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FINANCIAL EQUILIBRIA IN THE SEMIMARTINGALE SETTING:

COMPLETE MARKETS AND MARKETS WITH WITHDRAWAL

CONSTRAINTS

GORDAN ŽITKOVIĆ

Abstract. We establish existence of stochastic financial equilibria on filtered spaces

more general than the ones generated by finite-dimensional Brownian motions.

These equilibria are expressed in real terms and span complete markets or markets

with withdrawal constraints. We deal with random endowment density streams

which admit jumps and general time-dependent utility functions on which only reg-

ularity assumptions are imposed. As a side-product of the proof of the main result,

we establish a novel characterization of semimartingale functions.

1. Introduction

Existing results and history of the problem. The existence of financial equilibria in

continuous-time financial markets is one of the central problems in financial theory

and mathematical finance. Unlike the problems of utility maximization and asset

pricing where the price dynamics are given, the equilibrium problem is concerned

with the origin of security prices themselves. More precisely, our goal is to construct a

stochastic market with the property that when the price-taking agents act rationally,

supply equals demand. Of course, there are many ways to interpret the previous

sentence, even in the setting of continuous-time stochastic finance - let alone broader

financial theory or economics as a whole. We are, therefore, really talking about a

whole class of problems.

Before delving into the specifics of our formulation, let us briefly touch upon the

history of the problem. Given the amount of research published on the various facets

of the financial equilibrium, we can only mention a tiny fraction of the work leading

directly to the present paper. Many seminal contributions not directly related to our

research are left out. The notion of competitive equilibrium prices as an expression of

the basic idea that the laws of supply and demand determine prices was introduced

by Leon Walras (see [Wal74]) 130 years ago. Rigorous mathematical theory starts

with [AD54]. Continuous-time stochastic models have been investigated by [DH85]
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and [Duf86], among many others. The direct predecessor of this paper is the work of

Karatzas, Lakner, Lehoczky and Shreve in [KLLS91], [KLS90] and [KLS91]. A con-

venient exposition of the results of these papers can be found in Chapter 4. of [KS98].

Recently, existence of an equilibrium functional when utilities exhibit intertemporal

substitution properties has been established in [BR01].

Our contributions. The motive leading our research was to investigate how the relax-

ation of the assumption that the filtration is generated by a Brownian motion affects

the existence theory for the financial equilibrium, and how stringent conditions on

the primitives (utilities, endowments, filtration) one needs to assume in this case.

We were particularly keen to impose minimal conditions on utility functions and to

allow endowment density processes to admit jumps. As we are primarily concerned

with the existence of an equilibrium market, we stress that we have not pursued in

any detail the questions of uniqueness or the financial consequences of our setup. We

leave this interesting line of research for the future, and direct the reader to [Dan93]

and [DP92]. In the following paragraphs we describe several directions in which this

work extends existing theory.

First, we start from a right-continuous and complete filtration which we do not

require to be generated by a Brownian motion. Consequently, we look for the price

processes in the set of all finite-dimensional semimartingales, thus allowing for the

equilibrium prices with jumps. The conditions we impose on the filtration are di-

rectly related with the possibility of obtaining a finite number of assets spanning all

uncertainty. In this way, virtually any complete arbitrage-free market known in the

financial literature can arise as an equilibrium in our setting.

Second, we introduce a simple constraint in our model by limiting the amounts the

agents can withdraw from the trading account in order to finance a consumption plan.

This constraint is phrased in terms of a withdrawal-cap process, which we allow to

take infinite values - effectively including the possibility of a fully complete market,

with no withdrawal cap whatsoever.

Third, we relax regularity requirements imposed on the utility functions. While

these are still stronger than the typical conditions found in the utility-maximization

literature, we show that one can develop the theory with assumptions less stringent

than, e.g. those in Chapter 4., [KS98]. We also deal with utility functionals which are

not necessarily Mackey-continuous due to unboundedness of the utility functions in

the neighborhood of zero. Moreover, there is no need for fine growth conditions such

as asymptotic elasticity (see [KS99]) in our setting. A principal feature of our model

- jumps in the endowment density processes - warrants the use and development of
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tools from the general theory of stochastic processes. It is in this spirit that we pro-

vide a novel characterization of semimartingale functions (the functions of both time

and space arguments, that yield semimartingales when applied to semimartingales).

Finally, a result due to Mémin and Shiryaev ([MS79]) is used as the most important

ingredient in establishing a sufficient condition on a positive semimartingale for the

local martingale part in its multiplicative decomposition to be a true martingale.

Another feature in which this paper differs from the classical work (e.g. [KLS90],

[KLLS91]) is in that we do not introduce the representative agent’s utility function

(which is impossible due to withdrawal constraints). Instead we use Negishi’s ap-

proach (see [Neg60]) in the version described in [MCZ91]. This way the proof the

existence of a financial equilibrium is divided into two steps. In the first step we

establish the existence of an equilibrium pricing functional (an abstract equilibrium).

Next, we implement this pricing functional through a stochastic market consisting of

a finite number of semimartingale-modeled assets.

Organization of the paper and some remarks on the notation. After the Introduction,

in Section 2 we describe the model, state the assumptions on its ingredients and pose

the central problem of this work. Section 3 introduces an abstract setup and estab-

lishes the existence of a financial equilibrium there. In Section 4, we transform the

abstract equilibrium into a stochastic equilibrium as defined in Section 2. Finally, in

Appendix A we develop the semimartingale results used in Section 4: characterization

of semimartingale functions, and regularity of multiplicative decompositions. Apart

from being indispensable for the main result of our work, we hope they will be of

independent interest, as well.

Throughout this paper, all stochastic processes will be defined on the time horizon

[0, T ], where T is a positive constant. To relieve the notation, the stochastic process

(Xt)t∈[0,T ] will be simply denoted by X , and its left-limit process (Xt−)t∈[0,T ], by X−.

Unless specified otherwise, (in)equalities between càdlàg processes will be understood

pointwise, modulo indistinguishability, i.e., X ≤ Y will mean Xt ≤ Yt, for all t ∈

[0, T ], a.s. Finally, we use both notations “X(t)” and “Xt” interchangeably, the

choice depending on typographical circumstances.

2. The Model

The information structure. We consider a stochastic economy on a finite time horizon

[0, T ]. The uncertainty reveals itself gradually and is modeled by a right-continuous

and complete filtration (Ft)t∈[0,T ] on a probability space (Ω,F ,P), where we assume

that F0 = {∅,Ω} mod P and F = FT . In order for the finite-dimensional stochastic
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process spanning all the uncertainty to exist, the size of the filtration (Ft)t∈[0,T ] must

be restricted:

Definition 2.1. A filtered probability space (Ω,F , (Ft)t∈[0,T ],P), with (Ft)t∈[0,T ] sat-

isfying the usual conditions, is said to have the finite representation property if

for any probability Q, equivalent to P, there exist a finite number n of Q-martingales

Y 1, . . . , Y n such that

(1) Y i and Y j are orthogonal for i 6= j, i.e., the quadratic covariation [Y i, Y j]t
vanishes for all t ∈ [0, T ], a.s.

(2) for every bounded Q-martingale M there exists an n-dimensional predictable,

(Y 1, . . . , Y n)-integrable process (H1, . . . , Hn) such that

Mt = EQ[MT ] +

n
∑

i=1

∫ t

0

H i
u dY

i
u , for all t ∈ [0, T ], a.s.

