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L OCAL TIME AND THE PRICING OF TIME -DEPENDENT BARRIER OPTIONS

ALEKSANDAR M IJATOVI Ć

Abstract A time-dependent double-barrier option is a derivative security that delivers the terminal value

φ(ST) at expiryT if neither of the continuous time-dependent barriersb± : [0,T] → R+ have been hit

during the time interval[0,T]. Using a probabilistic approach we obtain a decomposition of the barrier

option price into the corresponding European option price minus thebarrier premiumfor a wide class of

payoff functionsφ , barrier functionsb± and linear diffusions(St)t∈[0,T]. We show that the barrier premium

can be expressed as a sum of integrals along the barriersb± of the option’s deltas∆± : [0,T] → R at the

barriers and that the pair of functions(∆+,∆−) solves a system of Volterra integral equations of the first

kind. We find a semi-analytic solution for this system in the case of constant double barriers and briefly

discus a numerical algorithm for the time-dependent case.

Keywords Time-dependent single- and double-barrier options, localtime on curves, Volterra integral

equation of the first kind, delta at the barrier
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1 Introduction

Barrier options play an important role in modern financial markets. They are a less expensive alternative to

European options and trade in large volumes particularly inforeign exchange. A knock-out double-barrier

contract is nullified if either of the two barriers is breached by the underlying asset price process during the

life of the option, and deliversφ(ST), for some predefined payoff functionφ , otherwise. A knock-in option

becomes a European option with payoffφ if one of the barriers is hit by the asset price process before
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time T, and expires worthless otherwise. Since simple parity relations exist for the prices of knock-in and

knock-out contracts, we shall concentrate only on examining the later.

The main result of this paper is given by the following representation formula

V(0,S0) = ϕ(0,S0)−
1
2

e−rT
(

∫ T

0
∆−(t)qt(S0,b−(t))dt−

∫ T

0
∆+(t)qt(S0,b+(t))dt

)

, (1.1)

whereV(0,S0) is the current time-dependent barrier option price,ϕ(0,S0) is the current price of the corre-

sponding European payoff and the functionqt is closely related to the transition density of the processSt

(see formula (2.7)), which is a local volatility process given by the stochastic differential equation (SDE)

in (2.1). The functions∆−,∆+ : [0,T] → R can be interpreted as the limiting values of the option’s deltas
∂V
∂S(t,St) as the asset price processSt approaches either of the two barriersb−(t),b+(t) at timet (see The-

orem 2.5 for more details). Note that, since the option’s payoff is non-negative, the delta at the lower (resp.

upper) barrier is positive (resp. negative) making thebarrier premiumin the above formula negative, as one

would expect. By Theorems 2.5 and 2.7 the pair of functions(∆+,∆−) exists and solves a system of two

Volterra integral equations of the first kind, given by (2.11).

An important feature of representation (1.1) is that it can be used for hedging time-dependent barrier

options. Once the system of Volterra integral equations in (2.11) is solved (numerically or otherwise), the

barrier option price can be obtained by computing the one-dimensional integral in formula (1.1), which,

from a numerical point of view, can be done very efficiently. Therefore an entire “spot-ladder” of option

prices (i.e. a vector of valuesV(0,S0), whereS0 ranges over a discrete subset in some interval) can be

obtained with little numerical effort, for we are only solving the system of Volterra integral equations once.

Moreover, since the functionqt is available in semi-analytic form in most models used in practice, spot-

ladders of deltas and gammas (i.e. vectors with coordinates∂V
∂S(0,S0), ∂ 2V

∂S2 (0,S0) respectively, whereS0

takes values in a “discrete” interval) can be found by differentiating formula (1.1), once we have obtained

the solution(∆+,∆−) of the system in (2.11). This feature of our pricing algorithm is critical for the risk

management of barrier option portfolios because spot-ladders are one of the most important tools used by

traders for understanding their exposure to adverse movements in the underlying market.

Hedging a down-and-out call, when the barrier level is belowthe strike, is not dissimilar to hedging the

corresponding European option, because the presence of thebarrier does not destroy the convexity of the

payoff function and hence the delta∂V
∂S(t,St) remains bounded throughout the life of the option. In the case

of a double-barrier knock-out call option the situation is radically different since the barrier option price is

non-convex close to the upper barrier at any timet before expiry. As mentioned earlier, the value∆+(t),

where∆+ is the function in (1.1), is a good approximation for the delta ∂V
∂S(t,St), whenSt is close to the

upper barrier, and can hence be used for hedging. We should stress here that in practice the pair of functions

(∆+,∆−) arises as a solution of a non-singular system of linear equations (see Subsection 3.3 and [41],

page 179, equation (4.1)) obtained by discretizing the Volterra integral equations from (2.11), rather than

from a numerical scheme for partial differential equations, where the first derivative is approximated by a

difference quotient that can be unstable close to the boundary since the value function in that region changes

at a very rapid pace.
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Time-dependent barriers arise naturally in financial markets even if the barriers in the option’s contract

are constant. LetSt denote the foreign exchange rate and let the functionsRd,Rf : [0,T]→ R describe the

deterministic term structures of interest rates in domestic and foreign markets respectively. The assumption

that term structures of interest rates are deterministic isvery common in the foreign exchange markets

as the majority of barrier option contracts are short dated (with maturities up to one year) and have little

dependence on the stochasticity of interest rates. The forward processFt := St exp(−t(Rd(t)−Rf (t))),

which must be a martingale since it is proportional to an asset divided by the domestic bond, is often

modelled directly instead of the FX rateSt . It is clear that the original barrier option’s contract with constant

barriers translates into a contract with time-dependent barriers forFt . Furthermore, by modelling the forward

process directly we can extend the representation in (1.1) to the case of time-dependent interest rates. Note

that the processSt studied in Section 2 (see (2.1)) has a constant drift. But if the functionsRd,Rf are in

C2([0,T]), as they usually are since market participants do not like tosee kinks in their term structures, we

can model the forwardFt by dFt = Ftσ(Ft)dWt and price the equivalent derivative with barriersbF
±(t) :=

b±(t)exp(−t(Rd(t)−Rf (t))) using (1.1).

A feature frequently encountered in barrier option marketsis the existence of discontinuous barriers.

The barriers are usually step functions or simply stop beingactive at a certain time before expiry. Since

formula (1.1) works for discontinuous payoffs, it can be be applied to non-continuous barriers by “backward

integration”. Time steps would in this case be determined bythe intervals of continuity of the barriers. The

procedure starts at the end of the last such interval where the payoff is known and uses Theorem 2.7 to

determine the payoff function at the beginning of that interval. This produces an equivalent problem with a

smaller number of time intervals, so the same procedure can be reapplied until we obtain the option value

at the current time.

The key idea in behind the proof of Theorem 2.5, which yields representation (1.1), is in some sense

analogous to that used for finding the integral equation for the optimal exercise boundary in the American

put problem (see Theorem 4.1 in [31] for a survey account and [21] for one of the original derivations).

The smooth-fit principle in the American option problem implies that the value of the first derivative of the

option price at the exercise boundary is known, which allowsus to obtain a non-linear integral equation for

the exercise boundary by applying Itô’s lemma and taking expectations. In the case of barrier options, the

boundary of the region is specified in advance but the first derivative (i.e. the option’s delta) at the barrier

is clearly unknown. By judiciously applying Peskir’s change-of-variable formula (see appendix A and [35]

for more details) and taking expectations as in the previouscase it is possible to obtain a Volterra integral

equation of the first kind for the first derivative. Unlike with the American put option, where the integral

equation is non-linear in the exercise boundary, in the caseof barrier options we obtain a linear equation

which, when discretized, yields an upper-triangular linear system for the unknown function that can be

solved directly (see Section 3 and [41] for more details).

The literature on continuously monitored barrier options is vast and varied. It appears that two general

approaches have been formed. In the first one, which mainly deals with constant barriers, one tries to find

a path-wise (i.e. robust) hedging strategy with European derivatives that either uniquely determines or pro-
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vides an admissible range for the barrier option price. A model-independent approach of this kind is exem-

plified in [3]. In the case of the Black-Scholes model, and more generally for models with symmetric smiles,

this approach has been applied to a number of path-dependentderivatives including constant double-barrier

options (see [4] and [5]). The second approach consists of calculating directly the expectation in a risk-

neutral measure of the path-dependent barrier payoff. A probabilistic approach using Laplace transforms

for constant double-barrier call and put options in the Black-Scholes model is described in [17]. A method

using the joint density of the stock, its maximum and its minimum to find the price of time-dependent barrier

options in the Black-Scholes model was pioneered in [27]. Boundary crossing probabilities for Brownian

motion have been used in [32] to price single-barrier options where the underlying asset price process

has deterministic time-dependent drift and volatility. In[40] it is shown that the time-dependent double-

barrier option problem for geometric Brownian motion can bereduced to the constant barriers case by first

transforming the state-space and then time. A static hedge using calls and puts for a time-dependent single-

barrier option is described in [1]. The result applies to linear diffusions with compound Poisson jumps, but

the hedging strategy depends on knowing the values of the barrier contract one is trying to hedge at certain

times before expiry. This deficiency was also noted in [22] (see page 106), where a simplified derivation of

the main result from [1] is given in the case of diffusion processes. More recent work on time-dependent

double-barrier options for the same kind of asset price process using analytic tools such as Fourier trans-

forms, Green’s functions and complex integration can be found in [18], [11], and [19] and [34] respectively.

Spectral methods are applied to find constant double-barrier option prices in the class of CEV models in [8].

Laplace transforms and Wiener-Hopf factorization are usedin [24] to obtain prices and Greeks for constant

barrier options where the logarithm of the underlying assetprice process is a generalized hyper-exponential

Lévy process. This class of processes contains VG, NIG, CGMY and other models that are of relevance in

finance. Chapter 12 in [29] contains a wealth of analytic methods for pricing a variety of barrier options

(time-dependent double barriers with and without rebate) in specific modelling frameworks (GBM, CEV,

Heston) using the theory of partial differential equations. A local time approach has been pursued for the

study of the static superhedging of barrier options (see [26]) and the decomposition of European options

with convex payoff functions (see [6]).

