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Abstract We propose a valuation method for financial assets subject to default risk,
where investors cannot observe the state variable triggering the default but observe a
correlated price process. The model is sufficiently general to encompass a large class
of structural models and can be seen as a generalization of the model of Duffie and
Lando (Econometrica 69:633-664, 2001). In this setting we prove that the default
time is totally inaccessible in the market’s filtration and derive the conditional de-
fault probabilities and the intensity process. Finally, we provide pricing formulas for
default-sensitive claims and illustrate in particular examples the shapes of the credit
spreads.
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196 D. Coculescu et al.

1 Introduction

Explaining the components of credit risk reflected in corporate bond yield spreads is
certainly one of the most important questions in the credit world. An important direc-
tion of research was provided by the seminal work of Merton [21] that pioneered the
“structural” representation in credit risk modeling. Its crucial assumption is that both
equity and bond markets react to a same underlying indicator of the financial health,
usually the ratio between the market value of the firm’s assets and the obligations
payable at maturity. The default event is defined as a stopping time for this indicator
process and defaultable securities are seen as derivatives written on the firm’s value.
Then, classical option pricing theory is used in order to price debt and derive spreads.
Hence, the market value of the firm is a key input of these structural models.

However, in most practical situations, investors face incomplete information re-
garding the firm’s assets which become the object of estimations based on the ac-
counting reports and the available market information. For instance, Moody’s KMV
commercial software, which uses a Merton-derived framework for computing the ex-
pected default frequencies, proposes the determination of the firm’s asset value from
the observed equity price and equity volatility in the context of the existing balance
sheet.

Using an estimation of the firm’s value within the Black—Scholes framework for
the pricing of options embedded in the defaultable claims may represent an important
drawback attached to this type of approach. The Black—Scholes framework assumes
that the underlying asset is traded. Hence, when applied to the defaultable claims, it
ignores the risks attached to the estimation of the firm’s value, risks that in practice
should bear some premium for investors, since it is not hedgeable.

Moreover and probably in relation to this problem, most structural models fail to
produce spreads consistent with empirical observations: they predict lower spreads
that decrease to zero for short maturities as documented by [17]. From a modeling
point of view, this drawback comes from the fact that the valuation takes place in the
filtration of the firm’s assets, where the default event is a predictable stopping time.
Being predictable, short-term default risk is not priced by the models; nevertheless,
in the real world, investors price the risk of unexpected defaults.

Motivated by these observations, an emerging class of literature aims to explicitly
model imperfect information, while keeping the structural economic explanation of
the default event. Representatives of this approach are Duffie and Lando [8], where
investors are supposed to observe at discrete time intervals the assets value plus a
noise; Giesecke and Goldberg [12], where the asset’s default point is not observed;
Cetin et al. [5], where only the sign of the fundamental process is supposed to be pub-
licly known. In Jeanblanc and Valchev [15], a study of the credit spreads for different
types of discrete information is proposed, while Guo et al. [13] model a delayed infor-
mation arrival, which can be either discrete or continuous. See also Giesecke [11] for
an overview of the different models of information imperfections within the structural
modeling.
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Valuation of default-sensitive claims under imperfect information 197

In most of these models, the default time is totally inaccessible in the market
filtration and has an intensity determined endogenously as a function of the firm’s
characteristics and the type of information available in the credit risk market. Hence,
the models can account for the short-term uncertainty inherent to the credit market
and predict higher spreads for short maturities than the original structural ones.

In this paper, we propose an alternative model with noisy information, where the
market continuously observes a process correlated with the unobserved indicator of
the credit quality. One may think of the indicator process as the asset’s value and
the observation process as the equity market price or an estimation of the firm’s value
using available market and accounting information. Other interpretations remain pos-
sible.

We believe that the continuous-time framework is more suitable to model pub-
lic information about firms. On the one hand, we can observe in practice that cru-
cial pieces of news regarding firms, such as earnings figures, do not only appear
in a discrete manner, but also in a continuous way, e.g., LBOs, restructurations, or
drug approval/rejection in the case of a biotech company. On the other hand, the
continuous-time framework makes it possible to directly use a price process as syn-
thesizing public information about a firm, the way KMV uses equity prices to obtain
the estimation of the firm’s value.

Note that the idea of modeling a correlated diffusion as an observation process
for investors also appears in Kusuoka [19], in a filtering model where the drift of
the observation process contains information about the state variable triggering the
default. However, as the author points out, a pricing method in that framework is
difficult since the so-called (H)-hypothesis is not valid.

Our final goal being to price general credit-related claims, we propose a construc-
tion making the (H)-hypothesis valid. Our model encompasses a large class of con-
tinuous diffusions representing the fundamental process triggering default. In this
general framework, the default time is proved to be a totally inaccessible stopping
time. We give explicit formulas for the conditional default probabilities and the in-
tensity process and point out that they are non-Markovian. This feature may shed
some light on the role of imperfect information on observed phenomena such as the
“rating momentum,” i.e., the dependence of the new rating on the last few ones.

Finally, we propose a pricing method in the spirit of Elliott et al. [9] but com-
patible with the imperfect information model and relying on the loss-given-default
process. This may be convenient in practice, since the loss-given-default is generally
subject to separate estimations by the financial institutions, as recommended by the
Basel Committee. The proposed formulas also have a simple financial interpretation:
an asset affected by default risk acts like an otherwise similar default-free asset but
paying a flow of “negative dividends,” which are proportions of the loss-given-default
process.