The smallest such number n is called themartingale multiplicity of (Ω,F , (Ft)t∈[0,T ],P).

Example 2.2. The filtered probability spaces with finite representation property in-

clude n-dimensional Brownian filtration, filtrations generated by Poisson processes,

filtrations generated by Dritschel-Protter semimartingales (see [PD99]), or combina-

tions of the above.

Remark 2.3. The notion of martingale multiplicity and the related notion of the

spanning number of a filtration have been introduced by Duffie in [Duf86]. Definition

2.1 differs from Duffie’s in that we explicitly require the existence of martingales

(Y 1, . . . , Y n), for each probability measure Q ∼ P. In [Duf85], Duffie proves that if

we only considered probability measures with dQ

dP
∈ L∞ in Definition 2.1, it would be

enough to postulate the existence of the processes (Y 1, . . . , Y n) under P. It is an open

question whether one can achieve such a simplification under less stringent conditions

on Q.

Assumption 2.4 (Finite representation property). The filtered probability space

(Ω,F , (Ft)t∈[0,T ],P) has the finite representation property.

Remark 2.5. The finite representation property is used to ensure that the existence

of a stochastic implementation of an abstract financial equilibrium with only a finite

number of assets. Without this property one could still build a financial equilibrium,

but the number of assets needed to span all the uncertainty might be infinite.

Random endowments. There are d ∈ N agents in our economy each of whom is re-

ceiving a random endowment - a bounded and strictly positive income stream,

modeled by a semimartingale ei. We interpret the random variable
∫ t

0
eiu du as the



FINANCIAL EQUILIBRIA 5

total income received by agent i on the interval [0, t], for t < T . At time t = T there

is a lump endowment of ei(T ). To simplify the notation, we introduce the measure κ

on [0, T ] by dκt = dt on [0, T ) and κ({T}) = 1. The cumulative random endowment

on [0, t] can now be represented as
∫ t

0
eit dκt, for all t ∈ [0, T ].

Remark 2.6. The results in this paper can be extended to the case where κ is an

optional random measure with κ({T}) > 0, a.s. We do not pursue such an extension,

as it would not add to the content in any interesting way.

In order for certain stochastic exponentials to be uniformly integrable martingales,

we need to impose a regularity requirement on ei, i = 1, . . . , d, described in detail in

Appendix A.

Definition 2.7. For a special semimartingale X , let N (X) = 〈M,M〉T , where X =

M + A is a decomposition of X into a local martingale M and a predictable process

A of finite variation, and 〈M,M〉 denotes the compensator of the quadratic variation

[M,M ].

Remark 2.8. The random variable N (X) from Definition 2.7 will usually be used

in requirements of the form N (X) ∈ L∞. Existence of the compensator 〈M,M〉

and the special semimartingale property of X are tacitely assumed as parts of such

requirements.

The full strength of the following assumption on random endowment processes ei,

i = 1, . . . , d, is needed for the existence of a stochastic equilibrium (Theorem 4.6),

and only part 1. for the abstract equilibrium (Theorem 3.7).

Assumption 2.9 (Regularity of random endowments). For i = 1, . . . , d,

(1) ei is an optional process, with ε ≤ ei ≤ 1/ε, for some ε > 0,

(2) ei is a (special) semimartingale and N (ei) ∈ L∞.

Example 2.10. Processes ei satisfying conditions of Assumption 2.9 include linear

combinations of processes of the form Yt = h(t, Xt) where 1/ε ≥ h ≥ ε > 0 is a

C1,2-function, with hx, and hxx uniformly bounded, and X is a diffusion process with

a bounded diffusion coefficient, or a Lévy process whose jump measure ν satisfies
∫

R
x2 ν(dx) < ∞. Homogeneous and inhomogeneous Poisson processes and non-

exploding continuous-time Markov chains are examples of allowable processes X .

Utility functions. Apart from being characterized by the random endowment process,

each agent represents her attitude towards risk by a von Neumann-Morgenstern utility

function U i. Before we list the exact regularity assumptions placed on U i, we need

the following definition:
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Definition 2.11. For a continuously differentiable function f : [x1, x2] → R we define

the total convexity norm ||f || = ||f ||[x1,x2]
by

||f ||[x1,x2]
= |f(x1)|+ |f ′(x1)|+ TV (f ′; [x1, x2]),

where TV (f ′; [x1, x2]) denotes the total variation of the derivative f ′ of f on [x1, x2].

A function f : [0, T ]× [x1, x2] → R, continuously differentiable in the second variable,

is said to be convexity-Lipschitz if there exists a constant C such that, for all

t, s ∈ [0, T ], we have ||f(t, ·)− f(s, ·)|| ≤ C |t− s|. A function f : [0, T ] × I → R

(where I is a subset of R) is called locally convexity-Lipschitz if its restriction

f |[0,T ]×[x1,x2] is convexity-Lipschitz, for any compact interval [x1, x2].

Remark 2.12. A sufficient condition for a function f : [0, T ]× I → R to be (locally)

convexity-Lipschitz is that f(t, ·) ∈ C2(I), for all t ∈ [0, T ], and fxx(x, ·) is Lipschitz,
(locally) uniformly in x.

Assumption 2.13 (Regularity of utilities). For each i = 1, . . . , d, the utility function

U i : [0, T ]× (0,∞) → R has the following properties

(1) U i(t, ·) is strictly concave, continuously differentiable and strictly increasing

for each t ∈ [0, T ]. Moreover, the function U(·, x), is bounded for any x ∈

(0,∞).

(2) The inverse-marginal-utility functions I i : [0, T ]× (0,∞) → (0,∞), I i(t, y) =

Ux(t, ·)
−1(t, y) are locally convexity-Lipschitz and satisfy

lim
y→∞

I i(t, y) = 0, lim
y→0

I i(t, y) = ∞, uniformly in t ∈ [0, T ]. (2.1)

Example 2.14. The most important example of a utility function satisfying As-

sumption 2.13 is so-called discounted utility U(t, x) = exp(−βt)Û(x), where β > 0 is

the impatience factor, and Û ∈ C2(R+) satisfies Û
′ > 0 and Û ′′ is a strictly negative

function of finite variation on compacts. A sufficient (but not necessary) condition

for this is Û ∈ C3(R+). Power utilities Û(x) = xp/p, for p ∈ (−∞, 1) \ {0} and

Û(x) = log(x) belong to this class.

Remark 2.15. Unlike the problems of utility maximization (see [KS99], e.g.) where the

utility function is only required to be strictly concave and continuously differentiable,

existence of financial equilibria requires a higher degree of smoothness (compare to

Chapter 4., [KS98], where the existence of three continuous derivatives is postulated

in the Brownian setting).

Total utility accrued by an agent whose consumption equals ct(ω) at time t ∈ [0, T ]

in the state of the world ω ∈ Ω, will be modeled as the aggregate of instantaneous

utilities U1(t, ct(ω)) in an additive way. More precisely, for each agent i = 1, . . . , d, we
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define the utility functional Ui, taking values in [−∞,∞]. Its action on an optional

process c is given by Ui(c) , E[
∫ T

0
U i(t, c(t)) dκt] when E[

∫ T

0
min(0, U i(t, c(t))) dκt] >

−∞ and Ui(c) = −∞, otherwise.

