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L OCAL TIME AND THE PRICING OF TIME -DEPENDENT BARRIER OPTIONS

ALEKSANDAR MIJATOVI C

Abstract A time-dependent double-barrier option is a derivativeusigg that delivers the terminal value
@(Sr) at expiryT if neither of the continuous time-dependent barriers: [0,T] — R have been hit
during the time interval0, T]. Using a probabilistic approach we obtain a decompositiothe barrier
option price into the corresponding European option priaeusithebarrier premiumfor a wide class of
payoff functionsp, barrier functiond.. and linear diffusion$S )07} We show that the barrier premium
can be expressed as a sum of integrals along the babrieo$ the option’s deltag\. : [0,T] — R at the
barriers and that the pair of functiofd,,A_) solves a system of Volterra integral equations of the first
kind. We find a semi-analytic solution for this system in tlase of constant double barriers and briefly
discus a numerical algorithm for the time-dependent case.

Keywords Time-dependent single- and double-barrier options, ltoe on curves, Volterra integral
equation of the first kind, delta at the barrier
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1 Introduction

Barrier options play an important role in modern financiatkets. They are a less expensive alternative to
European options and trade in large volumes particularfgiieign exchange. A knock-out double-barrier
contract is nullified if either of the two barriers is breadMpy the underlying asset price process during the
life of the option, and deliverg(Sr), for some predefined payoff functias otherwise. A knock-in option
becomes a European option with paygfif one of the barriers is hit by the asset price process before
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time T, and expires worthless otherwise. Since simple parityticgla exist for the prices of knock-in and
knock-out contracts, we shall concentrate only on exargittie later.
The main result of this paper is given by the following repreation formula
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whereV(0,S) is the current time-dependent barrier option prig€), S) is the current price of the corre-
sponding European payoff and the functigris closely related to the transition density of the procgss
(see formulal(Z]7)), which is a local volatility processegivby the stochastic differential equation (SDE)
in @.1). The function®l_, A, : [0,T] — R can be interpreted as the limiting values of the option'sadel
‘%(t,&) as the asset price procelsapproaches either of the two barriérs(t), b, (t) at timet (see The-
orem 2.5 for more details). Note that, since the option'sofidg non-negative, the delta at the lower (resp.
upper) barrier is positive (resp. negative) makingliberier premiumin the above formula negative, as one
would expect. By Theorenis 2.5 and]2.7 the pair of functighs,A_) exists and solves a system of two
\olterra integral equations of the first kind, given by (2.11

An important feature of representatidn (1.1) is that it carubed for hedging time-dependent barrier
options. Once the system of Volterra integral equationZifi) is solved (numerically or otherwise), the
barrier option price can be obtained by computing the omeedsional integral in formulé_(1.1), which,
from a numerical point of view, can be done very efficientlizefefore an entire “spot-ladder” of option
prices (i.e. a vector of value$(0,S), whereS, ranges over a discrete subset in some interval) can be
obtained with little numerical effort, for we are only salg the system of Volterra integral equations once.
Moreover, since the functiog: is available in semi-analytic form in most models used irncfice, spot-
ladders of deltas and gammas (i.e. vectors with coordiﬁe‘g@, ), %‘4(0, S) respectively, wher&
takes values in a “discrete” interval) can be found by défeiating formulal(I11), once we have obtained
the solution(A,A_) of the system in[(Z.11). This feature of our pricing algaritfs critical for the risk
management of barrier option portfolios because spotdeddre one of the most important tools used by
traders for understanding their exposure to adverse mavisrirethe underlying market.

Hedging a down-and-out call, when the barrier level is belwsvstrike, is not dissimilar to hedging the
corresponding European option, because the presence béther does not destroy the convexity of the
payoff function and hence the del%(t, S) remains bounded throughout the life of the option. In thecas
of a double-barrier knock-out call option the situationadically different since the barrier option price is
non-convex close to the upper barrier at any tinteefore expiry. As mentioned earlier, the valtig(t),
whereA, is the function in[(1.11), is a good approximation for the d@g(t,S), whens is close to the
upper barrier, and can hence be used for hedging. We shoeds $tere that in practice the pair of functions
(Ay,A) arises as a solution of a non-singular system of linear éaps(see Subsectidn 8.3 and[41],
page 179, equation (4.1)) obtained by discretizing theevidtintegral equations frorh (2]11), rather than
from a numerical scheme for partial differential equatiomsere the first derivative is approximated by a
difference quotient that can be unstable close to the bayisitece the value function in that region changes
at a very rapid pace.
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Time-dependent barriers arise naturally in financial mi@rkgen if the barriers in the option’s contract
are constant. Le® denote the foreign exchange rate and let the funct®nB; : [0, T] — R describe the
deterministic term structures of interest rates in dormestd foreign markets respectively. The assumption
that term structures of interest rates are deterministiery common in the foreign exchange markets
as the majority of barrier option contracts are short datgth(maturities up to one year) and have little
dependence on the stochasticity of interest rates. Theafohprocessy := Sexp(—t(Ry(t) — R (t))),
which must be a martingale since it is proportional to an tadséded by the domestic bond, is often
modelled directly instead of the FX rafe It is clear that the original barrier option’s contracthvitonstant
barriers translates into a contract with time-dependemidya fork. Furthermore, by modelling the forward
process directly we can extend the representatidn ih (& thet case of time-dependent interest rates. Note
that the proces§ studied in Sectiofi]2 (seE(2.1)) has a constant drift. ButdffunctionsRy, Rs are in
C2?([0,T]), as they usually are since market participants do not lileetokinks in their term structures, we
can model the forwaré; by dR = Ro(R)dW and price the equivalent derivative with barridﬁs(t) =
b (t) exp(—t(Ra(t) — R(t))) using [L1).

A feature frequently encountered in barrier option markgthe existence of discontinuous barriers.
The barriers are usually step functions or simply stop beictiye at a certain time before expiry. Since
formula [T.1) works for discontinuous payoffs, it can be ppl&d to non-continuous barriers by “backward
integration”. Time steps would in this case be determinethkyintervals of continuity of the barriers. The
procedure starts at the end of the last such interval wherg@dlyoff is known and uses Theorém]2.7 to
determine the payoff function at the beginning of that marThis produces an equivalent problem with a
smaller number of time intervals, so the same procedure eardpplied until we obtain the option value
at the current time.

The key idea in behind the proof of Theoréml2.5, which yiekjsresentatio (1.1), is in some sense
analogous to that used for finding the integral equationtferaptimal exercise boundary in the American
put problem (see Theorem 4.1 in [31] for a survey account @4l for one of the original derivations).
The smooth-fit principle in the American option problem iieplthat the value of the first derivative of the
option price at the exercise boundary is known, which allag/$o obtain a non-linear integral equation for
the exercise boundary by applying Itd’s lemma and takingeesations. In the case of barrier options, the
boundary of the region is specified in advance but the firsvalére (i.e. the option’s delta) at the barrier
is clearly unknown. By judiciously applying Peskir's changf-variable formula (see appenfik A and|[35]
for more details) and taking expectations as in the previass it is possible to obtain a Volterra integral
equation of the first kind for the first derivative. Unlike tvithe American put option, where the integral
equation is non-linear in the exercise boundary, in the cadarrier options we obtain a linear equation
which, when discretized, yields an upper-triangular Imggstem for the unknown function that can be
solved directly (see Sectidh 3 and[41] for more details).

The literature on continuously monitored barrier optiensast and varied. It appears that two general
approaches have been formed. In the first one, which mairdis aéth constant barriers, one tries to find
a path-wise (i.e. robust) hedging strategy with Europeaivaté/es that either uniquely determines or pro-
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vides an admissible range for the barrier option price. A ekaadependent approach of this kind is exem-
plified in [3]. In the case of the Black-Scholes model, andemgenerally for models with symmetric smiles,
this approach has been applied to a number of path-depetel@rdtives including constant double-barrier
options (see [4] and [5]). The second approach consistslofileding directly the expectation in a risk-
neutral measure of the path-dependent barrier payoff. Agiitistic approach using Laplace transforms
for constant double-barrier call and put options in the Bi&choles model is described In[17]. A method
using the joint density of the stock, its maximum and its minim to find the price of time-dependent barrier
options in the Black-Scholes model was pioneered_ in [27Ltary crossing probabilities for Brownian
motion have been used ih [32] to price single-barrier otiatere the underlying asset price process
has deterministic time-dependent drift and volatility.[#®] it is shown that the time-dependent double-
barrier option problem for geometric Brownian motion carré@uced to the constant barriers case by first
transforming the state-space and then time. A static hesigg galls and puts for a time-dependent single-
barrier option is described inl[1]. The result applies teéindiffusions with compound Poisson jumps, but
the hedging strategy depends on knowing the values of thiizbaontract one is trying to hedge at certain
times before expiry. This deficiency was also noted in [28g(sage 106), where a simplified derivation of
the main result from_]1] is given in the case of diffusion pgeses. More recent work on time-dependent
double-barrier options for the same kind of asset price ggsaising analytic tools such as Fourier trans-
forms, Green'’s functions and complex integration can badadn [18], [11], and[[19] and [34] respectively.
Spectral methods are applied to find constant double-bapten prices in the class of CEV modelslin [8].
Laplace transforms and Wiener-Hopf factorization are uis¢@4] to obtain prices and Greeks for constant
barrier options where the logarithm of the underlying apsiee process is a generalized hyper-exponential
Lévy process. This class of processes contains VG, NIG, €@t other models that are of relevance in
finance. Chapter 12 in [29] contains a wealth of analytic méshfor pricing a variety of barrier options
(time-dependent double barriers with and without rebatespecific modelling frameworks (GBM, CEV,
Heston) using the theory of partial differential equatioiidocal time approach has been pursued for the
study of the static superhedging of barrier options (5e}) [@&d the decomposition of European options
with convex payoff functions (sekl[6]).

In this paper we address the question of pricing time-depensingle- and double-barrier options
where the underlying asset price process is a linear diffusith mild regularity conditions on its volatility
function. Our approach is entirely probabilistic, and camels the two approaches discussed in the previous
paragraph. We do not make use of first passage time distifutihich is prohibitively complicated in
the class of models we are considering. Instead we employhavgiae analysis of the option price, which
yields representation (1.1). The paper is organised amsllSectiofi 2 contains statements and proofs of
our main results. In Sectidn 3 we propose a semi-analytidisnl (using Laplace transforms) of the system
of Volterra integral equations that arises in Theoremis AdbZAa7 in the case of constant double barriers. We
also discuss discretization methods for the general tisgeddent barrier case. Sectidn 4 considers briefly
some open questions related to our results and concludesies.
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2 Integral equations for time-dependent barrier options

In this section our goal is to find the integral equations tti@racterize the deltas at the barriers and
consequently the price of any time-dependent barrier opBefore defining precisely the class of exotic
options we shall consider, let us specify the underlying ehtitht provides uncertainty in our economy. The
dynamics of the underlying risky security are given by a fagsveak solution (in the sense of Definition
5.5.1in[25]) of the one-dimensional stochastic differ@réquation (SDE)

it it
S=S+ /o us,du+ /o S0(S)dW, S € (0,%), 2.1)

where the functioro : Ry — R satisfiesg(x) > 0 for all x € (0,) and is locally Lipschitz continuous
in the interval(0,) (i.e. for any compact se€ C (0,) there exists a positive constaii¢ such that
lo(x) — a(y)| < Kc|x—1y| holds for allx,y € C). These two assumptions are the only regularity conditions
applied to the functiow throughout the paper. The constant=r — J is the risk-neutral drift given by the
interest rate and the dividend yield.

