fQ(0) + EQC

)
≤ sup

Q∈C0
fQ(0) + sup

Q∈C0
EQC

= ξ(0) + sup
Q∈C0

EQC

≤ ξ(0) + sup
Q∈Ma

EQC.

Typically C0 is a much smaller set than Ma, so the last inequality is strict,
i.e., p(1) = ξ(1) − ξ(0) is strictly smaller than the super-replicating price.
The next theorem provides tighter bounds on the buyer’s and seller’s prices.

Theorem 3 We have

max
λ∈Λ(0)

∑ c
λiEPi

C ≤ p(1) ≤ min
λ∈Λ(1)

∑ c
λiEPi

C (5.3)

max
λ∈Λ(−1)

∑ c
λiEPi

C ≤ −p(−1) ≤ min
λ∈Λ(0)

∑ c
λiEPi

C. (5.4)

Proof: We prove (5.3); the proof of (5.4) is analogous. For α ∈ R and λ ∈ Λ,
define g(α;λ) ,

∑ c
λif i(α). For each λ, the mapping α 7→ g(α;λ) is linear.

Therefore, ξ(α) = maxλ∈Λ g(α;λ) is convex in α. The subdifferential ∂ξ(α)
is the closed interval [ξ′(α−), ξ′(α+)]. According to [9], Theorem I.III,

ξ′(α−) = min
λ∈Λ(α)

∑ c
λi d

dα
f i(α) = min

λ∈Λ(α)

∑ c
λiEPi

C,

ξ′(α+) = max
λ∈Λ(α)

∑ c
λi d

dα
f i(α) = max

λ∈Λ(α)

∑ c
λiEPi

C.

The inequalities in (5.3) now follow from the convex function property
ξ′(0+) ≤ ξ(1)− ξ(0) ≤ ξ′(1−). ♦
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6 Representation of F i
t

For the construction of trading strategies in the final section, we will need
the following representation of the functionals F i

t defined by (3.3).

Proposition 2 For i = 1, . . . , d, define the finite-variation processes

Y i
u , 〈Zi, S〉u +

∫ u

0

Zi
v− dAv, 0 ≤ u ≤ T. (6.1)

For t ∈ [0, T ] and π ∈ H2
t (S), the process

Zi
u

∫ u

t

πv dSv −
∫ u

t

πv dY i
v , t ≤ u ≤ T, (6.2)

is a P-martingale on [t, T ]. In particular

F i
t (π) = E

[
Zi

T

∫ T

t

πv dSv

]
= E

∫ T

t

πv dY i
v . (6.3)

Proof: We may extend π by defining it to be zero on [0, t), so that the
expression in (6.2) becomes

Zi
u

∫ u

0

πv dSv −
∫ u

0

πv dY i
v , t ≤ u ≤ T. (6.4)

Thus it suffices to prove that the expression in (6.4) is a P-martingale on
[0, T ] for every π ∈ H2(S).

For π ∈ H2(S), the product rule implies

Zi
u(π · S)u =

∫ u

0

Zi
v−πv dMv +

∫ u

0

Zi
v−πv dAv (6.5)

+
∫ u

0

(π · S)v− dZi
v +

∫ u

0

πv d[Zi, S]v.

The first and third terms on the right-hand side are martingales, which we
establish by showing that their maxima have finite expectations. Because
the integrators in these terms are martingales, the following bounds imply
that the integrals are local martingales ([16], p. 45, (2.48)). We can then ap-
ply the dominated convergence theorem to a localization of these processes
to conclude they are martingales. For the first term we have the bound

E sup
0≤u≤T

∣∣∣∣∫ u

0

Zi
v−πv dMv

∣∣∣∣ ≤ K1E

(∫ T

0

(Zi
v−πv)2 d[M ]v

)1/2


≤ K1E

[
(Zi)T

(∫ t

0

π2
v d[M ]v

)1/2
]

≤ K1

(
E
[(

Zi
)2
T

])1/2
(

E
∫ T

0

π2
v d[M ]v

)1/2

,
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which is finite by (2.5) and (2.2). For the third term on the right-hand side
of (6.5), we observe that