Remark 2.16. Due to the fact that the final time-point t = T plays a special role in

the definition of the endowment processes ei, one would like to be able to redefine

the agent’s utility quite freely there. Utility functions with virtually no continuity

requirements at t = T are indeed possible to include in our framework, but we decided

not to go through with this in order to keep the exposition as simple as possible. It

will suffice to note that most of the restrictions involving the time variable placed on

the utility functions in Assumption 2.13 are there to ensure that the pricing processes

obtained in Theorem 3.7 are semimartingales and not merely optional processes. All

of them superfluous at t = T , since the semimartingale property of a process (Xt)t∈[0,T ]

is preserved if we replace XT by another FT -measurable random variable.

Investment and consumption. The basic premise of equilibrium analysis is that agents

engage in trade with each other in order to improve their utilities. To facilitate this ex-

change, a stock market consisting of a finite number of risky assets S, and one riskless

asset B is to be set up. In order to have a meaningful mathematical theory, we shall

require these processes to be semimartingales with respect to (Ω,F , (Ft)t∈[0,T ],P).

Moreover, both the riskless asset B and its left-limit process B− will be required to

be strictly positive càdlàg predictable processes of finite variation.

An agent trades in the market by dynamically readjusting the portion of her wealth

kept in various risky, or the riskless asset. This is achieved by a choice of a portfolio

process H (in an adequate admissibility class to be specified shortly) with the same

number of components as S. At the same time, the agent will accrue utility by

choosing the consumption rate according to an optional consumption process c. The

components of the process H stand for the number of shares of each risky asset held

in the portfolio. The trading is financed by borrowing from (or depositing in) the

riskless asset. With that in mind, the equation governing the dynamics of the wealth

XH,c,e of an agent becomes

dXH,c,e
t = Ht dSt +

(XH,c,e
t− −HtSt−)

Bt−

dBt − c(t) dκt + e(t) dκt. (2.2)

We assume that the agent has no initial wealth, i.e., XH,c,e
0 = 0 (this assumption is in

place only to simplify exposition). The net effect of market involvement of the agent

is a redistribution of wealth across times and states of the world. The income stream

e (which would have been the only possibility without the market) gets swapped for

another stream - the consumption process c.
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There are, invariably, exogenous factors which limit the scope of the market ac-

tivity. In this paper we deal with one of the simplest such limitations - withdrawal

constraints. After having traded for the day (with the net gain of Ht dSt + (XH,c,e
t− −

HtSt−)/Bt− dBt), and having received the endowment et dκt, the agent decides to

consume ct dκt. If this amount is too large, it is likely to be unavailable for with-

drawal from the trading account on a short notice. Therefore, a cap of Γi is placed

on the amount agent i can consume at time t. We assume that Γi, i = 1, . . . , d are

(0,∞]-valued càdlàg adapted process satisfying Γi > ei. We impose no withdrawal

restrictions for t = T , effectively requiring Γi
T = ∞ a.s. Moreover, an assumption

analogous to Assumption 2.9 is placed on Γi:

Assumption 2.17. For each C > 0, the stochastic process min(Γi, C) is a semi-

martingale satisfying N (min(Γi, C)) ∈ L∞.

In addition to an abstract, exogenously given withdrawal-cap processes, in the

following example we describe several other possibilities.

Example 2.18. In all of the following examples, we set Γi
T = ∞:

(1) Complete markets: Γi
t = ∞, t ∈ [0, T ].

(2) Proportional constraints: For a constant γ > 1, Γi
t = γeit, t ∈ [0, T ).

(3) Constant overdraft limit: for δ > 0 we set Γi
t = eit + δ, t ∈ [0, T ).

Market Equilibrium. Before giving a rigorous definition of an equilibrium market, we

introduce the notion of affordability for a consumption process c. Here we assume that

the market structure (in the form of the withdrawal-cap process Γ, a finite-dimensional

semimartingale S (risky assets), and a positive predictable càdlàg process B of finite

variation (riskless asset)) and the random endowment process e are given.

Definition 2.19. An (S,B, e,Γ)-affordable consumption-investment strategy

is a pair (H, c) of an S-integrable predictable portfolio process H , and an optional

consumption process c ≥ 0 such that

(1) There exists a ∈ R such that a+
∫ t

0
Hu dSu ≥ 0, for all t ∈ [0, T ], a.s.

(2) The wealth process (Xt)t∈[0,T ], as defined in (2.2), satisfies XT ≥ 0, a.s.

(3) The consumption process c satisfies ct ≤ Γt for all t ∈ [0, T ], a.s.

Definition 2.20. A pair (S,B) of a finite-dimensional semimartingale S and a pos-

itive predictable càdlàg process B of finite variation is said to form an equilib-

rium market if for each agent i = 1, . . . , d here exists an (S,B, ei,Γi)-affordable

consumption-investment strategy (H i, ci) satisfying the following two conditions:

(1)
∑

i c
i
t =

∑

i e
i
t and

∑

i H
i
t = 0, for all t ∈ [0, T ], a.s.
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(2) For each i, ci maximizes the utility functional Ui(·) over all (S,B, ei,Γi)-

affordable consumption-investment strategies (H, c).

3. Existence of an abstract equilibrium

In this section we establish the existence of an abstract version of a market equi-

librium. The notion of an abstract equilibrium encapsulates the tenet that markets

in equilibrium should clear when all agents act rationally. The full-fledged stochastic

market has been abstracted away in favor of a pricing functional Q. Q will be an

element of the topological dual (L∞)∗ of the consumption space L∞, so that the action

〈Q, c〉 of Q onto a consumption process c has the natural interpretation of the price

of the consumption stream c. Our setup allows for utility functions unbounded in

the neighborhood of x = 0 (in order to be able to deal with the important examples

from financial theory). Even though these utilities follow the philosophy of the von

Neumann - Morgenstern theory, they are not von Neumann - Morgenstern utilities

in the sense of [Bew72]. In fact, the corresponding utility functionals are not neces-

sarily Mackey-continuous and thus the abstract theory pioneered by Truman Bewley

and others does not apply directly to our setting. The structure of our proof of the

existence of an abstract equilibrium follows the skeleton laid out in [MCZ91]. For

that reason we focus on the substantially novel parts of the proof and only outline

the rest. In particular, we present a detailed proof of closedness of the set of utility

vectors in Lemma 3.3, but merely refer to the corresponding parts of [MCZ91] for

the results whose derivation is a more-or-less straightforward modification of existing

results.

Functional-analytic setup. In what follows, L∞ will denote the Banach space of (κ⊗

P)-essentially bounded processes, measurable with respect to the σ-algebra O of

(Ft)t∈[0,T ]-optional sets. L∞
+ will denote the positive orthant of L∞, i.e., the set

of all (κ⊗ P)-a.e. nonnegative elements in L∞. All (Ft)t∈[0,T ]-optional processes will

be identified with the corresponding O-measurable random variables without explicit

mention, and the equalities and inequalities will always be understood in (κ⊗P)-a.e.

sense.

The set of all bounded consumption processes c satisfying the consumption con-

straints introduced via cap processes Γi, will be denoted byAi, i.e., Ai =
{

c ∈ L∞
+ : c ≤ Γi

}

.

