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ASYMPTOTIC ARBITRAGE AND NUMERAIRE PORTFOLIOS
IN LARGE FINANCIAL MARKETS

DMITRY B. ROKHLIN

ABSTRACT. This paper deals with the notion of a large financial market and
the concepts of asymptotic arbitrage and strong asymptotic arbitrage (both of
the first kind), introduced in [13], [14]. We show that the arbitrage properties
of a large market are completely determined by the asymptotic behavior of the
sequence of the numéraire portfolios, related to small markets. The obtained
criteria can be expressed in terms of contiguity, entire separation and Hellinger
integrals, provided these notions are extended to sub-probability measures. As
examples we consider market models on finite probability spaces, semimartin-
gale and diffusion models. Also a discrete-time infinite horizon market model
with one log-normal stock is examined.

1. INTRODUCTION

The notion of a large financial market as a sequence of the traditional market
models with a finite number of risky assets (called stocks in the sequel), was intro-
duced in [I3]. It is assumed that in n-th small market the discounted stock prices
are described by a vector semimartingale S = (5", ..., Sf(")’n), t € 10,7(n)).
Any element of the set X™ of nonnegative value processes, generated by trading
strategies, is as a sum of an initial non-random endowment and a stochastic integral
with respect to S™. The number d(n) of stocks as well as the planning horizon T'(n)
can increase to infinity as n — oo.

The notions of asymptotic arbitrage, introduced in [I3], connected the results of
modern arbitrage theory and the conclusions, obtained in the framework of Capital
Asset Pricing Model (Sharpe, Lintner) and Arbitrage Pricing Model (Ross, Huber-
man): see [28], [I12]. The present paper is aimed at further study of the conditions
of asymptotic arbitrage of the first kind [13] and strong asymptotic arbitrage of the
first kind [14]. In what follows, the term "first kind” is omitted since we do not
consider asymptotic arbitrage of the second kind [13]. Another notions of arbitrage
on a large market were introduced in [I8], [26], [19].

Following |20], asymptotic arbitrage (resp., strong asymptotic arbitrage) can be
interpreted as an opportunity of getting infinitely rich with positive probability
(resp., with probability 1) by risking vanishing amount of money. Under the as-
sumptions of no-arbitrage and completeness of the small markets it was proved
in [I3] that the condition of no asymptotic arbitrage (NAA) is equivalent to the
contiguity of the sequence (P™) of original probability measures with respect to the
unique sequence (Q™) of equivalent local martingale measures. In the paper [20] it
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was shown that if the small markets are incomplete then NAA condition is equiv-
alent to the existence of some sequence (Q™) with the same properties. Another
proofs of this result were given in [2I], [I4]. It was proved in [I4] that the strong
asymptotic arbitrage (SAA) is equivalent to the entire separation of the sequence
(P™) and any sequence (Q™) of equivalent local martingale measures.

Let us remember that, with some abuse of terminology, a value process 0 <
V™ e X™ is called the numéraire portfolio if any process X" € X™, being expressed
in the units of V", becomes a supermartingale. This notion in slightly narrow
meaning (martingales instead of supermartingales) was introduced in [24]. We refer
to [B], [25], [17], [6], [5] for the existence theorems and the properties of numéraire
portfolios as well as for further references. The main theme of the present paper
concerns the characterization of NAA and SAA conditions in terms of the sequence
(V™).

The numéraire portfolio possesses a number of optimality properties. Particu-
lary, under some technical conditions, it maximizes the expected logarithmic utility
and the correspondent supermartingale measure (or density process) minimizes the
reverse relative entropy [3]. So, the process V™ can be looked for as the solution
of the correspondent optimization problem. In any case, V" is uniquely defined
[B]. Thus the criteria proposed below are not purely existence results, but also
computational tools for checking asymptotic arbitrage conditions.

Note that in the case of infinite time horizon a market with finite number of stocks
can be regarded as ”large” by representing it as a sequence of ”"small” markets
with finite horizons T'(n) 1T oo and the same stocks. For such a market NAA
condition is tantamount to the condition of no unbounded profit with bounded risk
(NUPBR) [I7]. It was established in [I7] that NUPBR condition is equivalent to the
existence of the non-exploding numéraire portfolio V', i.e. Vo < 4+00. Underlying
the connection with the results of the present paper, one may say that the condition
Voo < 400 is imposed on the sequence (V™) of the numéraire portfolios, which are
the restrictions of V to [0,T'(n)].

Somewhat surprisingly, the existence of the numéraire portfolios appears to be

the only non-trivial assumption, concerning the structure of the small markets, al-
lowing for the mentioned characterization of NAA and SAA conditions (see Sect. [2)).
At the same time this assumption is not restrictive since in the traditional semi-
martingale market model with finite number of stocks and finite time horizon the
existence of the numéraire portfolio is implied by the existence of an equivalent lo-
cal martingale (or even o-martingale) measure for the price process (S*, ..., S%")
(see [A], [17]).
Organization of the paper. In Sect. 2] under minimal assumptions regarding the
structure of the sets X", we prove that the realization of NAA and SAA conditions
is completely determined by the behavior of the sequence (V™). The correspondent
criteria can be expressed in terms of contiguity, entire separation and Hellinger inte-
grals, provided these notions are extended to sub-probability measures (Theorems
21 22 27 25).