The assumptions oo imply that the volatility functiork — xo(x) is also locally Lipschitz continuous
in the interval(0, ) but may vanish at the boundaxy= 0. Under these hypotheses Theorem 5.5.15 ih [25]
yields a filtered probability spacg2, (%t )ic(o,1],Q), with a filtration (Jt )ic(o1) that satisfies the usual
conditions, and processgs= (S )icjo,1) aNdW = (W )ic(o.1) defined onQ, such thaWV is a standard one-
dimensional Brownian motion with respect (¢ );co1) and the procesS solves SDE[(2]1) up to an
explosion time. Furthermore Theorem 5.5.15 guarante@gigniss in law of the solutid®

For some models given by SDE(R.1), the solut®can reach the boundary point zero of the domain
(0, 00) in finite time with strictly positive probability (e.g. theEY process, given by (x) = x°~1, can reach
zero if the parametep is in the interval(0,1), see[[10]). In such cases the absorbing boundary condition
for the process$ at zero is assumed in Theorem 5.5.15(0f| [25]. Our aim is to bhearteasur€) as an
equivalent local martingale measure for our economy inémse of[[9]. The absorbing boundary condition
at zero is therefore very natural because any other boutedgviour would in general introduce arbitrage
(an arbitrage strategy would be to buy the asset when it ishwa@ro and hold it).

The solutionSof SDE [2.1) behaves differently at the other boundary poifiits domain.

Lemma 2.1 The process S does not reach infinity in finite tigr@almost surely.

For the precise definition of explosion at infinity séel[25gp 343. Note that Lemnia 2.1 implies
that the integrals in(211) are defined on the entire proltplsipaceQ for any fixed timet, because the
solution procesS§is Q-almost surely finite during the time intervil t]. For the proof of LemmBa2.1 see
AppendiXC.

A continuous time-dependent barrker [0, T] — (0, ) is by definition a continuous function of finite
variation. In this paper we will mainly be concerned with dtaibarrier options. In order to define them
we need two such functions. : [0, T] — (0, ) which satisfyb_(t) < b, (t) forallt € [0, T]. For any fixed
timese [0, T] let the stopping times be given by

tyi=inf{ve [0,T — 8 Sy € Ry — (b_(s+V),b. (s+V)) }, (22)
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whereR := [0, ). Note that by definition we havet 1s < T, {s+ 1s <t} € % forallt € [0,T], and the
propertys+ s <t+ 1; holds fors<t <T.

Lett € [0,T] be the current time. By definition the fundamental plgef the discounted contract for
the barrier option with a non-negative measurable payoftfiong: [0,0) — [0, ) that started at time 0 is
given byt =E [(p(SrO)I{TO:T}L%] , wherel_t, is the indicator function o®2 (see [23], Definition 7).
Since our market is complete, by Theorem 6.in| [23] (see alsfidm 3.3 in [[[7]), the fundamental price
of a derivative security is the smallest initial cost of finang a replicating portfolio of that security.

It was shown in[[2B3] (see Subsection 1.5.4) that the markeemf a derivative security equals its
fundamental price when, in addition to the standard NFLVBuasption of [9], we also stipulate the no-
dominance assumption of Mertdn [30]. No-dominance intal§i says that, all things being equal, market
participants prefer more to less, and is only violated iférexists an agent who is willing to buy a dominated
security at a higher price (for the mathematical formulatid the no-dominance assumption seel [23],
Assumption 3). No-dominance is shown to imply that therererdubbles in the price of the underlying
asset or in the price of a barrier option that is dominated leglbor a put (se€ [23], Proposition 1, and
Lemma 8 and Theorem 7). The assumption is consistent witlbelass of models given by SDE(2.1),
namely those that have an equivalent martingale measureex@onple in the CEV frameworko(x) =
xP~1, wherep € (0,1]), which is known to have a unique equivalent martingale mesagsee([10]), the
no-dominance assumption can be made and the fundamergalgivien by Theorem 2.7 is the market
price. However the no-dominance assumption cannot be maea the discounted asset price process
(exp(—Ht)S)iejo.1) is a strict local martingale (i.e. there is a bubble in theariying economy), which
has been shown to be the case for some of the models in ounfiakésee [30] and [13]). In this case
the market price of the derivative can exceed the fundarhpritz given by Theorem 2.7. In other words
the market price of the derivative is strictly larger thaa tirice of the replicating portfolio and little can
be said about its dynamics (s€el[23], Subsection 1.5.3, pbeah). It is not an easy task to obtain general
necessary and sufficient conditions for the existence ofjaivalent martingale measure for the solution of
SDE [2.1), a topic that merits further research. In this pépeproces%; denotes the fundamental price of
the barrier option in the economy given ly {2.1), referresinoply as the “price” in all that follow@.

Our aim is to find the pric¥; at any time € [0, T| of a time-dependent double-barrier contract initiated
at time zero. In order to do this we consider the process

Z:=E [(o(SJth)I{tJth:T}l*%} ) (2.3)

which equals the discounted value of an equivalent timeeddent barrier contractinitiated at tinéJnlike

\4, which is a martingale under the pricing measQxehe procesg; is not a discounted price process of a
security in our economy, since at each titrierepresents the price of a different security, and heneg ne
not be a martingale (see Lemial2.2). This is somewhat simailere well-known observation in interest
rate theory that the short rate (i.e. the rate at which fuadse borrowed for an infinitesimal period of time
- also known as the instantaneous interest rate) corresgoraddifferent asset at each timand therefore

1 Thanks are due to the anonymous referee for raising the ifsuebles and their implications for the pricing of options



LOCAL TIME AND THE PRICING OF TIME-DEPENDENT BARRIER OPTIONS 7

need not satisfy any no-arbitrage drift restrictions. kialin the case of the instantaneous interest rate,
the drift of Z can be determined uniquely and, as we shall soon see, cetihife information needed
to obtain the current price of the barrier option. Beforelexipg some basic properties of the procéss

in the next lemma, note that definitiois (2.2) ahd](2.3) alsolyato single-barrier options with obvious
modifications.

Lemma 2.2 (a) Let the times ,$ € [0, T] satisfy s<t. Then the inequaliti[Z|.%s] > Zs holds almost
surely in(Q, Q). If either the upper barrier b is present or the random variabtg(Sr ) is in L1(Q,Q),
the process ¢is a non-negative submartingale.

(b) Assume that the payoff functign: R, — R, is continuous on the complement of a finite set of
points where it is right-continuous with left limits, andathif b, is not present, the payof(Sr)
is in L1(Q,Q). Let the log-normal volatilityo be locally Lipschitz continuous in the intervéd, «)
and assume that it satisfiegS) > 0 for all S € (0,»). Then the process;Aas a continuous mod-
ification of the form Z= Z(t,S), where the continuous function:Z0,T] x R, — R, is given by
Z(t,8) :=Ees [@(S )l rnT})- LEtC:={(t,9 € [0,T) x Ry; b_(t) < S< by (1)}, B, :={(t,5) €
[0,T)xRy; S>by(t)} and B :={(t,S) € [0,T) x Ry; S< b_(t)} be open subsets of the domain
[0,T) x R,. Then Z vanishes on the set BB, is of order C-?(C) and satisfies the partial differ-
ential equation Zt,S) + uSZ(t,S) + %ng(t,S) = 0 for all (t,S) € C with terminal condition
Z(T,S) = @(S) for Se (b_(T),b,(T)) and boundary conditions@ b (t)) =0forallt € [0,T]. The
same is true for a single-barrier option price with approgely modified boundary conditions.

From now on we shall assume that we are working with the meadifio of the proces#; given in (b)
of Lemma[Z.2, i.e. we will assume that the procgsss a continuous submartingale. Note also that the
statement in (a) of Lemnia 2.2 is intuitively clear. If the enlgling asset price is between the barriers, the
proces< is a true martingale up to the first tin® hits a barrier, because before that stopping tdne
equals the discounted barrier option price. SiAciE non-negative, if it were a martingale it would have to
stay at zero from that moment onwards. But as soon as the igthoks to the interval between the barriers,
the proces&; assumes again a strictly positive value. Such behaviouemd& mean drift upwards with
time. We will now give a straightforward but rigorous prodfthis fact.

Proof. Pick s,t € [0,T] such thas < t. Note thats+ 15 < t + 1, for all paths inQ and therefore we have the
inclusion{s+ s =T} C {t+1 =T} and the identityl ;s (11 = l{ss o>t} t1=1}- WeE can now rewrite
Zs, using the tower property and the fda&t+ 15 > t} € %, in the following way

Zs = E[E[qo(erTt)|{5+rs>t}|{t+n:T}|%]|§S] = E[Ztl{rs>tfs}|3zs] < E[Zt|3zs]-

The last inequality holds becauge and hence, is non-negative. If either of the two integrability con-
ditions in (a) of Lemm&2]2 are satisfied, we §8¥;] < o for all t € [0,T], which implies thatZ; is a
submartingale. This proves (a). Part (b) in the lemma is &kvelwn fact about barrier options. It suffices
to note that the statement (b) is a special case of Theorelim BgpendiXB. O
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Part (b) of Lemma@aZ2]2 implies that the partial derivafiggs a continuous function in the open region
C, but the lemma says nothing about the behaviouZg#t the boundary o€. A key step in obtaining
the integral representation for the double-barrier opticine (see equatiohn (2.110) in Theoréml]2.5) will
be the application of Theorem A.1 to the functién [0, T] x R, — R given in (b) of Lemmd&212. This
step requires a certain regularity of the functivrand its first derivativeZs close to the boundary .
In principle the limit of the delta of the double-barrier mpt price may not exist as the underlying asset
S approaches the boundary of the reg@nt does not come as a surprise that additional hypotheses on
the regularity of the payoff functiop : R — R as well as of the barriets, : [0,T] — R are required
for the functionZ to satisfy the assumptions of TheoremlA.1. Lenima 2.3 givéficEnt conditions for
functionsg andb.. that guarantee that the first spatial derivative of the gmiif of the PDE problem in
(b) of LemmdZ.P does not blow up at the boundary of the re@ion

Lemma 2.3 Let the continuous barriersib: [0, T] — R be twice-differentiable and assume that the payoff
functiong: [b_(T),b; (T)] — R satisfiesp(b_(T)) = @(b,(T)) = 0 and is twice-differentiable with the
second derivativey” : (b_(T),b,(T)) — R which is Hblder continuous of ordeor € (0,1). If only the
lower barrier b_ is present, we additionally assume that the random varigifir ) is in L*(Q,Q). Then
the following holds.

(&) The limits
A(t) = li@ozs(t,b+(t) —¢g) and A_(t):= li@ozs(t,b,(t) +£)

exist for all te [0,T] and are uniform on the intervd0, T].
(b) For somed > 0we havesupy .5V (Z(-, b (-) —€))(T) < andsupy .5V (Z(-,b_(-)+&))(T) < oo,
where (g)(T) denotes the total variation of a function ¢0, T] — R.

Properties (a) and (b) hold in the time-dependent singlaibacase with obvious modifications.

Lemma 2.8 is a consequence of Schauder’s boundary estifoatearabolic partial differential equa-
tions. For the proof see AppendiX C. Note also that the umifoonvergence in the lemma, together with
TheoreniBIL, implies that the delta at the barfie((t) is a continuous function of time for alle [0, T], if
the barrier functiong.. and the payoffp satisfy the assumptions in Lemial2.3. This should be cdetitas
with the known behaviour of the delta of an up-and-out cati@pwhich goes to minus infinity if, close to
expiry, the underlying asset approaches the barrier level.