Also, defineA = {(ci)i=1,...,d : ci ∈ Ai}, and its subsetAf consisting of only those allo-

cations which can be produced by redistributing the aggregate endowment e =
∑

i e
i,

i.e., Af = {(ci)i=1,...,d ∈ A :
∑

i c
i = e}
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The topological dual (L∞)∗ of L∞ can be identified with the set of all finitely-

additive measures Q on the σ-algebra O, weakly-absolutely continuous with respect

to κ⊗ P, i.e. for A ∈ O, Q[A] = 0 whenever (κ⊗ P)[A] = 0.

Remark 3.1. We will consider the set of finitely-additive probabilities as a subset

of (L∞)∗, supplied with the weak * topology σ((L∞)∗,L∞). It is a consequence of

Alaoglu’s theorem that any collection of finitely-additive probabilities is relatively

σ((L∞)∗,L∞)-compact. Furthermore, the closedness of the set of finitely-additive

probabilities (in the space of all finite-additive measures, and w.r.t the σ((L∞)∗,L∞)-

topology) implies that the cluster-points of nets of finitely-additive probabilities are

finitely-additive probabilities themselves. In the sequel, weak * topology will always

refer to the σ((L∞)∗,L∞) topology of the pair ((L∞)∗,L∞).

We can now define the concept of an abstract equilibrium. Instead of a semimartin-

gale price process, an abstract equilibrium requires the existence of a finitely-additive

probability Q ∈ (L∞)∗ which takes the role of a pricing functional acting directly on

consumption processes. Given such a finitely-additive probability Q, the budget set

Bi(Q) of agent i is defined by Bi(Q) =
{

c ∈ L∞
+ : c ∈ Ai and 〈Q, c〉 ≤ 〈Q, ei〉

}

.

Definition 3.2. A pair (Q, (ci)i=1,...,d) of a finitely-additive probability Q and an

allocation (ci)i=1,...,d ∈ A is called an abstract equilibrium if

(1)
∑

i c
i =

∑

i e
i, i.e., (ci)i=1,...,d ∈ Af .

(2) For any i = 1, . . . , d, ci ∈ Bi(Q) and Ui(ci) ≥ Ui(c) for all c ∈ Bi(Q).

Existence of an abstract equilibrium. To simplify notation in some proofs and state-

ments we assume that the utility functionals Ui are normalized so that Ui(ei) = 0 for

all i = 1, . . . , d.

We start by introducing Uf - the set of all d-tuples of utilities which can be achieved

by different allocations (ci)i=1,...,d ∈ Af , i.e.,

Uf =
{(

U1(c1), . . . ,Ud(cd)
)

: (ci)i=1,...,d ∈ Af
}

, (3.1)

and Uf
− = Uf − [0,∞)d - the set of all vectors in Rd dominated by some element in

Uf . The elements in Uf
− will be called utility vectors. Our first lemma identifies

several properties of Uf
−, the most important of which is closedness.

Lemma 3.3. The set Uf
− is non-empty, convex and closed.

Proof. Uf
− is obviously non-empty, and its convexity follows easily from convexity of

Af . It remains to show that it is closed. Let {un}n∈N, un = (u1
n, u

2
n, . . . , u

d
n), be a

sequence in Uf
− converging to u = (u1, u2, . . . , ud) ∈ Rd. By the definition of the set

Uf
−, there exist two sequences cn = (c1n, c

2
n, . . . c

d
n) ∈ Af and rn = (r1n, . . . , r

d
n) ∈ Rd

+
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such that Ui(cin) = ui
n+ rin. Since u

i
n ≤ Ui(cin) ≤ Ui(e) < ∞, we can assume - passing

to a subsequence if necessary - that there exists a vector û = (û1, . . . , ûd) such that

Ui(cin) → ûi ≥ ui.

For any i = 1 . . . d, the sequence {cin}n∈N is bounded in L∞, and therefore also in

L1(κ ⊗ P). By a simple extension of the classical Komlos’ theorem (see [Sch86]) to

the case of Rd-valued random variables, there exists an infinite array of nonnegative

weights (αn
k)

n∈N
k=n,...,kn

and a d-tuple (ci)i=1,...,d of nonnegative optional processes with

the following properties:
∑kn

k=n α
n
k = 1 and c̃in =

∑kn
k=n α

n
kc

i
k → ci, (κ ⊗ P)-a.e.

Consequently,
∑

i c
i = e and ci ≤ Γi, so that (ci)i=1,...,d ∈ Af .

To show that u ∈ Uf
−, we use concavity and right-continuity of the utility functions

and the Fatou Lemma (the use of which is justified by the fact that c̃in ≤ e, for all i

and all n ∈ N) in the following chain of inequalities:

Ui(ci) = Ui(lim
n

c̃in) ≥ lim
n

Ui(c̃in) ≥ lim
n

kn
∑

k=n

αn
kU

i(cik) = lim
n

Ui(cin) = ûi ≥ ui,

�

The next task is to establish the existence of supporting measures for weakly optimal

utility vectors . We start with definitions of these two concepts.

Definition 3.4. A finitely-additive probability Q is said to support a vector u =

(u1, . . . , ud) ∈ Rd if for any allocation c = (ci)i=1,...,d ∈ A with the property that

Ui(ci) ≥ ui for all i = 1, . . . , d, we have 〈Q,
∑

i c
i〉 ≥ 〈Q,

∑

i e
i〉. The set of all

finitely-additive probability measures supporting a vector u ∈ Rd is denoted by P (u).

Definition 3.5. A vector u = (u1, . . . , ud) in Uf
− is said to be weakly optimal if there

is no allocation (ci)i=1,...,d ∈ Af with the property that Ui(ci) > ui for all i = 1, . . . , d.

Lemma 3.6 (Second Fundamental Theorem of Welfare Economics). For a weakly

optimal utility vector u ∈ Uf
−, the set P (u) of finitely-additive probabilities supporting

u is non-empty, convex and weak * compact

Proof. The proof relies on a well-know separating-hyperplane-type argument. See

[MCZ91], Section 8., pp. 1859-1860 for more details. �

Having established the closedness and convexity of the set Uf
− in Lemma 3.3, and

the existence of supporting functionals for weakly optimal utility vectors in Lemma

3.6, it suffices to use the proof of Theorem 7.1, p. 1856 in [MCZ91] to establish the

following abstract existence theorem:

Theorem 3.7. Under Assumptions 2.9.1, 2.13.1 and 2.13.2, there exists an abstract

equilibrium (Q, (ci)i=1,...,d).
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4. From abstract to stochastic equilibria

Our next task is to show that the abstract equilibrium obtained in the previous

section can be implemented as a stochastic equilibrium. We first note that the equi-

librium functional Q must be countably-additive and equivalent to κ ⊗ P. We omit

the proof as it follows the argument from Theorem 8.2, p. 1863 in [MCZ91], using

the fact that Γi > ei and Γi
T = ∞ for all i = 1, . . . , d.

Lemma 4.1. Let (Q, (ci)i=1,...,d) be an abstract equilibrium. Then Q is countably

additive and equivalent to κ⊗ P.

In Lemma 4.2 we use convex duality to describe the solutions of agents’ utility-

maximization problems in an equilibrium:

Lemma 4.2. Suppose that (Q, (ci)i=1,...,d) is an abstract equilibrium. Then there exist

constants λi > 0, i = 1, . . . , d, such that the consumption processes ci, i = 1, . . . , d are

of the form

cit = min(Γi
t, I

i(t, λiQt)), (4.1)

where Q = (Qt)t∈[0,T ] is the optional version of the Radon-Nikodym derivative of Q

with respect to κ⊗ P.