The rest of the paper is devoted to more concrete market models. Although
the results of Sect. [2] are applicable to all of them, the specific features of these
models deserve a separate study. In Sect. [3] we consider a sequence of incomplete
markets on finite probability spaces. Theorem [3.1] contains the assertion about the
equivalence of NAA condition to the contiguity of the sequence (P™) with respect to
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the sequence (6”) of martingale measures, minimizing the reverse relative entropy.
Likewise, SAA condition is equivalent to the entire separation of (P™) and (6")

The results of [20], [21], [14], cited above and concerning the semimartingale
market models, are reproved in Sect. @l Although these results are not contained in
theorems of Sect. 2 it is straightforward to give their proofs utilizing the mentioned
theorems and the assertions of [23], [§], [15] regarding the structure of the set of
supermartingale measures for X™. This is done in Theorem Il Criteria, linking
NAA and SAA conditions to the sequence of optimization problems are given in
Theorem

In Sect. Bl we treat the diffusion market models. The obtained criteria (Theorem
(3) are, in fact, of the same form as in [14]. However, the class of models under
consideration is wider since we do not require the existence of local martingale
measures in the small markets.

In Sect. Bl we consider a market model with discrete time and infinite horizon. It
is assumed that there is only one stock with independent log-normal returns. In this
example exactly one of the conditions NAA or SAA is realized. Under an additional
assumption we are able to express these conditions in terms of convergence of some
series, determined by the parameters of the model (Theorem [6.2)).

Let’s briefly mention the mathematical tools used in the paper. The argumen-
tation of Sect. 2 where the key results are collected, is based only on elemen-
tary probabilistic inequalities. In the subsequent sections we utilize non-trivial but
well-known results related to the theory of "small” markets. Some material from
stochastic analysis is used in Sect. 4] and

2. MAIN RESULTS

Consider a sequence of probability spaces (27, F7 P™)° . endowed with the
filtrations F" = (F}*)tern, where T™ is an interval [0,T(n)] or a set of integers
{0,...,T(n)}. Assume that the o-algebra F{ is trivial up to P"-null sets. Denote by
X" a family of non-negative F"-adapted stochastic processes satisfying the following
conditions:

(i) 1 € X™ and X™ is a cone: if X € X™ and A > 0 then AX € A",
(ii) there exists a strictly positive process (numéraire portfolio)
Vieaxl ={X"eX" : X}'=1}
such that X™/V™ is a P"-supermartingale for all X™ € X™.
The set X™ describes the value processes, generated by investment strategies in
n-th small market. The large market under consideration is the sequence (X™)22
of small markets.
Following [13], [14], we say that
e there is no asymptotic arbitrage (NAA) on the large market (X™) if for any
sequence X" € X" the condition X§ — 0 implies that
limsup P* (X} > 1) = 0;
n—oo
e there exists a strong asymptotic arbitrage (SAA) on the large market (X™)
if
limsupP" (X7 >1)=1

n—oo

for some sequence X™ € &A™ such that Xg — 0.
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By an appropriate scaling of the sequences X", it is possible to replace the sets
{X} > 1} by the sets {X} > an}, an — +00, thus fitting the above definitions to
the interpretation of asymptotic arbitrage, mentioned in Sect. [

In the papers [13], [20], [21], [T4] criteria for NAA and SAA conditions are ex-
pressed in terms of contiguity and entire separation of some sequences of probability
measures. In the context of the present paper it is convenient to extend these no-
tions (see [I1]) to sub-probability measures, that is to countably additive measures
Qn, satisfying the condition 0 < Q,(4,) <1, A, € F}.

A sequence of probability measures P™ is called contiguous with respect to a
sequence of sub-probability measures Q™ (notation: (P™) <1 (Q™)) if the condition
Q"(A™) — 0, A™ € F} implies that P"(A™) — 0. A sequence of probability mea-
sures P™ and a sequence of sub-probability measures Q™ are called entirely (asymp-
totically) separated (notation: (P™) A (Q™)) if there exist a sequence of natural
numbers ny T oo and sets A" € F'* such that P+ (A" ) — 1 and Q"*(A™) — 0,
k — oo.

We say that a strictly positive F"-adapted stochastic process Z™ is an equivalent
supermartingale density for X™ if X" Z™ is a P"-supermartingale for all X™ ¢ A"
and Zg = 1. Denote by D" the set of all equivalent supermartingale densities
(compare with [23], [29], [I7]). Clearly, 1/V™ € D™.

Denote by Li’" = LO(Q", 2, P™) the set of (equivalence classes) of non-negative
Fr-measurable random variables. Let {" € L:JL’". Following [16], we denote by
™ - P™ the measure with the P™-density £™:

(€ P")(A") = Epn(€"Lan), A" € F.

To each process Z"™ € D™ we assign a sub-probability measure Z7 - P™.
Consider a sequence ™ € Lg_’" and a sequence of probability measures P™. Ac-
cording to the definition of [I1] a sequence (§"|P™) is tight if
hm limsup P*(¢" > M) = 0.

