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ASYMPTOTIC ARBITRAGE AND NUMÉRAIRE PORTFOLIOS

IN LARGE FINANCIAL MARKETS

DMITRY B. ROKHLIN

Abstract. This paper deals with the notion of a large financial market and
the concepts of asymptotic arbitrage and strong asymptotic arbitrage (both of
the first kind), introduced in [13], [14]. We show that the arbitrage properties
of a large market are completely determined by the asymptotic behavior of the
sequence of the numéraire portfolios, related to small markets. The obtained
criteria can be expressed in terms of contiguity, entire separation and Hellinger
integrals, provided these notions are extended to sub-probability measures. As
examples we consider market models on finite probability spaces, semimartin-
gale and diffusion models. Also a discrete-time infinite horizon market model
with one log-normal stock is examined.

1. Introduction

The notion of a large financial market as a sequence of the traditional market
models with a finite number of risky assets (called stocks in the sequel), was intro-
duced in [13]. It is assumed that in n-th small market the discounted stock prices

are described by a vector semimartingale Sn
t = (S1,n

t , . . . , S
d(n),n
t ), t ∈ [0, T (n)].

Any element of the set Xn of nonnegative value processes, generated by trading
strategies, is as a sum of an initial non-random endowment and a stochastic integral
with respect to Sn. The number d(n) of stocks as well as the planning horizon T (n)
can increase to infinity as n→ ∞.

The notions of asymptotic arbitrage, introduced in [13], connected the results of
modern arbitrage theory and the conclusions, obtained in the framework of Capital
Asset Pricing Model (Sharpe, Lintner) and Arbitrage Pricing Model (Ross, Huber-
man): see [28], [12]. The present paper is aimed at further study of the conditions
of asymptotic arbitrage of the first kind [13] and strong asymptotic arbitrage of the
first kind [14]. In what follows, the term ”first kind” is omitted since we do not
consider asymptotic arbitrage of the second kind [13]. Another notions of arbitrage
on a large market were introduced in [18], [26], [19].

Following [20], asymptotic arbitrage (resp., strong asymptotic arbitrage) can be
interpreted as an opportunity of getting infinitely rich with positive probability
(resp., with probability 1) by risking vanishing amount of money. Under the as-
sumptions of no-arbitrage and completeness of the small markets it was proved
in [13] that the condition of no asymptotic arbitrage (NAA) is equivalent to the
contiguity of the sequence (Pn) of original probability measures with respect to the
unique sequence (Qn) of equivalent local martingale measures. In the paper [20] it
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was shown that if the small markets are incomplete then NAA condition is equiv-
alent to the existence of some sequence (Qn) with the same properties. Another
proofs of this result were given in [21], [14]. It was proved in [14] that the strong
asymptotic arbitrage (SAA) is equivalent to the entire separation of the sequence
(Pn) and any sequence (Qn) of equivalent local martingale measures.

Let us remember that, with some abuse of terminology, a value process 0 <
V n ∈ Xn is called the numéraire portfolio if any process Xn ∈ Xn, being expressed
in the units of V n, becomes a supermartingale. This notion in slightly narrow
meaning (martingales instead of supermartingales) was introduced in [24]. We refer
to [3], [25], [17], [6], [5] for the existence theorems and the properties of numéraire
portfolios as well as for further references. The main theme of the present paper
concerns the characterization of NAA and SAA conditions in terms of the sequence
(V n).

The numéraire portfolio possesses a number of optimality properties. Particu-
lary, under some technical conditions, it maximizes the expected logarithmic utility
and the correspondent supermartingale measure (or density process) minimizes the
reverse relative entropy [3]. So, the process V n can be looked for as the solution
of the correspondent optimization problem. In any case, V n is uniquely defined
[3]. Thus the criteria proposed below are not purely existence results, but also
computational tools for checking asymptotic arbitrage conditions.

Note that in the case of infinite time horizon a market with finite number of stocks
can be regarded as ”large” by representing it as a sequence of ”small” markets
with finite horizons T (n) ↑ ∞ and the same stocks. For such a market NAA
condition is tantamount to the condition of no unbounded profit with bounded risk
(NUPBR) [17]. It was established in [17] that NUPBR condition is equivalent to the
existence of the non-exploding numéraire portfolio V , i.e. V∞ < +∞. Underlying
the connection with the results of the present paper, one may say that the condition
V∞ < +∞ is imposed on the sequence (V n) of the numéraire portfolios, which are
the restrictions of V to [0, T (n)].

Somewhat surprisingly, the existence of the numéraire portfolios appears to be
the only non-trivial assumption, concerning the structure of the small markets, al-
lowing for the mentioned characterization of NAA and SAA conditions (see Sect. 2).
At the same time this assumption is not restrictive since in the traditional semi-
martingale market model with finite number of stocks and finite time horizon the
existence of the numéraire portfolio is implied by the existence of an equivalent lo-
cal martingale (or even σ-martingale) measure for the price process (S1,n, . . . , Sd,n)
(see [6], [17]).
Organization of the paper. In Sect. 2 under minimal assumptions regarding the
structure of the sets Xn, we prove that the realization of NAA and SAA conditions
is completely determined by the behavior of the sequence (V n). The correspondent
criteria can be expressed in terms of contiguity, entire separation and Hellinger inte-
grals, provided these notions are extended to sub-probability measures (Theorems
2.1, 2.2, 2.7, 2.8).

The rest of the paper is devoted to more concrete market models. Although
the results of Sect. 2 are applicable to all of them, the specific features of these
models deserve a separate study. In Sect. 3 we consider a sequence of incomplete
markets on finite probability spaces. Theorem 3.1 contains the assertion about the
equivalence of NAA condition to the contiguity of the sequence (Pn) with respect to
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the sequence (Q̂n) of martingale measures, minimizing the reverse relative entropy.

Likewise, SAA condition is equivalent to the entire separation of (Pn) and (Q̂n).
The results of [20], [21], [14], cited above and concerning the semimartingale

market models, are reproved in Sect. 4. Although these results are not contained in
theorems of Sect. 2, it is straightforward to give their proofs utilizing the mentioned
theorems and the assertions of [23], [8], [15] regarding the structure of the set of
supermartingale measures for Xn. This is done in Theorem 4.1. Criteria, linking
NAA and SAA conditions to the sequence of optimization problems are given in
Theorem 4.2.