The task now is to understand the path-wise behaviour ofrth@esg Z; ), o, 7). For this we will need the
important concept of local time. Recall that fbeal time(at levela € R) of any continuous semimartingale
X = (X )te|o.7) ON the probability space?, Q) can be defined as a limit

t

1
Lta(x) = y{‘nog 0 I[a,a+s) (Xu)d<X,X>u

almost surely irQ (see [38], page 227, Corollary 1.9), whebé X); is the quadratic variation process as
defined in [38], Chapter IV, Theorem 1.3 and Proposition 1N@&ice that this definition can be easily
extended to a local time of along any continuous cune: [0, T] — R with finite variation byLP(X) :=
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L2(X —b), since the process — biis still a continuous semimartingale and the equalfy- b, X — b); =
(X, X)t holds for allt. For times 0< t < v < T we denote the local time of betweert andv by L, (X) :=
L3(X) — LA(X). It is well-known that the map — L2(X) is almost surely a non-decreasing continuous
function. With this non-decreasing process one can agsoaizandom measuiL2(X) on the interval
[0, T] the support of which is contained in the §et [0, T]; X = a} (seel[38], page 222, Proposition 1.3)
By LemmdZ.2 we know that the proceas= (Zt)re(o.) is @ non-negative continuous semimartingale.
Therefore we are at liberty to apply the Tanaka formula (88 page 222, Theorem 1.2) at level O to the
non-negative proces: )co.1}, thus obtaining the following path-wise representation

"V
zv:z+/ I{Zu>0}d2u+:—2LLEV(Z) for 0<t<v<T. (2.4)
Jt

Using the representation in_(2.4) we can prove the followingposition, which will play a central role in
all that follows.

Proposition 2.4 Assume that the payoff functigrand the barriers b satisfy the assumptions of Lemimd 2.3
and let t v be two elements in the intenv@ T| such that t< v. If the upper barrier b is present, the pro-
cess(ft"I{zu>0}dzu)ve[tﬂ is a continuous martingale and hence representation (Z4hé Doob-Meyer
decomposition of the submartingd®,) < 7). The following equality must therefore hold almost surely

Z = E[Z| 7] - SEIL,(2) 5] (2.5)

Assuming thatp(Sr) is in L2(Q,Q), the representatiof2.8) holds also in the case where only the lower
barrier b_ is present.

If time v equals expiryT and timet equals the current time, the equality in Proposifiod 2.4dgie
representation of the barrier option pricetads a sum of the current value of the European pa¥eff
and the expectation of the local time from now until expirpeTformer quantity is usually available in
most models in a semi-analytic closed form and the lattdrbeilobtained in Theorem 2.5 by applying the
change-of-variable formula from [35]. Note also that itituly the stochastic integrd{"l{zu>0}d2u is a
martingale because the inegraifyrequals a discounted double-barrier option price on thg Zet> 0},
which is a martingale.

Proof. Let C denote the domain between the barriers as defined in (b) oflzd@h2. Recall thak, =
Z(v,S,) where the functio : C — R, is the solution of the PDE in (b) of Lemrha2.2. By Lemimd 2.3 we
are at liberty to apply Theorelm A.1 to the functiénin differential form we obtain

1
dZu=lip_(u)<si<b; () Zs(U, )0 (S)dVL + 5 ('{sJ:b,(u)}Af(U)d L3 (S) — lgmb. (A (W)LY (S)) :

whereZs denotes the first derivative dfwith respect t&. The inclusion{Z, > 0} C {b_(u) < S, < by (u)},
for all u € [0, T}, follows from definition [2.B) and therefore implies

/t (2,007 = /t |(2,20)Z5(Us ) S0 (Su) AW, (2.6)
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The functionZs is bounded on the domai@ by Lemma2.B, which implies that the stochastic integral
on the right-hand side is a continuous martingale startirgeeo. By taking expectation on both sides of
equality [2.4) we conclude the proof in the double-barrésec However, the same argument can be applied
if only the upper barrieb, is present. This is because the integrand on the right-hided$ (2.6) is still
bounded, making the stochastic integralin{2.6) a trueingate.

In the single-barrier case with onlty. present, the argument above does not work because theantegr
in (Z.8) is no longer necessarily bounded. However the saamoning shows that the identity [n (2.5) holds
for the stopped proce&ag, = Z(VA Tn, Siar, ), Where the stopping tima, is the first passage time of the
diffusion Sinto the intervaln, «) after timet, because the integrand [n(P.6) is bounded. Jensen'’s iligqua
for conditional expectations and the definition of the pesegiven in [2.3) imply the inequality

max{E(Zf| 7], EZ].r, | 71} < El@(Sr)? #].

Our assumption op(Sr) implies thatz, andz,,, are elements of the spal:é(Q,@) for all large natural
numbers.

By Lemma 2.1l we have that lim,« T, is infinite almost surely iM2. In other words we have almost
sure path-wise convergence fim. Zy\r, = Zy. The Cauchy-Schwartz inequality implies the following

EHZV_ZVATnH%] = IE[lrn<v|zv—ZvArn||3‘\t]
< Eliyev| FY2E( 2y — Zupgy |2 F)H?
< 2E(leyev|- 7] B @(Sr )7 )M

Since the sequenddl,«v|-%:] converges to zer@-almost surely ag goes to infinity, we obtain

. 1. 1
E[Z| 1] = M ElZu| #] = 2 - 5 I ELy.q, (2)| #] = Z - SEIL(2)| A
where the last equality follows by the monotone convergeheerem. This concludes the proof of the
proposition. 0

Before we proceed to our main theorem recall that, for anytpoi (0,«) and timet € (0, T], the
densityp(t;x,-) : (0,00) — R, of the transition function of the underlying asset priceqessS, given by
the SDE in[(Z11), is characterised by the idenfity(S € A) = [, p(t;x,y)dy, whereA is any measurable
set in(0, ). The functionp(t; X, -) : (0,0) — R is non-negative but does not necessarily integrate to one
because the process can reach zero (and stay there) inifimeteTthe existence gi(t; x,y) can be deduced
from [20], Section 4.11, where it is shown that the transifienction of a diffusion is absolutely continuous
with respect to the speed measure (5eé [20], page 107, fdefhtion of the speed measure). In the case
of the processS given by [2.1), the speed measure is absolutely continudthsrespect to the Lebesgue
measure on the intervé, «) and hence the existence follows. Furthermore it is provg@0h(page 149)
that the functionp(-;-,y) : (0,0) x (0,T] — R, satisfies the parabolic PDE in (b) of Leminal2.2 for any
y € (0,). This fact will play a crucial part in the proof of Theorém]Zd3. proof of Lemmal(2J6)). Note
also that sufficient conditions for the existence of deasitif solutions of one-dimensional SDEs, which
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are jointly smooth in all three variables, are giveninl [38]is stronger result requires a volatility function
that is uniformly bounded away from zero and is thereforeswited to our purpose. For most models that
are of relevance in mathematical finance the densities caitaéned either in semi-analytic closed form
(see for exampld (2.8) and (2.9)) or numerically.

The kernels of integral operators appearing in Theofenhar&d®.7 are related to the transition function
of the asset price procesS )ic(o,1) and will now be specified precisely. The quadratic variati§b); is
a continuous non-decreasing adapted process and as sunesdéfr each path &, a measure(S, S)
on the intervall0, T]. Since the asset price procelsis a solution of the SDE in(2.1), this measure is
absolutely continuous with respect to the Lebesgue measjfeT| and the Radon-Nikodym derivative is
given byd(S, St = S0(S)?dt. The functiong (x,y) that appears in the kernel of the integral operators in
Theorem§2]5 arld 2.7 can be defined as

a(xy) := p(t:x,y)@ ; (2.7)

S=y

wherep(t;x,y) is the density defined above. In the case of the geometric eswmotion we have the
formula

Yo exp<_ (log(y/x) — (u—0?/ Z)t)2> , (2.8)

a(xy) = NeT 507t

where the drift equalg = r —d and ? is the constant variance. The functip(t;x,-) : (0,00) — R in

the case of GBM is a true probability density function beeail® process cannot reach zero. In the case
of the CEV model, given by (2.1) with absorbing boundary dtod at zero and the log-normal volatility
function o (x) = goxP~1 wherep € (0,1) and gy € (0,), we have the following closed form expression
for the functiong;:

Gk(XY) = 208y%° (1 — )k (2-20) (X Y1~40)1/(4=40) ey — X — Y )1/ 5_2p) (2\/XY) . (9)

This expression is a consequence[of](2.7) and the formulthtotransition density;, which can for
example be obtained from Theorem 3.5[in|[10]. The funcien 14 (2) is the modified Bessel function of
the first kind of ordeir and the parameters in (2.9) are given by

e 2u
" 205(1-p)(exp2tu(1-p)) ~ 1)’
X = kP exp(2tu(1—p)),
Y = ky?1P),

wherey is the driftin SDE[[2.11). We now state one of our main theorems

Theorem 2.5 Let § be the underlying process given by {2.1) and letZZ(t,S) be the discounted price

of a time-dependent single- or double-barrier option cantr starting at the current time t, given in (2.3).
Assume further that the barriers.h [0, T] — R, and the payoffp : R, — R, satisfy the assumptions
of Lemmd 213 and that the local volatility functionx o(x), x € R, satisfies the assumptions in (b) of
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LemmdZ.P. In the case where only the lower barrieidpresent, we assume in addition that the variable
@(Sr) isin L2(Q,Q). Let¢(t,x) := Etx[@(Sr)] denote the discounted current price of the European con-
tract starting at time t, conditional upon the asset prigeb8ing at level x, and let the function(g,y) be

as in [2.T). Then the following integral representation floe time-dependent double-barrier option price
holds

1 /T 1 /T
20.%) = (0.5~ ; [ A-OaSb-0)dt+; [ A a . (210

whereA, (1) is the limiting value of the delta of the double-barrier aptiprice at h. (t) as defined in (a) of
LemmdZR. Furthermore the continuous functidnsA_ : [0, T] — R satisfy the following linear system
of two Volterra integral equations of the first kind

¢t.bi(t)) 1 /T A (u)
<¢(t7b(t))> - 2'/t Q(t,u) (A(u)> du, (2.11)
where the matrix @, u), for0<t <u<T, is given by
ot u) = (—qut<b+<t>,b+<u>> qut<b+<t>,b<u>>> | (2.12)
’ —Cu-t(b-(t), by () du-t(b-(t),b-(u))

In a time-dependent up-and-out (resp. down-and-out) sihglrrier case, representation (2]10) contains a
single integral along b (resp. b.). The integral equation that determines the functlan(resp.A_) in the
up-and-out (resp. down-and-out) case takes the form ofdfterva equation of the first kind with: equal

to + (resp.—):

1 T
Bba()£5 [ due(ba(t).b2 ()AL (Wdu=0. (2.13)

Theoreni2b yields an integral representation for the dsbhlkrier option price for a wide variety of
local volatility models, any pair of time-dependent baisiand any payoff function that satisfy the assump-
tions in Lemma_2.13. Rather surprisingly, knowing the valokthe delta at the barriers for all future times,
as well as the current price of the corresponding Europeavediee (recall thatp(b_(T)) = (b, (T)) =0
for payoffsg satisfying the assumptions in Leminal2.3), is enough to olikes current value of the time-
dependent barrier option. Note also that both integralgiragon [2.1D) are negative sinde (t) > 0 (resp.