The remainder of the paper is organized as follows. Section 2 presents the mod-
eling assumptions in the general case. Section 3 exhibits the characterization of the
conditional default probabilities. In Sect. 4, we provide pricing formulas of default-
able bonds and other default-sensitive claims which are compatible with the imper-
fect information model. Finally, Sect. 5 is dedicated to the analysis of some particular
examples of credit spreads.
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198 D. Coculescu et al.

2 The model

We suppose that the randomness of the economy is represented by a probability space
(82, F,P). All the filtrations introduced through the paper will be completed by the
inclusion of the P-null sets. The probability IP is supposed to be the “real” probability
measure as opposed to the “risk-adjusted” probability measure, since firm’s funda-
mentals such as accounting indicators as well as events affecting the whole credit and
equity markets are observed in the “real world.” We do not introduce any change of
measure before Sect. 4.

Our goal is to explain the credit spreads by two factors: (i) a fundamental process
of the credit quality (for instance, the firm’s assets or cash flows), (ii) the characteris-
tics of the information of market participants with regard to the fundamental process.
Since they are not our first focus, default-free interest rates are supposed to be deter-
ministic.

2.1 The structural assumptions

As in common structural models, we consider an economy where the corporate de-
fault risk is measured by the distance of some fundamental process to a default thresh-
old. Typically, such a fundamental process is the total value of assets or, alternatively,
total cash flows, and the default barrier represents a debt-covenant violation depend-
ing on the liability structure of the firm. We concentrate our analysis on a single
firm in this economy and denote by X = (X;);>0 its fundamental process and by
b(t), t > 0, the default threshold supposed to be a continuous function of time with
b(0) < Xy. The default time is

t=inf{t: X, <b®)}.

In addition, we state the following fundamental hypotheses:

(A) The fundamental process which triggers the default is assumed to be of the form
X, = F(B;, t), where B is a Brownian motion, the function F is continuous, and
x — F(x,t) can be inverted. Without any loss of generality, we will assume that
x — F(x, 1) is increasing.

For simplicity, we choose to work under condition (A). However, via a determinis-
tic time-change, our results apply to the class of diffusions characterized as follows:

(A’) The process X is of the form X; = F (m,, t), where (m,);>¢ is a Gaussian mar-
tingale and F a continuous function invertible with respect to the first argument.

2.2 The market information

We define the observation process Y = (¥;);>0 as the observation of the agent, e.g., a
price process correlated with the fundamental value X, this latter being unobservable.
We suppose that the process Y follows a diffusion of the type
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Valuation of default-sensitive claims under imperfect information 199

dYt=M(Yt,t)dt+0(Y,,t)dB,—l—s(Y,,t)dBt/ 2.1
=uY:, t)dt +01(Ys, 1) d By, (2.2)
Yo = yo,

where B and B’ are two independent Brownian motions.
We denote by (G;);>0 the natural filtration of the pair (B, B’). The process B
defined as

/’ o(Yy,u)dB, +s(Y,,u)dB,
Bt =
0 U](Yuau)

with o1(y,t) = \/a(y, 12 +s(y,1)? is a (G;)-Brownian motion, since it is a (G;)-
martingale with bracket 7.

In (2.1) and (2.2), we suppose that the functions s(y, ) and o1(y, t) are strictly
positive on Y x [0, oo) with ) being the domain of the process Y. Note that o (y, 1)
is allowed to be negative in order to capture negative correlation between X and Y,
a phenomenon documented for instance in [14]. Also, (2.2) is supposed to have a
strong solution, i.e., adapted to the filtration of § completed with respect to P.

We require that market investors be able to observe both the process B, whose
filtration is denoted by

(F)i=0 :=0(Bs, s < 1)>0,

and the default state, so that the market information filtration (F;);>0 is such that,
for every t > 0,

Fr=FVo(sAt,s<t).
In short, we have constructed three different nested filtrations, namely,
Fi: C F, tt c G

for + > 0. In addition, the default time satisfies the following property.

Lemma 2.1 The default time t is a (G;)-predictable stopping time; it is an (F})-
totally inaccessible stopping time for ordinary market investors and is not an (F;)-
stopping time.

Note that by construction (F;) is the smallest filtration containing (F;) and mak-
ing T a stopping time. We postpone to the Appendix the proof of this lemma, as it
makes use of some results to be developed in the next section.

3 Immersion of filtrations and the (F;)-conditional default probabilities
A filtration (F;) is said to be immersed in some larger filtration when all (F;)- martin-
gales keep this property in the larger filtration. In default models, one often encoun-

ters the immersion of (F;) in (F}), a property also known as the (H)-hypothesis. This
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200 D. Coculescu et al.

property is essential for the valuation of securities and also has important mathemat-
ical consequences, which were first studied in [3]. Let us introduce U as the optional
projection of the process 1(;<;) onto the filtration (¥;). Then

U =Pt <t|F) as., 3.1
and an equivalent formulation of the (H)-hypothesis is that
P(r <t|F) =P(t <t|F) forallt, (3.2)

meaning that the process U is increasing.
The following proposition shows that, in our framework, (F;) is not only im-
mersed in (F;) but also in the larger filtration (G;).