E sup
0≤u≤T

∣∣∣∣∫ u

0

(π · S)v− dZi
v

∣∣∣∣ ≤ K1E

(∫ T

0

(π · S)2v− d[Zi]v

)1/2


≤ K1E
[(

π · S
)
T

(
[Zi]T

)1/2
]

≤ K1

(
E
[
(π · S)2T

])1/2 (E[Zi]T
)1/2

,

which is finite by (2.3) and (2.5).
The Kunita-Watanabe inequality implies that because both [Zi] and

[π · S] are integrable, the compensated process [Zi, π · S] − 〈Zi, π · S〉 is a
P-martingale, not just a local martingale. However, [Zi, π ·S]−〈Zi, π ·S〉 =
π ·
(
[Zi, S]− 〈Zi, S〉

)
. We may rewrite (6.5) as

Zi
u

∫ u

0

πv dSv −
∫ u

0

πv dY i
v

=
∫ u

0

Zi
v−πv dMv +

∫ u

0

(π · S)v− dZi
v +

∫ u

0

πv d
(
[Zi, S]v − 〈Zi, S〉v

)
,

and we have shown that all three integrals on the right-hand side are P-
martingales. ♦

7 Example

The primary source of risk in financial markets is market risk, and the next
greatest concern is probably volatility risk. The Standard Portfolio Analysis
of Risk (SPAN) system used by the Chicago Mercantile Exchange [22], for
example, explicitly addresses these two types of risk.

In our setting, all the scenario measures are absolutely continuous with
respect to the objective measure P. As a practical matter, this means that
every scenario which is considered by our risk control method must have
positive probability under P. Thus, in order to capture volatility risk, we
must build a model in which volatility can change under P. This section
describes such a model, found in Fleming & Hernández-Hernández [12] and
Fouque & Tullie [14], and discusses the application of the previous theory
to it.

We specialize (2.1) by assuming that

dSt

St
= µdt + σ(Vt) dBt, (7.1)

where the state process Vt is given by

dVt = ρ(V − Vt) dt + dWt. (7.2)
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Here B and W are independent Brownian motions under the objective mea-
sure P, V ∈ R is a level to which V reverts, the coefficient ρ > 0 controls
the speed of the reversion to this level, µ ∈ R is the mean rate of return of
the risky asset, and the function σ : R → [b, c] transforms the state process
Vt into asset volatility σ(Vt). We assume that 0 < b < c < ∞ and that
v 7→ σ(v) is nondecreasing. Under these conditions, the volatility σ(V ) in-
herits the reversion property of V , reverting to level σ(V ). Boundedness of
σ guarantees S ∈ H2.

7.1 Scenario measures

To model volatility risk, we consider different scenarios corresponding to
different volatility reversion levels. Indeed, we can posit another mean rate
of return µi(t) for the risky asset and another level of reversion V

i
for the

state process. Here µi(t) is a bounded nonrandom function of t. Because the
process

ηi
t ,

µi(t)− µ

σ(Vt)

is bounded, the Doleans-Dade exponential

EB
t (η) , exp

{∫ t

0

ηi
v dBv −

1
2

∫ t

0

η2
v dv

}
is a martingale. Similarly,

EW
t

(
ρ(V

i − V )
)

, exp
{

ρ(V
i − V )Wt −

1
2
ρ2(V

i − V )2t
}

is also a martingale. We define the scenario measure Pi by

dPi

dP
, Zi

T , EB
T (ηi)EW

T

(
(ρ(V

i − V )
)
, (7.3)

under which

Bi
t , −

∫ t

0

ηi
v dv + Bt, W i

t , −ρ(V
i − V )t + Wt

are independent Brownian motions. We may rewrite (7.1), (7.2) so that
under Pi we have the alternate model for asset and state processes

dSt

St
= µi(t) dt + σ(Vt) dBi

t, (7.4)

dVt = ρ(V
i − Vt) dt + dW i

t . (7.5)

We also have

Zi
t , E[Zi

T |Ft] = EB
t (ηi)EW

t

(
(ρ(V

i − V )
)
.