AL (t) < 0), which intuitively follows from the fact that the barrieption price is increasing (resp. decreas-
ing) as the asset price moves away from (resp. approaclesle\ier (resp. upper) barrier. As expected this
makes the barrier option cheaper than its European cowamteRepresentatioh (2110) therefore decomposes
the double-barrier option price into the European optidogoand thébarrier premium

In order to include the payoff functiong that are of interest in applications (e.g. the up-and-ollit ca
option payoff@(S) = (S—K)"lgp, (1))(S) or the payoff of a double-no-toua(S) = Ip_(1) b, (1))(S)),
we must relax the smoothness requirements for the fungtistipulated in LemmB2l3. This will be done
in Theoren 27, where we will show that the integral represan for the price[{2.30) and the integral
equation for functiong. (2.11) continue to hold.

Before proceeding to the proof of Theorem]2.5 we need thevfadig lemma that bounds the growth of
the functionqg, defined il 27, over short time intervals.
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Lemma 2.6 Let K be a compact interval contained (i@, «). Then there exists a positive constart€lich
that the inequality

Qu-t(X,y) < \/E'KTt
holds forallt<u<T and xy € K.

The proof of Lemm&Z2]6 is contained in Appendix B. Note thatthnstan€x in Lemmal2.6) depends
only on the compact set and the inequality therefore hold®umly on K. If the functiong in SDE [Z2.1)
were uniformly bounded away from zero, the estimate in Lenf2@) would hold on the entire domain
(0, 00).

LemmalZ.6) implies that integral equatiohs (2.11) and3phhve weakly singular kernels and that the
inequalitiesqy—t (b+ (t),b+(u)) < \/% hold for allu € (t,T] whereM is a positive constant{ denotes
either+ or —). The linear operator in (2.13) (resp-_(2.11)) is compacth@enBanach spaces of continuous
functionsC([0, T]) (resp.C([0, T]) x C([0, T])) with the supremum norm, and as such has 0 in its spectrum.
Note that by construction equatioris (2.11) and (2.13) hasendinuous solution. The uniqueness of this
solution is a much more subtle question, equivalent to askinether 0 in the spectrum of the operator is
an eigenvalue. Since equatiohs (2.11) dnd (2.13) are ofrstekind and the Fredholm alternative (which
provides a general answer to the question of uniquenessutiosts for the integral equations of the second
kind) cannot be used, it is difficult to answer the questiogeneral. However for a time-dependent single-
barrier case in the Black-Scholes model see Propositioh 2t8is now proceed to the proof of Theoreni 2.5.

Proof. Let us start by considering a time-dependent double-bavggon. LetC be the domain between
the barriers as defined in (b) of Lemial2.2. We begin by apgl¥ineorem§ AJl and B.1 to the process
Z =Z(t,S), where the functioiZ is the solution of the PDE from (b) of LemrhaR.2. For any paitimies
t,ve [0,T], such that < v, we therefore obtain the following path-wise represeatati

v 1 /v 1 /v
20=Z(08)+ [ 1o @b ) 24 SISO(S)MW+5 [ A L9~ 5 [ A wdLy-(9),

where the functiongl, andA_ are defined in Lemmia2.3. The random measdﬂé’é(S) are by defi-
nition equal to the well-defined random measuddzg(S— b.) and the functiongl. are continuous by
Theoren{B.1l and (a) of Lemnia®.3 and are hence Borel measuibke the functiods: C — R, is
bounded, this equality yields a Doob-Meyer decompositibthe submartingal€Z)c r}- Since such a
decomposition is unique, Proposition]2.4 implies the feitay identity for the finite variation processes

10,(2) = % /t A (udLe- (S)—% /t ' AL udLE(S). (2.14)

The main idea for the proof of Theordm P.5 is to use the equalitPropositio 2.4 to obtain the
representation of the option price and the integral eqoatin the theorem. We must therefore find the
expectatior; g [LEV(Z)] using identity[[Z.1}4). Let us start by proving the following
Claim. For any continuous functioh: [0, T] — R of finite variation and for alt,v € [0,T], such that < v,
the equality

s | [ @atS)] = [t (s bty
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holds, wheray,_((x,y) is given in [2.7).

Recall that, since the procefS— by )ico.1] is a continuous semimartingale, there exists a modification
of the local timeL{, (S— b..) such that the map — L{, (S— b.) is right-continuous and has left limits for
everyv € [t, T] almost surely i2. The function is therefore Lebesgue measurable and thepation times
formula (see([38], Chapter VI, Corollary 1.6) implig8l g ) (S, — b (u))d(S,Su = J5 L, (S—b.)dafor
€ > 0. By taking expectations and dividing lgyon both sides of this equality we obtain

[ 2B Mo (S~ be()So(8)%] du=  [“Beg [Li(S—b)] da 219

The integrand on the left equa%sftf’f((u”))+£ Qu-t(S,y)dy and in the limite \, O we obtaing,_+(S, b+ (u))
M
Vu—t
y € [by(u),bs(u) + €] (see Lemm&2]6), we can apply the bounded convergence theorhe left-hand

side of [Z.I5) to obtair’ qu—+(S, b+ (u))dufor all valuesS (includingS = b (t)).

The right-hand side of {2.15) will converge By g [L,(S—b-)] by the fundamental theorem of cal-
culus, if we can show that the functien— E g [LEV(S— bi)] is continuous ah = 0. Tanaka’s formula
yields the following representation for local time

1 Vv Vv ,
éLta,v(S_ by) = LH,v(<’31)+/t l{Squi(U)Jra}SJO—(SJ)dV\L'—i_/I l{su<be (u)+a) (HSu— bl (u))du,

for all u € (t,v]. Since for all smalle we have the inequalitgy_t(S,y) < for some constari! and

where¥{ \(a) := (a— (Sy—b+(v)))" — (a— (S —bx(t)))" and, as usual(x)™ := max{x,0} for anyx € R
(see [38], Chapter VI, Theorem 1.2). Note that the varidhjlg(a) is Lipschitz continuous ira with a
Lipschitz constant equal to 1 for all element<in By taking expectation on both sides we find

Bus, [LA/(S— b)) = 2ies [a(a)] + 2k | [ ision o (S~ BL@)AU],  (216)

since the integrand in the stochastic integral is boundédhance the martingale term vanishes in expec-
tation. The quantityE; 5 [H v(a)] is continuous ira, while the second expectation on the right-hand side
can be rewritten using Fubini’'s theorem in the following wgyF (a,u)du, where the functiof is given

by F(a,u) :=Cp(u) + jbbi(uHa(uy— b, (u))p(u—t;S,y)dy, the functionp denotes the density of the asset
price procesSin the interval(0,o) andCy(u) := —b4 (u)Qs (S, = 0) is a function independent @ The
estimatep(u —t;x,y) < \/%
(see Lemm@a2]6), implies that the functiar- F (a,u) possesses a partial derivative that is bounded in the
following way | ‘;—'; (a,u)] < \/% forallu e [t,v]. D is some positive constant independenBotlagrange’s
theorem now implies that the integrgl F (a, u)duis a continuous function af. We have therefore shown
that [2.16) is continuous iaand hence proved that the key identity

, for a positive constar independent ok,y in a compact subset @b, «)

E 5 [LY ()] = '/t.VClu—t(S,bi(U))du

follows from (2.15) upon taking the limi 0.
For every pathw in the probability spac&, the functionv — Ltbj (S)(w) has finite variation and is
continuous. Since the same is true of the funcfiam our claim, we can use the integration by parts formula
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to obtain the equalit),ﬁ"f(u)dLﬂi (S = f(v)Ltbj (S — jt'VLEﬁ (S)d fy, whered f, is the Radon measure on
the intervallt,v] induced byf. By taking expectations on both sides of this identity anplgpg Fubini’s
theorem to the integral on the right, which is justified sila@l time is a non-negative function, we obtain
the following sequence of equalities:

s [ [ 1A 9] = 1B (9] [ Eis LGS,
= f(VEs [Lt,ﬂsn—'/t dfu [ Go-1(S.b2(9)ds
~ (B L] - [ (1)~ 1(8)s-1(S.bx(S)ds
= [ 1(91%1(5.b:(9)ds

The third equality follows by Fubini’'s theorem and the laseds a consequence of the formula for the
expectation of local time. This proves the claim.

In order to apply the claim to the identity in (2]114), we neadpproximate the continuous functiofis
on the intervalt, v] by sequences of uniformly bounded continuous functidgs: [t,v] — R)nen with finite
total variation (since the functiom&, are bounded oft,Vv], we can take piecewise linear approximations
on a uniform grid in[t,v]). For each pathw € Q the dominated convergence theorem implies that the
equality Y A+ (WAL (S)(w) = limn e [ £ (U)dLY* (S)(w) holds. Since the functionkt are uniformly
bounded by some constakt the random variablelsf,’ f(u)d Lo (S)| are bounded bKLtbi (S), which is
an integrable random variable. Another application of tbmuhated convergence theorem and the above
claim therefore yield the following equalities

Ees [/t'vai(u)dLg (s ]_ lim Ees [/ £(u )] :/t'vAi(u)qu,t(s,bi(u))du

n—oo

for any pair of timeg, v € [0, T] that satisfyt < v.

We can now apply the last equality to equatibn (P.14) to firelekpectation of the local time of the
time-dependent double-barrier option price. In other 8phy Propositiof 214 we have the following rep-
resentation for the expectation of the double-barrierarptirice process

Bial2] =208+ 5 [ A (W (Sb-(W)du-5 [ A e i(SbyW)dy (217)

for all t,v € [0,T] satisfyingt < v and all values of§. The representation of the double-barrier option
price [2.10) in the theorem can be obtained by takirg0 andv = T in equation[(2.1]7). The system
of integral equationd (2.11) fdid,,A_) also follows from formulal(2.17) by taking=T, § = b, (t)
andS = b_(t), and observing thaZ(t,b_(t)) = Z(t,b; (t)) = 0 for allt € [0, T], since the double-barrier
contract that starts at the barrier is worth zero by definitithis completes the proof of the double-barrier
case. The single-barrier case can be obtained by makinghtfia@ward modifications to the preceding
proof. N
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Our next task is to relax the assumptions on the smoothnehks plyoff functionp: Ry — R, made
in Theoren{ 2.b. This is crucial, as we would like to be ablefplaour methodology to the payoffs that
arise in practice, such as the up-and-out call option pay(8j = (S— K)*I(O,MT))(S) or the payoff of a
double-no-touctp(S) = I (p_(1) . (1)) (S). The following theorem allows us to do precisely that.

Theorem 2.7 Let @ : R, — R be a payoff function that is continuous everywhere excepffiaite set of
points where it is right-continuous and has left limits. és® further that the barriers b: [0,T] — R4
satisfy the assumptions of Lemima 2.3 and that the assetpicesy S )ic(o,7] is given by[(2.11). In the case
where only the lower barrier bis present, we assume in addition that the variaf(8r ) is in L>(Q,Q). Let

Z; =Z(t,S) be the discounted price of a time-dependent single- or @sbhtrier option contract, starting
at the current time t, given in.(2.3), and l¢(t, x) := Etx[¢(Sr)l(b_(1) 0, (1)) (Sr)] denote the discounted
price of the European contract at the current time t conditibupon the asset price Being at level x.
Then there exist measurable functiofis,A_ : [0,T] — R, which are in 1}([0, T],m.(dt)) and are not
necessarily continuous or bounded, such that the follownitegral representation for the double-barrier
option price holds

1 T 1 rT
2(0.%) = $(0.%) 5 [ A Ma(®b O+ [ A0aSb o0 (218)

The measure mis absolutely continuous with respect to the Lebesgue measul the Radon-Nikodym
derivative is given b)"% = t(b+(0),by(t)), wheret is either+ or —. Furthermore the functiond; ,A_
satisfy the linear system of Volterra integral equationtheffirst kind given by {2.11). In a time-dependent
up-and-out (resp. down-and-out) single-barrier case ¢hexists a measurable functiagh, (resp.A_),
which is contained in ([0, T],m, (dt)) (resp. L}([0,T],m_(dt))) and is not necessarily continuous or
bounded, such that the discounted option pri¢8,%,) has the following integral representation

1 rT
2(0,%) = 9(0,50) £ 5 | Ac(t)ar(S.be(0)alt
0

where+ equals either+- or —. The integral equation satisfied by the functidn (resp.A_) takes the

form (Z2.13).