Proposition 3.1 Any (F;)-local martingale is also a (G;)-local martingale, hence an
(FF)-local martingale.

Proof If M is an (F;)-local martingale, there exist an (F;)-predictable process and
a constant m such that M; =m + fé h, dB,. Since the process S is a (G;)-Brownian
motion, M is a (G;)-local martingale. O

In order to estimate the process U, we will show that conditionally on F,, the
random time t can be viewed as a first passage time of a Gaussian process. We begin
by introducing some useful processes. First, the (G;)-martingale D is defined by

D, =ft n(Yu, u)dBy —s(Yu, u)dB, 3.3)
0 o1(Yy, u)
with
s(y,1)?
( ’t) = :
ny o(y,t)

It can be checked that d{8, D); = 0, which means that D and g are orthogonal. As
a consequence, the (G;)-martingale D is not (F;)-adapted; we introduce (D;);>0 =
0 (Dy,u <1t);>0.

We also define two orthogonal (G;)-martingales M and N for t > 0 by

t
Yy,
M,:/ 1w  p (3.4)
o o(Yu,u)+n(Y,,u)
t
Yy,
N,:/ otuw) p 3.5)
0o oYy, u)+n¥y,u)

Note that M is (F;)-adapted. From B; = M; + N; and

B/=/t r)(Yuau)dM _/to(Yu’u)dN
o s@uwy Y o sWuu) "

@ Springer



Valuation of default-sensitive claims under imperfect information 201

we deduce that
G=FvD, t>0.

We find it convenient to introduce for the conditional probability the notation
VAeF, P(A)=P(A|Fx).
Lemma 3.2 The process (N;);>0 is a P-Gaussian martingale.

Proof Tt follows from (8, D) = 0 that (8, N) =0, hence N and B are orthogo-
nal. From Knight’s theorem we know that there exists a (G;)-Brownian motion W
independent from B such that N; = Wyy,, t > 0. Since all (N);, > 0, are Foo-
measurable, we conclude that conditionally on F«, the process (N;);>o is a deter-
ministic time-changed Brownian motion, i.e., a Gaussian martingale. O

We are now able to state one of our main results derived in particular from as-
sumption (A) introduced in Sect. 1.

Proposition 3.3 Under assumption (A), the (F;)-conditional default probability at
time t can be approximated via

k
Up=P(r <1]F) = lim ;q,-, (3.6)
1=
where, for every fixed k, we set At =t/k and, fori =2,....,kand j=1,...,i —1,

i—1
G =), q=b@)-y b))

j=1
4 = CiAt ’ bi,j _ Cint —CjAr 7
(N)in (NYiar — (N)jar

with
o =F N (b(0),1) — M,

and where @ denotes the cumulative function of the standard normal law.

Proof We begin by recalling an important result involving the first passage time of
a Brownian motion through a continuous barrier (for developments on the subject,
see [4, 10] and, more recently, [22]). Let (W;);>0 be a P-Brownian motion and % a
continuous function with 2(0) < 0. We introduce the hitting time

T, = inf{t W < h(t)}
and its distribution function

APy =P(T, <t), t>0.
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202 D. Coculescu et al.

According to Fortet [10], Sect. I1.3, the function Ph () satisfies the integral equation

@ (h(t)/N7) :/qu)(m)%\/%w)) an®"w). (3.7)

As a consequence of Lemma 3.2, there exists a P-Brownian motion W such that
N; = Wy, forany ¢t > 0. Define ¢; := F-l (b(t),t) — M;. Finally, note that both (c;)
and the quadratic variation (N) are P-a.s. deterministic. Hence, there exists a process
h(t) which also is P-a.s. deterministic and such that ¢t =h((N);).

Now note that

{X, <b®)} ={B < F'(b(0), 1)} = (N: <c;} = { W), <h((N):)}.
Hence, using first equality (3.2), we may write that
Uy =P(t <t|Fo0) =P(u €[0,1]: X,y < b)) =P(Ju € [0, (N),]: Wy < h(w)).
Consequently,

Uy == ((N),). (3.8)
We may now apply Fortet’s integral equation (3.7) and obtain

(N): — 5
o (D) _ [ g (M) )
N 0 (N) —s

Via an obvious change of variable in the above integral, the nondecreasing process

(Uy)s>0 satisfies
@(L)_/‘Qp(i)d[] (3.9)
W) Jo ANV =) :

A more intuitive form of the above integral equation, useful later on, is

t
P(N; <c¢y) =/ P(N; — Ny <c¢; —¢5)dU;. (3.10)
0

The last step to approximate Uy is to discretize the time interval [0, ¢] in (3.9) into
n equal subintervals of length Az. This kind of approximation of the first passage time
density was already employed in default models (see [6]) as well as insurance models

1 . _ _ CiAr o CiAt—CjAt . . o
[1] We define a; = NN and buj— 7(N>iAt—(N>jAr for ] <1 and b,,l = OQ.

We approximate (3.9) by considering that default may only occur at the ends of the
subperiods. Thus, we write

®(a,) =Y P bn)P(r € ((i — DAL AL]| Foo). (.11

i=1

I'See [2] and the references therein for a study of the convergence of this type of approximations.