M—00 nosoco

Theorem 2.1. The following conditions are equivalent:

(a) NAA;

(b) (Y7 |P") is tight for any sequence Y™ € AT';
(c) (VEIP™) is tzght

(d) (Pm) < ((Vg)~t-P);

(e) (P™) < (Z" P”) for some sequence Z™ € D",

Proof. (a) = (b). Assume that condition (b) is violated. Then there exist a
number 8 > 0 and a sequence Y™ € X" such that

e

limsupP™" (Y > M) > 5>0

n—00

for all M > 0. Take an increasing sequence of natural numbers ny, so as P (Y'* >
k) > (/2. Further, take a sequence M"™ 1 oo meeting the condition M™ = k and
put X" =Y"/M". Then X} =1/M"™ — 0 and

limsup P" (X7 > 1) > limsup P"* (Y% > k) > 3/2 > 0.

n— 00 k—o0

This means that NAA condition is violated.
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(c) = (d). Let ((VF#)~*-P™)(A™) — 0, A™ € F2. Then the inequality

Py = Ptz M+ [ v e
Arn{VE <M}
PV > M)+ M((VF) ™ P)(A")

IN

yields that
limsup P"(A"™) < limsup P*(V] > M).

n—roo n—oo

By condition (c) it follows that P™(A™) — 0.
() = (a). Consider a sequence X™ € X" such that lim, .. X§ — 0. The
inequality

Iixn>1
W) @ P 2 ) = e (Zpxp 020
T

and the contiguity of (P™) with respect to (ZF - P™) imply that
lim P"(X2 >1) =0,

n—r oo

i.e. NAA condition is satisfied.
Implications (b) = (¢) and (d) = (e) are evident. O

) < Epe(Z3X}) < X7

Theorem 2.2. The following conditions are equivalent:
(a) SAA;
(b) there exists a sequence Y™ € XJ* such that

limsup P*" (Y7 > M) =1 for all M > 0;

n—oo
(¢) limsup,, ., P"(VJ# > M) =1 for all M > 0;
(d) (P™) A (V) ~t-P™);
(e) (P™) A (Z3-P™) for any sequence Z™ € D™.
Proof. (b) = (a). Take an increasing sequence of natural numbers ny, such that
P (Y > k) >1—1/k.

Define the sequences M,,, X™ as in the proof of the implication (a) = (b) of
Theorem [ZT] We have X{§ — 0 and

limsup P" (X7 > 1) > limsup P™* (X% > 1) = limsup P™* (Y/* > k) = 1.

n— 00 k— o0 k—o0

Thus, (X™) realizes the strong asymptotic arbitrage.
(d) = (c). Let the sequences ny 1 co and A" € FI* be such that

P (A™) — 1, (V%) ~'-P™)(A™) — 0.
Then
pre(vpt < M) = P™({Vp* < M} (2\A™))
[ e
{Vpk<M}NA™k
P (Q\A™) + M((Vy*) ™! - P™)(A™) =0, k— oo

and condition (c) is satisfied.

IN
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(a) = (e). Let X™ be a sequence, mentioned in the definition of the strong
asymptotic arbitrage and Z™ € D™. The inequality () and the definition of the
strong asymptotic arbitrage show that

lim (Z7-P™") (X7 >1)=0, limsupP"(X}>1)=1.
n—oo

n—00

Therefore the sequences (P™) and (Z7 - P™) are entirely separated.
Implications (¢) = (b) and (¢) = (d) are evident. O
Inspired by the results of [I1], [I4], we derive criteria for NAA and SAA con-
ditions in terms of Hellinger-type integrals. Auxilary inequalities, suitable for this
purpose, are collected in Lemma Inequality (@) is applied also in Sect. Bl The
proof of inequality (B]) is, in fact, borrowed from [I1] (p. 287).

Lemma 2.3. Let £ be a non-negative random variable, defined on a probability
space (Q, F,P) and let a € (0,1), M >0, N > 0 be some numbers. Then

(2) P(§ < M) < ME{™;
if E(1/€) <1 then

1 a 1 -«
3 E€T¥< | — — NP M);
® eo<(y) +(5)  +NRE<
if a non-negative random variable 1 is such that E(§/n) < 1, then
N
(4) P> M) <57 +P(n = N).
Proof. The estimate (2] follows from the inequality

Teanry < MOE Irecnny-
Now let E(1/¢) < 1. Then

-«
B = B(E [e>ay) + B <§TI{£<M}I{£<1/N}>

1

1 el e’
— < _ _ « .

At last, assume that non-negative random variables £, n verify the inequality
E(¢/n) < 1. We see that

I I
(5) E( {£>M}) gE(i {£>M}) <L
U] M M

6) E (71{5;““) > E (—I{QM}HI{”“}) > LP({E> M} {y < N))

But for any sets By, By € F we have
P(Bl n Bz) = P(Bl) + P(Bg) — P(Bl U Bg) > P(Bl) - P(Q\Bg)
Hence (Bl and (@) imply ):

S P({E= Myn{n< N)2PE=M)~Ply=N). O
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Corollary 2.4. Any sequence Z™ € D" satisfies the equality
(7) g%hnrggf Ep, (Z7)" = lim liminf P ((Z%)~t < M).
In particular, ((Z%)~1|P™) is tight iff the left-hand side of (7) is equal to 1.
Proof. Applying inequality (2)):
P"((Z3)™" < M) < M®Epn(Z)"
and taking the limits as n — oo, @« — 0 and M — oo, we get
im liminf P"((Z%)™' < M) < E%nminprn(Z;)a.