Proof. We prove the lemma for i = 1. Let N(c1) be the set of all c ∈ L∞
+ such that c ≤

min(Γ1, ||c1||
L∞). N(c1) is a σ(L∞,L1)-compact subset in L∞

+ , and by Komlos’ Lemma

the restriction of U1 to N(c1) is σ(L∞,L1)-upper-semicontinuous and concave. By

Lemma 4.1, the finitely-additive measure Q is countably-additive so the Lagrangean

function L : N(c1)× [0,∞) → [−∞,∞), L(c, λ) = U1(c) − λ〈Q, c − e1〉 satisfies the

conditions of the Minimax theorem (see [Sio58]).We know that the maximizer c1 of

the functional U1 over B1(Q) trivially satisfies c1 ≤ ||c1||L∞ , so

U1(c1) = sup
c∈B1(Q)∩N(c1)

U1(c) = sup
c∈N(c1)

inf
λ≥0

L(c, λ) = inf
λ≥0

sup
c∈N(c1)

L(c, λ)

= inf
λ≥0

(

λ〈Q, e1〉+ E

∫ T

0

V (t, λQt; m
1
t ) dκt

)

,

where m1
t = min(Γ1

t , ||c
1||L∞), and the function V : [0, T ] × [0,∞) × (0,∞) → R is

given by

V (t, λ; ξ) , sup
x∈[0,ξ)

(U1(t, x)− xλ) =

{

V (t, λ; ∞), λ > U1
x(t, ξ),

U1(t, ξ)− λξ, λ ≤ U1
x(t, ξ).

V is convex and nonincreasing in λ, and nondecreasing in ξ. The function v : [0,∞) →

[−∞,∞], where v(λ) = λ〈Q, e1〉 + E
∫ T

0
V (t, λQt; m

1
t ) dκt, is convex and proper,
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since infλ≥0 v(λ) = U1(c1) ∈ (−∞,∞). Furthermore, Assumption 2.13.1 implies the

inequality V (t, λ; m1
t ) ≤ U1(t, ||c1||L∞) and the existence of a constant D > 0 such

that U1(c1) ≤ v(λ) ≤ λ〈Q, e1〉+D, for all λ > 0.

Assumption 2.13.2 ensures the existence of a constant C > ||c1||L∞ such that

I1(t, C) < 1
2
〈Q, e1〉 for all t ∈ [0, T ]. Then, for all ξ, λ, λ0 > 0 with the property

that λ > λ0 > max(C,U1
x(t, ξ)), we have

V (t, λ; ξ) ≥ V (t, λ0; ξ) + (λ− λ0)Vλ(t, λ0; ξ)

= V (t, λ0;∞)− (λ− λ0)I
1(t, λ0) ≥ V (t, λ0;∞)−

1

2
〈Q, e1〉(λ− λ0).

Therefore, if we let L = limλ→∞

(

v(λ)
λ

− 〈Q, e1〉
)

∈ [−∞,∞], we have

L = lim
λ→∞

1

λ
E

∫ T

0

V (t, λQt;m
1
t )dκt ≥ lim

λ→∞

1

λ
E

∫ T

0

V (t, λQt;m
1
t )1

n

Qt>
C
λ0

odκt

+ lim
λ→∞

1

λ
E

∫ T

0

V (t, λQt;m
1
t )1

n

Qt≤
C
λ0

odκt

≥ lim
λ→∞

(1

λ
E

∫ T

0

V (t, λ0Qt; m
1
t )1

n

Qt>
C
λ0

odκt −
1

2λ
〈Q, e1〉(λ− λ0)

)

+ lim
λ→∞

1

λ
E

∫ T

0

V (t, λQt;m
1
t )1

n

Qt≤
C
λ0

odκt

≥ −
1

2
〈Q, e1〉+ lim

λ→∞

1

λ
E

∫ T

0

V (t, λQt;m
1
t )1

n

Qt≤
C
λ0

odκt ≥ −
1

2
〈Q, e1〉.

Hence, limλ→∞ v(λ) = ∞ and there exists a constant λ1 ∈ [0,∞) such that v(λ1) =

U1(c1), i.e.,

E

∫ T

0

U1(t, c1(t)) dκt = E

∫ T

0

λ1Qte
1
t dκt + E

∫ T

0

V (t, λ1Qt; m
1
t ) dκt

≥ E

∫ T

0

λ1Qtc
1
t dκt + E

∫ T

0

V (t, λ1Qt; m
1
t ) dκt.

On the other hand, U1(t, x) ≤ λ1Qtx+V (t, λ1Qt;m
1
t ) for all t ∈ [0, T ] and x ∈ [0, m1

t ]

(with equality only for x = min(m1
t , I

1(t, λ1Qt))), so c1 must be of the form (4.1).

To rule out the possibility λ1 = 0, note that it would force c1 = Γ1 and violate the

budget constraint since Γ1 > e1. �

Proposition 4.3. The process Q has a modification which is a semimartingale, and

there exists a constant ε > 0 such that ε ≤ Q ≤ 1/ε.
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Proof. By Lemma 4.2 there exists constants λi > 0 such that et =
∑

i c
i
t =

∑

imin(Γi
t, I

i(t, λiQt)),

κ ⊗ P-a.s. Since (κ ⊗ P)[
∑

i Γ
i > e] = 1, we have et = minb∈B

(
∑

i biI
i(t, λiQt) +

∑

i(1− bi)Γ
i
t

)

,where B = {0, 1}d \ {0, . . . , 0}.

For b ∈ B, the function Ib, defined by Ib(t, y) =
∑

i biI
i(t, λiy), is strictly de-

creasing in its second argument and shares the properties in Assumption 2.13 with

each I i. Therefore, there exists a function Jb : [0, T ] × (0,∞) → (0,∞) such that

Ib(t, Jb(t, x))) = x, for all (t, x) ∈ [0, T ]× (0,∞). Thus, with Γb

t =
∑

i(1− bi)Γ
i
t, we

have

et ≥ x ⇔ Ib(t, Qt) + Γb

t ≥ x, ∀b ∈ B ⇔ Qt ≤ Jb(t, x− Γb

t ), ∀b ∈ B,

with J(t, x−Γb

t ) = ∞ for x ≤ Γb

t . Consequently, Qt = minb∈B Jb(t, et−Γb

t ). Knowing

that the semimartingale property is preserved under maximization, it will be enough

to prove that for each b ∈ B, Jb is a semimartingale function (see Definition A.1).

By Inada conditions (2.1) - holding uniformly in t ∈ [0, T ] - Ib maps compact sets of

the form [0, T ]× [y1, y2] into compact intervals. The function Ib is locally convexity-

Lipschitz, so the conclusion that Q is a semimartingale follows from Proposition A.6.

To show boundedness, we first set b1 = (1, . . . , 1) to conclude that Qt ≤ Jb1(t, et−

Γb1

t ) = Jb1(t, et) ∈ L∞. On the other hand, Qt = minb∈B Jb(t, et−Γb

t ) ≥ minb∈B Jb(t, et)

- a positive quantity, uniformly bounded from below. Therefore, the semimartingale

Qt is positive and uniformly bounded from above and away from zero.