@ Springer



Valuation of default-sensitive claims under imperfect information 203

From the above equality we derive a recursive system of n equations with n unknowns
qi :=P(r e (( — DAL iAl]|Fx), i=1,....n.
Thus, for the first time interval, we have
@ (a1) =P(r € (0, At]|Fx) = q1.
For two intervals, we have
D (az) = D (b2, ))P(7 € (0, At]|Foo) + P(1 € (A1, 2A1]| Fos)
=@ (b2, 1)q1 + 2.

Solving this system by iteration leads to the stated solution in (3.6). U

For pricing purposes, one also needs an estimate of the (F;)-conditional probabil-
ity that default occurs prior to a fixed time T > ¢, T being the maturity of a claim.
Indeed, the following formula (see [7], II1.41, p. 58) will allow us to go from (F;)-
conditional probabilities to (F;)-conditional probability and vice versa:

Pt <t <T|F)

Pit<t< T|.7:f) =1 PG = 7))
t

Proposition 3.4 Under assumption (A), the (F;)-conditional default probability on
the interval (t, T] is given by the formula

n
P(t <7 <T|F) =ngrggozlp./, (3.12)
]:
where, for every fixed n, we set At = (T —t)/n, k =[t/At], and

k

= [@(Ao—Zcb(c,-,])qi]w(x)dx,

i=1

9] k j—1
pj:/ |:¢’(Aj)—Z(p(ci,j)%':|(ﬂ(x)dx_Zpi¢(Bi,j)» J=2,....n,

i=1 i=1

with

p F(t+iAt) — M, — xv/iAt

i , <i<n,
VAN
B'__I;(t+jAt)—F(t+iAt) 0<i<j<n
L] — O o ) = = I,
J V(G —i)At
.':I:“(t—i—jAt)—M,—ciA,—x«/jAt . k-l 1<j<n
o () — (N)iar ’ ki

Ck,j:BO,j and ﬁ([):F_l(b(l‘),t)
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In the above, ¢ denotes the density function of a standard normal distribution, and [x]
is the integer part of x. The variables q;, i =1, ..., k, are defined in Proposition 3.3.

We begin with an auxiliary result.

Lemma 3.5 Set
O(T,s) =P(Nt — Ny <cr —cy).

Fort < T, we then have

t T
P(Nt 5cT|f,)=/ E[@(T,s)]]—}]dUS—i—/ E[O(T, $)]d;P(z <5|F;). (3.13)
0 t

Proof Using (3.10) for the interval [0, 7] and conditioning with respect to F;, we

obtain
]—",)

t T
=/ E(@(T,s)|f,)dUs+E</ O(T, s)dU;
0 t

T
P(N7 < cr|Fp) =E<f (T, s)dUs
0

)

The result follows by writing the integral in the last term as the limit of a sum, ap-

plying dominated convergence, and using the fact that, for s < T, E[O(T, 5)|F,] =
E(D)—F(s)y _

D( N ) =E[O(T,s)]. O

Proof of Proposition 3.4 We shall use the results and notation of the proof of Propo-
sition 3.3. First, we find an expression for the expectations to be computed in the
integral equation (3.13). The left-hand side equals

P(Br < F(T)|F;) =E(P(Br — B, < F(T) — B;|G:)|F)
H(o(“R=2))
T —t
(™ F(T) — B,
B f_oop<x = VT -t
=/ P(N; < F(T) — M; — xNT —t|F)(x) dx

foo ¢<I7“(T) — M, —xJT —1
(N)

fz)tp(x)dx

—00

)(p(x) dx.

Let us now turn to the right-hand side of (3.13). In the case s < ¢, we write, mimicking
the above computation,

oo oAb

/OO (p(ﬁ(r) — M, —cs —xJT —1
(N); —(N)s

)gz)(x) dx.

—00
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Plugging all these results into (3.13) and rearranging terms leads to

- s =
/ ¢<M) d;P(t <s|Fp)
'

NG

Ll )

I (N
.

_/ qj(F(T) M; —cy xm)dUs}go(x)dx. (3.14)
0 (N): — (N)s

The integrals above may be approximated by sums if we partition the interval [0, 7]
into k subperiods and the interval [#, T'] into n subperiods and then let both k and
n go to infinity. To keep notation simple, we choose to introduce for both intervals
[0, ¢] and [¢, T'] subperiods of equal length At = (T — t)/n by setting k = [¢/At].
We mention however that, in a practical implementation, k can of course be chosen
independently from n.

As before, we suppose that default may only occur at the ends of the subperiods.
Let

pi=P(re(t+(—DAtt+ jAt]|FR), j=1,....n,
and, as in Proposition 3.3,
gi=P(t e —DALIA|Fx), i=1,... k.