1
M—o00 n—oo n— 00
Furthermore, using (3]):
n\o 1 “ 1 e apn ny—1
Epn (ZT) < M + N + N*P ((ZT) < M),

and taking the limits as n — oo, M — oo, « — 0 and N — oo, we obtain the
reverse inequality. (Il

Corollary 2.5. The following conditions are equivalent:
(a) limsup P"(VJ > M) =1 for all M > 0;
(b) 1ign:i£f Ep, (V)™ =0 for some o € (0,1).
Proof. Implication (b) = (a) follows from (2I):
PV < M) < MY“E(V})~°.
Conversely, if (a) holds then by ([B]) we get

iminfEve)- < (L) 4 (L)

imin — — .

n—00 T -\ M N

Since M, N are arbitrary, this yields (b). O
Corollary 2.6. Let X™ € A", Z™ € D™. Then

N
limsup P*(Xp > M) < i + limsup P*(Vy > N);

n—r oo n—r oo

N
limsup P* (V] > M) < i + limsup P*(1/Z% > N).

n—00 n—oo

In particular, if (Z%)7'|P™) is tight then (VJ*|P™) is tight as well.
The proof directly follows from () since
Epr (X7/V7) <1, Epu(V7/(Zp)7') <1 O
Theorem 2.7. The following conditions are equivalent:

(a) NAA;
(b) limliminf Ep (V)™ =1;

10 n—oo
(c) there exists a sequence Z™ € D™ such that

E%hgggf Ep, (Z7)* =1.
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Proof. (a) <= (b). By Theorem 2] the absence of asymptotic arbitrage
is equivalent to the tightness of the sequence (V'|P™). But in accordance with
Corollary 2.4 this condition is equivalent to (b) since (V)1 € D".

(¢) = (a). Corollaries 24 and imply that (VF|P™) is tight. Applying
again Theorem [2.I] we conclude that there is no asymptotic arbitrage. The last
implication (b) = (c) is evident. O

Theorem 2.8. The following conditions are equivalent:
(a) SAA;
(b) lirginf Ep, (V)= =0 for some a € (0,1);
(c) the exists a sequence Y™ € X' such that
liminf Ep_(Y7)™% =0 for some o € (0,1).

n—roo

Proof. The assertion about the equivalence of (a) and (b) follows from Theo-
rem 2.2] and Corollary 2.5
(¢) = (a). Under condition (c) inequality (2] yields:

liminf P*(Y] < M) = 0.
n—r oo

Therefore condition (b) of Theorem holds true. Implication (b) = (c) is
evident. g

Remark 2.1. Tt is equivalent to require that conditions (b) of Corollary and
Theorem [2Z.8 hold true for all & € (0,1) or in the limit as & | 0 (compare with [I1],
p.287).

Remark 2.2. Extending the well-known terminology [I1] to sub-probability mea-
sures, the expression

d(Zp - P7)\*
H(a: Z3 - P",P") = Epn (%) — Ep, (2})°

can be called a Hellinger integral of order « € (0,1) between Z% - P™ and P™. The
related interpretation of Theorems 27, 228 can be compared with [14].

Remark 2.3. It follows from Jensen’s inequality and the definition of V™ that the
latter process is relatively log-optimal [6], [T1]:

X’Il
Epn (m —T> <0, X"eApl.

Vi
If, moreover, Ep» (In V') < oo then V" is log-optimal and the supermartingale den-

sity Z™ = 1/V™ minimizes the reverse relative entropy among all supermartingale
densities [3], [I7]. In other words,

1 1
EprnIn X% =Epn(InV?) =Epn [ In— | = inf Epn [In— | .
aop Bt = 1) =6 (1 L) = g o (1)

It should be mentioned that if Z™ - P™ is a probability measure then Epn In(1/27)
coincides with the entropy of P™ with respect to Z™ - P™ in the usual meaning (see

e.g. 7).
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3. MARKET MODELS ON FINITE PROBABILITY SPACES

Assume that for every n the set Q" is finite, T" = {0,...,7(n)} and there is
an F"-adapted process S/ = (S}",..., Std(")’n), t € T" of discounted stock prices,
defined on the probability space (2", F7, P™). Denote by (z,y) the scalar product
of vectors = and y in R%. Suppose that the set X™ of value processes consists of
the elements X™, admitting the representation

t
Xp=a"+y (y7,8) =S5 ,)>0, t=0,...,T(n),
j=1
where " € R and the components of F"-predictable processes
d(n),n)

n 1,n

I G

describe the number of stocks in investor’s portfolio.

Let M™ be the set of equivalent to P™ probability measures, under which the
process S™ is a martingale. Denote by H(P|Q) = EpIn (dP/dQ) the entropy of P
with respect to an (equivalent) measure Q.