In this paper we address the question of pricing time-dependent single- and double-barrier options

where the underlying asset price process is a linear diffusion with mild regularity conditions on its volatility

function. Our approach is entirely probabilistic, and combines the two approaches discussed in the previous

paragraph. We do not make use of first passage time distribution, which is prohibitively complicated in

the class of models we are considering. Instead we employ a path-wise analysis of the option price, which

yields representation (1.1). The paper is organised as follows. Section 2 contains statements and proofs of

our main results. In Section 3 we propose a semi-analytic solution (using Laplace transforms) of the system

of Volterra integral equations that arises in Theorems 2.5 and 2.7 in the case of constant double barriers. We

also discuss discretization methods for the general time-dependent barrier case. Section 4 considers briefly

some open questions related to our results and concludes thepaper.
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2 Integral equations for time-dependent barrier options

In this section our goal is to find the integral equations thatcharacterize the deltas at the barriers and

consequently the price of any time-dependent barrier option. Before defining precisely the class of exotic

options we shall consider, let us specify the underlying model that provides uncertainty in our economy. The

dynamics of the underlying risky security are given by a possibly weak solution (in the sense of Definition

5.5.1 in [25]) of the one-dimensional stochastic differential equation (SDE)

St = S0+

∫ t

0
µSudu+

∫ t

0
Suσ(Su)dWu, S0 ∈ (0,∞), (2.1)

where the functionσ : R+ → R+ satisfiesσ(x) > 0 for all x ∈ (0,∞) and is locally Lipschitz continuous

in the interval(0,∞) (i.e. for any compact setC ⊂ (0,∞) there exists a positive constantKC such that

|σ(x)−σ(y)| < KC|x− y| holds for allx,y∈C). These two assumptions are the only regularity conditions

applied to the functionσ throughout the paper. The constantµ := r −δ is the risk-neutral drift given by the

interest rater and the dividend yieldδ .

The assumptions onσ imply that the volatility functionx 7→ xσ(x) is also locally Lipschitz continuous

in the interval(0,∞) but may vanish at the boundaryx= 0. Under these hypotheses Theorem 5.5.15 in [25]

yields a filtered probability space(Ω ,(Ft )t∈[0,T ],Q), with a filtration (Ft)t∈[0,T ] that satisfies the usual

conditions, and processesS= (St)t∈[0,T ] andW = (Wt)t∈[0,T ] defined onΩ , such thatW is a standard one-

dimensional Brownian motion with respect to(Ft)t∈[0,T ] and the processS solves SDE (2.1) up to an

explosion time. Furthermore Theorem 5.5.15 guarantees uniqueness in law of the solutionS.

For some models given by SDE (2.1), the solutionScan reach the boundary point zero of the domain

(0,∞) in finite time with strictly positive probability (e.g. the CEV process, given byσ(x) = xρ−1, can reach

zero if the parameterρ is in the interval(0,1), see [10]). In such cases the absorbing boundary condition

for the processS at zero is assumed in Theorem 5.5.15 of [25]. Our aim is to use the measureQ as an

equivalent local martingale measure for our economy in the sense of [9]. The absorbing boundary condition

at zero is therefore very natural because any other boundarybehaviour would in general introduce arbitrage

(an arbitrage strategy would be to buy the asset when it is worth zero and hold it).

The solutionSof SDE (2.1) behaves differently at the other boundary pointof its domain.

Lemma 2.1 The process S does not reach infinity in finite timeQ-almost surely.

For the precise definition of explosion at infinity see [25], page 343. Note that Lemma 2.1 implies

that the integrals in (2.1) are defined on the entire probability spaceΩ for any fixed timet, because the

solution processS is Q-almost surely finite during the time interval[0, t]. For the proof of Lemma 2.1 see

Appendix C.

A continuous time-dependent barrierb : [0,T]→ (0,∞) is by definition a continuous function of finite

variation. In this paper we will mainly be concerned with double-barrier options. In order to define them

we need two such functionsb± : [0,T]→ (0,∞) which satisfyb−(t)< b+(t) for all t ∈ [0,T]. For any fixed

times∈ [0,T] let the stopping timeτs be given by

τs := inf{v∈ [0,T − s]; Ss+v ∈R+− (b−(s+ v),b+(s+ v)) }, (2.2)
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whereR+ := [0,∞). Note that by definition we haves+ τs ≤ T, {s+ τs ≤ t} ∈ Ft for all t ∈ [0,T], and the

propertys+ τs ≤ t + τt holds fors< t ≤ T.

Let t ∈ [0,T] be the current time. By definition the fundamental priceVt of the discounted contract for

the barrier option with a non-negative measurable payoff functionφ : [0,∞)→ [0,∞) that started at time 0 is

given byVt = E
[

φ(Sτ0)I{τ0=T}|Ft
]

, whereI{τ0=T} is the indicator function onΩ (see [23], Definition 7).

Since our market is complete, by Theorem 6 in [23] (see also Theorem 3.3 in [7]), the fundamental price

of a derivative security is the smallest initial cost of financing a replicating portfolio of that security.

It was shown in [23] (see Subsection 1.5.4) that the market price of a derivative security equals its

fundamental price when, in addition to the standard NFLVR assumption of [9], we also stipulate the no-

dominance assumption of Merton [30]. No-dominance intuitively says that, all things being equal, market

participants prefer more to less, and is only violated if there exists an agent who is willing to buy a dominated

security at a higher price (for the mathematical formulation of the no-dominance assumption see [23],

Assumption 3). No-dominance is shown to imply that there areno bubbles in the price of the underlying

asset or in the price of a barrier option that is dominated by acall or a put (see [23], Proposition 1, and

Lemma 8 and Theorem 7). The assumption is consistent with a subclass of models given by SDE (2.1),

namely those that have an equivalent martingale measure. For example in the CEV framework (σ(x) =

xρ−1, whereρ ∈ (0,1]), which is known to have a unique equivalent martingale measure (see [10]), the

no-dominance assumption can be made and the fundamental price given by Theorem 2.7 is the market

price. However the no-dominance assumption cannot be made when the discounted asset price process

(exp(−µt)St)t∈[0,T] is a strict local martingale (i.e. there is a bubble in the underlying economy), which

has been shown to be the case for some of the models in our framework (see [30] and [13]). In this case

the market price of the derivative can exceed the fundamental price given by Theorem 2.7. In other words

the market price of the derivative is strictly larger than the price of the replicating portfolio and little can

be said about its dynamics (see [23], Subsection 1.5.3, Example 5). It is not an easy task to obtain general

necessary and sufficient conditions for the existence of an equivalent martingale measure for the solution of

SDE (2.1), a topic that merits further research. In this paper the processVt denotes the fundamental price of

the barrier option in the economy given by (2.1), referred tosimply as the “price” in all that follows.1

Our aim is to find the priceVt at any timet ∈ [0,T] of a time-dependent double-barrier contract initiated

at time zero. In order to do this we consider the process

Zt := E
[

φ(St+τt )I{t+τt=T}|Ft
]

, (2.3)

which equals the discounted value of an equivalent time-dependent barrier contract initiated at timet. Unlike

Vt , which is a martingale under the pricing measureQ, the processZt is not a discounted price process of a

security in our economy, since at each timet it represents the price of a different security, and hence need

not be a martingale (see Lemma 2.2). This is somewhat similarto the well-known observation in interest

rate theory that the short rate (i.e. the rate at which funds can be borrowed for an infinitesimal period of time

- also known as the instantaneous interest rate) corresponds to a different asset at each timet and therefore

1 Thanks are due to the anonymous referee for raising the issueof bubbles and their implications for the pricing of options.
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need not satisfy any no-arbitrage drift restrictions. Unlike in the case of the instantaneous interest rate,

the drift of Zt can be determined uniquely and, as we shall soon see, contains all the information needed

to obtain the current price of the barrier option. Before exploring some basic properties of the processZ

in the next lemma, note that definitions (2.2) and (2.3) also apply to single-barrier options with obvious

modifications.

Lemma 2.2 (a) Let the times s, t ∈ [0,T] satisfy s≤ t. Then the inequalityE[Zt |Fs] ≥ Zs holds almost

surely in(Ω ,Q). If either the upper barrier b+ is present or the random variableφ(ST) is in L1(Ω ,Q),

the process Zt is a non-negative submartingale.

(b) Assume that the payoff functionφ : R+ → R+ is continuous on the complement of a finite set of

points where it is right-continuous with left limits, and that, if b+ is not present, the payoffφ(ST)

is in L1(Ω ,Q). Let the log-normal volatilityσ be locally Lipschitz continuous in the interval(0,∞)

and assume that it satisfiesσ(S) > 0 for all S∈ (0,∞). Then the process Zt has a continuous mod-

ification of the form Zt = Z(t,St), where the continuous function Z: [0,T]×R+ → R+ is given by

Z(t,S) := Et,S
[

φ(St+τt )I{t+τt=T}
]

. Let C:= {(t,S) ∈ [0,T)×R+; b−(t)< S< b+(t)}, B+ := {(t,S) ∈
[0,T)×R+; S> b+(t)} and B− := {(t,S) ∈ [0,T)×R+; S< b−(t)} be open subsets of the domain

[0,T)×R+. Then Z vanishes on the set B− ∪B+, is of order C1,2(C) and satisfies the partial differ-

ential equation Zt(t,S) + µSZS(t,S) +
S2σ2(S)

2 ZSS(t,S) = 0 for all (t,S) ∈ C with terminal condition

Z(T,S) = φ(S) for S∈ (b−(T),b+(T)) and boundary conditions Z(t,b±(t)) = 0 for all t ∈ [0,T]. The

same is true for a single-barrier option price with appropriately modified boundary conditions.

From now on we shall assume that we are working with the modification of the processZt given in (b)

of Lemma 2.2, i.e. we will assume that the processZt is a continuous submartingale. Note also that the

statement in (a) of Lemma 2.2 is intuitively clear. If the underlying asset price is between the barriers, the

processZt is a true martingale up to the first timeSt hits a barrier, because before that stopping timeZt

equals the discounted barrier option price. SinceZt is non-negative, if it were a martingale it would have to

stay at zero from that moment onwards. But as soon as the stockreturns to the interval between the barriers,

the processZt assumes again a strictly positive value. Such behaviour makes its mean drift upwards with

time. We will now give a straightforward but rigorous proof of this fact.

Proof. Picks, t ∈ [0,T] such thats< t. Note thats+ τs≤ t + τt for all paths inΩ and therefore we have the

inclusion{s+ τs = T} ⊂ {t + τt = T} and the identityI{s+τs=T} = I{s+τs>t}I{t+τt=T}. We can now rewrite

Zs, using the tower property and the fact{s+ τs> t} ∈ Ft , in the following way

Zs = E[E[φ(St+τt )I{s+τs>t}I{t+τt=T}|Ft ]|Fs] = E[Zt I{τs>t−s}|Fs] ≤ E[Zt |Fs].

The last inequality holds becauseφ , and henceZt , is non-negative. If either of the two integrability con-

ditions in (a) of Lemma 2.2 are satisfied, we getE[Zt ] < ∞ for all t ∈ [0,T], which implies thatZt is a

submartingale. This proves (a). Part (b) in the lemma is a well-known fact about barrier options. It suffices

to note that the statement (b) is a special case of Theorem B.1in Appendix B.
�
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Part (b) of Lemma 2.2 implies that the partial derivativeZS is a continuous function in the open region

C, but the lemma says nothing about the behaviour ofZS at the boundary ofC. A key step in obtaining

the integral representation for the double-barrier optionprice (see equation (2.10) in Theorem 2.5) will

be the application of Theorem A.1 to the functionZ : [0,T]×R+ → R+ given in (b) of Lemma 2.2. This

step requires a certain regularity of the functionZ and its first derivativeZS close to the boundary ofC.