As an approximation of (3.14), we obtain

n

Z@(ﬁ(wnm) - F(t—HAt)) '

= J(n—Ii)At
_/Oo{(p(ﬁ(t—i—nAt)—M,—x«/nAt)
I (N);

k ~
B Z¢<F(t +nAt) — M; —ciag —x«/nAt)qi}(p(x) dx.
(NYe — (N)iar

i=1

or, in a reduced form,

n 00 k
Y ®Bin)pi= f {¢~(An> — Y P (Cinai }w(X)dx-
i=1 -

i=1

This leads us to a recursive system of n equations where the unknowns are p;,i =
1,...,n, and the quantities ¢g;, i =1, ..., k, computed above. We obtain

k

P =/ [@(Ao - Z@(Ci,nqi}w(x)dx,

i=1
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206 D. Coculescu et al.

k

pr= / [Cb(Az) — Z‘P(Ci,2)6]i:|§0(x)dx —p19(B1,2),

-0 i=1

00 k n—1
Pn = / |:¢(An) - Z¢(Ci,n)QI:|¢(x) dx — Zpi¢(3i,iz)-

i=1 i=1

O

Remark 3.6 (Condition (A”)) As announced in the previous section, similar formulas
can be obtained for the more general class of diffusions defined via condition (A’),
namely X; = F(m,,t), where m is a (G;)-martingale of the form m;, = fot h(s)dBs
with i being a Borel function. We remark that we can recover condition (A) via a de-
terministic time-change, since m is Gaussian. The corresponding default probabilities
are simply obtained by replacing in the above formulas N; by N/ = fot h(s)dM; and
M; by M| = fot h(s) d M. Moreover, we need to replace in Proposition 3.4 /i At with

A/ {m)ia; and similarly </(j — i) At with \/(m)j—i)a. An illustration is provided in

Sect. 5 for the Ornstein—Uhlenbeck process.

At this point, a very natural question is whether in our framework an intensity
process exists for the default time. This would provide a link with the reduced form
default modeling and with other imperfect information models. The answer is given
in the next lemma. Note however that the valuation method we introduce in the next
section is not “intensity-based,” but it is “intensity-compatible.”

Lemma 3.7 Suppose that the function F@t)=FYb@),1) is differentiable and set

F'(t) = %(r). Then there exists an intensity process (A);>o for the default time

given by

(1= Up

i F'(1) ( ¢ )_/f F'(t) ( ¢ —cs )dU
T A\ T e Vi =\ =, )

Proof See Appendix. U

where

4 Valuation of default-sensitive claims

In this section, we propose a pricing method for financial products when agents face
information imperfections and the (H)-hypothesis holds, as in the previously pre-
sented model. The main idea is to consider the loss-given-default process as a default-
free security. Then, we show that a default-sensitive security may be considered as
a default-free security with the same characteristics but paying a flow of “negative
dividends.” These “dividends” are fractions of the loss-given-default process and
paid whenever the (F;)-conditional default probability is increasing, i.e., on the set
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Valuation of default-sensitive claims under imperfect information 207

{t : dU; > 0}. In the case of intensity-based models, this “dividend” flow is continu-
ous.

4.1 Assumptions on the financial market

We recall that interest rates are supposed to be deterministic. We consider an arbi-
trage-free financial market comprising three types of securities: default-free, default-
sensitive, and defaultable, which will be defined to be compatible with our imperfect
information model.

Definition 4.1 For a fixed maturity T, a default-free Fr-contingent claim is a non-
negative, square-integrable, F7-measurable random variable £7. A default-free secu-
rity price (§;):e[0,7] 1s an (F;)-adapted process describing the price of a default-free
Fr-contingent claim &7.

The default-free securities prices are supposed to be adapted to the filtration gen-
erated by the Brownian motion §, since the information relative to the default time
does not impact default-free securities under the (H)-hypothesis.

Denote by B(¢, T') the discounting factor corresponding to the period [¢, T'], i.e.,
B(0, t)~! is the value of the savings account at time ¢ and B(¢, T) = B(0,T)/B(0, t).
Note that this relies on the assumption that we have deterministic interest rates. We
now define P* as an equivalent measure under which the discounted default-free se-
curity prices are (F;)-martingales. When the process X represents the value of the
assets of the firm, the following assumption is commonly used in structural models:

(E) The discounted process (X; B(0,));>0 is a P*-martingale.

In the following, we assume that (E) and (A’) hold for the dynamics of the process
X under P*.

Before default occurs, market participants try to infer the true value of the funda-
mental process X from their available information, namely the observed process Y
and the news that the process X has not yet crossed the default barrier.

Definition 4.2AThe risk-neutral estimate of the variable X; is the J;-measurable ran-
dom variable X, defined by

N 1 <
X =1 _EX (Lo X171, (4.1)
_ Ut

where we set U;" = P*(t <t|F;).
It is easy to check (see, for instance, [7], IIL.41, p. 58) that
LoonEY [ X F7] = 1= Xi. (4.2)

Hence, before the default time, the process X = (}A( 1)r>0 represents a risk-neutral esti-
mate of the unobservable process X given the market information, and it should play
an important role for pricing, as assumed in the following definition of defaultable
claims.
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Definition 4.3 For a fixed maturity T', a default-sensitive contingent claim is an F.-
measurable random variable of the form

cr i=1-mér + l(rfT)‘gT,

where &7 and &7 are two default-free Fr -contingent claims. A defaultable contingent
claim is an integrable 7 -measurable random variable of the form

dr =11 f(X7) + 1<) 8(X2)/B(r. T), (4.3)

where f and g are two Borel functions.

Note that in our definition of defaultable claims, we assume that in the case of
default, the recovery payment g(X) is immediately invested up to time 7 in default-
free bonds.