In Sect. 5 we treat the diffusion market models. The obtained criteria (Theorem
5.3) are, in fact, of the same form as in [14]. However, the class of models under
consideration is wider since we do not require the existence of local martingale
measures in the small markets.

In Sect. 6 we consider a market model with discrete time and infinite horizon. It
is assumed that there is only one stock with independent log-normal returns. In this
example exactly one of the conditions NAA or SAA is realized. Under an additional
assumption we are able to express these conditions in terms of convergence of some
series, determined by the parameters of the model (Theorem 6.2).

Let’s briefly mention the mathematical tools used in the paper. The argumen-
tation of Sect. 2, where the key results are collected, is based only on elemen-
tary probabilistic inequalities. In the subsequent sections we utilize non-trivial but
well-known results related to the theory of ”small” markets. Some material from
stochastic analysis is used in Sect. 4 and 5.

2. Main results

Consider a sequence of probability spaces (Ωn,Fn
T ,P

n)∞n=1, endowed with the
filtrations F

n = (Fn
t )t∈Tn , where T

n is an interval [0, T (n)] or a set of integers
{0, . . . , T (n)}. Assume that the σ-algebraFn

0 is trivial up to Pn-null sets. Denote by
Xn a family of non-negative F

n-adapted stochastic processes satisfying the following
conditions:

(i) 1 ∈ Xn and Xn is a cone: if X ∈ Xn and λ > 0 then λX ∈ Xn;
(ii) there exists a strictly positive process (numéraire portfolio)

V n ∈ Xn
1 = {Xn ∈ Xn : Xn

0 = 1}
such that Xn/V n is a Pn-supermartingale for all Xn ∈ Xn.

The set Xn describes the value processes, generated by investment strategies in
n-th small market. The large market under consideration is the sequence (Xn)∞n=1

of small markets.
Following [13], [14], we say that

• there is no asymptotic arbitrage (NAA) on the large market (Xn) if for any
sequence Xn ∈ Xn the condition Xn

0 → 0 implies that

lim sup
n→∞

Pn(Xn
T ≥ 1) = 0;

• there exists a strong asymptotic arbitrage (SAA) on the large market (Xn)
if

lim sup
n→∞

P
n(Xn

T ≥ 1) = 1

for some sequence Xn ∈ Xn such that Xn
0 → 0.
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By an appropriate scaling of the sequences Xn, it is possible to replace the sets
{Xn

T ≥ 1} by the sets {Xn
T ≥ an}, an → +∞, thus fitting the above definitions to

the interpretation of asymptotic arbitrage, mentioned in Sect. 1.
In the papers [13], [20], [21], [14] criteria for NAA and SAA conditions are ex-

pressed in terms of contiguity and entire separation of some sequences of probability
measures. In the context of the present paper it is convenient to extend these no-
tions (see [11]) to sub-probability measures, that is to countably additive measures
Qn, satisfying the condition 0 ≤ Qn(An) ≤ 1, An ∈ Fn

T .
A sequence of probability measures Pn is called contiguous with respect to a

sequence of sub-probability measures Qn (notation: (Pn) ⊳ (Qn)) if the condition
Qn(An) → 0, An ∈ Fn

T implies that Pn(An) → 0. A sequence of probability mea-
sures Pn and a sequence of sub-probability measures Qn are called entirely (asymp-
totically) separated (notation: (Pn) △ (Qn)) if there exist a sequence of natural
numbers nk ↑ ∞ and sets Ank ∈ Fnk

T such that Pnk(Ank) → 1 and Qnk(Ank) → 0,
k → ∞.

We say that a strictly positive Fn-adapted stochastic process Zn is an equivalent
supermartingale density for Xn if XnZn is a Pn-supermartingale for all Xn ∈ Xn

and Zn
0 = 1. Denote by Dn the set of all equivalent supermartingale densities

(compare with [23], [29], [17]). Clearly, 1/V n ∈ Dn.

Denote by L0,n
+ = L0(Ωn,Fn

T ,P
n) the set of (equivalence classes) of non-negative

Fn
T -measurable random variables. Let ξn ∈ L0,n

+ . Following [16], we denote by
ξn · Pn the measure with the Pn-density ξn:

(ξn · Pn)(An) = EPn(ξnIAn), An ∈ Fn
T .

To each process Zn ∈ Dn we assign a sub-probability measure Zn
T · Pn.

Consider a sequence ξn ∈ L0,n
+ and a sequence of probability measures Pn. Ac-

cording to the definition of [11] a sequence (ξn|Pn) is tight if

lim
M→∞

lim sup
n→∞

Pn(ξn ≥M) = 0.

Theorem 2.1. The following conditions are equivalent:

(a) NAA;
(b) (Y n

T |Pn) is tight for any sequence Y n ∈ Xn
1 ;

(c) (V n
T |Pn) is tight;

(d) (Pn)⊳ ((V n
T )−1 · Pn);

(e) (Pn)⊳ (Zn
T · Pn) for some sequence Zn ∈ Dn.

Proof. (a) =⇒ (b). Assume that condition (b) is violated. Then there exist a
number β > 0 and a sequence Y n ∈ Xn

1 such that

lim sup
n→∞

P
n(Y n

T ≥M) ≥ β > 0

for allM > 0. Take an increasing sequence of natural numbers nk so as Pnk(Y nk

T ≥
k) ≥ β/2. Further, take a sequence Mn ↑ ∞ meeting the condition Mnk = k and
put Xn = Y n/Mn. Then Xn

0 = 1/Mn → 0 and

lim sup
n→∞

Pn(Xn
T ≥ 1) ≥ lim sup

k→∞
Pnk(Y nk

T ≥ k) ≥ β/2 > 0.

This means that NAA condition is violated.
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(c) =⇒ (d). Let ((V n
T )−1 · Pn)(An) → 0, An ∈ Fn

T . Then the inequality

P
n(An) = P

n(An ∩ {V n
T ≥M}) +

∫

An∩{V n
T
<M}

V n
T d((V

n
T )−1 · Pn)

≤ Pn(V n
T ≥M) +M((V n

T )−1 · Pn)(An)

yields that

lim sup
n→∞

Pn(An) ≤ lim sup
n→∞

Pn(V n
T ≥M).