In principle the limit of the delta of the double-barrier option price may not exist as the underlying asset

St approaches the boundary of the regionC. It does not come as a surprise that additional hypotheses on

the regularity of the payoff functionφ : R+ → R+ as well as of the barriersb± : [0,T]→ R+ are required

for the functionZ to satisfy the assumptions of Theorem A.1. Lemma 2.3 gives sufficient conditions for

functionsφ andb± that guarantee that the first spatial derivative of the solution Z of the PDE problem in

(b) of Lemma 2.2 does not blow up at the boundary of the regionC.

Lemma 2.3 Let the continuous barriers b± : [0,T]→R+ be twice-differentiable and assume that the payoff

functionφ : [b−(T),b+(T)]→ R+ satisfiesφ(b−(T)) = φ(b+(T)) = 0 and is twice-differentiable with the

second derivativeφ ′′ : (b−(T),b+(T)) → R which is Ḧolder continuous of orderα ∈ (0,1). If only the

lower barrier b− is present, we additionally assume that the random variableφ(ST) is in L1(Ω ,Q). Then

the following holds.

(a) The limits

∆+(t) := lim
εց0

ZS(t,b+(t)− ε) and ∆−(t) := lim
εց0

ZS(t,b−(t)+ ε)

exist for all t∈ [0,T] and are uniform on the interval[0,T].

(b) For someδ > 0 we havesup0<ε<δ V(Z(·,b+(·)−ε))(T)< ∞ andsup0<ε<δ V(Z(·,b−(·)+ε))(T)< ∞,

where V(g)(T) denotes the total variation of a function g: [0,T]→R.

Properties (a) and (b) hold in the time-dependent single-barrier case with obvious modifications.

Lemma 2.3 is a consequence of Schauder’s boundary estimatesfor parabolic partial differential equa-

tions. For the proof see Appendix C. Note also that the uniform convergence in the lemma, together with

Theorem B.1, implies that the delta at the barrier∆±(t) is a continuous function of time for allt ∈ [0,T], if

the barrier functionsb± and the payoffφ satisfy the assumptions in Lemma 2.3. This should be contrasted

with the known behaviour of the delta of an up-and-out call option which goes to minus infinity if, close to

expiry, the underlying asset approaches the barrier level.

The task now is to understand the path-wise behaviour of the process(Zt)t∈[0,T ]. For this we will need the

important concept of local time. Recall that thelocal time(at levela∈R) of any continuous semimartingale

X = (Xt)t∈[0,T] on the probability space(Ω ,Q) can be defined as a limit

La
t (X) := lim

εց0

1
ε

∫ t

0
I[a,a+ε)(Xu)d〈X,X〉u

almost surely inQ (see [38], page 227, Corollary 1.9), where〈X,X〉t is the quadratic variation process as

defined in [38], Chapter IV, Theorem 1.3 and Proposition 1.18. Notice that this definition can be easily

extended to a local time ofX along any continuous curveb : [0,T]→ R with finite variation byLb
t (X) :=
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L0
t (X −b), since the processX−b is still a continuous semimartingale and the equality〈X −b,X−b〉t =

〈X,X〉t holds for allt. For times 0≤ t < v≤ T we denote the local time ofX betweent andv by La
t,v(X) :=

La
v(X)− La

t (X). It is well-known that the mapt 7→ La
t (X) is almost surely a non-decreasing continuous

function. With this non-decreasing process one can associate a random measuredLa
t (X) on the interval

[0,T] the support of which is contained in the set{t ∈ [0,T]; Xt = a} (see [38], page 222, Proposition 1.3)

By Lemma 2.2 we know that the processZ = (Zt)t∈[0,T ] is a non-negative continuous semimartingale.

Therefore we are at liberty to apply the Tanaka formula (see [38], page 222, Theorem 1.2) at level 0 to the

non-negative process(Zt)t∈[0,T ], thus obtaining the following path-wise representation

Zv = Zt +

∫ v

t
I{Zu>0}dZu+

1
2

L0
t,v(Z) for 0≤ t < v≤ T. (2.4)

Using the representation in (2.4) we can prove the followingproposition, which will play a central role in

all that follows.

Proposition 2.4 Assume that the payoff functionφ and the barriers b± satisfy the assumptions of Lemma 2.3

and let t,v be two elements in the interval[0,T] such that t≤ v. If the upper barrier b+ is present, the pro-

cess(
∫ v
t I{Zu>0}dZu)v∈[t,T ] is a continuous martingale and hence representation (2.4) is the Doob-Meyer

decomposition of the submartingale(Zv)v∈[t,T ]. The following equality must therefore hold almost surely

Zt = E[Zv|Ft ]−
1
2
E[L0

t,v(Z)|Ft ]. (2.5)

Assuming thatφ(ST) is in L2(Ω ,Q), the representation(2.5) holds also in the case where only the lower

barrier b− is present.

If time v equals expiryT and timet equals the current time, the equality in Proposition 2.4 yields a

representation of the barrier option price att as a sum of the current value of the European payoffZT

and the expectation of the local time from now until expiry. The former quantity is usually available in

most models in a semi-analytic closed form and the latter will be obtained in Theorem 2.5 by applying the

change-of-variable formula from [35]. Note also that intuitively the stochastic integral
∫ v
t I{Zu>0}dZu is a

martingale because the inegratorZu equals a discounted double-barrier option price on the set{Zu > 0},

which is a martingale.

Proof. Let C denote the domain between the barriers as defined in (b) of Lemma 2.2. Recall thatZv =

Z(v,Sv) where the functionZ : C→ R+ is the solution of the PDE in (b) of Lemma 2.2. By Lemma 2.3 we

are at liberty to apply Theorem A.1 to the functionZ. In differential form we obtain

dZu = I{b−(u)<Su<b+(u)}ZS(u,Su)Suσ(Su)dWu+
1
2

(

I{Su=b−(u)}∆−(u)dLb−
u (S)− I{Su=b+(u)}∆+(u)dLb+

u (S)
)

,

whereZS denotes the first derivative ofZ with respect toS. The inclusion{Zu > 0}⊆ {b−(u)<Su < b+(u)},

for all u∈ [0,T], follows from definition (2.3) and therefore implies
∫ v

t
I{Zu>0}dZu =

∫ v

t
I{Zu>0}ZS(u,Su)Suσ(Su)dWu. (2.6)
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The functionZS is bounded on the domainC by Lemma 2.3, which implies that the stochastic integral

on the right-hand side is a continuous martingale starting at zero. By taking expectation on both sides of

equality (2.4) we conclude the proof in the double-barrier case. However, the same argument can be applied

if only the upper barrierb+ is present. This is because the integrand on the right-hand side of (2.6) is still

bounded, making the stochastic integral in (2.6) a true martingale.

In the single-barrier case with onlyb− present, the argument above does not work because the integrand

in (2.6) is no longer necessarily bounded. However the same reasoning shows that the identity in (2.5) holds

for the stopped processZv∧τn = Z(v∧ τn,Sv∧τn), where the stopping timeτn is the first passage time of the

diffusionS into the interval[n,∞) after timet, because the integrand in (2.6) is bounded. Jensen’s inequality

for conditional expectations and the definition of the processZ given in (2.3) imply the inequality

max{E[Z2
v |Ft ],E[Z

2
v∧τn

|Ft ]} ≤ E[φ(ST)
2|Ft ].

Our assumption onφ(ST) implies thatZv andZv∧τn are elements of the spaceL2(Ω ,Q) for all large natural

numbersn.

By Lemma 2.1 we have that limn→∞ τn is infinite almost surely inΩ . In other words we have almost

sure path-wise convergence limn→∞ Zv∧τn = Zv. The Cauchy-Schwartz inequality implies the following

E[|Zv−Zv∧τn||Ft ] = E[Iτn<v|Zv−Zv∧τn||Ft ]

≤ E[Iτn<v|Ft ]
1/2E[|Zv−Zv∧τn|2|Ft ]

1/2

≤ 2E[Iτn<v|Ft ]
1/2E[φ(ST)

2|Ft ]
1/2.

Since the sequenceE[Iτn<v|Ft ] converges to zeroQ-almost surely asn goes to infinity, we obtain

E[Zv|Ft ] = lim
n→∞

E[Zv∧τn|Ft ] = Zt −
1
2

lim
n→∞

E[L0
t,v∧τn

(Z)|Ft ] = Zt −
1
2
E[L0

t,v(Z)|Ft ],

where the last equality follows by the monotone convergencetheorem. This concludes the proof of the

proposition. �

Before we proceed to our main theorem recall that, for any point x ∈ (0,∞) and timet ∈ (0,T], the

densityp(t;x, ·) : (0,∞) → R+ of the transition function of the underlying asset price processS, given by

the SDE in (2.1), is characterised by the identityQx(St ∈ A) =
∫

A p(t;x,y)dy, whereA is any measurable

set in(0,∞). The functionp(t;x, ·) : (0,∞)→ R+ is non-negative but does not necessarily integrate to one

because the process can reach zero (and stay there) in finite time. The existence ofp(t;x,y) can be deduced

from [20], Section 4.11, where it is shown that the transition function of a diffusion is absolutely continuous

with respect to the speed measure (see [20], page 107, for thedefinition of the speed measure). In the case

of the processS given by (2.1), the speed measure is absolutely continuous with respect to the Lebesgue

measure on the interval(0,∞) and hence the existence follows. Furthermore it is proved in[20] (page 149)

that the functionp(·; ·,y) : (0,∞)× (0,T] → R+ satisfies the parabolic PDE in (b) of Lemma 2.2 for any

y∈ (0,∞). This fact will play a crucial part in the proof of Theorem 2.5(cf. proof of Lemma (2.6)). Note

also that sufficient conditions for the existence of densities of solutions of one-dimensional SDEs, which
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are jointly smooth in all three variables, are given in [39].This stronger result requires a volatility function

that is uniformly bounded away from zero and is therefore notsuited to our purpose. For most models that

are of relevance in mathematical finance the densities can beobtained either in semi-analytic closed form

(see for example (2.8) and (2.9)) or numerically.