We wish to emphasize that we consider defaultable claims as a different class from
default-sensitive claims. Thus, corporate bonds, equity, and their derivatives issued by
the firm are defaultable claims; in the case of default, the recovery is established as
a function of the defaulted firm value and priority rules. But a portfolio containing
a corporate bond secured by a credit default swap is a default-sensitive claim: the
holder receives a contractual compensation in case of default, hence the portfolio
is independent of the value of the defaulted firm. Nevertheless, this portfolio is not
default-free, as its composition varies once the default event has occurred. Lastly,
a corporate bond secured by a total return swap behaves like a default-free bond: the
return on the portfolio does not depend on the occurrence of the default event.

The main difference with complete information models is that in the presence of
imperfect information, we suppose the defaultable claims valuated to be using the
estimation X7 whenever the firm is not in the default state. Let us provide a simple
example in order to illustrate the definition of defaultable claims under imperfect
information.

Example 4.4 Suppose that the firm has a simple debt structure composed of equity
and zero bonds with maturity 7 and nominal value N. In structural models with com-
plete information, the payoff structure used for equity (assuming zero recovery) is

Er =1q-1) (X7 — N)™.

Instead, our formulation incorporates the fact that on the set {r > T'}, the true value
of assets is not revealed to investors; hence we propose the payoff

Er =1q-1y(X7r — N)".
4.2 The valuation methodology
Beside the different representation of the payoffs of defaultable claims, our approach

fundamentally differs from the perfect information case in the way these payoffs are
priced, since we shall use a different filtration.
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Proposition 4.5 (Prices of default-sensitive and defaultable claims) Suppose that, at
time t < T, default has not yet occurred. Then the price of a default-sensitive claim

is given by
ST dU;
o =& —EF [/ B(t,5)(& — &) —~ fz],
t

1-U;
where (& — ét)oftST is the loss-given-default process; the price of a defaultable claim
is given by
: 1s].

where v¢(t) is the price at date t of a default-free security with the same character-
istics.

*

g7 du;
dy =vys(t) —E* U B(t,9)[vr(5) = g(b®) T
t

Proof (F/)-informed agents will valuate the payoff of default-sensitive claims under
the risk-neutral expectation conditional on the filtration (F;). On the set {t > ¢}, we
obtain

= B(t, T)EY [1(r>T)$T + I(TST)SHJ’-',’]

_ FTPe < = [NFr)mr|7i] 44)
(1-UB(,1)

with 77, = (§ — &)B(0,1), t > 0, being the discounted loss-given-default process.
We integrate by parts the product inside the expectation in (4.4), observing that the
process (P*(r < T <u|F,))ue(,00) is predictable and increasing, and obtain

T T
P*(t <t <T|Fr)nr =/ P*(t <t <u|F,)dm, +[ 7, dU;.
t t

The martingale property of the discounted process 7 implies that the first term in the
above expression is an (F;)-local martingale. It is in fact a true martingale, since the
integrand P*(t < t <u|F,) is bounded. Taking the F;-conditional expectation in the
formula above, we obtain the result.

As in the case of default-sensitive claims, we can obtain the price of a defaultable
claim as an expectation via

X,
= B(t, T)E” [1(r>T>f X7) + 1 <eer) ég(( T)> F

= B(t, NEY [f(X1)|F]
_ B, T) _pe /T o gbw) .
1- Ut* e |: t f(XT) Bu,T) dUu

The first term corresponds to the price at date 7 of a default-free security which pays
f(Xr) at date T. We denote this price by v¢(¢) and obtain the second formula. ]

Fi .
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Example 4.6 (Equity and zero-coupon bond valuation) The price E; of equity with
payoff Er defined in Example 4.4 is given by

. . ("B X.N
E;=Ci/(X,N)—E" [/ —(t’i)CS;*’ Lauy
t - Yt

]:t:|7 T>1,

where C;(X, N) is the time ¢ Black-Scholes price of an European call option with
underlying asset X and strike price N.

Let D(t, T) be the price of a defaultable zero-coupon bond with face value one
dollar and maturity date 7. We assume that in case of default, a recovery payment
8; € [0, 1] is instantaneously made with §; = ‘”;\(,T) , N representing the nominal value
of all outstanding debt and « € [0, 1] being a parameter accounting for the seniority
of the bond. Then the price of the zero-coupon bond at time ¢, conditional on no

default, is

T *
D(t,T)=B(,T)—E" U B(t,s)(1 — 85) —— aus
\ 1 - U}

.7-"ti| T >t

5 Numerical illustrations

We now study some particular credit spreads for the cases where the process X is
either a geometric Brownian motion or an Ornstein—Uhlenbeck process. To simplify
the analysis, we consider zero-recovery rates for bonds, so that, at time ¢, the spread
for the maturity 7 is given by

Pt <7 <T|F)
e

We also illustrate with a generalization of [12] to a stochastic unobservable barrier
how new models can easily be created in our framework.

5.1 The value of the assets is a geometric Brownian motion

Suppose that the fundamental process X is the value of the assets of the firm,
X; = F(B;,t) with F(x,t) = xoe(’_“2/2)’+‘”‘ (i.e., X is a geometric Brownian mo-
tion under the risk-neutral measure).