Theorem 3.1. Let M"™ # (). Then for every n there exists a unique minimal
reverse entropy martingale measure Q™ € M'™:

H(P"Q") < H(P"|Q")., Q" eM"
and the following relations hold true
NAA < (P")<(Q"); SAA — (P")A(QM).
Proof. Consider the optimization problems
dpPm

(8) Eprn In X7 — Xr}}gﬁfb, Ep» In aqQr — QTILIéil\I}[" .

From Theorem 2.4 of [27] we know that the problems (8] are solvable and their
unique solutions V" € A7, Q" € M" are related as follows Q" = (V2)~! . Pn.
Moreover, the process V™ = V™ is the numéraire portfolio and Q™ minimizes the

reverse relative entropy (see [3] and Remark [Z3]). Thus the proof is implied by
conditions (d) of Theorems 2] and O

4. SEMIMARTINGALE MARKET MODELS

In this section we assume that the processes in X", D™ have cadlag trajectories
P"-a.s. Evidently, these assumptions do not affect the argumentation of Sect.

Suppose there are d(n) stocks in n-th small market and their discounted prices
are described by a vector semimartingale S™ = (S%", ..., 84" adapted to the
filtration F" = (F{")o<t<7(n), satisfying the usual conditions [TI]. Furthermore,
assume that any element X" € X" is of the form

th — "+ (,yn o Sn)t >0, te [O,T(n)],

where 2" € R, 4" = (y17, ... ,7‘1(")’") is an S™-integrable process (notation: 4" €
L(S™)) and

t
(7" 0 5™), = / (2, dST)
0
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is a vector stochastic integral [I1]. The quantity 7" determines the number of
units of i-th stock in investor’s portfolio at time t.

Let MY (resp., MJ. ) be the set of equivalent to P probability measures, under
which the process S™ is a o-martingale (resp., local martingale). Assume that
M? # (). Then there exists the numéraire portfolio V" € A7'. In full generality this
assertion follows from the results of [0] (see also [3], [I7]). Thus the conclusions of
Sect. 2 are valid for the sequence (X™) of semimartingale market models.

Denote by M7 the set of equivalent to P™ probability measures Q™ such that all
processes in X" are Q"-supermartingales and put D™ = {Z}-P™ : Z™ € D"}.

The statements of Theorem 1] below were proved in [14] under the assumption
M. # 0. Previously, assertion (a) was proved in [20], where the process S™ was
assumed to be locally bounded. We give alternative proofs, based on Theorems
21l and on the well-known non-trivial results, concerning the approximative
properties of inclusions

e CM7 C M7 C D"
Note that the inclusion M? C M?” follows from the Ansel-Stricker theorem [2]
(Corollary 3.5): see [8] (Theorem 5.3).

Theorem 4.1. Let M7 # (. Then
(a) NAA condition is satisfied iff there exists a sequence Q" € MZ such that
(P™) < (Q");
(b) SAA condition is satisfied iff (P™) A (Q™) for any sequence Q™ € M2.
If M} . # 0 then in the above statements the set MY can be replaced by MJ! ..

loc

Proof. Let Z™ € D". It follows from Theorem 4(b) of [29] (and, in fact, from

the results of [23], [4]) that there exist a sequence of non-negative Fj-measurable

random variables g™ < 1 and a sequence Zg’" -P™ € M7, k > 1 such that

gk’”Z;’" — Z%, k — oo, P™as.

To each probability measure Q™, absolutely continuous with respect to P™, we
assign its Radon-Nikodym derivative dQ™/dP™. Thus the set of all such measures
is identified with the subset Liﬁ" = L. (Q", F,P") of non-negative P"-integrable
random variables. It is proved in [8] (Proposition 4.7) that the set M is dense in
M?” with respect to the norm topology of L*™. Therefore, we may assume that

Zy" - P € M.
Put ¢” = 1/n and choose M (n) > 0 so that
Epn (Z’?’I{Z;EZM(n)}> <e™
By Egorov’s theorem there is a set B” € F7 such that
P*(Q"\B") < e"/M(n)

and gk*”Zé,f’n converges to Z7 uniformly on B™ as kK — co. Furthermore, choose
k(n) large enough to ensure the inequality

|gk(")’"Z§(n)’" — ZR| <" on B".
Then for any A™ € F7 the following esimates hold true:
/ ZpdP™ < / Z3 dP™ + / Zip dP™ < 2e™,

ArN(Q\B™) {Z23=>M(n)} {2z <M(n)In(Q\B")
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AnNBn An
Consequently,

9) (Z7 - P™)(A") < 3™ + (Q")(4™),

where Q" = Zéi(")’" - P7.

It follows from inequality (@) that if the sequence (P™) is contiguous with respect
to (ZF-P™) then it is contiguous with respect to some sequence Q™ € M. Likewise,
if (P™) A (Q™) for any sequence Q™ € MZ then (P™) A (Z}: - P™) for any sequence
Z™ € D". By conditions (e) of TheoremsZ.Iland 22 this proves that NAA condition
implies the existence of a sequence Q" € MZ such that (P™) < (Q™"), and SAA
condition is satisfied if the relation (P™) A (Q™) holds true for any sequence Q" €
M2

The converse statements also follow from conditions (e) of Theorems[ZT] and
the inclusion M7 C D™.