16



We consider this model with at least two scenario measures P1 and P2

corresponding to two levels of reversion V
1

and V
2

and to two nonrandom,
bounded mean-return functions µ1(t) and µ2(t) related by

µ2(t) = −
αµ1(t) exp

(∫ T

t
µ1(v) dv

)
1− α exp

(∫ T

t
µ1(v) dv

) , 0 ≤ t ≤ T, (7.6)

where α ∈ (0, 1) is a constant.

7.2 Verification of assumptions

We must verify Assumptions 1–3. Because ηi is bounded and ρ(V
i − V )

is constant, all moments under P of EB
T (ηi) and EW

T

(
ρ(V

i − V )
)

are finite.
Using Hölder’s inequality, we obtain Assumption 2: Zi

T ∈ L2
T (P), i = 1, 2.

Assumptions 1 and 3 follow from the next proposition.

Proposition 3 The probability measure αP1+(1−α)P2 is in Me and hence
in Ma and C0.

Proof: From (7.4) with i = 1, we see that exp
(
−
∫ t

0
µ1(v) dv

)
St is a

martingale under P1. Therefore,

EP1
[ST |Ft] = St exp

(∫ T

t

µ1(v) dv

)
. (7.7)

Let us define

Zt ,
Z2

t

Z1
t

= EB1

t

(
µ2 − µ1

σ(V )

)
EW 1

t

(
ρ(V

2 − V
1
)
)

= EP1
[

dP2

dP1

∣∣∣∣Ft

]
.

We set

Mt = ZtSt

[
1− α exp

(∫ T

t

µ1(v) dv

)]
,

and use (7.6) to compute

dMt = Mt

(
µ2(t)− µ1(t)

σ(Vt)
+ σ(Vt)

)
dB1

t + Mtρ(V
2 − V

1
) dW 1

t ,

which is a P1-martingale. Therefore,

EαP1+(1−α)P2
[ST |Ft] = αEP1

[ST |Ft] + (1− α)EP2
[ST |Ft]

= αSt exp

(∫ T

t

µ1(v) dv

)
+

1
Zt

EP1
[(1− α)ZT ST |Ft]

= αSt exp

(∫ T

t

µ1(v) dv

)
+

1
Zt

EP1
[MT |Ft]

= St,

where have obtained the second equality from (7.7) and the last from the
P1-martingale property of M . ♦
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7.3 Portfolio representation

We assume now that there are d scenario measures of the type described in
Subsection 7.1. Associated with each scenario measure Pi we have a floor
f i. This determines a set of random variables AT which are acceptable at
the final time (Definition 3). Now let t ∈ [0, T ) be fixed, and let X ∈ At

be given. By the definition of At, there is a trading strategy π on [t, T ]
satisfying

W t,X,π
T , X +

∫ T

t

πv dSv ∈ AT . (7.8)

In this example, we provide a representation for such a trading strategy in
terms of the processes Y i of (6.1). In the case at hand,

Y i
u =

∫ u

0

Zi
θSθ

(
µ + ηi

θσ(Vθ)
)
dθ.

Recall that π ∈ H2
t (S) if and only if π is measurable with respect to the

predictable σ-algebra on [t, T ]×Ω and

E
∫ T

t

π2
uσ2(Vu)S2

u du + E

(∫ T

t

|µπu|Su du

)2
 < ∞.

Because σ2 is bounded away from zero, the finiteness of E
∫ T

t
π2

uσ2(Vu)S2
u du

implies the finiteness of E
[(∫ T

t
|µπu|Su du

)2
]
. We can thus regard H2

t (S)

as the Hilbert space of functions on [t, T ] × Ω, measurable with respect to
the predictable σ-algebra, and square-integrable with respect to the measure
d[S]× dP. The inner product on this space is

〈Ξi, Ξj〉 , E
∫ T

t

Ξi
uΞj

u d[S]u = E
∫ T

t

Ξi
uΞj

uσ(Vu)S2
u du.