�

Proposition 4.4. The process Q admits a multiplicative decomposition Q = Q̂β

where Q̂ is a strictly positive uniformly integrable martingale, and β is a strictly

positive càdlàg predictable process of finite variation.

Proof. By the representation Qt = minb∈B Jb(t, et−Γb

t ), and boundedness of Q from

above, there exists a constant C > 0 such that Qt = minb∈B Jb(t,max(C, et − Γb

t )).

Propositions A.5, A.7 and A.8 complete the proof. �

Construction of the equilibrium market. Thanks to Proposition 4.4, there exists a

measure Q̂ (with dQ̂

dP
= Q̂T

E[Q̂T ]
) equivalent to P such that

Qt = E[
dQ̂

dP
|Ft]βt, and 〈Q, c〉 = E

∫ T

0

Qucu dκu = EQ̂

∫ T

0

cuβu dκu. (4.2)

In words, the action of the pricing functional Q on a consumption stream c can be

represented as a Q̂-expectation of a discounted version c(u)βu of c.

Let n ∈ N be the martingale multiplicity of the filtration (Ft)t∈[0,T ] under Q̂, and

let (Y1, . . . , Yn) be an n-dimensional positive Q̂-martingale described in Definition 2.1.
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Define the riskless asset B and the stock price process S = (S1, . . . , Sn) as follows

B(t) = 1/β(t), Sj(t) = B(t)Yj(t), t ∈ [0, T ], j = 1, . . . , n. (4.3)

Lemma 4.5. The pair (S,B), defined in (4.3) is an equilibrium market.

Proof. Let (Q, (ci)i=1,...,d) be the abstract equilibrium which produced (S,B), and let

the measure Q̂ be as in (4.2). For i = 1, . . . , d, define the Q̂-martingale X̃ i by X̃ i
t =

EQ̂[
∫ T

0
(ci(u) − ei(u))βu du|Ft]. By the finite representation property (Assumption

2.4), for each i = 1, . . . , d there exists an S-integrable portfolio process H i such that

X̃ i
t = X̃ i

0 +
∫ t

0
H̃ i dSu. Moreover, the boundedness of processes ci and ei guarantees

that H̃ i satisfies part 1. of Definition 2.19. Standard calculations involving integration

by parts and using the fact thatB is a predictable process of finite variation imply that

the wealth process XH̃i,ci,ei defined as in (2.2) is bounded and satisfies XH̃i,ci,ei

T ≥ 0.

Therefore, (H̃ i, ci) is an affordable consumption-investment strategy (as described in

Definition 2.19).

Since
∑

i X̃
i = 0, the mutual orthogonality of the Q̂-martingales Y1, . . . , Yn implies

that
∑d

i=1 H̃
i
j(t) = 0, d[Yj, Yj]t − a.e., for all j. In order to have markets clear

for every t ∈ [0, T ], we define the portfolio process H i = (H i
1, . . . , H

i
n) by H i

j(t) =

H̃ i
j(t)1{

P

i H
i
j(t)=0}, for each i = 1, . . . , d, so that

(1) H i
j(t) = H̃ i

j(t), d[Yj, Yj]-a.e. (implying indistinguishability of the wealth pro-

cesses XHi,ci,ei and XH̃i,ci,ei) and

(2)
∑

i H
i
j(t) = 0, for all t, a.s. and all j = 1, . . . , n.

Therefore, the d-tuple (H i, ci) satisfies the part 1. of Definition 2.20.

It remains to show that ci maximizes Ui over all consumption process c′ with

Ui(c′) ∈ (−∞,∞) for which there exists a portfolio process H ′ such that (H ′, c′)

is (S,B, ei,Γi)-affordable. We first note that each such c′ satisfies 〈Q, c′〉 ≤ 〈Q, ei〉.

This is due to (4.2) and the fact that the discounted wealth X ′ = βXH′,c′,ei (which

satisfies X ′
T ≥ 0) can be represented as a sum of a Q̂-martingale and a term of the

form
∫ t

0
βu(c

′(u) − ei(u)) dκu. Finally, because c′ ∧ k ∈ Bi(Q), for any k ∈ N, the

properties of the abstract equilibrium imply that Ui(ci) ≥ Ui(c′∧k) and the Monotone

Convergence Theorem yields Ui(ci) ≥ Ui(c′). �

Theorem 4.6. Suppose that

(1) (Ω,F , (F)t∈[0,T ],P) is a filtered probability space satisfying Assumption 2.4,

(2) (ei)i=1,...,d are random endowment processes verifying Assumption 2.9,

(3) (U i)i=1,...,d are utility functions for which Assumption 2.13 is valid, and

(4) (Γi)i=1,...,d are withdrawal cap processes satisfying Assumption 2.17.
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Then there exist an equilibrium market (S,B) consisting of a finite-dimensional semi-

martingale risky-asset process S and a positive predictable riskless-asset process B of

finite variation for which the following additional properties hold

(1) The market (S,B) is arbitrage free, i.e., there exists a unique measure Q̂

equivalent to P, such that the discounted prices S/B of risky assets are Q̂-

martingales.

(2) The optimal consumption densities ci in the market (S,B) are uniformly

bounded from above.

Appendix A. Semimartingale functions and multiplicative

decompositions

In this section we provide several results which give sufficient conditions for 1) a

process obtained by applying a function to a semimartingale to be a semimartingale,

and 2) for a local martingale part in a multiplicative decomposition of a positive

process to be a uniformly integrable martingale. These results can be improved in

several directions; we are aiming for conditions easily verifiable in practice. In what

follows, I and J will denote generic open intervals in R. For a process A of finite

variation, |A| = (|A|t)t∈[0,T ] will denote its total variation process.

Semimartingale functions.

Definition A.1. A function f : [0, T ]×I → R is called a semimartingale function

if the process Y defined by Yt = f(t, Xt), t ∈ [0, T ] is a càdlàg semimartingale for each

semimartingale X taking values in I and defined on an arbitrary filtered probability

space (Ω,F , (Ft)t∈[0,T ],P).

In this section we provide a set of sufficient conditions for a function f : [0, T ]×I →

R to be a semimartingale function. We go beyond basic C1,2-differentiability required

by the Itô formula and place much less restrictive assumptions on f . Apart from being

indispensable in Section 4, we hope that the obtained result holds some independent

probabilistic interest.

Theorem A.2. Suppose that a function f : [0, T ] × I → R can be represented as

f(t, x) = f 1(t, x)− f 2(t, x), where for i = 1, 2,

(1) f i is Lipschitz in the time variable, uniformly for x in compact intervals.

(2) f i is convex in the second variable.

(3) The right derivative f i
x+ is bounded on compact subsets of [0, T ]×I and satisfies

f i
x+(t, x) = lim f i

x+(s, x
′), when (s, x′) → (t, x) and x′ ≥ x.

Then f is a semimartingale function. Moreover, for a semimartingale X the local

martingale part M̃ in the semimartingale decomposition of f(t, Xt) = f(0, X0) +
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M̃t + Ãt is given by M̃t =
∫ t

0
fx+(s,Xs−) dMs, where M is the local martingale part

in the semimartingale decomposition Xt = X0 +Mt + At.