Let’s prove the last assertion of the theorem. If MJ_ # () then MJ_ is dense in
M?” with respect to the norm topology of L. This result, as is mentioned in [22],
follows from Theorem 1.1 of the paper [I5]. Thus in the above argumentation the
set M can be replaced by M7 . O

The subsequent theorem shows, in particular, that NAA and SAA conditions can
be checked by exploring the sequence of strategies that achieve the optimal expected
logarithmic utility of the terminal wealth. Taking into account the results of [9],
[10], this gives an opportunity to express criteria for NAA and SAA conditions in

terms of the semimartingale characteristic sequences of the stock price processes
S™.

Theorem 4.2. Suppose, M” # () and

sup EpnIn X7 < co.
xXexp

Then for every n there exists a unique log-optimal strategy 17", a unique minimal
reverse entropy supermartingale density Z" (see Remark [2.3) and the following
relations hold true:

NAA < limliminfEp, (V)™ =1 < (P") < (Z}-P™);

al0 n—oo

SAA < liminfEp, (V)™ =0 for some a € (0,1) < (P") A (Z}-P™).

n—00

Proof. The statements, concerning the existence and uniqueness of the processes
17", Z™ with the above properties, the existence of the numéraire portfolio V™ and
the relations V" = IA/”, /v = 7" were proved in [3] with the use of the results
of [23]. It remains to apply conditions (b) of Theorems 277 and [Z8 and conditions
(d) of Theorems 2.1] and O

5. DIFFUSION MARKET MODELS

In the framework of the model considered in Sect. 4l assume that for every
n the stock prices are driven by m(n)-dimensional process (W™, ..., W™y,
t € [0,T(n)], composed of independent standard Wiener processes W*", defined on
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the filtered probability space (2™, F", P™ F™). The stock prices S™ are subject to
the system of stochastic differential equations

t
dsy™ = Sy"dRy™, Ry" :/ u:;"dqu/ (BLm dWM), i=1,...,d(n),
0
where predictable stochastic processes u>™, 8™ satisfy the conditions

T(n) 7,n 7,m12
[ (1) de < o
0

and S§ > 0. We use the notation |z| = \/(z, ) for the length of a vector x as well
as for the absolute value of a scalar.

Assume also that d(n) < m(n) and the rank of the matrix ¢ with the rows
(B™)%_, is equal to d(n) for all £,w and n. Then the matrix o™(¢™)7 is invertible.
Let the vector A" = (¢™)T (6™ (¢™)T)~!u™ be such that

T(n)
(10) / NP2 dt < +oo a.s.
0

It is customary to call A a market price of risk process.
The following assertion is known: see e.g. Example 4.2 in [9] and Example 2.2.19
in [5]. For convenience, we provide its direct proof.

Lemma 5.1. Under the adopted assumptions there exists the numéraire portfolio
1t t
Vi = exp (5/ |)\Z|2du+/ (Ag,dwg)) , Vear.
0 0

Proof. We drop index n in the course of the proof. Represent S* as a sum of the
process A* of finite variation and the local martingale M*:

t t
Si= S+ A+ i, Aj= [ Siyddu, M= [ (Si5aw).
0 0

Since (M*, M*), = fo SESE(BL, BF)du we conclude (see [1I], Theorem 6.30) that
the class L(S) consists of predictable processes v, verifying the condition

T|d
(11) / S isiud
=1

Condition (I0) assures that the following local martingale (Girsanov exponential,
represented by Dolean-Dade exponential) is well-defined:

t t
Zy=E(=XoW); = exp (—%/ |\ |? du —/ (Au,qu)) .
0 0

By virtue of the representation

) ) . . tyo1 to
st = sy = show ([ (u - g10iR ) au+ [ (ataw)
0 0

and the equality u* = (8%, \), we deduce that the processes

t t
SiZ, = Shexp (-%/ |5;—Au|2du+/(5;—Au,qu))
0 0
= SE((B = A) o W),

dt+/ Z’y VESISE(BL, BR) dt < 0o aus.

i,k=1
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are local martingales. It follows (from [6], Lemma 3.2) that the processes X Z,
X € X are local martingales as well. Hence, they are supermartingales and Z € D.
Furthermore, let § = (c07 )1y and v* = 6¢/(ZS?). Then

| 1 1
;WS = —(,0) = Z (01 0) = Z(A\ ),

do 1 &, 1 1
> AAkSisk(E, BY) = 72 > atak(p pr) = ﬁ(UT& o'é) = 72 (A A)

i k=1 i k=1
and condition (IIJ) is satisfied in view of (I0). Thus, v € L(S).
Note that

(6,dR) = (6, p)dt + (¢7'6,dW) = (A, N)dt + (N, dW),

E(loR); = exp <(5OR)t — %<5OR,5OR>t>

I ! 1
exp (5/0 |)\u|2du+/0 (Au,qu)) =7

Therefore,
1 1
d{ =) = = (0, dRy) = (v,dS
(£) = 5 6udr) = (.d8)
and Z € D admits the representation Z = 1/V, V =1+ 05 € X, which was to
be proved. O

Lemma [5.1] shows that for the diffusion market model under consideration the
results of Sect. 2l are valid. The subsequent lemma allows us to give a characteriza-
tion of NAA and SAA conditions in terms of the sequence (A") (see Theorem [B.3]
below).