We choose a constant default barrier b € (0, xg) and suppose for the observation
process the form

dYt:rY,dt—i—UlYtdB,, YO:XO,
where o1 = +/02 + 52 and B; = @ This means that a noise affects the obser-
vation of the firm’s returns of the assets of the firm. This situation was first analyzed
by Duffie and Lando [8] (hereafter DL) with a discrete observation process. Hence,

we have here a generalization for a continuous observation process.
We choose our base case parameters like those of DL, namely

t=1; o =0.05; s=0.1; r =0.03; xo = 86.3; b(t) =176.
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Fig. 1 The base case realization of the observed process Y (solid path) up to the current time r = 1 and
an alternative realization (dashed path)

0.025
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0.005¢

2 4 6 8 10
Time to maturity

Fig. 2 Credit spreads generated by our base case scenario (solid curve), compared to spreads obtained
with complete information (dotted curve) and to spreads generated by DL model (dot dashed curve)

We suppose that, at time ¢ = 1, agents observe the realization of the process Y
shown in Fig. 1 (solid curve); an alternative scenario for the realization of Y (dashed
curve) is displayed for subsequent comparison, as is the unobservable realization of
the true value of assets X.

Figure 2 displays the credit spreads generated by our model, the DL model, and
the corresponding complete information model. In our model, the entire path of the
process Y on [0, 1] is the available information used for computing the default prob-
abilities; for the DL model, the available information contains only the points Yy
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0.008

0.006

Spread

0.004

0.002

2 4 6 8 10
Time to maturity

Fig. 3 Credit spreads generated by our alternative scenario (solid curve), compared to spreads obtained
with complete information (dotted curve) and to spreads generated by DL model (dot dashed curve)

and Y7; and for the complete information case, we have assumed that the process X
is observable.

Because the default time is totally inaccessible, the short term spreads are always
higher in our model and in DL compared to the complete information short term
spreads. For the medium term, however, other configurations are possible: when the
firm value is critical (X close to b), then the sole observation of ¥ may lead to thinner
spreads for medium term than those computed with complete information. In this
way, we capture the situations when default comes as a surprise and produces large
losses.

Also, comparing our model with DL, we can say that our model keeps the mem-
ory of all the observed path of the process ¥ when computing spreads and default
probabilities. Thus, if between Y and Y| the process experiences “bad” excursions,
the spreads are likely to be larger than DL; the contrary will happen if over the pe-
riod of observation the process Y is “well-behaved” (see Fig. 3, generated under the
alternative scenario for Y).

This path-dependence feature of default probabilities is very important. Note that
it is implicit in reduced-form models, since their implementation needs calibration of
the hazard process to historical data on bonds. The advantage of imperfect informa-
tion models is to model explicitly the role of the past information in the current prices
combined with the use of a fundamental economic process for predicting the default
event. In structural models, default probabilities do not present a path-dependent fea-
ture, since the fundamental process is usually Markov, hence only the current state
of the diffusion impacts the default probability. Thus, information imperfections may
explain the non-Markovian patterns of the default probabilities documented in the
literature, such as the “rating momentum,” which is the dependence of the new rating
on the previous ones instead of the last observed one (see, for instance, [18] or [20]).
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Credit Spreads

Time to maturity

Fig. 4 Impact of the noise volatility s on the credit spreads

Credit Spreads

Time to maturity

Fig. 5 Impact of the assets’ volatility o on the credit spreads

Figure 4 shows the impact of the volatility of the noise s on the credit spreads,
conditional on the observation of the base case realization of Y from Fig. 1. The vari-
able s has a negative impact on the accuracy of the observation process: the lower s,
the higher are the chances for X to be not far from Y. Figures 5 and 6 show that the
impact of the firm’s fundamental parameters (drift » and volatility o) on the default
probability is similar to the situation of structural models: r is negatively related, and

o is positively related to the credit spreads.
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Credit Spreads

Time to maturity

Fig. 6 Impact of the assets’ risk-neutral drift » on the credit spreads

5.2 The value of the assets is an Ornstein—Uhlenbeck process

We now suppose that the fundamental process follows an Ornstein—Uhlenbeck
process under the risk-neutral measure, i.e.,

X, =F(m,1)=0+ (xo—0 +m;)e ™,

where m; = o fot e dB, and 0, A, and o are constants. Note that condition (A) is
satisfied, since m is a Gaussian (G;)-martingale. We define v = inf(¢ : X; = 0), so
that the default barrier is b(¢) = 0.

A structural model of this type is presented in [6], where the fundamental process
is the log-leverage process. The firm is supposed to continuously adjust its leverage
ratio towards a target level. We will keep the same framework but rather interpret X
as minus the log-leverage process, a positive process up to the default time. It follows
that the parameter 6 has here an interesting financial interpretation, since —6 is the
expected long term log-leverage ratio of the firm.

We choose to define the observation process as

le:)\.(G_Y[)dt+GldB[, YO:.X(),

with o1 = /02 + 52 and B; = (0 B; + s B])/o1. The processes defined in Remark 3.6
take here the particular forms

t
oo
M| = ‘/e“dBu,
0

t_o_+77

/ on IA oS IA /

Ntz—feudBu+ /e”dBu
o+nJo o+nJo

with n = s%/o.
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Time

Fig. 7 A realization of the processes ¥ and X up to the current time 7 = 1

Credit Spread

2 4 6 8 10
Time to maturity (years)

Fig. 8 Credit spreads generated by our model: (/) market spreads with imperfect observation; (2) spreads
computed with complete information versus (3) spreads with structural modeling

To illustrate our model we consider the base case parameters
t=1; xo = 0.35; A =0.18; 0 =0.35; o =0.12; s =0.16,

so that the observable process Y has diffusion parameters similar to those estimated
in [6] under the risk-neutral measure.