Atfirst glance Theorenis 2.5 ahdP.7 look similar. The differlies in the fact that TheorémP.7 applies
to a much wider class of payoff functiogshat do not satisfy the hypothesis of Lemmd 2.3 and furtheemo
invalidate its conclusions. This makes it impossible tolgipe key local time formula from TheordmA.1,
which provided the core of the proof of Theoréml2.5. Thesdyéinal difficulties will be circumvented
by a careful approximation argument yielding the existesfde! functionsA_, A, , which satisfy integral
equation[(Z.111) and give the desired representation fairttezdependent barrier option price.

As anillustration of the difference between Theorémb 2d[ZaB consider the following. It is well-know
that the delta of a short position in an up-and-out call apbecomes arbitrarily large if, close to expiry,
the asset price approaches the barrier. In particularriqdiés thatd, cannot be bounded close to expiry.
A trader trying to hedge this position would have to buy uiitétd amounts of the underlying asset. Since
the gamma of the short position in the up-and-out call opsdarge and positive close to the barrier, this
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delta hedge would be very profitable if the barrier were nathed. However if the barrier were broken,
the large accumulation of the underlying asset would bea@mege problem. This is why, in practice, such
a position close to expiry would be left unhedged. Let us noveeed to the proof of Theordm 2.7.

Proof. Let E C R be the finite set of discontinuities of the payoff functier- @(X)l_(1) . (1)) (X),
which we also denote by for notational convenience. We start by constructing a seqe of functions
¢ : R, — R, that satisfy the assumptions of Lemmal 2.3 and have the fisiptwo properties

(1) ¢h(X) < @hi1(x), forallxe Ry and allne N, and
(2) limpse @h(X) = @(x), forallx e Ry —E.

Let p,r € E be two consecutive points i such thatp < r. In other words the functiop is continuous

on the intervalp,r) and has a limit at. By Stone-Weierstrass theorem for eath N there exists an
elementf, € C3([p,r]), such that the inequalities mgg(x) — n+l’o} > fn(X) > max{@(x) — ,0} hold for

all x € [p,r). The construction implies that the seque&@ncn satisfies property (1) for ak € [p,r] and
property (2) for allx € [p,r). The complemenR_ — E consists of a finite number of open intervals with
the same properties @p,r). For each poinp € E we can choose a decreasing sequence of open intervals
NP such tha{ p} = N2_;Nf, ENNP = {p}, for alln € N, andNf N N{ = 0 for anyr € E — {p}. Note that

on the components & — E adjacent to anyp € E we have already constructed sequendasecy and
(gn)nen Of C3 functions that converge tg in the required way. In the complement of the neighbourhood
NY¥, we defineg (x) to equal eitherf,(x) or gn(x), depending o being larger or smaller thap. We can
now easily extend to the intervaNy so that the resulting function &* and property (1) remains true on
any neighbourhood gb. Since{p} = Ny, 1Nn, property (2) is also satisfied.

Letz = Z"(t,S) denote the process given [n(R.3) that corresponds to thafifapction g. It is clear
that property (1) implies the inequaligf(t,S) < Z"1(t,S) for all points(t,S) € C, where the regiof is
defined in (b) of LemmBg2]2, and alke N. Since the s€f is finite, properties (1) and (2) and the monotone
convergence theorem imply the equality fim. Z"(t,S) = Z(t,S), whereZ; = Z(t,S) is given by [2.8).
Sinceq, satisfies the hypotheses of Lemima 2.3, expreskion] (2.1 Heceawritten as

Eoss[oh(Sr)] = 2"(0.%) + '/ A" - ()dt—5 /’A &(Sbi())dt  (219)

for all n e N andt,v € [0,T] such that < v. For everyn € N the deltas at the barriers exist by Lemimd 2.3
and are given by\l (t) := limy_,e, Z3(t, b+ (t) F &), where(&)ken IS a positive monotonically decreasing
sequence accumulating at zero. Notice that, sEitfé, b (t)) = O for all t € [0, T], Lagrange’s theorem
implies the equalities

n _ n
A7 (1) = — Jim w, A" t) = im w
o k —00 k

for eachn € N. Since the inequalitZ"(t,b, (t) — &) < Z"1(t,b, (t) — &) (resp.Z"(t,b_(t) + &) <
Z"1(t,b_(t) + &)) holds for anyn € N and allk € N, it follows that 0> A7 (t) > AT"(t) (resp. 0<

A" (t) < A™(t)) for all t € [0, T]. In other words the negative sequer(2€! (t))nen (resp. positive se-
qguencegA" (t))nen) is decreasing (resp. increasing) at any tinaed hence converges to its infimum (resp.
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supremum), which is not necessarily finite. We can therefi@fe measurable functiods, : [0, T| —
[—,0], A_:[0,T] — [0,] in the following wayA, (t) := liMn_e AT (t), A_(t) ;= limy0 A" (t). By ap-
plying monotone convergence theorem to all the integragxpression(2.19) we obtain formula(2.18) in
the theorem. Furthermore, formula(2.18) implies thatnti’ueg'ralsfoT Ay () (S, b (t))dt are finite. Since
the functionsA, ,A_ do not change sign, they clearly define elements-{f0, T],m. (dt)), L*([0, T],m_(dt))
respectively. The system of Volterra integral equationgIpfor the functiongA ., A_) follows in the same
way as in the proof of Theorelm 2.5. The time-dependent sibgteier case can be treated in an analogous
way. This completes the proof. O

We will conclude Sectiohl2 by considering the uniquenesh@ftblution of the Volterra integral equa-
tion in (2.I3) for a time-dependent single barrier in thedRkScholes model. A much more general result
establishing the uniqueness of the solution of the systevbltérra integral equations of the first kind given
in (Z.11), which requires a detailed analysis of the comesiing compact operators, will be discussed in a
subsequent paper.

Proposition 2.8 Assume that the payoff functigrand the barrier b [0, T] — R satisfy the hypotheses of
Theoreni 2J5 and let the asset price procES(o1) follow a geometric Brownian motion. Then integral
equation[[2.1B) has a unique continuous solu#bn[0, T] — R.

Proof. Since equatiori(2.13) is linear and, by Theofen 2.5, has tincmus solution, it is enough to show
that the only continuous solutioh: [0, T] — R of j;T Qu-t(b(t),b(u)) f(u)du= 0 is the obvious one, i.e.
f = 0. In the case of geometric Brownian motion, the integrahkéq,_:(b(t),b(u)) is explicitly given
by formula [2.8). By Theorem 2.1 in_[41] the uniqueness of shkiution of the above integral equation
follows, if we prove that the functiongu,t) := \/u—tqgy—t(b(t),b(u)) and%(u,t) are continuous for all
u,t € [0,T], such thau > t, and thak(t,t) is non-zero for alt € [0, T].

It follows from (2.8) that the functiok(u,t) can be expressed as

— —(u— g2 )2
k(u,t)_b\(/l%fexp<_(5(u) B(t)zagi(luj)/z)(u t)) )

whereB(t) := logb(t), which is clearly continuous for all >t and has a non-zero limit, asapproaches
t, equal tok(t,t) = %. This is a consequence of the Lagrange theorBtm)(— B(t) = B'(&,)(u—t)
for someé, € (t,u)), applied to the differentiable functioB. A short calculation shows that the partial

derivative%(u,t) exists for allu > t. The regularity of the functioB implies thatg—l‘j(u,t) has a finite limit

atu =t and can therefore be extended to a continuous function farwak [0, T], such that < u. This
concludes the proof of the proposition. O
3 Examples

In this section we will consider some examples that illustthe results of Theorerhs 2.5 dnd]2.7. We will
look at the simplest one in Subsection3.1.19 3.2 we solveykEm of Volterra integral equatiohs(2.11) for
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the case of constant barriers using Laplace transformse8tibri 3.8 briefly discusses numerical methods
for solving the systeni{2.11) in the general time-dependase.

3.1 Model-free barrier option price

It is well-known that a down-and-out call option struckkat with a barrier at the leveB, has a unique
model-independent price B coincides with the strik& and if both the interest rates and dividend yields
are zero. Moreover the barrier option price equals the pice forward struck aB, as is easily seen by
the following semi-static replication argument: sinceréhare no interest rates or dividend yields, when
the barrier is breached for the first time the forward contimaorth zero and can therefore be sold at no
cost (or gain). If the barrier is not breached at all, the twgqifs clearly coincide. Since the forward has a
model-independent price, the no-arbitrage principle iegpthat the barrier option price must eq&at B,
whereSis the asset price at the current time. Therefore the deltaeobarrier option price is identically
equal to one in any model. In particular the same must be trtreedarrier.

Let G (S K) denote the call option price at timén the Black-Scholes model. Equatidén (2.13) of Theo-
rem[2Z.5 tells us that the following identity must hold

B(N(ovT —t/2) = N(—oVT —t/2)) M)du

l/T Bo (

=z | ———exp| -

2t \/2m(u—t) 8
forallt € [0,T], where the left-hand side equals the Black-Scholes forfioul@ (B, B) (the functionN(x)

is the cumulative normal distribution) and the integrandttoam right-hand side is given bf/ (2.8) and the
aforementioned fach = 1. Substitutionrx? = o2(u—t)/4 and a short calculation show that this identity
holds for allt € [0, T]. Theoreni 25 therefore implies the following integral eg@ntation for the linear
functionS— (S—B)

1,7 B log(B/S) +ta2/2)?
S_B:CO(S’B)_ZO \/za_mexp<—(09( /2)042—t0/ ) )dt,

whereCy(S,B) is the Black-Scholes formula.

3.2 Constant barriers

A key distinction between the constant barrier case and a-tlependent barrier case, which makes the
former much easier to solve in a semi-analytic form, is thatkernels of the integral operators in equa-
tions [2.11) and (2.13) depend only on the difference of tgamentQ(t,u) = Q(u—t) when the barriers
are constant. Therefore the delta along the barrier can tznel by the following two-step procedure.
First solve an auxiliary integral equation where the rightid side is identically equal to one using the
Laplace transform method, which can be applied precisatplbee the kernel depends on the difference of
the arguments and the integral equation is therefore gisenanvolution of two functions. In the second
step an explicit integral representation for the deltagkte barrier can be constructed using the solution of
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the auxiliary equation. In-3.2.1 we apply this method to Ergarrier options in the Black-Scholes model
(seel(3.R) for the explicit formula and [37], Sections 8.dntl 8.4-4 for more details). [N 3.2.2 we generalize
this approach to the double-barrier case by finding the eixgblution of the system ih (2.11).