Lemma 5.2. (a) The following equality holds:
T(n)
(12) lim limsup P"(VJ# > M) = lim limsup P" / |\P2dt > M | ;
M—o00 pnosoco M—o00 posoo

(b) limsup,,_,., P*(VJt > M) =1 for all M > 0 iff

T(n)
lim sup P" (/ |A?|2dt > M) =1 for all M > 0.
0

n—oo
Proof. A simple calculation yields:
vr
T y\n 2
exp (fo A2 dt)

T n
exp (%a(l —a) fo | A} |2dt)
Vi)
As long as Ep» (Y™)7 < 1 for any non-negative local martingale Y™, by the estimate
@) we obtain:

= 5(/\” o Wn)T,

=&(—(a\") o W™M)p, a€(0,1).

N T
13 PP (VR > M) < S 4 P AP2dt > N |,
T M t
0
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T
NOL
(14) P" / NP2t > M | < ———— +P™"(VJ > N).
0 eia(lfa)M

Taking the upper limit as n — oo, and then the limits as M — oo, N — oo, we
get equality (I2). Furthermore, let limsup,, . P"(V} > M) =1 for all M > 0.
Then inequality (I3) implies that

n—roo

N T
(15) 1< 4 limsupP" / IAP2dt > N | .
M 0

In the case of limsup,,_, . P" (fOT AP [2dt > M) =1 for all M > 0, by inequality

(@) we have

Na
(16) 1< —4—— +limsupP*(Vjy > N).
ezo(l-—a)M n— 00
Taking the limits in ([IH]), (I6) as M — oo, we get the assertion (b). O

Theorem 5.3. The following relations hold true:

T(n)
NAA < lim limsupP" </ I\ 2dt > M) =0;
0

|
M—00 n—soo

n—oo

T(n)
SAA <= limsupP" </ N2 dt > M) =1 for all M > 0.
0

Proof follows directly from Lemma and conditions (c¢) of Theorems [Z1] and
2.2 O

Theorem [B.3] implies Propositions 8 and 9 of the paper [14]. Note, that as
compared to [14], we do not merely drop the condition EpnE(—A" 0 W™)r = 1, but
even do not assume the existence of equivalent local martingale measures in the
”small” markets.

6. DISCRETE-TIME INFINITE HORIZON MARKET MODEL WITH ONE LOG-NORMAL
STOCK

Consider a sequence ()52 of independent standard normally distributed ran-

dom variables & € N(0,1), defined on the probability space (Q,F,P), F =
o(&k, k > 1). Assume that there is only one stock, whose price is determined
by the recurrence relation

Sp =S8 1(1+R,), Rn=exp(pin—02/2+0,6)—1, n>1; Sy=1.

Here ur € R, o, > 0 are non-random sequences.

We put T = {0,...,T(n)}, T(n) = n and introduce the sequence of small
markets, defined on the probability spaces (2, F,,P), Fr, = Ff = o(&1,...,&)
with associated sets A of value processes, containing the elements X of the form

Xk:kal(l‘F(SkRk)zO, k=1,....,n; Xo==x.

An element & € [0,1] of (F,)-predictable process (d,) describes the fraction of
wealth, invested in the stock at time k.
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Let the elements of the sequence (J5)x>1 be the solutions of the following opti-
mization problems:

Eln(l 4+ 6Ry) = \/%_F [m In (1 + 6(e“k702/2+0kf _ 1)) LY N max,
and let V,, = [T¢_, (14 6;Rx). Then the processes (Xj/Vi)o<k<n are supermartin-
gales ([3], Example 6). Thus all the results of Sect. 2 are valid. At that, the
measures P coincide with the restrictions of P to F;,, and V" = (Vi)7_,.

As is shown in [28], the condition Y o, (uk/0k)? < oo is sufficient for the ab-
sence of asymptotic arbitrage. More complete picture is given in Lemma and
Theorem[6.21 Instead of a direct analysis of the sequence (V}), we exploit conditions

(c) of Theorems 2.7 28

Put £ > 0 and
n 2 n
1 _ HE 2 _
580 =30 (2) Hopetaron) B26 = Xl jasony,
k=1 k=1

Sn(e) = Ep(e) + X0 ().
Lemma 6.1. The following assertions hold:
(a) if ¥oo(1) < 0o then NAA condition is satisfied;

(b) if X2 (¢) = 0o for some € > 0 then SAA condition is satisfied;
(c) if there exists an € € (0,1) such that

(17) lim o]

1L <4140
and XL (¢) = oo then SAA condition is satisfied.
Proof. (a). Let Z, = [[;_; Cx, where

2
1 [ i
G = I{po<oy + exp <—§ (U—k) —U—k§k> To<pr<o?y

=0

o2
+ exp <—#k + 7’“ - Ukﬁk) Lpso2y-
The independence of &, and Fi_1 and the equality Ee* = e?’/2 imply
E((l + 5kRk)<k|Fk—1) = (1 + 5kERk)I{MkSO} + ((1 — 5k)E<k + 5k) I{#k>0%}