By condition (c) it follows that Pn(An) → 0.
(e) =⇒ (a). Consider a sequence Xn ∈ Xn such that limn→∞Xn

0 → 0. The
inequality

(1) (Zn
T · Pn)(Xn

T ≥ 1) = EPn

(
Zn
TX

n
T

I{Xn
T
≥1}

Xn
T

)
≤ EPn(Zn

TX
n
T ) ≤ Xn

0

and the contiguity of (Pn) with respect to (Zn
T · Pn) imply that

lim
n→∞

Pn(Xn
T ≥ 1) = 0,

i.e. NAA condition is satisfied.
Implications (b) =⇒ (c) and (d) =⇒ (e) are evident. �

Theorem 2.2. The following conditions are equivalent:

(a) SAA;
(b) there exists a sequence Y n ∈ Xn

1 such that

lim sup
n→∞

Pn(Y n
T ≥M) = 1 for all M > 0;

(c) lim supn→∞ Pn(V n
T ≥M) = 1 for all M > 0;

(d) (Pn)△ ((V n
T )−1 · Pn);

(e) (Pn)△ (Zn
T · Pn) for any sequence Zn ∈ Dn.

Proof. (b) =⇒ (a). Take an increasing sequence of natural numbers nk such that

Pnk(Y nk

T ≥ k) ≥ 1− 1/k.

Define the sequences Mn, X
n as in the proof of the implication (a) =⇒ (b) of

Theorem 2.1. We have Xn
0 → 0 and

lim sup
n→∞

P
n(Xn

T ≥ 1) ≥ lim sup
k→∞

P
nk(Xnk

T ≥ 1) = lim sup
k→∞

P
nk(Y nk

T ≥ k) = 1.

Thus, (Xn) realizes the strong asymptotic arbitrage.
(d) =⇒ (c). Let the sequences nk ↑ ∞ and Ank ∈ Fnk

T be such that

Pnk(Ank) → 1, ((V nk

T )−1 · Pnk)(Ank) → 0.

Then

Pnk(V nk

T < M) = Pnk({V nk

T < M} ∩ (Ω\Ank))

+

∫

{V nk
T

<M}∩Ank

V nk

T d((V nk

T )−1 · Pnk)

≤ P
nk(Ω\Ank) +M((V nk

T )−1 · Pnk)(Ank) → 0, k → ∞
and condition (c) is satisfied.
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(a) =⇒ (e). Let Xn be a sequence, mentioned in the definition of the strong
asymptotic arbitrage and Zn ∈ Dn. The inequality (1) and the definition of the
strong asymptotic arbitrage show that

lim
n→∞

(Zn
T · Pn)(Xn

T ≥ 1) = 0, lim sup
n→∞

Pn(Xn
T ≥ 1) = 1.

Therefore the sequences (Pn) and (Zn
T · Pn) are entirely separated.

Implications (c) =⇒ (b) and (e) =⇒ (d) are evident. �

Inspired by the results of [11], [14], we derive criteria for NAA and SAA con-
ditions in terms of Hellinger-type integrals. Auxilary inequalities, suitable for this
purpose, are collected in Lemma 2.3. Inequality (4) is applied also in Sect. 5. The
proof of inequality (3) is, in fact, borrowed from [11] (p. 287).

Lemma 2.3. Let ξ be a non-negative random variable, defined on a probability
space (Ω,F ,P) and let α ∈ (0, 1), M > 0, N > 0 be some numbers. Then

(2) P(ξ < M) ≤Mα
Eξ−α;

if E(1/ξ) ≤ 1 then

(3) Eξ−α ≤
(

1

M

)α

+

(
1

N

)1−α

+Nα
P(ξ < M);

if a non-negative random variable η is such that E(ξ/η) ≤ 1, then

(4) P(ξ ≥M) ≤ N

M
+ P(η ≥ N).

Proof. The estimate (2) follows from the inequality

I{ξ<M} ≤Mαξ−αI{ξ<M}.

Now let E(1/ξ) ≤ 1. Then

Eξ−α = E(ξ−αI{ξ≥M}) + E

(
ξ1−α

ξ
I{ξ<M}I{ξ<1/N}

)

+ E(ξ−αI{ξ<M}I{ξ≥1/N}) ≤
(

1

M

)α

+

(
1

N

)1−α

+NαP(ξ < M).

At last, assume that non-negative random variables ξ, η verify the inequality
E(ξ/η) ≤ 1. We see that

(5) E

(
I{ξ≥M}

η

)
≤ E

(
ξ

M

I{ξ≥M}
η

)
≤ 1

M
.

(6) E

(
I{ξ≥M}

η

)
≥ E

(
I{ξ≥M}I{η<N}

η

)
≥ 1

N
P({ξ ≥M} ∩ {η < N})

But for any sets B1, B2 ∈ F we have

P(B1 ∩B2) = P(B1) + P(B2)− P(B1 ∪B2) ≥ P(B1)− P(Ω\B2).

Hence (5) and (6) imply (4):

N

M
≥ P({ξ ≥M} ∩ {η < N}) ≥ P(ξ ≥M)− P(η ≥ N). �
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Corollary 2.4. Any sequence Zn ∈ Dn satisfies the equality

(7) lim
α↓0

lim inf
n→∞

EPn
(Zn

T )
α = lim

M→∞
lim inf
n→∞

Pn((Zn
T )

−1 < M).

In particular, ((Zn
T )

−1|Pn) is tight iff the left-hand side of (7) is equal to 1.

Proof. Applying inequality (2):

Pn((Zn
T )

−1 < M) ≤MαEPn(Zn
T )

α

and taking the limits as n→ ∞, α→ 0 and M → ∞, we get

lim
M→∞

lim inf
n→∞

Pn((Zn
T )

−1 < M) ≤ lim
α↓0

lim inf
n→∞

EPn
(Zn

T )
α.