The kernels of integral operators appearing in Theorems 2.5and 2.7 are related to the transition function

of the asset price process(St)t∈[0,T ] and will now be specified precisely. The quadratic variation〈S,S〉t is

a continuous non-decreasing adapted process and as such defines, for each path ofSt , a measured〈S,S〉t
on the interval[0,T]. Since the asset price processSt is a solution of the SDE in (2.1), this measure is

absolutely continuous with respect to the Lebesgue measureon [0,T] and the Radon-Nikodym derivative is

given byd〈S,S〉t = S2
t σ(St)

2dt. The functionqt(x,y) that appears in the kernel of the integral operators in

Theorems 2.5 and 2.7 can be defined as

qt(x,y) := p(t;x,y)
d〈S,S〉t

dt









St=y
, (2.7)

wherep(t;x,y) is the density defined above. In the case of the geometric Brownian motion we have the

formula

qt(x,y) =
yσ√
2πt

exp

(

−
(

log(y/x)− (µ −σ2/2)t
)2

2σ2t

)

, (2.8)

where the drift equalsµ = r − d andσ2 is the constant variance. The functionp(t;x, ·) : (0,∞) → R+ in

the case of GBM is a true probability density function because the process cannot reach zero. In the case

of the CEV model, given by (2.1) with absorbing boundary condition at zero and the log-normal volatility

functionσ(x) = σ0xρ−1 whereρ ∈ (0,1) andσ0 ∈ (0,∞), we have the following closed form expression

for the functionqt :

qt(x,y) = 2σ2
0y2ρ(1−ρ)k1/(2−2ρ)(XY1−4ρ)1/(4−4ρ)exp(−X−Y)I1/(2−2ρ)

(

2
√

XY
)

. (2.9)

This expression is a consequence of (2.7) and the formula forthe transition densitypt , which can for

example be obtained from Theorem 3.5 in [10]. The functionz 7→ Iα(z) is the modified Bessel function of

the first kind of orderα and the parameters in (2.9) are given by

k :=
2µ

2σ2
0(1−ρ)(exp(2tµ(1−ρ))−1)

,

X := kx2(1−ρ)exp(2tµ(1−ρ)),

Y := ky2(1−ρ),

whereµ is the drift in SDE (2.1). We now state one of our main theorems.

Theorem 2.5 Let St be the underlying process given by (2.1) and let Zt = Z(t,St) be the discounted price

of a time-dependent single- or double-barrier option contract, starting at the current time t, given in (2.3).

Assume further that the barriers b± : [0,T] → R+ and the payoffφ : R+ → R+ satisfy the assumptions

of Lemma 2.3 and that the local volatility function x7→ σ(x), x∈ R+, satisfies the assumptions in (b) of
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Lemma 2.2. In the case where only the lower barrier b− is present, we assume in addition that the variable

φ(ST) is in L2(Ω ,Q). Let ϕ(t,x) := Et,x[φ(ST)] denote the discounted current price of the European con-

tract starting at time t, conditional upon the asset price St being at level x, and let the function qt(x,y) be

as in (2.7). Then the following integral representation forthe time-dependent double-barrier option price

holds

Z(0,S0) = ϕ(0,S0)−
1
2

∫ T

0
∆−(t)qt(S0,b−(t))dt+

1
2

∫ T

0
∆+(t)qt(S0,b+(t))dt, (2.10)

where∆±(t) is the limiting value of the delta of the double-barrier option price at b±(t) as defined in (a) of

Lemma 2.3. Furthermore the continuous functions∆+,∆− : [0,T]→ R satisfy the following linear system

of two Volterra integral equations of the first kind
(

ϕ(t,b+(t))
ϕ(t,b−(t))

)

=
1
2

∫ T

t
Q(t,u)

(

∆+(u)

∆−(u)

)

du, (2.11)

where the matrix Q(t,u), for 0≤ t < u≤ T, is given by

Q(t,u) :=

(

−qu−t(b+(t),b+(u)) qu−t(b+(t),b−(u))

−qu−t(b−(t),b+(u)) qu−t(b−(t),b−(u))

)

. (2.12)

In a time-dependent up-and-out (resp. down-and-out) single-barrier case, representation (2.10) contains a

single integral along b+ (resp. b−). The integral equation that determines the function∆+ (resp.∆−) in the

up-and-out (resp. down-and-out) case takes the form of the Volterra equation of the first kind with± equal

to+ (resp.−):

ϕ(t,b±(t))±
1
2

∫ T

t
qu−t(b±(t),b±(u))∆±(u)du= 0. (2.13)

Theorem 2.5 yields an integral representation for the double-barrier option price for a wide variety of

local volatility models, any pair of time-dependent barriers and any payoff function that satisfy the assump-

tions in Lemma 2.3. Rather surprisingly, knowing the valuesof the delta at the barriers for all future times,

as well as the current price of the corresponding European derivative (recall thatφ(b−(T)) = φ(b+(T)) = 0

for payoffsφ satisfying the assumptions in Lemma 2.3), is enough to obtain the current value of the time-

dependent barrier option. Note also that both integrals in equation (2.10) are negative since∆−(t)> 0 (resp.

∆+(t)< 0), which intuitively follows from the fact that the barrieroption price is increasing (resp. decreas-

ing) as the asset price moves away from (resp. approaches) the lower (resp. upper) barrier. As expected this

makes the barrier option cheaper than its European counterpart. Representation (2.10) therefore decomposes

the double-barrier option price into the European option price and thebarrier premium.

In order to include the payoff functionsφ that are of interest in applications (e.g. the up-and-out call

option payoffφ(S) = (S−K)+I(0,b+(T))(S) or the payoff of a double-no-touchφ(S) = I(b−(T),b+(T))(S)),

we must relax the smoothness requirements for the functionφ stipulated in Lemma 2.3. This will be done

in Theorem 2.7, where we will show that the integral representation for the price (2.10) and the integral

equation for functions∆± (2.11) continue to hold.

Before proceeding to the proof of Theorem 2.5 we need the following lemma that bounds the growth of

the functionq, defined in 2.7, over short time intervals.
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Lemma 2.6 Let K be a compact interval contained in(0,∞). Then there exists a positive constant CK such

that the inequality

qu−t(x,y)<
CK√
u− t

holds for all t< u≤ T and x,y∈ K.

The proof of Lemma 2.6 is contained in Appendix B. Note that the constantCK in Lemma (2.6) depends

only on the compact set and the inequality therefore holds uniformly on K. If the functionσ in SDE (2.1)

were uniformly bounded away from zero, the estimate in Lemma(2.6) would hold on the entire domain

(0,∞).

Lemma (2.6) implies that integral equations (2.11) and (2.13) have weakly singular kernels and that the

inequalitiesqu−t(b±(t),b±(u)) < M√
u−t

hold for all u ∈ (t,T] whereM is a positive constant (± denotes

either+ or −). The linear operator in (2.13) (resp. (2.11)) is compact onthe Banach spaces of continuous

functionsC([0,T]) (resp.C([0,T])×C([0,T])) with the supremum norm, and as such has 0 in its spectrum.

Note that by construction equations (2.11) and (2.13) have acontinuous solution. The uniqueness of this

solution is a much more subtle question, equivalent to asking whether 0 in the spectrum of the operator is

an eigenvalue. Since equations (2.11) and (2.13) are of the first kind and the Fredholm alternative (which

provides a general answer to the question of uniqueness of solutions for the integral equations of the second

kind) cannot be used, it is difficult to answer the question ingeneral. However for a time-dependent single-

barrier case in the Black-Scholes model see Proposition 2.8. Let us now proceed to the proof of Theorem 2.5.

Proof. Let us start by considering a time-dependent double-barrier option. LetC be the domain between

the barriers as defined in (b) of Lemma 2.2. We begin by applying Theorems A.1 and B.1 to the process

Zt = Z(t,St), where the functionZ is the solution of the PDE from (b) of Lemma 2.2. For any pair oftimes

t,v∈ [0,T], such thatt < v, we therefore obtain the following path-wise representation

Zv = Z(t,St)+

∫ v

t
I{b−(u)<Su<b+(u)}ZS(u,Su)Suσ(Su)dWu+

1
2

∫ v

t
∆−(u)dLb−

u (S)− 1
2

∫ v

t
∆+(u)dLb+

u (S),

where the functions∆+ and∆− are defined in Lemma 2.3. The random measuresdLb±
u (S) are by defi-

nition equal to the well-defined random measuresdL0
u(S− b±) and the functions∆± are continuous by

Theorem B.1 and (a) of Lemma 2.3 and are hence Borel measurable. Since the functionZS : C → R+ is

bounded, this equality yields a Doob-Meyer decomposition of the submartingale(Zv)v∈[t,T ]. Since such a

decomposition is unique, Proposition 2.4 implies the following identity for the finite variation processes

L0
t,v(Z) =

1
2

∫ v

t
∆−(u)dLb−

u (S)− 1
2

∫ v

t
∆+(u)dLb+

u (S). (2.14)

The main idea for the proof of Theorem 2.5 is to use the equality in Proposition 2.4 to obtain the

representation of the option price and the integral equations in the theorem. We must therefore find the

expectationEt,St [L
0
t,v(Z)] using identity (2.14). Let us start by proving the following.

Claim. For any continuous functionf : [0,T]→R of finite variation and for allt,v∈ [0,T], such thatt < v,

the equality

Et,St

[

∫ v

t
f (u)dLb±

u (S)

]

=

∫ v

t
f (u)qu−t(St ,b±(u))du
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holds, wherequ−t(x,y) is given in (2.7).

Recall that, since the process(S−b±)t∈[0,T] is a continuous semimartingale, there exists a modification

of the local timeLa
t,v(S−b±) such that the mapa 7→ La

t,v(S−b±) is right-continuous and has left limits for

everyv∈ [t,T] almost surely inΩ . The function is therefore Lebesgue measurable and the occupation times

formula (see [38], Chapter VI, Corollary 1.6) implies
∫ v
t I[0,ε)(Su−b±(u))d〈S,S〉u =

∫ ε
0 La

t,v(S−b±)da for

ε > 0. By taking expectations and dividing byε on both sides of this equality we obtain
∫ v

t

1
ε
Et,St

[

I[0,ε)(Su−b±(u))S
2
uσ(Su)

2]du=
1
ε

∫ ε

0
Et,St

[

La
t,v(S−b±)

]

da. (2.15)

The integrand on the left equals1ε
∫ b±(u)+ε

b±(u)
qu−t(St ,y)dy and in the limitε ց 0 we obtainqu−t(St ,b±(u))

for all u∈ (t,v]. Since for all smallε we have the inequalityqu−t(St ,y) < M√
u−t

for some constantM and

y ∈ [b±(u),b±(u)+ ε] (see Lemma 2.6), we can apply the bounded convergence theorem to the left-hand

side of (2.15) to obtain
∫ v
t qu−t(St ,b±(u))du for all valuesSt (includingSt = b±(t)).