For i = 1, . . . , d, we define the predictable process

Xi
u ,

dY i
u

d[S]u
=

Zi
u

(
µ + ηi

uσ(Vu)
)

σ2(Vu)Su
, t ≤ u ≤ T.

Recall from (6.3) that

F i
t (π) = E

∫ T

t

πu dY i
u = 〈π,Xi〉 ∀π ∈ H2

t (S), (7.9)

and from (3.4) that∣∣F i
t (π)

∣∣ ≤ ‖Zi
T ‖L2

T (P) · ‖π‖H2
t (S) ∀π ∈ H2

t (S), i = 1, . . . , d. (7.10)

By the converse of Hölder’s inequality ([11], (6.14), p. 181), the process Xi

must also be in H2
t (S), i = 1, . . . , d. It follows that any linear combination
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of these processes is in H2
t (S). We show that such a linear combination can

serve as a portfolio π ∈ H2
t (S) satisfying W t,X,π

T ∈ AT .
Note that W t,X,π

T ∈ AT is equivalent to

E
∫ T

t

πu dY i
u = F i

t (π) ≥ ai, i = 1, . . . , d, (7.11)

where ai , f i − EPi

X. We define a to be the d-dimensional column vector
a = (a1, . . . , ad)tr. We further define the d× d-matrix A = (Ai,j) by

Ai,j , 〈Xi, Xj〉, ∀i, j = 1, . . . , d.

Proposition 4 Let t ∈ [0, T ] be fixed and let X ∈ At be given. The vector
inequality

Ax ≥ a (7.12)

has a solution x = (x1, . . . , xd)tr. For any such solution x, the process

πu ,
d∑

i=1

xiXi
u, t ≤ u ≤ T, (7.13)

is in H2
t (S) and satisfies F i

t (π) ≥ ai, i = 1, . . . , d, or equivalently, W t,X,π
T ∈

AT .

Proof: The standard Farkas Lemma says that (7.12) has a solution if and
only if the implication

x ≥ 0, xtrA = 0 ⇒ xtra ≤ 0 (7.14)

holds. We verify this implication. Suppose x ≥ 0 and xtrA = 0. Then

E
∫ T

t

(
d∑

i=1

xiXi

)2

d[S]u du = xtrAx = 0.

In other words,
∑d

i=1 xiXi
u = 0 for d[S]-almost every u ∈ [t, T ], almost

surely. It follows from (7.8), (7.10) that

d∑
i=1

xiai ≤
d∑

i=1

xiF i
t (π) = E

d∑
i=1

xi

∫ T

t

πudY i
u ≤ E

∫ T

t

πu

(
d∑

i=1

xiXi
u

)
d[S]u = 0,

and the implication (7.14) is established.
Let x = (x1, . . . , xd)tr be a solution to (7.12) and let π be defined by

(7.13). We compute for i = 1, . . . , d:

F i
t (π) = E

∫ T

t

πu dY i
u = E

∫ T

t

 d∑
j=1

xjXj
u

Xi
u d[S]u =

d∑
j=1

Ai,jxj ≥ ai

by (7.12). ♦
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8 Conclusion

We have posited a finite set of scenario measures and associated floors, and
have defined a random variable to be acceptable if its expectation under each
scenario measure equals or exceeds the corresponding floor. We have exam-
ined the problem of beginning with a certain capital at time zero, or with a
random capital at a later, pre-final time, and trading to a final acceptable
random variable. We have characterized the set of pre-final random vari-
ables which permit such trading. When the pre-final time is time zero, the
set of initial capitals which permit trading to an acceptable final random
variable is a closed half-line. We have characterized the end-point of this
half-line via primal and dual linear programs. We have also introduced the
seller’s (respectively, buyer’s) price for a contingent claim at the initial time
as the change in the initial capital needed in order for an agent to trade to
an acceptable final random variable when the contingent claim is a liability
(respectively, asset) in the agent’s portfolio. We have provided bounds on
these prices. Finally, in a stochastic volatility example we have derived a
representation for trading strategies which achieve acceptability at the final
time.
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