Furthermore, using (3):

EPn(Zn
T )

α ≤
(

1

M

)α

+

(
1

N

)1−α

+NαPn((Zn
T )

−1 < M),

and taking the limits as n → ∞, M → ∞, α → 0 and N → ∞, we obtain the
reverse inequality. �

Corollary 2.5. The following conditions are equivalent:

(a) lim sup
n→∞

Pn(V n
T ≥M) = 1 for all M > 0;

(b) lim inf
n→∞

EPn
(V n

T )−α = 0 for some α ∈ (0, 1).

Proof. Implication (b) =⇒ (a) follows from (2):

P(V n
T < M) ≤MαE(V n

T )−α.

Conversely, if (a) holds then by (3) we get

lim inf
n→∞

E(V n
T )−α ≤

(
1

M

)α

+

(
1

N

)1−α

.

Since M , N are arbitrary, this yields (b). �

Corollary 2.6. Let Xn ∈ Xn
1 , Z

n ∈ Dn. Then

lim sup
n→∞

Pn(Xn
T ≥M) ≤ N

M
+ lim sup

n→∞
Pn(V n

T ≥ N);

lim sup
n→∞

Pn(V n
T ≥M) ≤ N

M
+ lim sup

n→∞
Pn(1/Zn

T ≥ N).

In particular, if ((Zn
T )

−1|Pn) is tight then (V n
T |Pn) is tight as well.

The proof directly follows from (4) since

EPn(Xn
T /V

n
T ) ≤ 1, EPn(V n

T /(Z
n
T )

−1) ≤ 1. �

Theorem 2.7. The following conditions are equivalent:

(a) NAA;
(b) lim

α↓0
lim inf
n→∞

EPn
(V n

T )−α = 1;

(c) there exists a sequence Zn ∈ Dn such that

lim
α↓0

lim inf
n→∞

EPn
(Zn

T )
α = 1.
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Proof. (a) ⇐⇒ (b). By Theorem 2.1 the absence of asymptotic arbitrage
is equivalent to the tightness of the sequence (V n

T |Pn). But in accordance with
Corollary 2.4 this condition is equivalent to (b) since (V n)−1 ∈ Dn.

(c) =⇒ (a). Corollaries 2.4 and 2.6 imply that (V n
T |Pn) is tight. Applying

again Theorem 2.1, we conclude that there is no asymptotic arbitrage. The last
implication (b) =⇒ (c) is evident. �

Theorem 2.8. The following conditions are equivalent:

(a) SAA;
(b) lim inf

n→∞
EPn

(V n
T )−α = 0 for some α ∈ (0, 1);

(c) the exists a sequence Y n ∈ Xn
1 such that

lim inf
n→∞

EPn
(Y n

T )−α = 0 for some α ∈ (0, 1).

Proof. The assertion about the equivalence of (a) and (b) follows from Theo-
rem 2.2 and Corollary 2.5.

(c) =⇒ (a). Under condition (c) inequality (2) yields:

lim inf
n→∞

Pn(Y n
T < M) = 0.

Therefore condition (b) of Theorem 2.2 holds true. Implication (b) =⇒ (c) is
evident. �

Remark 2.1. It is equivalent to require that conditions (b) of Corollary 2.5 and
Theorem 2.8 hold true for all α ∈ (0, 1) or in the limit as α ↓ 0 (compare with [11],
p.287).

Remark 2.2. Extending the well-known terminology [11] to sub-probability mea-
sures, the expression

H(α;Zn
T · Pn,Pn) = EPn

(
d(Zn

T · Pn)

dPn

)α

= EPn
(Zn

T )
α

can be called a Hellinger integral of order α ∈ (0, 1) between Zn
T · Pn and Pn. The

related interpretation of Theorems 2.7, 2.8 can be compared with [14].

Remark 2.3. It follows from Jensen’s inequality and the definition of V n that the
latter process is relatively log-optimal [6], [17]:

EPn

(
ln
Xn

T

V n
T

)
≤ 0, Xn ∈ Xn

1 .

If, moreover, EPn(lnV n
T ) <∞ then V n is log-optimal and the supermartingale den-

sity Ẑn = 1/V n minimizes the reverse relative entropy among all supermartingale
densities [3], [17]. In other words,

sup
X∈Xn

1

EPn lnXn
T = EPn(lnV n

T ) = EPn

(
ln

1

Ẑn
T

)
= inf

Z∈Dn
EPn

(
ln

1

Zn
T

)
.

It should be mentioned that if Zn · Pn is a probability measure then EPn ln(1/Zn
T )

coincides with the entropy of Pn with respect to Zn · Pn in the usual meaning (see
e.g. [7]).
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3. Market models on finite probability spaces

Assume that for every n the set Ωn is finite, Tn = {0, . . . , T (n)} and there is

an F
n-adapted process Sn

t = (S1,n
t , . . . , S

d(n),n
t ), t ∈ T

n of discounted stock prices,
defined on the probability space (Ωn,Fn

T ,P
n). Denote by (x, y) the scalar product

of vectors x and y in R
d. Suppose that the set Xn of value processes consists of

the elements Xn, admitting the representation

Xn
t = xn +

t∑

j=1

(γnj , S
n
j − Sn

j−1) ≥ 0, t = 0, . . . , T (n),

where xn ∈ R and the components of Fn-predictable processes

γn = (γ1,n, . . . , γd(n),n)

describe the number of stocks in investor’s portfolio.
Let Mn be the set of equivalent to Pn probability measures, under which the

process Sn is a martingale. Denote by H(P|Q) = EP ln (dP/dQ) the entropy of P
with respect to an (equivalent) measure Q.

Theorem 3.1. Let Mn 6= ∅. Then for every n there exists a unique minimal

reverse entropy martingale measure Q̂n ∈ Mn:

H(Pn|Q̂n) ≤ H(Pn|Qn), Q
n ∈ Mn

and the following relations hold true

NAA ⇐⇒ (Pn)⊳ (Q̂n); SAA ⇐⇒ (Pn)△ (Q̂n).

Proof. Consider the optimization problems

(8) EPn lnXn
T 7→ max

Xn∈Xn
1

, EPn ln
dPn

dQn
7→ min

Qn∈Mn
.

From Theorem 2.4 of [27] we know that the problems (8) are solvable and their

unique solutions V̂ n ∈ Xn
1 , Q̂

n ∈ Mn are related as follows Q̂n = (V̂ n
T )−1 · Pn.