The right-hand side of (2.15) will converge toEt,St

[

L0
t,v(S−b±)

]

by the fundamental theorem of cal-

culus, if we can show that the functiona 7→ Et,St

[

La
t,v(S−b±)

]

is continuous ata = 0. Tanaka’s formula

yields the following representation for local time

1
2

La
t,v(S−b±) =Ψt,v(a)+

∫ v

t
I{Su≤b±(u)+a}Suσ(Su)dWu+

∫ v

t
I{Su≤b±(u)+a}(µSu−b′±(u))du,

whereΨt,v(a) := (a− (Sv−b±(v)))+− (a− (St −b±(t)))+ and, as usual,(x)+ := max{x,0} for anyx∈R

(see [38], Chapter VI, Theorem 1.2). Note that the variableΨt,v(a) is Lipschitz continuous ina with a

Lipschitz constant equal to 1 for all elements inΩ . By taking expectation on both sides we find

Et,St

[

La
t,v(S−b±)

]

= 2Et,St [Ψt,v(a)]+2Et,St

[

∫ v

t
I{Su≤b±(u)+a}(µSu−b′±(u))du

]

, (2.16)

since the integrand in the stochastic integral is bounded and hence the martingale term vanishes in expec-

tation. The quantityEt,St [Ψt,v(a)] is continuous ina, while the second expectation on the right-hand side

can be rewritten using Fubini’s theorem in the following way
∫ v
t F(a,u)du, where the functionF is given

by F(a,u) :=C0(u)+
∫ b±(u)+a

0 (µy−b′±(u))p(u− t;St ,y)dy, the functionp denotes the density of the asset

price processS in the interval(0,∞) andC0(u) := −b±(u)QSt (Su = 0) is a function independent ofa. The

estimatep(u− t;x,y) ≤ C√
u−t

, for a positive constantC independent ofx,y in a compact subset of(0,∞)

(see Lemma 2.6), implies that the functiona 7→ F(a,u) possesses a partial derivative that is bounded in the

following way | ∂F
∂a (a,u)| ≤

D√
u−t

for all u∈ [t,v]. D is some positive constant independent ofSt . Lagrange’s

theorem now implies that the integral
∫ v
t F(a,u)du is a continuous function ofa. We have therefore shown

that (2.16) is continuous ina and hence proved that the key identity

Et,St [L
b±
t,v (S)] =

∫ v

t
qu−t(St ,b±(u))du

follows from (2.15) upon taking the limitε ց 0.

For every pathω in the probability spaceΩ , the functionv 7→ Lb±
t,v (S)(ω) has finite variation and is

continuous. Since the same is true of the functionf in our claim, we can use the integration by parts formula
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to obtain the equality
∫ v
t f (u)dLb±

u (S) = f (v)Lb±
t,v (S)−

∫ v
t Lb±

t,u(S)d fu, whered fu is the Radon measure on

the interval[t,v] induced byf . By taking expectations on both sides of this identity and applying Fubini’s

theorem to the integral on the right, which is justified sincelocal time is a non-negative function, we obtain

the following sequence of equalities:

Et,St

[

∫ v

t
f (u)dLb±

u (S)

]

= f (v)Et,St [L
b±
t,v (S)]−

∫ v

t
Et,St [L

b±
t,u(S)]d fu

= f (v)Et,St [L
b±
t,v (S)]−

∫ v

t
d fu

∫ u

t
qs−t(St ,b±(s))ds

= f (v)Et,St [L
b±
t,v (S)]−

∫ v

t
( f (v)− f (s))qs−t (St ,b±(s))ds

=

∫ v

t
f (s)qs−t (St ,b±(s))ds.

The third equality follows by Fubini’s theorem and the last one is a consequence of the formula for the

expectation of local time. This proves the claim.

In order to apply the claim to the identity in (2.14), we need to approximate the continuous functions∆±

on the interval[t,v] by sequences of uniformly bounded continuous functions( f±n : [t,v]→R)n∈N with finite

total variation (since the functions∆± are bounded on[t,v], we can take piecewise linear approximations

on a uniform grid in[t,v]). For each pathω ∈ Ω the dominated convergence theorem implies that the

equality
∫ v
t ∆±(u)dLb±

u (S)(ω) = limn→∞
∫ v
t f±n (u)dLb±

u (S)(ω) holds. Since the functionsf±n are uniformly

bounded by some constantK, the random variables|∫ v
t f±n (u)dLb±

u (S)| are bounded byKLb±
t (S), which is

an integrable random variable. Another application of the dominated convergence theorem and the above

claim therefore yield the following equalities

Et,St

[

∫ v

t
∆±(u)dLb±

u (S)

]

= lim
n→∞

Et,St

[

∫ v

t
f±n (u)dLb±

u (S)

]

=

∫ v

t
∆±(u)qu−t(St ,b±(u))du,

for any pair of timest,v∈ [0,T] that satisfyt < v.

We can now apply the last equality to equation (2.14) to find the expectation of the local time of the

time-dependent double-barrier option price. In other words, by Proposition 2.4 we have the following rep-

resentation for the expectation of the double-barrier option price process

Et,St [Zv] = Z(t,St)+
1
2

∫ v

t
∆−(u)qu−t(St ,b−(u))du− 1

2

∫ v

t
∆+(u)qu−t(St ,b+(u))du (2.17)

for all t,v ∈ [0,T] satisfyingt < v and all values ofSt . The representation of the double-barrier option

price (2.10) in the theorem can be obtained by takingt = 0 andv = T in equation (2.17). The system

of integral equations (2.11) for(∆+,∆−) also follows from formula (2.17) by takingv = T, St = b+(t)

andSt = b−(t), and observing thatZ(t,b−(t)) = Z(t,b+(t)) = 0 for all t ∈ [0,T], since the double-barrier

contract that starts at the barrier is worth zero by definition. This completes the proof of the double-barrier

case. The single-barrier case can be obtained by making straightforward modifications to the preceding

proof.
�
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Our next task is to relax the assumptions on the smoothness ofthe payoff functionφ : R+ → R+ made

in Theorem 2.5. This is crucial, as we would like to be able to apply our methodology to the payoffs that

arise in practice, such as the up-and-out call option payoffφ(S) = (S−K)+I(0,b+(T))(S) or the payoff of a

double-no-touchφ(S) = I(b−(T),b+(T))(S). The following theorem allows us to do precisely that.

Theorem 2.7 Let φ : R+ → R+ be a payoff function that is continuous everywhere except ata finite set of

points where it is right-continuous and has left limits. Assume further that the barriers b± : [0,T] → R+

satisfy the assumptions of Lemma 2.3 and that the asset priceprocess(St)t∈[0,T] is given by (2.1). In the case

where only the lower barrier b− is present, we assume in addition that the variableφ(ST) is in L2(Ω ,Q). Let

Zt = Z(t,St) be the discounted price of a time-dependent single- or double-barrier option contract, starting

at the current time t, given in (2.3), and letϕ(t,x) := Et,x[φ(ST)I(b−(T),b+(T))(ST)] denote the discounted

price of the European contract at the current time t conditional upon the asset price St being at level x.

Then there exist measurable functions∆+,∆− : [0,T] → R, which are in L1([0,T],m±(dt)) and are not

necessarily continuous or bounded, such that the followingintegral representation for the double-barrier

option price holds

Z(0,S0) = ϕ(0,S0)−
1
2

∫ T

0
∆−(t)qt(S0,b−(t))dt+

1
2

∫ T

0
∆+(t)qt(S0,b+(t))dt. (2.18)

The measure m± is absolutely continuous with respect to the Lebesgue measure and the Radon-Nikodym

derivative is given bydm±
dt = qt(b±(0),b±(t)), where± is either+ or −. Furthermore the functions∆+,∆−

satisfy the linear system of Volterra integral equations ofthe first kind given by (2.11). In a time-dependent

up-and-out (resp. down-and-out) single-barrier case there exists a measurable function∆+ (resp.∆−),

which is contained in L1([0,T],m+(dt)) (resp. L1([0,T],m−(dt))) and is not necessarily continuous or

bounded, such that the discounted option price Z(0,S0) has the following integral representation

Z(0,S0) = ϕ(0,S0)±
1
2

∫ T

0
∆±(t)qt(S0,b±(t))dt,

where± equals either+ or −. The integral equation satisfied by the function∆+ (resp.∆−) takes the

form (2.13).

At first glance Theorems 2.5 and 2.7 look similar. The difference lies in the fact that Theorem 2.7 applies

to a much wider class of payoff functionsφ that do not satisfy the hypothesis of Lemma 2.3 and furthermore

invalidate its conclusions. This makes it impossible to apply the key local time formula from Theorem A.1,

which provided the core of the proof of Theorem 2.5. These analytical difficulties will be circumvented

by a careful approximation argument yielding the existenceof L1 functions∆−,∆+, which satisfy integral

equation (2.11) and give the desired representation for thetime-dependent barrier option price.

As an illustration of the difference between Theorems 2.7 and 2.5 consider the following. It is well-know

that the delta of a short position in an up-and-out call option becomes arbitrarily large if, close to expiry,

the asset price approaches the barrier. In particular this implies that∆+ cannot be bounded close to expiry.

A trader trying to hedge this position would have to buy unlimited amounts of the underlying asset. Since

the gamma of the short position in the up-and-out call optionis large and positive close to the barrier, this



LOCAL TIME AND THE PRICING OF TIME-DEPENDENT BARRIER OPTIONS 17

delta hedge would be very profitable if the barrier were not touched. However if the barrier were broken,

the large accumulation of the underlying asset would becomea huge problem. This is why, in practice, such

a position close to expiry would be left unhedged. Let us now proceed to the proof of Theorem 2.7.

Proof. Let E ⊂ R+ be the finite set of discontinuities of the payoff functionx 7→ φ(x)I(b−(T),b+(T))(x),
which we also denote byφ for notational convenience. We start by constructing a sequence of functions

φn : R+ → R+ that satisfy the assumptions of Lemma 2.3 and have the following two properties

(1) φn(x)≤ φn+1(x), for all x∈ R+ and alln∈N, and

(2) limn→∞ φn(x) = φ(x), for all x∈ R+−E.

Let p, r ∈ E be two consecutive points inE such thatp < r. In other words the functionφ is continuous

on the interval[p, r) and has a limit atr. By Stone-Weierstrass theorem for eachn ∈ N there exists an

elementfn ∈C3([p, r]), such that the inequalities max{φ(x)− 1
n+1,0} ≥ fn(x)≥ max{φ(x)− 1

n,0} hold for

all x∈ [p, r). The construction implies that the sequence( fn)n∈N satisfies property (1) for allx∈ [p, r] and

property (2) for allx ∈ [p, r). The complementR+−E consists of a finite number of open intervals with

the same properties as(p, r). For each pointp∈ E we can choose a decreasing sequence of open intervals

Np
n such that{p}= ∩∞

n=1Np
n , E∩Np

n = {p}, for all n∈ N, andNp
1 ∩Nr

1 = /0 for anyr ∈ E−{p}. Note that

on the components ofR+−E adjacent to anyp∈ E we have already constructed sequences( fn)n∈N and

(gn)n∈N of C3 functions that converge toφ in the required way. In the complement of the neighbourhood

Np
n , we defineφn(x) to equal eitherfn(x) or gn(x), depending onx being larger or smaller thanp. We can

now easily extendφn to the intervalNp
n so that the resulting function isC3 and property (1) remains true on

any neighbourhood ofp. Since{p}= ∩∞
n=1Np

n , property (2) is also satisfied.