+ <(1—5k>E<k+6kEe(%<gki_’;) +<6k%)£k>> Lo<y<o?}

= (140 (e" —1)) It <0y
n ((1 N 5k) Tsoz) + Lo <oty < 1.
Thus, (Zx)}_, is an equivalent supermartingale density for X"
E(XiZk|Fr-1) < Xp-1Zkp—1, k=1,...n; X €A™
By Theorem 277 we see that NAA condition is a consequence of the equality
limliminf EZ; = 1.

alld n—oo

We have,

- —la(l—a or)? -« la a)or
ECP = I <0p + €7 (1—a)(pr/ok) I{0<Mk§a§}+€ prtza(lta) kI{Mk>a_z}_
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Hence,
1
EZY > exp (—504(1 —a)BL (1) - aEio(l))

and limg)o liminf, o EZ% > 1 under condition (a). Conversely, EZ® < 1, a €
(0,1) by Jensen’s inequality.
(b). Put & = I{uk>%(1+s)di} and « € (0,¢). Then

a 1
E(1 + 6,Ry,) " = efa(#k*%(lJra)Ui) < e*a#k(lflﬁﬁ) for pg > 5(1 J,-a)o']%

and the correspondent value process X satisfies the inequality

_ - _ ale —a) o
E(X, %) = E(1+6cRr)™ ¢ < ———) .
(n) kllll (+k k) _exp( 1+¢ n(a)>
By condition (b) we have lim,_, - E (X,,*) = 0 and by Theorem 2.8 there exists a
strong asymptotic arbitrage.
(c). Put 6 = “kUk_QI{MukS%(Hs)oi}' To show the existence of a strong asymp-

totic arbitrage it is enough to prove that

(18) lim EX = nll_)n;O]}_[l E(1+6,Rp)™ =0, ac(0,1)
and apply Theorem 2.8

Since the series X!(¢) is divergent, the sequence (d;) contains infinitely many
non-zero members. Without loss of generality, we assume that 0 < pg < %(1 +¢)o?
for all k and o, — 0, k — o0.

By Taylor’s formula we obtain the estimate

1 a(l 4+ «) x?

- _ < > 1
Ya(2) 1+ a)° (1—-ax) < > (b’ r>b>—1
Put v), = —0k+/7%. Then
E1/)a(5kRk) = E (¢a(5kRk>(I{—6k<6kRk<uk} + I{5kRkZVk}))
a(l+a) (5kRk)2 (5kRk)2
< 2 E ((1 _ 6k)2+a I{Rk<—\/ﬂ} + W[{sz_m}
04(1 + OZ) 22+a5]€0'k 5;%E(Ri)
< - Ty . N9~ .
< S (o < v+

Let us find an asymptotic form of the right-hand side of this inequality as k& — oc.
By formula (7.1.23) of [1]:

P(& < —1) L /_me_tz/zdt 1/+Ooe_72d
— = _— = — T
g V2T J oo ﬁ z/V2
1

2
T e~ T /2

= —erfc|—=)~—=—, z— +o00,
2 (ﬁ) V2

we get

§P(§k<%—i>~\/_';:_exp<—%), k — oo.
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Moreover, vy — 0 and
ER; = 2ok _ 9ehh 4] o3, k— .
Consequently,

a(l+a) i\
Eva(0rRy) < 29t 0 4y~ 5202 = <—) k= oo,

Ok
Furthermore, ERy, = e#** — 1 > uy. Thus,

1 ok a(l +a)
E———— =1—-adER Ev,(0pRy) <1-— — A
EE AL adkERy + Evo (6 Ri) Oé(gk> +—-
2 (1+
Sexp(—oz<@> (1— >>, k — oo
Ok 2
and the condition 3! (g) = oo implies ([IX). O

Theorem 6.2. The following assertions hold:
(a) exactly one of the conditions NAA or SAA is satisfied and

NAA <= P(Veo <) =1, SAA — PV =) =1
(b) If condition {7) is satisfied for some ¢ € (0,1) then
NAA = 3, (e) <o0; SAA = Y(e) = 0.

Proof. The process (1/V,,)n>1 converges a.s. since it is a positive supermartin-
gale. Moreover, V,, is a product of independent positive random variables. From
Kolmogorov’s zero-one law it follows that the events {Vo < o0}, {Veo = 00} have
probability 0 or 1.

Let P(Vo < o0) = 1. The sequence V,, converges to Vo, < 00 a.s. Hence, (V,|P)
is tight:

limsupP(V,, > M) <E (limsupI{VnZM}> <P(Ve >M/2), M >D0.
n—oo n—oo
By Theorem 2.7] this implies the absence of asymptotic arbitrage.
If P(Voo = 00) =1 then

n—oo n—r oo

limsupP(V,, < M) <E (limsupl{w<M}) =0, M>0

and condition (c) of Theorem is satisfied. Hence, there exists a strong asymp-
totic arbitrage.

Assertion (b) follows from Lemma [6.1] and the inequality X, (e) > X,(1), € €
(0,1). O
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