Moreover, the process V̂ n = V n is the numéraire portfolio and Q̂n minimizes the
reverse relative entropy (see [3] and Remark 2.3). Thus the proof is implied by
conditions (d) of Theorems 2.1 and 2.2. �

4. Semimartingale market models

In this section we assume that the processes in Xn, Dn have cádlág trajectories
Pn-a.s. Evidently, these assumptions do not affect the argumentation of Sect. 2.

Suppose there are d(n) stocks in n-th small market and their discounted prices
are described by a vector semimartingale Sn = (S1,n, . . . , Sd(n),n), adapted to the
filtration F

n = (Fn
t )0≤t≤T (n), satisfying the usual conditions [11]. Furthermore,

assume that any element Xn ∈ Xn is of the form

Xn
t = xn + (γn ◦ Sn)t ≥ 0, t ∈ [0, T (n)],

where xn ∈ R, γn = (γ1,n, . . . , γd(n),n) is an Sn-integrable process (notation: γn ∈
L(Sn)) and

(γn ◦ Sn)t =

∫ t

0

(γnu , dS
n
u )
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is a vector stochastic integral [11]. The quantity γi,nt determines the number of
units of i-th stock in investor’s portfolio at time t.

Let Mn
σ (resp., Mn

loc) be the set of equivalent to Pn probability measures, under
which the process Sn is a σ-martingale (resp., local martingale). Assume that
Mn

σ 6= ∅. Then there exists the numéraire portfolio V n ∈ Xn
1 . In full generality this

assertion follows from the results of [6] (see also [3], [17]). Thus the conclusions of
Sect. 2 are valid for the sequence (Xn) of semimartingale market models.

Denote by Mn
s the set of equivalent to Pn probability measures Qn such that all

processes in Xn are Qn-supermartingales and put Dn = {Zn
T · Pn : Zn ∈ Dn}.

The statements of Theorem 4.1 below were proved in [14] under the assumption
Mn

loc 6= ∅. Previously, assertion (a) was proved in [20], where the process Sn was
assumed to be locally bounded. We give alternative proofs, based on Theorems
2.1, 2.2 and on the well-known non-trivial results, concerning the approximative
properties of inclusions

Mn
loc ⊂ Mn

σ ⊂ Mn
s ⊂ Dn.

Note that the inclusion Mn
σ ⊂ Mn

s follows from the Ansel-Stricker theorem [2]
(Corollary 3.5): see [8] (Theorem 5.3).

Theorem 4.1. Let Mn
σ 6= ∅. Then

(a) NAA condition is satisfied iff there exists a sequence Qn ∈ Mn
σ such that

(Pn)⊳ (Qn);
(b) SAA condition is satisfied iff (Pn)△ (Qn) for any sequence Qn ∈ Mn

σ.

If Mn
loc 6= ∅ then in the above statements the set Mn

σ can be replaced by Mn
loc.

Proof. Let Zn ∈ Dn. It follows from Theorem 4(b) of [29] (and, in fact, from
the results of [23], [4]) that there exist a sequence of non-negative Fn

T -measurable

random variables gk,n ≤ 1 and a sequence Zk,n
T · Pn ∈ Mn

s , k ≥ 1 such that

gk,nZk,n
T → Zn

T , k → ∞, Pn-a.s.

To each probability measure Qn, absolutely continuous with respect to Pn, we
assign its Radon-Nikodym derivative dQn/dPn. Thus the set of all such measures

is identified with the subset L1,n
+ = L1

+(Ω
n,Fn

T ,P
n) of non-negative Pn-integrable

random variables. It is proved in [8] (Proposition 4.7) that the set Mn
σ is dense in

Mn
s with respect to the norm topology of L1,n. Therefore, we may assume that

Zk,n
T · Pn ∈ Mn

σ.
Put εn = 1/n and choose M(n) > 0 so that

EPn

(
Zn
T I{Zn

T
≥M(n)}

)
≤ εn.

By Egorov’s theorem there is a set Bn ∈ Fn
T such that

P
n(Ωn\Bn) ≤ εn/M(n)

and gk,nZk,n
T converges to Zn

T uniformly on Bn as k → ∞. Furthermore, choose
k(n) large enough to ensure the inequality

|gk(n),nZk(n),n
T − Zn

T | ≤ εn on Bn.

Then for any An ∈ Fn
T the following esimates hold true:

∫

An∩(Ω\Bn)

Zn
T dP

n ≤
∫

{Zn
T
≥M(n)}

Zn
T dP

n +

∫

{Zn
T
<M(n)}∩(Ω\Bn)

Zn
T dP

n ≤ 2εn,
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∫

An∩Bn

Zn
T dP

n ≤ εn +

∫

An

Z
k(n),n
T dPn.

Consequently,

(9) (Zn
T · Pn)(An) ≤ 3εn + (Qn)(An),

where Qn = Z
k(n),n
T · Pn.

It follows from inequality (9) that if the sequence (Pn) is contiguous with respect
to (Zn

T ·Pn) then it is contiguous with respect to some sequence Qn ∈ Mn
σ. Likewise,

if (Pn)△ (Qn) for any sequence Qn ∈ Mn
σ then (Pn)△ (Zn

T · Pn) for any sequence
Zn ∈ Dn. By conditions (e) of Theorems 2.1 and 2.2 this proves that NAA condition
implies the existence of a sequence Qn ∈ Mn

σ such that (Pn) ⊳ (Qn), and SAA
condition is satisfied if the relation (Pn)△ (Qn) holds true for any sequence Qn ∈
Mn

σ.
The converse statements also follow from conditions (e) of Theorems 2.1, 2.2 and

the inclusion Mn
σ ⊂ Dn.

Let’s prove the last assertion of the theorem. If Mn
loc 6= ∅ then Mn

loc is dense in
Mn

σ with respect to the norm topology of L1,n. This result, as is mentioned in [22],
follows from Theorem 1.1 of the paper [15]. Thus in the above argumentation the
set Mn

σ can be replaced by Mn
loc. �

The subsequent theorem shows, in particular, that NAA and SAA conditions can
be checked by exploring the sequence of strategies that achieve the optimal expected
logarithmic utility of the terminal wealth. Taking into account the results of [9],
[10], this gives an opportunity to express criteria for NAA and SAA conditions in
terms of the semimartingale characteristic sequences of the stock price processes
Sn.