Let Zn
t = Zn(t,St) denote the process given in (2.3) that corresponds to the payoff functionφn. It is clear

that property (1) implies the inequalityZn(t,S)≤ Zn+1(t,S) for all points(t,S) ∈C, where the regionC is

defined in (b) of Lemma 2.2, and alln∈N. Since the setE is finite, properties (1) and (2) and the monotone

convergence theorem imply the equality limn→∞ Zn(t,St) = Z(t,St), whereZt = Z(t,St) is given by (2.3).

Sinceφn satisfies the hypotheses of Lemma 2.3, expression (2.17) canbe rewritten as

E0,S0[φn(ST)] = Zn(0,S0)+
1
2

∫ T

0
∆n
−(t)qt(S0,b−(t))dt− 1

2

∫ T

0
∆n
+(t)qt(S0,b+(t))dt (2.19)

for all n∈ N andt,v∈ [0,T] such thatt < v. For everyn∈ N the deltas at the barriers exist by Lemma 2.3

and are given by∆n
±(t) := limk→∞ Zn

S(t,b±(t)∓ εk), where(εk)k∈N is a positive monotonically decreasing

sequence accumulating at zero. Notice that, sinceZn(t,b±(t)) = 0 for all t ∈ [0,T], Lagrange’s theorem

implies the equalities

∆n
+(t) =− lim

k→∞

Zn(t,b+(t)− εk)

εk
, ∆n

−(t) = lim
k→∞

Zn(t,b−(t)+ εk)

εk
,

for eachn ∈ N. Since the inequalityZn(t,b+(t)− εk) ≤ Zn+1(t,b+(t)− εk) (resp.Zn(t,b−(t) + εk) ≤
Zn+1(t,b−(t) + εk)) holds for anyn ∈ N and allk ∈ N, it follows that 0≥ ∆n

+(t) ≥ ∆n+1
+ (t) (resp. 0≤

∆n
−(t) ≤ ∆n+1

− (t)) for all t ∈ [0,T]. In other words the negative sequence(∆n
+(t))n∈N (resp. positive se-

quence(∆n
−(t))n∈N) is decreasing (resp. increasing) at any timet and hence converges to its infimum (resp.
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supremum), which is not necessarily finite. We can thereforedefine measurable functions∆+ : [0,T] →
[−∞,0], ∆− : [0,T]→ [0,∞] in the following way∆+(t) := limn→∞ ∆n

+(t), ∆−(t) := limn→∞ ∆n
−(t). By ap-

plying monotone convergence theorem to all the integrals inexpression (2.19) we obtain formula (2.18) in

the theorem. Furthermore, formula (2.18) implies that the integrals
∫ T

0 ∆±(t)qt(S0,b±(t))dt are finite. Since

the functions∆+,∆− do not change sign, they clearly define elements inL1([0,T],m+(dt)), L1([0,T],m−(dt))

respectively. The system of Volterra integral equations (2.11) for the functions(∆+,∆−) follows in the same

way as in the proof of Theorem 2.5. The time-dependent single-barrier case can be treated in an analogous

way. This completes the proof. �

We will conclude Section 2 by considering the uniqueness of the solution of the Volterra integral equa-

tion in (2.13) for a time-dependent single barrier in the Black-Scholes model. A much more general result

establishing the uniqueness of the solution of the system ofVolterra integral equations of the first kind given

in (2.11), which requires a detailed analysis of the corresponding compact operators, will be discussed in a

subsequent paper.

Proposition 2.8 Assume that the payoff functionφ and the barrier b: [0,T]→R+ satisfy the hypotheses of

Theorem 2.5 and let the asset price process(St)t∈[0,T] follow a geometric Brownian motion. Then integral

equation (2.13) has a unique continuous solution∆ : [0,T]→ R.

Proof. Since equation (2.13) is linear and, by Theorem 2.5, has a continuous solution, it is enough to show

that the only continuous solutionf : [0,T] → R of
∫ T
t qu−t(b(t),b(u)) f (u)du= 0 is the obvious one, i.e.

f ≡ 0. In the case of geometric Brownian motion, the integral kernel qu−t(b(t),b(u)) is explicitly given

by formula (2.8). By Theorem 2.1 in [41] the uniqueness of thesolution of the above integral equation

follows, if we prove that the functionsk(u, t) :=
√

u− tqu−t(b(t),b(u)) and ∂k
∂u(u, t) are continuous for all

u, t ∈ [0,T], such thatu≥ t, and thatk(t, t) is non-zero for allt ∈ [0,T].

It follows from (2.8) that the functionk(u, t) can be expressed as

k(u, t) =
b(u)σ√

2π
exp

(

−
(

B(u)−B(t)− (µ−σ2/2)(u− t)
)2

2σ2(u− t)

)

,

whereB(t) := logb(t), which is clearly continuous for allu> t and has a non-zero limit, asu approaches

t, equal tok(t, t) = b(t)σ√
2π . This is a consequence of the Lagrange theorem (B(u)−B(t) = B′(ξu)(u− t)

for someξu ∈ (t,u)), applied to the differentiable functionB. A short calculation shows that the partial

derivative∂k
∂u(u, t) exists for allu> t. The regularity of the functionB implies that∂k

∂u(u, t) has a finite limit

at u = t and can therefore be extended to a continuous function for all t,u ∈ [0,T], such thatt ≤ u. This

concludes the proof of the proposition. �

3 Examples

In this section we will consider some examples that illustrate the results of Theorems 2.5 and 2.7. We will

look at the simplest one in Subsection 3.1. In 3.2 we solve thesystem of Volterra integral equations (2.11) for
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the case of constant barriers using Laplace transforms. Subsection 3.3 briefly discusses numerical methods

for solving the system (2.11) in the general time-dependentcase.

3.1 Model-free barrier option price

It is well-known that a down-and-out call option struck atK, with a barrier at the levelB, has a unique

model-independent price ifB coincides with the strikeK and if both the interest rates and dividend yields

are zero. Moreover the barrier option price equals the priceof a forward struck atB, as is easily seen by

the following semi-static replication argument: since there are no interest rates or dividend yields, when

the barrier is breached for the first time the forward contract is worth zero and can therefore be sold at no

cost (or gain). If the barrier is not breached at all, the two payoffs clearly coincide. Since the forward has a

model-independent price, the no-arbitrage principle implies that the barrier option price must equalS−B,

whereS is the asset price at the current time. Therefore the delta ofthe barrier option price is identically

equal to one in any model. In particular the same must be true at the barrier.

LetCt(S,K) denote the call option price at timet in the Black-Scholes model. Equation (2.13) of Theo-

rem 2.5 tells us that the following identity must hold

B
(

N(σ
√

T − t/2)−N(−σ
√

T − t/2)
)

=
1
2

∫ T

t

Bσ
√

2π(u− t)
exp

(

−σ2(u− t)
8

)

du

for all t ∈ [0,T], where the left-hand side equals the Black-Scholes formulafor Ct(B,B) (the functionN(x)

is the cumulative normal distribution) and the integrand onthe right-hand side is given by (2.8) and the

aforementioned fact∆ ≡ 1. Substitutionx2 = σ2(u− t)/4 and a short calculation show that this identity

holds for allt ∈ [0,T]. Theorem 2.5 therefore implies the following integral representation for the linear

functionS 7→ (S−B)

S−B=C0(S,B)−
1
2

∫ T

0

Bσ√
2πt

exp

(

−
(

log(B/S)+ tσ2/2
)2

2σ2t

)

dt,

whereC0(S,B) is the Black-Scholes formula.

3.2 Constant barriers

A key distinction between the constant barrier case and a time-dependent barrier case, which makes the

former much easier to solve in a semi-analytic form, is that the kernels of the integral operators in equa-

tions (2.11) and (2.13) depend only on the difference of the argumentsQ(t,u) = Q(u− t) when the barriers

are constant. Therefore the delta along the barrier can be obtained by the following two-step procedure.

First solve an auxiliary integral equation where the right-hand side is identically equal to one using the

Laplace transform method, which can be applied precisely because the kernel depends on the difference of

the arguments and the integral equation is therefore given as a convolution of two functions. In the second

step an explicit integral representation for the delta along the barrier can be constructed using the solution of



20 ALEKSANDAR M IJATOVI Ć

the auxiliary equation. In 3.2.1 we apply this method to single-barrier options in the Black-Scholes model

(see (3.2) for the explicit formula and [37], Sections 8.4-1and 8.4-4 for more details). In 3.2.2 we generalize

this approach to the double-barrier case by finding the explicit solution of the system in (2.11).

3.2.1 Single-barrier options

Let Ct(S,K) = FtN(d+)−KN(d−) denote the discounted value of the European call option in the Balck-

Scholes model, where the forward is given byFt := Seµ(T−t), the drift equals

µ := r −d and d± := log

(

Ft

σ
√

T − t

)

± σ
√

T − t
2

.

Let α := (µ−σ2/2)2

2σ2 be a positive constant and let the functionq : R+ →R+ equalq(t) := e−αt√
πt

. LetB denote

the lower barrier (i.e.B<K) and let∆ : [0,T]→R+ be the delta of the option at levelB. By Theorem 2.7 we

need to solve the integral equationCt(B,K) = 1
2

∫ T
t ∆(u)q(u− t)du on the interval[0,T]. The substitution

x := T −u,y := T − t transforms the equation to

Ψ(y) =
∫ y

0
f (x)q(y− x)dx, y∈ [0,T], (3.1)

whereΨ(y) := 2
√

2
Bσ CT−y(B,K) and the unknown functionf is given by f (x) := ∆(T − x).

As mentioned above, we first solve the auxiliary equation 1=
∫ y

0 h(x)q(y−x)dx. Recall that the Laplace

transform of a functionh is defined byL (h)(s) :=
∫ ∞

0 e−sxh(x)dx for all s> 0 such that the integral exists.

It is obvious thatL (1)(s) = 1
s and a short calculation yieldsL (q)(s) = 1√

s+α . By applying the Laplace

transform to both sides of the auxiliary equation we findL (h)(s) =
√

s+α
s , since the right-hand side equals

L (h∗q)(s) =L (h)(s)L (q)(s) by the famous property of the Laplace transform. The function (h∗q)(y) :=
∫ y

0 h(x)q(y− x)dx in this formula denotes the convolution ofh andq. Note that both equation (3.1) and the

auxiliary equation can be represented in the following way:Ψ(y) = ( f ∗ q)(y) and 1= (h∗ q)(y). This

simple observation will be useful in Subsection 3.2.2.