Figure 7 displays a path of the observable process ¥ and the unobservable process
X generated using the base case parameters. The corresponding credit spreads are
depicted in Fig. 8, where we also show the spreads computed using a complete in-
formation (i.e., the process X is observable) and spreads generated by the structural
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model (i.e., only the process Y is observable, but we do not take into account the noise
when pricing). For the last two curves, we use an estimation of the first passage time
distribution of an OU process over a constant barrier (same methodology as in [6]).

5.3 A model with a stochastic and unobservable barrier

Giesecke and Goldberg [12] (hereafter GG) model a situation where the market ob-
serves the true value of the firm’s assets but not the default threshold, which is sup-
posed to be a random variable with a known distribution. Our framework permits
to generalize the GG model by choosing for the unobservable barrier a stochas-
tic process with known diffusion parameters. We thus avoid facing zero short term
spreads whenever the firm’s assets are above their historical minimum level, which
was the case in GG.

We illustrate with one example how to fit such a model into our framework. Sup-
pose that the firm’s value is an observable process driven by a Brownian motion with
drift,

dY; =ndt+o1dB;,

while the default threshold k is unobservable for market participants and driven by a
mean-reverting process,

dk; =AY, — ki —y)dt +§dW;,

reflecting the fact that the firm has a target barrier level of Y; — y with y a
positive constant. The processes B and W are correlated Brownian motions with
(B, W); = pt, |p| < 1. Now, we may set the fundamental process tobe X =Y — k
and the barrier to b(¢) = 0. Note that the process X is indeed unobservable, since it
is not adapted with respect to the filtration generated by Y. Moreover, the process X
satisfies assumption (A’), since it can be shown that X, = 6 + (xo — 6 +m;)e " with

'
m; =0/ ™ dB;,
0

B — o1fi +EW;

r= ;
Joi +&*—2pko;
"

o="11,
A

i.e., X is an Ornstein—Uhlenbeck process. Hence, we recover the model presented
before with a different interpretation of the parameters.

6 Conclusion

We have provided a framework for modeling the informational noise affecting the

market perception of the firm’s fundamentals; the corresponding pricing formulas are
derived. Information imperfections have an impact on the investors’ perception of the
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real risks of their positions, hence the model predicts credit spreads which are quite
different from the perfect information models. An important feature we exhibit is that
investors will always price a short-term default-risk premium, since the default time
becomes a totally inaccessible stopping time.

Acknowledgements We are grateful to Marc Yor, Nizar Touzi, and two anonymous referees for care-
fully reading this paper and for their helpful comments.

Appendix

Proof of Lemma 2.1 1t is obvious that {t <t} ¢ F;, hence 1 is not an (F;)-stopping
time. Since the filtration (G;) is Brownian, t is a (G;)-predictable stopping time. Also,
by the definition of the filtration (F}), T is an (F/)-stopping time, and we now prove
that it is totally inaccessible.

Like all stopping times, t has a unique decomposition into an accessible stopping
time, say T4, and a totally inaccessible stopping time, say tp, such that T = t4 A 7p
(see [7], 1IL.41, p. 58). Let us remark that from the construction of (F/) it follows
that 74 is also an (F;)-stopping time. To get this property, note first that prior to t, all
predictable (F})-stopping times are also (F;)-stopping times (see [16]) and second
that an accessible time will be equal to some predictable time on a partition of £2,
except negligible sets, implying that it will also be an (F;)-stopping time.

Using the notation from the proof of the Proposition 3.3, we have, for any function
h and ¢ > 0, that 7 P" (t) < 1, since T}, as the first hitting time of a Brownian motion
is not a bounded stopping time. Hence, U; < 1 for any ¢t > 0 (see equality (3.8)).

However, for t > 74, we have U; = 1, since T < t4 a.s. and 74 is an (F;)-stopping
time. This being impossible, P(t4 < c0) =0 and t = tp a.s., which proves the re-
sult. O

Proof of Lemma 3.7 By definition, the intensity is given by the limit

. Pi<t< Tlﬁr) 1(r>t) . Pt<t<T|F) 1(T>t) ~
Ay =1lim = lim = Ar.
Tt T —t (1—-U;) Tt T —1t (1—-U)

The limit A, can easily be found from (3.14) when dividing both sides by T — ¢ and
taking the limit when T | . Indeed, the left-hand side of (3.14) becomes

1 T (F(T)—F P(t <T -
hm_/ %M)W(TEM):P%MZM
t 11—

Tt T —t T — s T —t
since limy_, cp(%) — 1. Then, the limit of the right-hand side of (3.14) can

be shown to equal

F'(1) ( ¢ )_ ! F'(1) ( ¢ — Cq )dU
™y, \ VIV, /o¢<N>f—<N>s‘” SN =, )

by using a Taylor expansion. U
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