Theorem 4.2. Suppose, Mn
σ 6= ∅ and

sup
X∈Xn

1

EPn lnXn
T <∞.

Then for every n there exists a unique log-optimal strategy V̂ n, a unique minimal

reverse entropy supermartingale density Ẑn (see Remark 2.3) and the following
relations hold true:

NAA ⇐⇒ lim
α↓0

lim inf
n→∞

EPn
(V̂ n

T )−α = 1 ⇐⇒ (Pn)⊳ (Ẑn
T · Pn);

SAA ⇐⇒ lim inf
n→∞

EPn
(V̂ n

T )−α = 0 for some α ∈ (0, 1) ⇐⇒ (Pn)△ (Ẑn
T · Pn).

Proof. The statements, concerning the existence and uniqueness of the processes

V̂ n, Ẑn with the above properties, the existence of the numéraire portfolio V n and

the relations V n = V̂ n, 1/V n = Ẑn were proved in [3] with the use of the results
of [23]. It remains to apply conditions (b) of Theorems 2.7 and 2.8 and conditions
(d) of Theorems 2.1 and 2.2. �

5. Diffusion market models

In the framework of the model considered in Sect. 4, assume that for every

n the stock prices are driven by m(n)-dimensional process (W 1,n
t , . . . ,W

m(n),n
t ),

t ∈ [0, T (n)], composed of independent standard Wiener processesW i,n, defined on
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the filtered probability space (Ωn,Fn,Pn,Fn). The stock prices Sn are subject to
the system of stochastic differential equations

dSi,n
t = Si,n

t dRi,n
t , Ri,n

t =

∫ t

0

µi,n
u du+

∫ t

0

(βi,n
u , dWn

u ), i = 1, . . . , d(n),

where predictable stochastic processes µi,n, βi,n satisfy the conditions
∫ T (n)

0

(
|µi,n

t |+ |βi,n
t |2

)
dt < +∞

and Si
0 > 0. We use the notation |x| =

√
(x, x) for the length of a vector x as well

as for the absolute value of a scalar.
Assume also that d(n) ≤ m(n) and the rank of the matrix σn with the rows

(βi,n)di=1 is equal to d(n) for all t, ω and n. Then the matrix σn(σn)T is invertible.
Let the vector λn = (σn)T (σn(σn)T )−1µn be such that

(10)

∫ T (n)

0

|λnt |2 dt < +∞ a.s.

It is customary to call λn a market price of risk process.
The following assertion is known: see e.g. Example 4.2 in [9] and Example 2.2.19

in [5]. For convenience, we provide its direct proof.

Lemma 5.1. Under the adopted assumptions there exists the numéraire portfolio

V n
t = exp

(
1

2

∫ t

0

|λnu|2 du+

∫ t

0

(λnu, dW
n
u )

)
, V ∈ Xn

1 .

Proof. We drop index n in the course of the proof. Represent Si as a sum of the
process Ai of finite variation and the local martingale M i:

Si
t = Si

0 +Ai
t +M i

t , Ai
t =

∫ t

0

Si
uµ

i
u du, M i

t =

∫ t

0

(Si
uβ

i
u, dWu).

Since 〈M i,Mk〉t =
∫ t

0
Si
uS

k
u(β

i
u, β

k
u)du we conclude (see [11], Theorem 6.30) that

the class L(S) consists of predictable processes γ, verifying the condition

(11)

∫ T

0

∣∣∣∣∣

d∑

i=1

γitS
i
tµ

i
t

∣∣∣∣∣ dt+
∫ T

0

d∑

i,k=1

γitγ
k
t S

i
tS

k
t (β

i
t , β

k
t ) dt <∞ a.s.

Condition (10) assures that the following local martingale (Girsanov exponential,
represented by Dolean-Dade exponential) is well-defined:

Zt = E(−λ ◦W )t = exp

(
−1

2

∫ t

0

|λu|2 du−
∫ t

0

(λu, dWu)

)
.

By virtue of the representation

Si
t = Si

0 E(Ri)t = Si
0 exp

(∫ t

0

(
µi
u − 1

2
|βi

u|2
)
du +

∫ t

0

(βi
u, dWu)

)

and the equality µi = (βi, λ), we deduce that the processes

Si
tZt = Si

0 exp

(
−1

2

∫ t

0

|βi
u − λu|2 du +

∫ t

0

(βi
u − λu, dWu)

)

= Si
0E((βi − λ) ◦W )t
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are local martingales. It follows (from [6], Lemma 3.2) that the processes XZ,
X ∈ X are local martingales as well. Hence, they are supermartingales and Z ∈ D.

Furthermore, let δ = (σσT )−1µ and γi = δi/(ZSi). Then

d∑

i=1

γiµiSi =
1

Z
(µ, δ) =

1

Z
(σλ, δ) =

1

Z
(λ, λ),

d∑

i,k=1

γiγkSiSk(βi, βk) =
1

Z2

d∑

i,k=1

δiδk(βi, βk) =
1

Z2
(σT δ, σT δ) =

1

Z2
(λ, λ)

and condition (11) is satisfied in view of (10). Thus, γ ∈ L(S).
Note that

(δ, dR) = (δ, µ)dt+ (σT δ, dW ) = (λ, λ)dt + (λ, dW ),

E(δ ◦R)t = exp

(
(δ ◦R)t −

1

2
〈δ ◦R, δ ◦R〉t

)

= exp

(
1

2

∫ t

0

|λu|2du +

∫ t

0

(λu, dWu)

)
=

1

Zt
.

Therefore,

d

(
1

Zt

)
=

1

Zt
(δt, dRt) = (γ, dS)

and Z ∈ D admits the representation Z = 1/V , V = 1 + γ ◦ S ∈ X1, which was to
be proved. �

Lemma 5.1 shows that for the diffusion market model under consideration the
results of Sect. 2 are valid. The subsequent lemma allows us to give a characteriza-
tion of NAA and SAA conditions in terms of the sequence (λn) (see Theorem 5.3
below).