The task now is to compute the inverse Laplace transformL −1, which is defined as an integral along

a path in the complex plane, of the functions 7→
√

s+α
s . Instead of using the definition ofL −1 we observe

the following elementary identities

1√
s+α

+
√

α
√

α
s
√

s+α
=

√
s+α
s

and L (x 7→ E(
√

αx))(s) =

√
α

s
√

s+α
,

whereE(x) := 2√
π
∫ x

0 e−v2
dv is the error function. The first identity is obvious and the second follows

from the discussion above upon noticing that the functionx 7→ E(
√

αx) can be expressed as a convolution

E(
√

αx) = (
√

α ∗q)(x). By applying the inverse Laplace transform to the first identity it now follows that

the solution of the auxiliary equation ish(x) = q(x) +
√

αE(
√

αx). Fubini’s theorem and the auxiliary

equation can now be used to verify that the function

f (x) := h(x)Ψ(0)+ (h∗Ψ ′)(y) (3.2)
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solves integral equation (3.1). SinceΨ(0) = 0 and we have the formula

Ψ ′(y) =
2
√

2
σ

eµy
(

µN(d+)+
σ

2
√

y
N′(d−)

)

,

the delta along the barrier∆ : [0,T]→ R+ can in the case of a down-and-out call be expressed as a convo-

lution of two explicit functions∆(t) = (h∗Ψ ′)(T − t). It is well-known that in the symmetric case when

µ = 0, the down-and-out barrier option price in the Black-Scholes model is given byC0(S,K)− K
BP0(S,

B2

K ),

whereP0(S, B2

K ) is a put option struck atB
2

K (see [29], page 454, equation (12.3)). Theorem 2.7 therefore

yields the equationP0(S,
B2

K ) = e−r(T−t) B
K

∫ T
0 ∆(t)qt(S,B)dt, whereqt(S,B) is given in (2.8).

The key observation is that the procedure described here works for an up-and-out call option in precisely

the same way. The auxiliary equation again takes the form 1= (h∗q)(y) and hence has the same solution

as before. Functionf defined in (3.2) solves integral equation (3.1), where the functionΨ is redefined

appropriately. In the case of an up-and-out call we haveΨ (y) =− 2
√

2
Bσ ET−y,B[(ST −K)+I{ST≤B}] where the

barrierB is larger than the strikeK. In fact the same procedure works for the class of linear diffusions

considered in Theorem 2.7, as long as one is prepared to calculate (numerically or otherwise) the inverse

Laplace transform of the functions 7→ L (q)(s)/s. The functionq : [0,T]→ R+ would in this case depend

on the underlying diffusion through formula (2.7) withx andy equal to the barrier levelB.

3.2.2 Double-barrier options

Let B− andB+ denote the lower and upper barrier respectively and let functionsΨ1,Ψ2 : [0,T] → R be

given byΨ1(y) := 2ϕ(T − y,B+) andΨ2(y) := 2ϕ(T − y,B−), whereϕ represents the discounted value of

the European payoff (see Theorem 2.5). By introducing the change of variablex := T −u as in the previous

subsection and denotingf1(x) := ∆+(T −x), f2(x) := ∆−(T −x), we can express equation (2.11) using the

linear operatorK : L1([0,T])×L1([0,T])→ L1([0,T])×L1([0,T]) in the following way
(

Ψ1

Ψ2

)

= K

(

f1

f2

)

, where K

(

f1

f2

)

(y) :=

(

∫ y
0 Q11(y− x) f1(x)dx+

∫ y
0 Q12(y− x) f2(x)dx

∫ y
0 Q21(y− x) f1(x)dx+

∫ y
0 Q22(y− x) f2(x)dx

)

. (3.3)

The functionsQi j : [0,T]→R, i, j ∈ {1,2}, are the coordinates of the matrix in (2.12) and can be expressed

as functions of one variable precisely because the barriersare constant in time.

Recall that convolution can be used to make the Banach spaceL1([0,T]) into a commutative Banach

algebra, since the function(u∗v)(y) =
∫ y

0 u(y−x)v(x)dx is an element ofL1([0,T]) for anyu,v∈ L1([0,T]).

Using this multiplicative structure and the definition in (3.3) we can express the linear operatorK in the

following way

K

(

f1

f2

)

=

(

Q11 Q12

Q21 Q22

)

∗
(

f1

f2

)

.

The integral equation in (3.3) can now be solved in two steps.The first step consists of finding the

functionshi j : [0,T]→ R, i, j ∈ {1,2}, which satisfy the identity
(

1 0

0 1

)

=

(

Q11 Q12

Q21 Q22

)

∗
(

h11 h12

h21 h22

)

. (3.4)
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Note that the product of any pair of coordinate functions in this expression is given by their convolution.

Note also that the solution of this auxiliary equation depends solely on the barrier levelsB+,B− and is

independent of the payoff of the option we are trying to price. By applying the Laplace transformL to

each coordinate of this equation, we obtain a linear system for the functionsL (hi j ), where multiplication

is defined using a point-wise product rule:

(

1
s 0

0 1
s

)

=

(

L (Q11)(s) L (Q12)(s)

L (Q21)(s) L (Q22)(s)

)(

L (h11)(s) L (h12)(s)

L (h21)(s) L (h22)(s)

)

.

Assuming that the determinant(L (Q11)L (Q22)−L (Q12)L (Q21))(s) is non-zero for alls> 0, we can

explicitly solve this system of equations. In order to obtain the functionshi j : [0,T]→ R, i, j ∈ {1,2}, we

need to perform Laplace inversion on each of the four coordinates of the solution of the linear system.

Once the auxiliary equation in (3.4) has been solved, we can express the solution of the original integral

equation in (3.3) in the following way

(

f1(x)

f2(x)

)

=

(

h11(x) h12(x)

h21(x) h22(x)

)(

Ψ1(0)

Ψ2(0)

)

+

(

h11 h12

h21 h22

)

∗
(

Ψ ′
1

Ψ ′
2

)

(x).

Since in our case we haveΨ1(0) =Ψ2(0) = 0, the deltas at the upper and lower barriers are given by the

formulae∆+(t) = (h11∗Ψ ′
1)(T − t)+ (h12∗Ψ ′

2)(T − t) and∆−(t) = (h21∗Ψ ′
1)(T − t)+ (h22∗Ψ ′

2)(T − t)

respectively. Representation (2.18) of the double-barrier option price in Theorem 2.7 can now be applied.

3.3 Time-dependent barrier options

In case of general time-dependent barriers not much can be said analytically about the structure of the

solutions of the system of integral equations in (2.11). However the trapezoidal product integration method,

described in [41], can be applied directly to the single-barrier problem. The substitutionsy := T − t and

x := T − u, used in Subsection 3.2, transform equation (2.13) into a generalised Abel equation with a

weakly singular kernel

k(y,x) := ∓
√

y− x
2

qy−x(b±(T − y),b±(T − x)),

where the functionb± : [0,T]→R+ is either a lower or an upper barrier and the functionq is given in (2.7).

Using the notationΨ(y) := ϕ(T − y,b±(T − y)) for the discounted value of the European payoff (see The-

orem 2.5 for the precise definition ofϕ) and f (x) := ∆±(T − x) for the unknown function in our integral

equation, we can rewrite (2.13) as follows:

Ψ (y) =
∫ y

0

k(y,x)√
y− x

f (x)dx. (3.5)

It follows from the representation of the density of a lineardiffusion given in [15], Section 1.2, equa-

tion (2.8), thatk(y,y) := limxրy k(y,x) exists and is non-zero since we are assuming that the barrierfunction

is differentiable. This statement is clear for geometric Brownian motion, when the functionq is given
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by (2.8), and essentially the same proof can be used for a general linear diffusion once we apply the rep-

resentation given in [15]. The observation that 0< k(y,y) < ∞, for all y ∈ [0,T], is of utmost importance

because it makes the lower-triangular system of linear equations in [41] non-singular.

The main theorem of [41] says that the solution of the lower-triangular linear system, given by equa-

tion (4.1) on page 179 of the same paper, converges to the solution of the integral equation (3.5) at the

order ofO(h2), whereh is the distance between the consecutive points in the discretization of [0,T]. This

convergence result assumes some regularity properties of the solutionf , such as continuity on the entire

interval [0,T], which are in general not satisfied in our context. The situation is improved if we work in

the domain of Theorem 2.5. In other words when faced with a discontinuous payoff functionφ , we can

first approximate it by a smooth functionφn, as in the proof of Theorem 2.7, and then solve the linear sys-

tem from [41] which corresponds to the derivative that deliversφn. This procedure introduces an additional

numerical error since we are pricing the “wrong” derivative, but improves the convergence speed of the

solution of the lower-triangular linear system from [41]. It follows from the construction ofφn in the proof

of Theorem 2.7 that the price of the barrier option with the payoff φn converges uniformly in(t,St) to the

price of the same barrier option with the payoffφ . The stability of the proposed numerical algorithm will

be the subject of future research.

The double-barrier case can be dealt with similarly upon noticing that the functionsqu−t(b+(t),b−(u))

andqu−t(b−(t),b+(u)), which appear “off the diagonal” in the kernel of the system of Volterra equations

given in (2.12), are smooth and bounded for allt,u∈ [0,T] such thatt ≤ u. In other words we can extend the

n-dimensional lower-triangular system from [41], used to solve integral equation (3.5), to a 2n-dimensional

linear system by representing the integrals against functionsqu−t(b+(t),b−(u)) andqu−t(b−(t),b+(u)) us-

ing the standard trapezoidal method (which can be expressedas matrix vector multiplication). By express-

ing the solution vector in the following way(∆+(t1),∆−(t1), . . . ,∆+(tn),∆−(tn))T , where(ti)i=1,...,n is an

increasing sequence such thatt1 = 0 andtn = T, the 2n-dimensional linear system we need to solve becomes

lower-triangular because of the identities limuցt qu−t(b+(t),b−(u)) = limuցt qu−t(b−(t),b+(u)) = 0. There

are a number of algorithms designed to solve this kind of linear system very quickly and accurately (see for

example [28]). Their implementations usually rely on numerical libraries like BLAS and LAPACK for the

calculations. These numerical libraries are highly optimised and can be called directly from C++ (see [2]

for more information on LAPACK, also available at http://www.netlib.org/lapack/lug/). However the ques-

tion of implementation and the optimal choice of algorithm for solving our lower-triangular linear systems

requires further numerical investigation.

4 Conclusion

In this paper we have obtained an integral representation ofthe difference between the time-dependent

double-barrier option price and the price of a European option with the same payoff. Theorems 2.5 and 2.7

give the precise formulae in terms of the double-barrier option deltas(∆+,∆−) : [0,T] → R×R at the

barriers (see (a) in Lemma 2.3) for the precise definitions ofthese functions), which solve the system of
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Volterra integral equations of the first kind in (2.11). It follows by construction that the system of integral

equations in (2.11) has a solution. The most natural question is the one of uniqueness of solution, which is

equivalent to the question of whether zero is an eigenvalue of the compact linear integral operator with a

weakly singular kernel given in (2.12). In general, compactoperators exhibit both kinds of behaviour and

the standard technique of transforming an integral equation of the first kindK f =Ψ to an integral equation

of the second kindf −L f =Ψ , whereK andL are related integral operators (see [37], Section 8.3), does

not apply in our setting because of the weak singularity of our kernel. The transformation of the problem is

desirable because we can use the Fredholm alternative to analyse the kernel of the operatorI −L, whereL is

compact andI is the identity operator. In spite of this difficulty this general approach can be made to work

in the case of equation (2.11) by careful inspection of the construction of the functions in the integral kernel

and the uniqueness of the solution can be proved, at least forpayoff functions that satisfy the regularity

conditions of Lemma 2.3. The proof will be given in a subsequent publication.