3.2.1 Single-barrier options

Let G (S K) = RN(d;) — KN(d_) denote the discounted value of the European call optionarBaick-
Scholes model, where the forward is givenfpy= Se*(T-1) | the drift equals

R ovT —t
+ :
T—t) 2

u:=r—d and dizzlog(
g

Leta:= % be a positive constant and let the functipriR . — R, equalq(t) := L\/%t LetB denote
the lower barrier (i.eB < K) and letA : [0, T] — R be the delta of the option at level By Theoreni 27 we
need to solve the integral equatiGnB,K) = %ftTA(u)q(u—t)du on the interval0, T]. The substitution

x:=T-u,y:=T —t transforms the equation to
y
wi) = [ 19ay-xdx  ye0.T) @Y

whereW(y) = ZB—‘?CT,y(B, K) and the unknown functiof is given byf(x) := A(T —Xx).
As mentioned above, we first solve the auxiliary equati@ﬂf@’ h(x)q(y—x)dx. Recall that the Laplace

transform of a functiom is defined by# (h)(s) := 5’ e *h(x)dxfor all s> 0 such that the integral exists.

1
Vsta®

transform to both sides of the auxiliary equation we figfgh)(s) = ‘/S;W since the right-hand side equals
Z(hxq)(s) =.Z(h)(s)-Z(q)(s) by the famous property of the Laplace transform. The fumdtie: g) (y) :=
gh(x)q(y— x)dxin this formula denotes the convolutionlondg. Note that both equatiofi (3.1) and the
auxiliary equation can be represented in the following w#yy) = (f xq)(y) and 1= (hx*q)(y). This
simple observation will be useful in Subsection 3.2.2.
The task now is to compute the inverse Laplace transtéfrt, which is defined as an integral along

a path in the complex plane, of the functisr» —VSS*"’ Instead of using the definition &~ we observe

It is obvious thatZ (1)(s) = é and a short calculation yield¥’(g)(s) = By applying the Laplace

the following elementary identities

\/si—a“/as\/\é%_ﬁ:a and K(XHE(\/E())(S)—S\/%,

whereE(x) := %Tfo e¥dv is the error function. The first identity is obvious and thems®l follows

from the discussion above upon noticing that the functies E(1/ax) can be expressed as a convolution
E(v/ax) = (v/a xq)(x). By applying the inverse Laplace transform to the first idwgrit now follows that
the solution of the auxiliary equation Ex) = q(x) ++/aE(y/ax). Fubini’s theorem and the auxiliary
equation can now be used to verify that the function

f(X) ;== h(X)¥(0) + (h* ¥)(y) (3.2)
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solves integral equatioh(3.1). Sing&0) = 0 and we have the formula

Wiy - 22 (uN(d+> T %N’(d)) ,
the delta along the barriér: [0, T] — R, can in the case of a down-and-out call be expressed as a convo-
lution of two explicit functionsA(t) = (h+ W')(T —1). It is well-known that in the symmetric case when
p =0, the down-and-out barrier option price in the Black-Sekahodel is given by (S K) — %PO(S, %2),
wherePy(S, %2) is a put option struck a%z (see[29], page 454, equation (12.3)). Theotem 2.7 thexefor
yields the equatioRy(S, &) = e "V 2 [T A(t)q(S B)dt, whereq (S, B) is given in [2.8).

The key observation is that the procedure described hetesvimran up-and-out call option in precisely
the same way. The auxiliary equation again takes the foem(h« q)(y) and hence has the same solution
as before. Functior defined in [[(3.R) solves integral equatidn (3.1), where thection ¥ is redefined
appropriately. In the case of an up-and-out call we Héyg) = —%—?ET,MB[(ST — K)*I{STSB}] where the
barrierB is larger than the strik&. In fact the same procedure works for the class of lineausiifins
considered in Theorem 2.7, as long as one is prepared tola@d¢aumerically or otherwise) the inverse
Laplace transform of the functis— £ (q)(s)/s. The functionq: [0,T] — R would in this case depend
on the underlying diffusion through formula(R.7) witrandy equal to the barrier leves.

3.2.2 Double-barrier options

Let B_ andB; denote the lower and upper barrier respectively and lettfoms 44,44 : [0,T] — R be
given by (y) := 2¢(T —y,B;) and%s(y) := 2¢ (T —y,B_), where¢ represents the discounted value of
the European payoff (see Theorem 2.5). By introducing tlegh of variable:= T —u as in the previous
subsection and denotinfg(x) := A, (T —X), f2(x) := A_(T —x), we can express equatidn (2.11) using the
linear operator# : L1([0, T]) x LY([0,T]) — LY([0, T]) x LY([0,T]) in the following way

<wl> _ <;1> where <f1> o) = (ngn(y—x) fL(dx-+ g Qualy —X) f2<x>dx> 3:3)

L) 2 f S Qaaly =) fa(x)dx+ [ Qza(y —x) fo(x)dlx )
The functiongQ;j : [0, T] — R, i, j € {1,2}, are the coordinates of the matrix [n(2.12) and can be egptes
as functions of one variable precisely because the baaiersonstant in time.
Recall that convolution can be used to make the Banach dgd{ T]) into a commutative Banach
algebra, since the functig+v)(y) = [3 u(y—x)v(x)dxis an element of ([0, T]) for anyu,v € L1([0, T]).
Using this multiplicative structure and the definition [nBwe can express the linear operatér in the

% fr) _ [QuQu2 . fy .
f2 Q21 Q22 f2
The integral equation i (3.3) can now be solved in two st@pe first step consists of finding the
functionsh;j : [0,T] — R, i, ] € {1,2}, which satisfy the identity

(1 0) _ (Qll Q12> . <h11 h12> _ (3.4)
01 Q21 Q22 ho1 hoo .

following way
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Note that the product of any pair of coordinate functionshiis £xpression is given by their convolution.
Note also that the solution of this auxiliary equation dejserolely on the barrier leveB,,B_ and is
independent of the payoff of the option we are trying to prBg applying the Laplace transfort? to
each coordinate of this equation, we obtain a linear systerthe functionsZ (hjj), where multiplication
is defined using a point-wise product rule:

(%o>:<z«mn@:ﬂQQX@>(zmux$i%ma@>
03 Z(Q1)(8) Z(Q2)(8)) \Z(ha1)(s) Z(h22)(9))

S
Assuming that the determinaq¥’(Q11)-2(Q22) — £ (Q12)-Z(Q21))(s) is non-zero for als > 0, we can
explicitly solve this system of equations. In order to obtiie functionsj : [0,T] = R, i, ] € {1,2}, we
need to perform Laplace inversion on each of the four coatdmof the solution of the linear system.
Once the auxiliary equation in (3.4) has been solved, we xaress the solution of the original integral
equation in[(3.B) in the following way

) () 28)- () )
fo(x) h21(X) hao(X) | \ 44(0) hy1 hoo 74 '

Since in our case we hav# (0) = 44(0) = 0, the deltas at the upper and lower barriers are given by the
formulaeA (t) = (hip* W)(T —t) + (hi2* ¥)(T —t) andA_(t) = (hpp« W) (T —t) + (hoox W5)(T —t)
respectively. Representatidn (2.18) of the double-baopéon price in Theoref 2.7 can now be applied.

3.3 Time-dependent barrier options

In case of general time-dependent barriers not much caniearalytically about the structure of the
solutions of the system of integral equationdin (2.11). sy the trapezoidal product integration method,
described in[[41], can be applied directly to the singlerieaproblem. The substitutions:= T —t and
x:=T —u, used in Subsectidn_3.2, transform equation (2.13) intoreeigdised Abel equation with a

weakly singular kernel

Vg x(bs (T =y).bi (T =),

where the functiom.. : [0, T|] — R, is either a lower or an upper barrier and the functiogmgiven in [2.7).

K(y.X) == F

Using the notatio¥(y) := ¢ (T — y,bs (T —y)) for the discounted value of the European payoff (see The-
orem[2.5 for the precise definition ¢f) and f (x) := AL (T — x) for the unknown function in our integral
equation, we can rewrite (2113) as follows:

Y k(y; %)
W :/ f(x)dx 3.5
It follows from the representation of the density of a lineé#fusion given in [15], Section 1.2, equa-

tion (2.8), thak(y,y) := limy »/k(y,X) exists and is non-zero since we are assuming that the bamietion
is differentiable. This statement is clear for geometrionian motion, when the functioq is given
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by (2.8), and essentially the same proof can be used for agjdmear diffusion once we apply the rep-
resentation given i [15]. The observation that &(y,y) < o, for all y € [0, T], is of utmost importance
because it makes the lower-triangular system of lineartéansin [41] non-singular.

The main theorem of [41] says that the solution of the lowiangular linear system, given by equa-
tion (4.1) on page 179 of the same paper, converges to théosolf the integral equatio (3.5) at the
order ofO(h?), whereh is the distance between the consecutive points in the dizatien of [0, T]. This
convergence result assumes some regularity propertigeeafdlutionf, such as continuity on the entire
interval [0, T], which are in general not satisfied in our context. The ditaais improved if we work in
the domain of Theorem 2.5. In other words when faced with eadisnuous payoff functionp, we can
first approximate it by a smooth functiam, as in the proof of Theorem 2.7, and then solve the linear sys-
tem from [41] which corresponds to the derivative that dethg,. This procedure introduces an additional
numerical error since we are pricing the “wrong” derivatibet improves the convergence speed of the
solution of the lower-triangular linear system from[41]fdllows from the construction ofy, in the proof
of Theoreni 2.7 that the price of the barrier option with thgqfag, converges uniformly irt,S) to the
price of the same barrier option with the payg@ffThe stability of the proposed numerical algorithm will
be the subject of future research.

The double-barrier case can be dealt with similarly upoicirgg that the functions_+ (b, (t),b_(u))
andqy_t(b_(t),bs(u)), which appear “off the diagonal” in the kernel of the systehvalterra equations
given in [2.12), are smooth and bounded fot alle [0, T] such that < u. In other words we can extend the
n-dimensional lower-triangular system from [41], used ttvsintegral equatior (3l5), to anxdlimensional
linear system by representing the integrals against fanstj,_ (b (t),b_(u)) andgy_t(b_(t), b4 (u)) us-
ing the standard trapezoidal method (which can be expressethtrix vector multiplication). By express-
ing the solution vector in the following wa§A, (t1),A_(t1),...,A 4 (th),A_(t,))T, where(t))i—1...n is an

increasing sequence such that 0 andt, = T, the 2r-dimensional linear system we need to solve becomes
lower-triangular because of the identities jiq gy (b (t),b-(u)) = limy s qu-t(b_(t), b, (u)) =0. There

are a number of algorithms designed to solve this kind oflisystem very quickly and accurately (see for
example([28]). Their implementations usually rely on nuicedribraries like BLAS and LAPACK for the
calculations. These numerical libraries are highly opgediand can be called directly from C++ (seke [2]
for more information on LAPACK, also available at http://wametlib.org/lapack/lug/). However the ques-
tion of implementation and the optimal choice of algoritton $olving our lower-triangular linear systems
requires further numerical investigation.

4 Conclusion

In this paper we have obtained an integral representatidheoflifference between the time-dependent
double-barrier option price and the price of a Europearooptiith the same payoff. Theoreins2.5 2.7
give the precise formulae in terms of the double-barriefooptieltas(A;,A_) : [0,T] — R x R at the

barriers (see (a) in Lemnia2.3) for the precise definitionthe$e functions), which solve the system of
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\olterra integral equations of the first kind in_(2111). Itléavs by construction that the system of integral
equations in[(2.11) has a solution. The most natural queiithe one of uniqueness of solution, which is
equivalent to the question of whether zero is an eigenvaitleeocompact linear integral operator with a
weakly singular kernel given ifi (2.112). In general, comgamrators exhibit both kinds of behaviour and
the standard technique of transforming an integral egnatiohe first kindK f = ¥ to an integral equation
of the second kind — Lf = ¥, whereK andL are related integral operators (seel[37], Section 8.3)% doe
not apply in our setting because of the weak singularity efk@unel. The transformation of the problem is
desirable because we can use the Fredholm alternativelisanke kernel of the operatbr- L, wherelL is
compact and is the identity operator. In spite of this difficulty this genal approach can be made to work
in the case of equatioh(2]11) by careful inspection of thestrmiction of the functions in the integral kernel
and the uniqueness of the solution can be proved, at leaglafff functions that satisfy the regularity
conditions of Lemm&2]3. The proof will be given in a subsetpeiblication.