Lemma 5.2. (a) The following equality holds:

(12) lim
M→∞

lim sup
n→∞

Pn(V n
T ≥M) = lim

M→∞
lim sup
n→∞

Pn




T (n)∫

0

|λnt |2dt ≥M


 ;

(b) lim supn→∞ Pn(V n
T ≥M) = 1 for all M > 0 iff

lim sup
n→∞

Pn

(∫ T (n)

0

|λnt |2dt ≥M

)
= 1 for all M > 0.

Proof. A simple calculation yields:

V n
T

exp
(∫ T

0 |λnt |2dt
) = E(λn ◦Wn)T ,

exp
(

1
2α(1 − α)

∫ T

0
|λnt |2dt

)

(V n
T )α

= E(−(αλn) ◦Wn)T , α ∈ (0, 1).

As long as EPn(Y n)T ≤ 1 for any non-negative local martingale Y n, by the estimate
(4) we obtain:

(13) Pn(V n
T ≥M) ≤ eN

M
+ Pn

(∫ T

0

|λnt |2dt ≥ N

)
,
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(14) Pn

(∫ T

0

|λnt |2dt ≥M

)
≤ Nα

e
1
2
α(1−α)M

+ Pn(V n
T ≥ N).

Taking the upper limit as n → ∞, and then the limits as M → ∞, N → ∞, we
get equality (12). Furthermore, let lim supn→∞ Pn(V n

T ≥ M) = 1 for all M > 0.
Then inequality (13) implies that

(15) 1 ≤ eN

M
+ lim sup

n→∞
Pn

(∫ T

0

|λnt |2dt ≥ N

)
.

In the case of lim supn→∞ Pn
(∫ T

0
|λnt |2dt ≥M

)
= 1 for all M > 0, by inequality

(14) we have

(16) 1 ≤ Nα

e
1
2
α(1−α)M

+ lim sup
n→∞

Pn(V n
T ≥ N).

Taking the limits in (15), (16) as M → ∞, we get the assertion (b). �

Theorem 5.3. The following relations hold true:

NAA ⇐⇒ lim
M→∞

lim sup
n→∞

Pn

(∫ T (n)

0

|λnt |2dt ≥M

)
= 0;

SAA ⇐⇒ lim sup
n→∞

P
n

(∫ T (n)

0

|λnt |2dt ≥M

)
= 1 for all M > 0.

Proof follows directly from Lemma 5.2 and conditions (c) of Theorems 2.1 and
2.2. �

Theorem 5.3 implies Propositions 8 and 9 of the paper [14]. Note, that as
compared to [14], we do not merely drop the condition EPnE(−λn ◦Wn)T = 1, but
even do not assume the existence of equivalent local martingale measures in the
”small” markets.

6. Discrete-time infinite horizon market model with one log-normal

stock

Consider a sequence (ξk)
∞
k=1 of independent standard normally distributed ran-

dom variables ξk ∈ N (0, 1), defined on the probability space (Ω,F ,P), F =
σ(ξk, k ≥ 1). Assume that there is only one stock, whose price is determined
by the recurrence relation

Sn = Sn−1(1 +Rn), Rn = exp(µn − σ2
n/2 + σnξn)− 1, n ≥ 1; S0 = 1.

Here µk ∈ R, σk > 0 are non-random sequences.
We put T

n = {0, . . . , T (n)}, T (n) = n and introduce the sequence of small
markets, defined on the probability spaces (Ω,Fn,P), Fn = Fn

T = σ(ξ1, . . . , ξn)
with associated sets Xn of value processes, containing the elements X of the form

Xk = Xk−1(1 + δkRk) ≥ 0, k = 1, . . . , n; X0 = x.

An element δk ∈ [0, 1] of (Fn)-predictable process (δn) describes the fraction of
wealth, invested in the stock at time k.
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Let the elements of the sequence (δ∗k)k≥1 be the solutions of the following opti-
mization problems:

E ln(1 + δRk) =
1√
2π

∫ ∞

−∞
ln
(
1 + δ(eµk−σ2

k/2+σkx − 1)
)
e−x2/2dx→ max

0≤δ≤1

and let Vn =
∏n

k=1(1+ δ∗kRk). Then the processes (Xk/Vk)0≤k≤n are supermartin-
gales ([3], Example 6). Thus all the results of Sect. 2 are valid. At that, the
measures Pn coincide with the restrictions of P to Fn, and V

n = (Vk)
n
k=0.

As is shown in [28], the condition
∑∞

k=1(µk/σk)
2 < ∞ is sufficient for the ab-

sence of asymptotic arbitrage. More complete picture is given in Lemma 6.1 and
Theorem 6.2. Instead of a direct analysis of the sequence (Vk), we exploit conditions
(c) of Theorems 2.7, 2.8.

Put ε > 0 and

Σ1
n(ε) =

n∑

k=1

(
µk

σk

)2

I{0<µk≤ 1
2
(1+ε)σ2

k}, Σ2
n(ε) =

n∑

k=1

µkI{µk>
1
2
(1+ε)σ2

k},

Σn(ε) = Σ1
n(ε) + Σ2

n(ε).

Lemma 6.1. The following assertions hold:

(a) if Σ∞(1) <∞ then NAA condition is satisfied;
(b) if Σ2

∞(ε) = ∞ for some ε > 0 then SAA condition is satisfied;
(c) if there exists an ε ∈ (0, 1) such that

(17) lim
k→∞

σkI{0<µk≤ 1
2
(1+ε)σ2

k} = 0

and Σ1
∞(ε) = ∞ then SAA condition is satisfied.

Proof. (a). Let Zn =
∏n

k=1 ζk, where

ζk = I{µk≤0} + exp

(
−1

2

(
µk

σk

)2

− µk

σk
ξk

)
I{0<µk≤σ2

k
}

+ exp

(
−µk +

σ2
k

2
− σkξk

)
I{µk>σ2

k
}.

The independence of ξk and Fk−1 and the equality Eeaξ = ea
2/2 imply

E((1 + δkRk)ζk|Fk−1) = (1 + δkERk)I{µk≤0} + ((1− δk)Eζk + δk) I{µk>σ2
k
}

+

(
(1− δk)Eζk + δkEe

„

− 1
2

“

σk−µk
σk

”

2

+
“

σk−µk
σk

”

ξk

«)
I{0<µk≤σ2

k
}

= (1 + δk (e
µk − 1)) I{µk≤0}

+
(
(1− δk)e

−µk+σ2
k + δk

)
I{µk>σ2

k
} + I{0<µk≤σ2

k
} ≤ 1.