Before delving into the proof of Theorem A.2, we recall the concept of Fatou-

convergence and some useful compactness-type results related to it.

Definition A.3. A sequence (Xn)n∈N of càdlàg adapted processes is said to Fatou-

converge towards a càdlàg adapted process X if

Xt = lim
qցt

lim
n

Xn
q , a.s., for all t ∈ [0, T ), and XT = lim

n
Xn

T , a.s,

where the first limit is taken over rational numbers q > t.

Lemma A.4.

(1) Let (An)n∈N be a sequence of non-decreasing adapted càdlàg processes taking

values in [0,∞). Then there exists a sequence (Ãn)n∈N of convex combinations

Ãn ∈ conv(An, An+1, . . . ) and a non-decreasing càdlàg process Ã taking values

in [0,∞] such that Ãn Fatou-converges to Ã.

(2) Let (An)n∈N be a sequence of finite-variation càdlàg processes on [0, T ], with

uniformly bounded total variations, i.e.,

|An|T ≤ C a.s., for some constant C > 0 and all n ∈ N.

Then there exists a sequence (Ãn)n∈N of convex combinations Ãn ∈ conv(An, An+1, . . . )

and a càdlàg process Ã of finite variation with |Ã|T ≤ C such that Ãn Fatou-

converge towards Ã.

Proof. Part 1. is a restatement of Theorem 4.2 in [Kra96]. To prove part 2., note that

the boundedness of total variations of processes An implies that the increasing and

decreasing parts A↑,n and A↓,n of An satisfy A↑,n
T + A↓,n

T ≤ C a.s. for all n. Applying

part 1. to increasing and decreasing parts and noting that the limiting processes Ã↑

and Ã↓ satisfy Ã↑ + Ã↓ ≤ C a.s., leads to the desired conclusion. �

Of Theorem A.2. LetX be a semimartingale taking values in the open interval I. Our

goal is to prove that the process Y defined by Yt = f(t, Xt) is a semimartingale. We

first extend the time-domain of X and Y by setting Xt = XT and Yt = f(t, XT ) for

t ∈ (T,∞). By Theorem 6, p. 54 in [Pro04], it will be enough to find an increasing

sequence (Tn)n∈N of stopping times with Tn ր ∞, a.s., such that the pre-stopped

processes Y Tn− defined by

Y Tn−
t = Yt1{0≤t<Tn} + YTn−1{t≥Tn} = f(t ∧ Tn, X

Tn−
t )



FINANCIAL EQUILIBRIA 18

are semimartingales. Taking Tn = inf {t ≥ 0 : Xt ≥ n} ∧ n, we reduce the problem

to the case where the semimartingale X takes values in a compact interval [x1, x2],

for t ∈ [0, S), where S = T ∧ Tn.

Let ηn : R × R → R be a sequence of standard mollifier functions with supports

lying in the lower half-plane and shrinking to a point, i.e.,

(1) ηn ∈ C∞(R× R).

(2) ηn(t, x) ≥ 0, for all t, x and
∫

R×R
ηn(t, x) dt dx = 1.

(3) The supports SSn of ηn satisfy SSn ⊆ R× (−∞, 0] and |t|+ |x| ≤ 1/n for all

(t, x) ∈ SSn.

Let the functions fn : [0, T ]× In → R, where In = {x ∈ I : d(x, Ic) > 1/n}, be the

mollified versions of f , i.e.,

fn(t, x) = (ηn ∗ f)(t, x) =

∫

R×R

ηn(s, y)f(t− s, x− y) ds dy,

where we set f(t, x) = f(T, x) for t > T and f(t, x) = f(0, x) for t < 0. By standard

arguments, the functions fn(t, x) have the following properties

(1) fn(t, x) → f(t, x) for all (t, x) ∈ [0, T ]× I, uniformly on compacts.

(2) fn(t, x) ∈ C∞([0, T ]× In).

(3) Let C > 0 be a constant such that |f(t2, x)− f(t1, x)| ≤ C |t2 − t1|, for all

t1, t2 ∈ [0, T ] and x ∈ [x1, x2]. Then the absolute value |fn
t | of the time

derivative fn
t is bounded by the constant C, uniformly over n ∈ N and (t, x) ∈

[0, T ]× [x1, x2].

(4) By condition 3. in the statement of the theorem and the fact that the support

SSn lies in the lower half-plane, we have fn
x (t, x) → fx+(t, x), for all (t, x) ∈

[0, T ]× I.

For n ∈ N such that [x1, x2] ⊆ In, the Itô formula applied to fn implies that

fn(t, Xt) = fn(0, X0) +Mn
t + An

t +Bn
t , where

Mn
t =

∫ t

0

fn
x (s,Xs−) dXs, An

t =

∫ t

0

fn
t (s,Xs) ds, and

Bn
t =

1

2

∫ t

0

fn
xx(x,Xs−) d[X,X ]cs

+
∑

0<s≤t

(

fn(s,Xs)− fn(s,Xs−)− fn
x (s,Xs−)∆Xs

)

.

Note that:

(1) Using properties 3. and 4. (above) of fn and the Dominated Convergence

Theorem for stochastic integrals (see [Pro04], Theorem 32, p. 174), we have
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Mn
t → Mt =

∫ t

0
fx+(s,Xs−) dXs, uniformly in t ∈ [0, T ], in probability. It

suffices to take a subsequence to obtain convergence in the Fatou sense.

(2) By convexity of fn in the second variable, the processes Bn
t are non-decreasing.

Thus, by Lemma A.4, after a passage to a sequence of convex combinations

they Fatou-converge towards a non-decreasing càdlàg adapted process B tak-

ing values in [0,∞].

(3) The processes in the sequence An
t have total variation uniformly bounded by

CT , so by part 2. of Lemma A.4, there exists a sequence of their convex

combinations Fatou-converging towards a process A of finite variation with

the total variation bounded by the same constant CT .

Compounding all subsequences and sequences of convex combinations above, we ob-

tain that f(t, Xt) − f(0, X0) − Mt − At = Bt. We can conclude that BT < ∞, a.s.

and f(t, Xt) = f(0, X0) +Mt + At +Bt is a semimartingale. �

Proposition A.5. Every locally convexity-Lipschitz function f : [0, T ] × I → R

admits a decomposition f = f 1 − f 2, where f 1 and f 2 satisfy conditions 1.-3. of

Theorem A.2. In particular, f is a semimartingale function.

Proof. We shall construct the desired decomposition only on a compact interval

[x1, x2] in I, as the general case follows immediately.

For a fixed t ∈ [0, T ], the finite-variation function fx(t, ·) admits a decomposition

into a difference of a pair f ↑(t, ·) and f ↓(t, ·) of non-increasing and non-negative

functions. Lipschitz continuity of the total variation of the derivative fx implies

that the functions f ↑ and f ↓ are Lipschitz continuous in t, uniformly in x ∈ [x1, x2].

It is now easy to check that the sought-for decomposition is f = f 1 − f 2, where

f 1(t, x) = f(t, x1) +
∫ x

x1

f ↑(t, ξ) dξ, and f 2(t, x) =
∫ x

x1

f ↓(t, ξ) dξ. �

Proposition A.6. Let f : [0, T ] × I → R be locally convexity-Lipschitz, with the

derivative fx positive and bounded away from 0 on compact subsets of [0, T ] × I. If

the function g : [0, T ] × J → R satisfies f(t, g(t, y)) = y, for all (t, y) ∈ [0, T ] × J ,

then g is a semimartingale function.