If we assume that the Volterra integral equation of the firstlkn (2.11) has a unique solution, then
representatior (2.10) for the time-dependent doubleidyarption price from Theoreimn 2.5 implies that the
value of this path-dependent derivative depends only oankeedimensional distributions in the risk-neutral
measure of the underlying proceSs It is well-known that having the vanilla option prices fdr strikes
and all maturities is equivalent to having the one-dimemsialistributions ofS. Theoreni 25 therefore
provides an explicit link between the vanilla option prieesl the barrier option prices for all reasonably
smooth barriers and a wide class of local volatility mod&lse fact that vanilla option prices determine
uniquely the barrier option prices in the world of local \dlty models has been known since the seminal
work of Bruno Dupirel[12] where, under certain regularitpddions, a PDE for the local volatility function
x— o(x) is derived from the vanilla option prices. This in turn detéres the risk-neutral dynamics &f
and therefore the prices of all path-dependent derivakivegoes not yield an explicit relationship.

In this paper we have discussed a barrier pricing problemmowitrebates. In general a barrier can pay
a contract defined rebake (t) (resp.F_(t)) if attimet € (0,T) the asset price proceSsequals the barrier
levelb, () (resp.b_(t)) for the first time since inception. It is not difficult to séet under some additional
technical assumptions on the functidhs: [0, T] — R, the change-of-variable formula from [35] can be
applied and a similar technique to the one used to prove Enda@rb yields an integral representation of the
time-dependent double-barrier option price with rebatdatt the final formula is very similar to the one
in (2.10), with¢ (0,S) replaced by the sum of the expectation of the European papdftertain integrals
over the time-interval0, T] of the rebate functionB...

We have seen that purely probabilistic concepts such a$ tioca and the generalized 1td formula
proved by Peskir in [35] can be used to obtain a new structuties barrier option pricing problem, which
can then be applied to the pricing and hedging of doubleidraoptions in local volatility models. This
structure consists of two deterministic functiafis : [0, T] — R, which represent the deltas at the two
barriers. It is intuitively clear that the same structuréstsxin stochastic volatility models. Since Peskir's
formula has been generalized to higher dimensioris in [3@lf¢possibly discontinuous) semimartingales,
a generalisation of the approach presented here might bibkearhe multidimensional change-of-variable



LOCAL TIME AND THE PRICING OF TIME-DEPENDENT BARRIER OPTIONS 25

formula in [36] is both surprising and satisfactory, nottjbecause it applies to all semimartingales but
because, under natural deterministic conditions on theevainction, the resulting formula is a direct
extension of the one-dimensional formulalin|[35]. Howevdiract application of the formula i [36] is not
possible in our case, because it requires the existenceegidar extension of the value function across the
boundaries of its natural domain, a question that requegesnvestigation. The issue of which quantity
one could represent in terms of deltas at the barriers inigfeehdimensional case (the value function itself
cannot be represented) provides in our view an additionatésting problem for future research.

Appendix

A A change-of-variable formula with local time on curves

In this section we establish a mild generalisation of thengeaof-variable formula given in Theorem 3.1
of [35]. In fact Theorem Al is implicitly proved in [35]. Sie Theoreri Al is central to our analysis, for
complicity we give a proof based on a direct application otdtem 3.1 and Remark 2.5 in |35].

Let X := (X)iejo,) b€ an Ito diffusion that solves the following stochastiffediential equatiord X =
M(X%)dt + X (X )dW, whereM(x) := ux and 2(x) := xa(x), and letby. : [0,T] — R be two continuous
functions of finite variation satisfyinb_ (t) < by (t) forallt € [0, T]. As before we sef := {(t,x) € [0, T) x
R; b_(t) <x<byi(t)}, By :={(t,x) € [0,T) x R; x> by (t)} andB_ := {(t,x) € [0, T) x R; x < b_(t)}.
LetF : [0,T] x R — R be a continuous function which@"? on the open subs& UCUB, of [0,T] x R.
Given a functiorg : [0, T] — R of bounded variation 1e¥ (g)(t) denote the total variation @f on [0,t] for
anyt <T.

Theorem A.1 Let Z(x) > O for all x € (0,») such that(t,x) € C and assume thatiF- MF + %ZFXX is
locally bounded on BUCUB,, the limit F(s, b (s)%) := limg\ g Fx(s,b+(s) £ €) is uniform in sc [0, t]
and thatsugy_..sV (F(-,b+(-) £ €))(t) < o for somed > 0 and any combination of sings and—. Then
the following change-of-variable formula holds:

t ZZ
F(t,%) = F(07X0)+/0 (R MPx+ —-Fo (8. X6) b (9) x5, (5)) S

't
i /0 (ZF(8.Xs) xb (9620 (5)) AVIE
1t
+§/0 (Fx(8, Xs+) — Fx(s, xs—))|{x5:b7(s)}d LS* (X)

1t
3 /o (Fe(sXs+) = F(8, X)) b (9 AL (X).

For the definition of the local time of at the curveb, LP(X), see paggl8.
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Proof. We start by defining continuous functiofs™ : [0,T] x R — R which satisfy the hypothesis of
Theorem 3.1 in[[35] and then apply the theorem to obtain thedda above. Since functiors. are con-
tinuous, the imageb. ([0, T]) are disjoint compact subsets R? with strictly positive distance. Hence
there exist > 0 such that ¢ < b, (t) —b_(t) forall t € [0, T]. Itis clear that there exist smooth functions
cy : [0,T] — R that satisfyb_(t) < c_(t) < b_(t) + € andb, (t) — € < c;(t) < by (t) forallt € [0,T]. In
particular it follows that, (t) — c_(t) > 2¢.

We now define continuous functiofls” andF —, which areC’? everywhere iff0, T] x R except along
the curved, andb_ respectivly, by the formulae

FHt) :_{F(t,x) fxze® oy __{F(t,x) fx<c. ()
f+(t,x) if x<c_(t), f=(t,%) if x> ci(t).

The functionf* (resp.f ) is aCl? extension of across the smooth boundary (resp.c), which exists
becausé is C12 by assumption on the domat Note also that the functions" are non-unique. Given
these definitions oF *, the only discontinuities of the derivatives are the onéiiied from the original
functionF along the curveb respectively. Sinc€ satisfies the conditions in TheorémA.1, the functions
F* also satisfy the assumptions of Theorem 3.11n [35], whiehefore implies the following formulae for
any fixed timet € [0, T]:

2

+ _E* ! + + z
FE(LX) = FE(0X0) + [ (FE+ MRS+
0 2

t
+%/0 (RE (8 X6) = R (8. %67)) b AL (X), (A1)

t
Fax) (S, Xs) | xezb. (93 AS+ /o (ZF) (5, %) xe b (51 AV

where the signg are simultaneously equal to eitheror —.

Let (4t )ic(o,1) denote the filtration of the Brownian motigw )< (o 1) that satisfies the usual conditions.
Since the processes on both sides of the equalifyid (A.1§ bamtinuous paths we can assume that they are
indistinguishable and therefore substitute fixed ttragl0, T] with any stopping time relative 107t )ic(o.7)-

We now define an increasing sequence of stopping times indlleving way: p; :=t Ainf{s;Xs =
c+(9)}, p2i=tAinf{s> p1;Xs=c_(9)} andponi1:=t AINf{sS> pon; Xs = C1(9)}, Pons2 =t Ainf{s>
Pont1; Xs = C€_(S)} (we are assuming wlog th&y < c.(0)). Note that for anys in [pzn1, P2nr2] (resp. in
[P2n, P2n+1]) the value of the random variablg is strictly aboveb_(s) (resp. belowb, (s)) and therefore
F (s, Xs) equalsF (s, Xs) (resp.F~(s,Xs)). We also have lim,» pn =t a.s. and, for almost all paths X
pn =t for somen € N (this follows from the inequalitg. (s) — c_(s) > 2¢, for all s€ [0,T], and the fact
that the expectation of the upcrossing number of our sentiingale is finite, cf.[[25], Theorem 1.3.8 (iii)).
For a fixedt € [0, T] we have a telescoping representation

F(t,X() - F(07X0) = Z (F (p2l1+27xP2n+2) - F(p2l1+1a XPZn+1) + F(92n+1, XPZn+1) - F(PZnaxpzn))
n=0

= Z (F+(p2n+2a XPZn+2) - F+(p2n+1vxpzn+1)) + Z (Fi(pZHJrl’ XPZn+1) - Fi(PZnaxpzn))’
n=0 n=0
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wherepp := 0. We are allowed to reshuffle the summands in this path-wiisstity since for almost all
paths the sums consist of finitely many summands. The thenoewmfollows by applying formula{Al1)
between the stopping times fof ) to the summands in the last expression and collecting thester

B Analyticity properties of time-dependent barrier option prices

Let ¢: R, — R, be a payoff function that is continuous on a complement of éefiset where it is
right-continuous with left limits. In particulag is continuous at zero. An important examplegis) =
(x=K)"lg_g,)(x) forsome constanB_ < K < B, andx € R . The diffusionX = (X);c(o.7}, Specified by
the time-homogeneous SRB¢ = M (X )dt+ X (X )dW with linear driftM(x) := puxand alocally Lipschitz
diffusion coefficient (x) := xag(x) > 0, forx € (0,), is as described in the beginning of Secfidn 2. Using
the notation from appendix]A we define a family of stoppingesm, for anyt € [0, T], by & :=inf{v e
[0,T —t]; X4v € R — (b_(t+V),bs(t+V))}, where the boundary functiobs : [0,T] — R are continuous
and twice-differentiable in the intervdD, T). We also consider the case where eitheror b_ are not
present to capture the single-barrier case. If there is peuparrier we assume in addition thgitXy) €
LY(Q,Q). The discounted barrier price process is a martingale diyah := E [¢(XTO)I{TOZT}|%] where
the filtration(t )ic(o,1] is as described in the beginning of Secfibn 2. The identity.t) = lirostyl {r=T—1}
the facts{to >t} € %, 10 =t + 1 on the sef{ 19 >t} and the Markov property of imply the following
path-wise representation for the barrier pNge= 117,11 Z(t, %), where the functioZ : [0,T] x R — R is
given by

Z(t,x) := Eix [q’(xtﬂt)'{tm:Tﬂ : (B.1)

Here the procesy starts at timé with valueX; = x.

Itis often stated that the barrier option price satisfiesrtagePDE with absorbing boundary conditions.
Such statements are in fact referring to the analyticitypprties of the functio@, which we make precise
and prove in Theorem B.1.

Theorem B.1 Let .Zg(t,X) := (gt +Maox+ %ngx) (t,x) be the infinitesimal generator of the diffusion
Y = (Y)efo,1)» Where Y:= (t,X%) and the process X is as described above. Let the set C be asdiefin
in appendiX’A and assume thaithe closure is taken in the spaRex [0, T]) is contained in0, ) x [0, T].
Then, under the above hypothesis on the pagaiiid barriers b, the function Z given by (B.1) is contin-
uous on the se&€ — (R x {T}) and solves the following parabolic boundary value problem:

ZZ(t,x) =0 for (t,x) €C,
Z(T,x) = @(x) for xe (b_(T),b:(T)),
Z(t,b.(t)) =0 for t € [0, T].