Thus, (Zk)
n
k=1 is an equivalent supermartingale density for Xn:

E(XkZk|Fk−1) ≤ Xk−1Zk−1, k = 1, . . . n; X ∈ Xn.

By Theorem 2.7 we see that NAA condition is a consequence of the equality

lim
α↓0

lim inf
n→∞

EZα
n = 1.

We have,

Eζαk = I{µk≤0} + e−
1
2
α(1−α)(µk/σk)

2

I{0<µk≤σ2
k
} + e−αµk+

1
2
α(1+α)σ2

kI{µk>σ2
k
}.
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Hence,

EZα
n ≥ exp

(
−1

2
α(1 − α)Σ1

∞(1)− αΣ2
∞(1)

)

and limα↓0 lim infn→∞ EZα
n ≥ 1 under condition (a). Conversely, EZα

n ≤ 1, α ∈
(0, 1) by Jensen’s inequality.

(b). Put δk = I{µk>
1
2
(1+ε)σ2

k} and α ∈ (0, ε). Then

E(1 + δkRk)
−α = e−α(µk− 1

2
(1+α)σ2

k) ≤ e−αµk(1− 1+α
1+ε ) for µk >

1

2
(1 + ε)σ2

k

and the correspondent value process X satisfies the inequality

E
(
X−α

n

)
=

n∏

k=1

E(1 + δkRk)
−α ≤ exp

(
−α(ε− α)

1 + ε
Σ2

n(ε)

)
.

By condition (b) we have limn→∞ E (X−α
n ) = 0 and by Theorem 2.8 there exists a

strong asymptotic arbitrage.
(c). Put δk = µkσ

−2
k I{0<µk≤ 1

2
(1+ε)σ2

k}. To show the existence of a strong asymp-

totic arbitrage it is enough to prove that

(18) lim
n→∞

EX−α
n = lim

n→∞

n∏

k=1

E(1 + δkRk)
−α = 0, α ∈ (0, 1)

and apply Theorem 2.8.
Since the series Σ1(ε) is divergent, the sequence (δk) contains infinitely many

non-zero members. Without loss of generality, we assume that 0 < µk ≤ 1
2 (1+ε)σ

2
k

for all k and σk → 0, k → ∞.
By Taylor’s formula we obtain the estimate

ψα(x) =
1

(1 + x)α
− (1− αx) ≤ α(1 + α)

2

x2

(1 + b)2+α
, x ≥ b > −1.

Put νk = −δk
√
σk. Then

Eψα(δkRk) = E
(
ψα(δkRk)(I{−δk<δkRk<νk} + I{δkRk≥νk})

)

≤ α(1 + α)

2
E

(
(δkRk)

2

(1− δk)2+α
I{Rk<−√

σk} +
(δkRk)

2

(1 + νk)2+α
I{Rk≥−√

σk}

)

≤ α(1 + α)

2

(
22+αδ2kσk
(1− ε)2+α

P(Rk < −√
σk) +

δ2kE(R
2
k)

(1 + νk)2+α

)
.

Let us find an asymptotic form of the right-hand side of this inequality as k → ∞.
By formula (7.1.23) of [1]:

P(ξk < −x) =
1√
2π

∫ −x

−∞
e−t2/2 dt =

1√
π

∫ +∞

x/
√
2

e−τ2

dτ

=
1

2
erfc

(
x√
2

)
∼ e−x2/2

√
2πx

, x→ +∞,

we get

P(Rk < −√
σk) = P

(
ξk <

σk
2

− µk

σk
+

1

σk
ln (1−√

σk)

)

≤ P

(
ξk <

σk
2

− 1√
σk

)
∼

√
σk√
2π

exp

(
− 1

2σk

)
, k → ∞.
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Moreover, νk → 0 and

ER2
k = e2µk+σ2

k − 2eµk + 1 ∼ σ2
k, k → ∞.

Consequently,

Eψα(δkRk) ≤
α(1 + α)

2
Ak, Ak ∼ δ2kσ

2
k =

(
µk

σk

)2

, k → ∞.

Furthermore, ERk = eµk − 1 ≥ µk. Thus,

E
1

(1 + δkRk)α
= 1− αδkERk + Eψα(δkRk) ≤ 1− α

(
µk

σk

)2

+
α(1 + α)

2
Ak

≤ exp

(
−α

(
µk

σk

)2(
1− (1 + α)

2
(1 + o(1))

))
, k → ∞

and the condition Σ1
∞(ε) = ∞ implies (18). �

Theorem 6.2. The following assertions hold:

(a) exactly one of the conditions NAA or SAA is satisfied and

NAA ⇐⇒ P(V∞ <∞) = 1, SAA ⇐⇒ P(V∞ = ∞) = 1.

(b) If condition (17) is satisfied for some ε ∈ (0, 1) then

NAA ⇐⇒ Σ∞(ε) <∞; SAA ⇐⇒ Σ∞(ε) = ∞.

Proof. The process (1/Vn)n≥1 converges a.s. since it is a positive supermartin-
gale. Moreover, Vn is a product of independent positive random variables. From
Kolmogorov’s zero-one law it follows that the events {V∞ < ∞}, {V∞ = ∞} have
probability 0 or 1.

Let P(V∞ <∞) = 1. The sequence Vn converges to V∞ <∞ a.s. Hence, (Vn|P)
is tight:

lim sup
n→∞

P(Vn ≥M) ≤ E

(
lim sup
n→∞

I{Vn≥M}

)
≤ P(V∞ ≥M/2), M > 0.

By Theorem 2.1 this implies the absence of asymptotic arbitrage.
If P(V∞ = ∞) = 1 then

lim sup
n→∞

P(Vn < M) ≤ E

(
lim sup
n→∞

I{Vn<M}

)
= 0, M > 0

and condition (c) of Theorem 2.2 is satisfied. Hence, there exists a strong asymp-
totic arbitrage.

Assertion (b) follows from Lemma 6.1 and the inequality Σn(ε) ≥ Σn(1), ε ∈
(0, 1). �
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