Proof. We note first that the assumptions of the proposition imply that both f and g

are continuous and strictly increasing in the second argument. To simplify the proof,

we shall restrict the domain of g to a compact set of the form [0, T ]×[y1, y2], so that the

range of g is contained in a compact set [x1, x2] ⊆ I. The general case will follow by

pre-stopping - the technique used in the proof of Theorem A.2. Using the relationships

0 = f(t, g(t, y))−f(s, g(s, y)) and gy(t, y)fx(t, g(t, y)) = 1 together with the properties

of function f postulated in the statement, it is tedious but straightforward to prove

that both g and gy are Lipschitz continuous in both variables.
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Our next task is to decompose the function g into a difference of two functions

satisfying conditions 1.-3. in Theorem A.2. By Proposition A.5, f has a decomposi-

tion f(t, x) = f 1(t, x)− f 2(t, x) with properties 1.-3. from Theorem A.2. Let hi(t, y)

denote the compositions f i
x(t, g(t, y)), i = 1, 2, and let h(t, x) = h1(t, x)− h2(t, x) so

that fx(t, g(t, y)) = h(t, y). Then, for i = 1, 2, hi(t, ·) is a non-decreasing function

and for y ∈ [y1, y2],

gy(t, y)− gy(t, y1) = −

∫ y

y1

h(t, dη)

(fx(t, g(t, η)))2

= −

∫ y

y1

gy(t, η)
2 (h1(t, dη)− h2(t, dη)),

(A.1)

where hi(t, dη) stands for the Lebesgue-Stieltjes measure induced by hi(t, ·). With g1

and g2 defined as

g1(t, y) = g(t, y1) + gy(t, y1)(y − y1) +

∫ y

y1

∫ z

y1

gy(t, η)
2 h2(t, dη) dz,

g2(t, y) =

∫ y

y1

∫ z

y1

gy(t, η)
2 h1(t, dη) dz,

(A.1) implies that g(t, y) = g1(t, y)− g2(t, y).

What follows is the proof of Lipschitz-continuity of g2y(·, y). A simple change of vari-

ables - valid due to the continuity of the function g - yields g2y(t, y) =
∫ g(t,y)

g(t,y1)
gy(t, f(t, ξ))

2f 1
x(t, dξ),

so, for t, s ∈ [0, T ] the difference g2y(t, y)− g2y(s, y) can be decomposed into the sum

I1 + I2 + I3 + I4 where

I1 =

∫ g(s,y1)

g(t,y1)

gy(s, f(s, ξ))
2f 1

x(s, dξ) , I2 =

∫ g(t,y)

g(s,y)

gy(s, f(s, ξ))
2f 1

x(s, dξ),

I3 =

∫ g(t,y)

g(t,y1)

(

gy(t, f(t, ξ))
2 − gy(s, f(s, ξ))

2
)

f 1
x(t, dξ), and

I4 =

∫ g(t,y)

g(t,y1)

gy(s, f(s, ξ))
2
(

f 1
x(t, dξ)− f 1

x(s, dξ)
)

Due to boundedness of g and gy and Lipschitz continuity of g, gy and fx, the absolute

values of the expressions I1, I2 and I3 are easily seen to be bounded by a constant

multiple of |t− s|. Additionally, the Lipschitz property of the total-variation func-

tional allows us to conclude the same for I4. Consequently, there exists a constant C

such that
∣

∣g2y(t, y)− g2y(s, y)
∣

∣ ≤ C |t− s|, for all y ∈ [y1, y2].

Finally, to show that g is a semimartingale function, it suffices to check that both g1

and g2 satisfy conditions 1.-3. of Theorem A.2. The increase of the functions h1(t, ·)



FINANCIAL EQUILIBRIA 21

and h2(t, ·) implies that g1(t, ·) and g2(t, ·) are convex. Lipschitz-continuity of g and

g2 in the time variable implies the same for g1 = g + g2. Finally, the derivatives g1y
and g2y are continuous due to the continuity of functions (f 1)x(t, ·) and (f 2)x(t, ·). �

The multiplicative decomposition of positive semimartingales. A key step in the tran-

sition from abstract to stochastic equilibria is the multiplicative decomposition of

the pricing functional which enforces the abstract equilibrium. In this paragraph we

give sufficient conditions on a positive semimartingale in order for the local martin-

gale part in its multiplicative decomposition to be, in fact, a uniformly integrable

martingale.

The following proposition establishes some useful stability properties of the condi-

tion N (X) ∈ L∞.

Proposition A.7.

(1) Let X1 and X2 be semimartingales, and let X = min(X1, X2). If N (X1) ∈
L∞ and N (X2) ∈ L∞, then N (X) ∈ L∞.

(2) Suppose f : [0, T ]× I → R is a function verifying the conditions of Theorem

A.2, and X is a bounded positive semimartingale, bounded away from 0, such

that N (X) ∈ L∞. Then the process Y , defined by Yt = f(t, Xt), satisfies

N (Y ) ∈ L∞.

Proof.

(1) Let X = M+A, X i = M i+Ai, i = 1, 2 be the semimartingale decompositions

of X , X1 and X2. The Meyer-Itô formula (see Theorem 70, p. 214 in [Pro04])

states that Mt =
∫ t

0
1{X1

s−≤X2

s−}
dM1

s +
∫ t

0
1{X1

s−>X2

s−}
dM2

s , so 〈M,M〉T ≤

〈M1,M1〉T + 〈M2,M2〉T ∈ L∞.

(2) Assume that X takes values in [ε, 1/ε], for some ε > 0. It suffices to note

that the right-continuous function fx+(t, x) is bounded on the compact set

[ε, 1/ε] × [0, T ], and that Proposition A.2 implies that the local martingale

part of the semimartingale Yt is given by
∫ t

0
fx+(s,Xs−) dMs.

�

Proposition A.8. Let X be a positive semimartingale bounded from above and away

from zero, such that N (X) ∈ L∞. Then X admits a multiplicative decomposition

X = Q̂β where β is a positive predictable process of finite variation, and Q̂ is a

positive uniformly integrable martingale.

Proof. Without loss of generality we assume X0 = 1. By Theorem 8.21, p. 138 in

[JS03], along with the semimartingale decomposition X = M + A, X also admits a

multiplicative decomposition of the formX = Q̂β. The same theorem states that Q̂ =
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E(M̂) and 1/β = E(Â), where M̂t =
∫ t

0
Hs dMs, Ât = −

∫ t

0
Hs dAs, and H = 1

X−+∆A

is the reciprocal of the predictable projection p(X) of X . For a constant ε > 0 such

that ε ≤ X ≤ 1/ε we obviously have ε ≤ H ≤ 1/ε, a.s. Thanks to the boundedness of

H , the compensator 〈M̂, M̂〉 of the quadratic variation [M̂, M̂ ] satisfies 〈M̂, M̂〉T =
∫ T

0
H2

u d〈M,M〉u ≤ 1/ε2〈M,M〉T = N (X) ∈ L∞. The conclusion now follows from

Théorème 1, p. 147 in [MS79], aided by the fact that absolute values |∆M | of the

jumps of the local martingale M are uniformly bounded (see Lemma 4.24, p. 44 in

[JS03]). �
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