In the single-barrier case, the local behaviour and the t@ahcondition satisfied by the function Z remain
the same, but the boundary conditions change as followsriap-and-out option the boundary conditions
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are Z(t,b, (t)) = 0and Zt,0) = ¢(0), t € [0, T], and in a down-and-out case we hav@ b_(t)) = O for
allt €0, T].

Proof. Assume first that both barriers are present. If in additionasgume thap: [b_(T),b.(T)] = R

is continuous and satisfiegb_(T)) = @(b,(T)) =0, then by Theorems 6.3.6 and 6.5.2(in|[16], function
Z defined by[(B.11) is the solution of the parabolic PDE and iatighe required boundary conditions. In
particularZ is continuous oI€.

Assume now that the payoff is discontinuous. By assumptignonly has a finite number of bounded
jumps. Hence we can express it@s- lim,_,. ¢h, where the functiong, are continuous witlg,(b_(T)) =
¢h(bs(T)) =0 foralln e N and the convergence is uniform on the complement of any beigithood of the
discontinuities ofp. In fact we can choose the functiopgsso that there exists a decreasing sequence of open
setsNh C R, such that the intersectior,_; N, equals the set of discontinuities@fand(x) = ¢gn(x) on the
complement o, for all n € N. In the obvious notation we géZ(t,Xx) — Zn(t,X)| < AEtx[In, (XT)], Wwhere
Ais some constant independentroifvhich exists sincep is a bounded function. As usuk|, denotes the
indicator function of the sé¥l,. Since the random variab}- has a density in the sé®, «) which is smooth
in the parametg(t, x) (see the discussion preceding Theorer 2.5 in Selction 2jghiehand side of the last
inequality goes to zero uniformly on some neighbourhoodefgoint(t,x). This implies thaf is a limit
of a uniformly convergent sequence of continuous functamis therefore continuous on the complement
of the finite set of discontinuities of the payaff Note thatZ(t,b. (t)) = limn_. Zn(t,b.(t)) = 0 for all
t € [0,T) and thaZ(T,x) = ¢(x) by definition.

We now need to prove that is in C1?(C) and that it satisfies the PDEZ’Z = 0, where.Z is the
infinitesimal generator of the diffusiori. These are local properties of the functidrand it is therefore
enough to show that they hold on any bounded neighbourkbadC of an arbitrary point(t,x) € C.

We can assume without loss of generality that the boundldrys smooth. Then the parabolic boundary
value problem forg : U — R, given by.#g =0 in U andg|y,y = Z|sy, has a unique solution (s€e [16],
Theorem 6.3.6). Lety be the first time the proces which started aft,x) € U, hitsdU. From Dynkin’s
formula (seel[3B], Theorem 7.4.1) and the fact that the solution of the above Dirichlet problem we find
g(t,x) = Ecx[Z(Yi41, )] SinceZ satisfies the mean-value property (se€ [33], page 121, far(@R.9)), it
follows thatg(t,x) = Z(t,x) for all (t,x) € U. This proves the theorem in the double-barrier case.

If we only have a lower barrier, we can express the funci@s a limit of double-barrier option prices
where the “artificial” upper barrier tends to infinity. Usiagsimilar argument as above, and the fact that the
maximum of the process is finite Q-almost surely in the time intervéd, T] (by Lemmd2.1L the proce3s
does not explode to infinity in finite time) it is not hard to $kat the convergence is locally uniform, which
in turn implies that the functiod is continuous on the complement @) of the discontinuities of. Once
we have established continuity, the same “local” argumsim ¢he paragraph above proves the theorem in
the case where there is no upper barrier.

In the up-and-out case, we introduce a constant lower latrisome small leved with the boundary
conditionZ(t, &) = ¢(¢) for all t € [0, T]. Since the functiom is continuous at zero, the argument similar
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to the one above yields continuity of the solution of the pat& problem obtained in the limit as— 0.
Once we have continuity of the solution, the “local” behawriollows as in the preceding two cases.

C Proofs of Lemmad 2.1[ 213 and 216

We start by proving Lemnfa2.1.

Proof. By Feller’s test for explosions (see Theorem 5.5.29 in [25 well know that the statement of the
lemma holds if the following iterated integral diverges

/Zoo%é()zexp(B(x))/xmexp(—B(y))dy_ o,  where B(X):= Zu/x;(%,

for somez xg € (0, ). This is clearly true if the limit lim_, B(X) is finite. If this is not the case, a simple
application of L'Hopital’s rule implies that the function— exp(B(x)) [ exp(—B(y))dyis asymptotically
equal to the functiom — xa (x)?. This proves the lemma. O

Next is the proof of Lemma 2] 3.

Proof. The lemma is a consequence of Schauder’'s boundary estifmatéise solutions of the initial
parabolic partial differential equations proved|inl[14gtlus first consider the double-barrier case. Recall
thatC denotes the domain of the solution of the PDE from (b) of LeriZn@a Denote by : C — ({0} x
(b_(0),b;(0))) — R, a continuous function which maps the curbeg[0, T]) to zero and coincides with
the payoffg on the intervalb_(T),b,(T)]. By Theorem 3.3.7 on page 65 in [15] the partial derivatives
Zs,Zss Z; of the solutiorZ of the PDE in (b) of Lemma2]2 will be Holder continuous oferd € (0,1) on

C, if we can find an extensio# : C — R, of the functionF, whose partial derivativeds, Yss H are Holder
continuous of ordeo on the domairC. Theorem 3.3.7 in_[15] applies in our case because the irlati
functionx — xa(x) is uniformly elliptic on the domail€ since it is strictly positive on the compact €&t
Before constructing an extensi&h explicitly, let us show that Holder continuity of the paitderivatives

of Z implies the lemma.

Pick a sequencéen)nen Of positive real numbers which converges to zero. Sinceehersd derivative
Zssis Holder continuous on a bounded dom@inits modulus must be bounded by some constaine.
|Zs4t,X)| < c for all points(t,x) € C). Therefore, by Lagrange’s theorem, we ha¥eg(t,b, (t) — &) —
Zs(t,by(t) — &)| < clen— &] for all n,k € N and allt € [0, T]. Since the right-hand side of this inequality
is independent of timg the sequence of functiorfs— Zg(t, b, (t) — &) )nen is uniformly Cauchy on the
interval [0, T] and therefore converges uniformly to the continuous lithit The same argument can be
used for the lower barrier. This implies part (a) of the lemma

For part (b) let us choose a real numbBer 0 such that the poir(t, b, (t) — 29) lies in the domai€ for
all't € [0, T]. Since the barriel. is uniformly continuous on the intervf), T], there existg)y > 0 with the
following property: if |t — s| < &, then|b,.(t) — b, (s)| < o for all s;t € [0, T]. Choose an¥ € (0,9) and
assume that € [0,T] satisfy O=tg <t; < ... <ty =T and max{ti—ti_1;i = 1,...,n} < &. Note that this
implies that, ifb () > by (ti—1), foranyi € {1,...,n— 1}, the point(tj,b. (t_1) — €) lies in the domairC.
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Similarly if by (i) < b4 (ti_1) we find that the pointi_1,b, (t;) — €) is in C. Using these observations we
obtain

|Z(ti, by (t) — &) — Z(ti—1, by (ti—1) — )] < |Z(ti,by(t) — &) — Z(ti—1, by (t) — &)+
1Z(ti—1,by-(t) — €) = Z(ti—1, b1 (ti2) — €)]
< A(ti —ti-1) + D[by(t) — by (ti-1)|
< (A+DE)(ti —ti-1),

where the constan#s D, E are upper bounds on the absolute values of the derivaiv&g b/, respectively.
In this inequality we assumed thiat (tj) < by (ti_1). In caseby (i) > by (ti_1) a similar bound with the
same constants, which is also independerst @ian be obtained. This inequality implies that the family of
functions(t — Z(t,by (t) — €))cc(0,5) has a uniformly bounded total variation. Lower barrier candealt
with in an analogous way. This proves part (b) of our lemma.

We are now left with the task of showing that the paypéfan be extended to a functigh: C — R with
Holder continuous derivatived, %5, Y55 We start by defining a global diffeomorphigsn: [0, T] x R —
[0, T] x R, which straightens the barriers of the reg@rgiven by

by (T)—b_(T)
b-(t) —b_(t)
Note thatB(t,b.(t)) = (t,bL(T)) forall t € [0,T] and3(T,S) = (T, S) for all Se R. We can therefore

define@(t,S) :=

B(t,9 = (t,B(t,S)), where B(t,S) := (S—b_(t))+b_(T).

@(B(t,S)) for any point(t,S) € C. A simple calculation shows the following:

Y(t,S) = d(B(t,S>>b§+((Tt;:EEtT))’
2
Yt S) = ¢'(B(t,9)) (bgfgiﬁg)) ’
_ b (T)—b_(T) [\ . (S=b- ()0, (1) ~b (1))
U(L.S) = ~¢ (B9 o —p 5 (b<t>+ b, (0B >

The desired properties of the functighfollow directly from the assumptions in the lemma on the gayo
@ and the boundary functiors. .

Our final task is to prove the lemma in the case where therdysooe barrier. Theorem 3.3.7 on page 65
in [15] can only be applied if the domais bounded. Assume we only have, say, a lower barrier(t).
Then by Theorem B]1 the discounted time-dependent sirgylieel option priceZ(t, S) still solves the PDE
from (b) of Lemmd_Z.2. We can now introduce artificially a cams upper barrier at some large value
B and formulate a parabolic initial-boundary value problegp,S) + uSUs(t, S) + wusgtﬁ) =0
on the bounded domai® := {(t,S) : t € [0,T],S €< [b(t),B]} with the payoff functionp : [b(T),B] — R
and boundary conditiorid (t,b(t)) = 0,U (t,B) = Z(t,B) for all t € [0, T]. Like in the double-barrier case,
because the domat®f is bounded, our assumption on the volatility functimimplies that the differential
operator is uniformly elliptic. By Theorem 4 in_[14] such aoptem has a unique solution and therefore
U(t,S) = Z(t,S) for all (t,S) € C'. Furthermore the same argument as above implies that furstti—
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Us(t,b(t) 4+ ) converge uniformly to a continuous functiom— A(t) defined on[0, T] and that the total
variation oft — U (t,b(t) + €) is bounded uniformly for all small positive This proves the lemma in the
case of a single-barrier option with a lower barrier. Thgkdnupper barrier case can be dealt with similarly.

O

Finally we demonstrate Lemrha 2.6.

Proof. Since the seK is compact, it follows from definitio (211) that it is enoutghprove the lemma for
the transition densityp(u—t;x,y) of the proces$s. As mentioned on padel0 (see alsal [20], page 149)
the function(u,x) — p(u—t;x,y) solves the parabolic PDE problem on the bounded dorfiaii x K.

Let the function(u,x) — v(u—t;X,y) be the solution of the same PDE satisfying the boundary tiondi
vu—t;xy) = —p(u—t;x,y) forallu € [t,T] andx € K (the symbobK denotes the two boundary points
of the intervalK) and the initial conditiorv(0;x,y) = 0 for all x € K — dK. Such a solution exists and is
bounded because the PDE is uniformly parabolic on the doiftali x K and the boundary conditions
are continuous and bounded. Furthermore, by Section |5 i) fiére exists a non-negative fundamental
solution f for our parabolic PDE that satisfies the inequality in Lenin By the maximum principle
(see[15], Theorem 2.1 on page 34), the functfodominates the solution+ p of the PDE on the entire
domain(t, T] x K. Since thes is bounded the lemma follows. O]
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