If we assume that the Volterra integral equation of the first kind in (2.11) has a unique solution, then

representation (2.10) for the time-dependent double-barrier option price from Theorem 2.5 implies that the

value of this path-dependent derivative depends only on theone-dimensional distributions in the risk-neutral

measure of the underlying processSt . It is well-known that having the vanilla option prices for all strikes

and all maturities is equivalent to having the one-dimensional distributions ofSt . Theorem 2.5 therefore

provides an explicit link between the vanilla option pricesand the barrier option prices for all reasonably

smooth barriers and a wide class of local volatility models.The fact that vanilla option prices determine

uniquely the barrier option prices in the world of local volatility models has been known since the seminal

work of Bruno Dupire [12] where, under certain regularity conditions, a PDE for the local volatility function

x 7→ σ(x) is derived from the vanilla option prices. This in turn determines the risk-neutral dynamics ofSt

and therefore the prices of all path-dependent derivativesbut does not yield an explicit relationship.

In this paper we have discussed a barrier pricing problem without rebates. In general a barrier can pay

a contract defined rebateF+(t) (resp.F−(t)) if at time t ∈ (0,T) the asset price processSt equals the barrier

levelb+(t) (resp.b−(t)) for the first time since inception. It is not difficult to see that under some additional

technical assumptions on the functionsF± : [0,T] → R, the change-of-variable formula from [35] can be

applied and a similar technique to the one used to prove Theorem 2.5 yields an integral representation of the

time-dependent double-barrier option price with rebate. In fact the final formula is very similar to the one

in (2.10), withϕ(0,S0) replaced by the sum of the expectation of the European payoffand certain integrals

over the time-interval[0,T] of the rebate functionsF±.

We have seen that purely probabilistic concepts such as local time and the generalized Itô formula

proved by Peskir in [35] can be used to obtain a new structure in the barrier option pricing problem, which

can then be applied to the pricing and hedging of double-barrier options in local volatility models. This

structure consists of two deterministic functions∆± : [0,T] → R, which represent the deltas at the two

barriers. It is intuitively clear that the same structure exists in stochastic volatility models. Since Peskir’s

formula has been generalized to higher dimensions in [36] for all (possibly discontinuous) semimartingales,

a generalisation of the approach presented here might be feasible. The multidimensional change-of-variable
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formula in [36] is both surprising and satisfactory, not just because it applies to all semimartingales but

because, under natural deterministic conditions on the value function, the resulting formula is a direct

extension of the one-dimensional formula in [35]. However adirect application of the formula in [36] is not

possible in our case, because it requires the existence of a regular extension of the value function across the

boundaries of its natural domain, a question that requires some investigation. The issue of which quantity

one could represent in terms of deltas at the barriers in the higher dimensional case (the value function itself

cannot be represented) provides in our view an additional interesting problem for future research.

Appendix

A A change-of-variable formula with local time on curves

In this section we establish a mild generalisation of the change-of-variable formula given in Theorem 3.1

of [35]. In fact Theorem A.1 is implicitly proved in [35]. Since Theorem A.1 is central to our analysis, for

complicity we give a proof based on a direct application of Theorem 3.1 and Remark 2.5 in [35].

Let X := (Xt)t∈[0,T] be an Itô diffusion that solves the following stochastic differential equationdXt =

M(Xt)dt+Σ(Xt )dWt , whereM(x) := µx andΣ(x) := xσ(x), and letb± : [0,T] → R be two continuous

functions of finite variation satisfyingb−(t)< b+(t) for all t ∈ [0,T]. As before we setC := {(t,x)∈ [0,T)×
R; b−(t) < x< b+(t)}, B+ := {(t,x) ∈ [0,T)×R; x> b+(t)} andB− := {(t,x) ∈ [0,T)×R; x< b−(t)}.

Let F : [0,T]×R→R be a continuous function which isC1,2 on the open subsetB−∪C∪B+ of [0,T]×R.

Given a functiong : [0,T]→ R of bounded variation letV(g)(t) denote the total variation ofg on [0, t] for

anyt ≤ T.

Theorem A.1 Let Σ(x) > 0 for all x ∈ (0,∞) such that(t,x) ∈ C and assume that Ft +MFx +
Σ2

2 Fxx is

locally bounded on B−∪C∪B+, the limit Fx(s,b±(s)±) := limεց0 Fx(s,b±(s)± ε) is uniform in s∈ [0, t]

and thatsup0<ε<δ V(F(·,b±(·)± ε))(t)< ∞ for someδ > 0 and any combination of sings+ and−. Then

the following change-of-variable formula holds:

F(t,Xt) = F(0,X0)+

∫ t

0
(Ft +MFx+

Σ2

2
Fxx)(s,Xs)I{Xs6=b−(s),Xs6=b+(s)}ds

+

∫ t

0
(ΣFx)(s,Xs)I{Xs6=b−(s),Xs6=b+(s)}dWs

+
1
2

∫ t

0
(Fx(s,Xs+)−Fx(s,Xs−))I{Xs=b−(s)}dLb−

s (X)

+
1
2

∫ t

0
(Fx(s,Xs+)−Fx(s,Xs−))I{Xs=b+(s)}dLb+

s (X).

For the definition of the local time ofX at the curveb, Lb
t (X), see page 8.
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Proof. We start by defining continuous functionsF± : [0,T]×R → R which satisfy the hypothesis of

Theorem 3.1 in [35] and then apply the theorem to obtain the formula above. Since functionsb± are con-

tinuous, the imagesb±([0,T]) are disjoint compact subsets inR2 with strictly positive distance. Hence

there existε > 0 such that 4ε < b+(t)−b−(t) for all t ∈ [0,T]. It is clear that there exist smooth functions

c± : [0,T]→ R that satisfyb−(t) < c−(t) < b−(t)+ ε andb+(t)− ε < c+(t) < b+(t) for all t ∈ [0,T]. In

particular it follows thatc+(t)− c−(t)> 2ε.

We now define continuous functionsF+ andF−, which areC1,2 everywhere in[0,T]×R except along

the curvesb+ andb− respectivly, by the formulae

F+(t,x) :=

{

F(t,x) if x≥ c−(t),

f+(t,x) if x< c−(t),
F−(t,x) :=

{

F(t,x) if x≤ c+(t),

f−(t,x) if x> c+(t).

The functionf+ (resp.f−) is aC1,2 extension ofF across the smooth boundaryc− (resp.c+), which exists

becauseF is C1,2 by assumption on the domainC. Note also that the functionsf± are non-unique. Given

these definitions ofF±, the only discontinuities of the derivatives are the ones inherited from the original

functionF along the curvesb± respectively. SinceF satisfies the conditions in Theorem A.1, the functions

F± also satisfy the assumptions of Theorem 3.1 in [35], which therefore implies the following formulae for

any fixed timet ∈ [0,T]:

F±(t,Xt) = F±(0,X0)+
∫ t

0
(F±

t +MF±
x +

Σ2

2
F±

xx)(s,Xs)I{Xs6=b±(s)}ds+
∫ t

0
(ΣF±

x )(s,Xs)I{Xs6=b±(s)}dWs

+
1
2

∫ t

0

(

F±
x (s,Xs+)−F±

x (s,Xs−)
)

I{Xs=b±(s)}dLb±
s (X), (A.1)

where the signs± are simultaneously equal to either+ or−.

Let (Ft)t∈[0,T ] denote the filtration of the Brownian motion(Wt)t∈[0,T ] that satisfies the usual conditions.

Since the processes on both sides of the equality in (A.1) have continuous paths we can assume that they are

indistinguishable and therefore substitute fixed timet ∈ [0,T] with any stopping time relative to(Ft )t∈[0,T].

We now define an increasing sequence of stopping times in the following way: ρ1 := t ∧ inf{s;Xs =

c+(s)}, ρ2 := t ∧ inf{s> ρ1;Xs = c−(s)} andρ2n+1 := t ∧ inf{s> ρ2n;Xs = c+(s)}, ρ2n+2 := t ∧ inf{s>

ρ2n+1;Xs = c−(s)} (we are assuming wlog thatX0 < c+(0)). Note that for anys in [ρ2n+1,ρ2n+2] (resp. in

[ρ2n,ρ2n+1]) the value of the random variableXs is strictly aboveb−(s) (resp. belowb+(s)) and therefore

F(s,Xs) equalsF+(s,Xs) (resp.F−(s,Xs)). We also have limn→∞ ρn = t a.s. and, for almost all paths ofX,

ρn = t for somen∈ N (this follows from the inequalityc+(s)− c−(s) > 2ε, for all s∈ [0,T], and the fact

that the expectation of the upcrossing number of our semimartingale is finite, cf. [25], Theorem 1.3.8 (iii)).

For a fixedt ∈ [0,T] we have a telescoping representation

F(t,Xt)−F(0,X0) =
∞

∑
n=0

(

F(ρ2n+2,Xρ2n+2)−F(ρ2n+1,Xρ2n+1)+F(ρ2n+1,Xρ2n+1)−F(ρ2n,Xρ2n)
)

=
∞

∑
n=0

(F+(ρ2n+2,Xρ2n+2)−F+(ρ2n+1,Xρ2n+1))+
∞

∑
n=0

(F−(ρ2n+1,Xρ2n+1)−F−(ρ2n,Xρ2n)),
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whereρ0 := 0. We are allowed to reshuffle the summands in this path-wise identity since for almost all

paths the sums consist of finitely many summands. The theoremnow follows by applying formula (A.1)

between the stopping times for(Ft) to the summands in the last expression and collecting the terms. �

B Analyticity properties of time-dependent barrier option prices

Let φ : R+ → R+ be a payoff function that is continuous on a complement of a finite set where it is

right-continuous with left limits. In particularφ is continuous at zero. An important example isφ(x) =
(x−K)+I(B−,B+)(x) for some constantsB− <K <B+ andx∈R+. The diffusionX =(Xt)t∈[0,T], specified by

the time-homogeneous SDEdXt =M(Xt)dt+Σ(Xt)dWt with linear driftM(x) := µx and a locally Lipschitz

diffusion coefficientΣ(x) := xσ(x)> 0, for x∈ (0,∞), is as described in the beginning of Section 2. Using

the notation from appendix A we define a family of stopping timesτt , for anyt ∈ [0,T], by τt := inf{v∈
[0,T − t]; Xt+v ∈R− (b−(t +v),b+(t +v))}, where the boundary functionsb± : [0,T]→R are continuous

and twice-differentiable in the interval(0,T). We also consider the case where eitherb+ or b− are not

present to capture the single-barrier case. If there is no upper barrier we assume in addition thatφ(XT) ∈
L1(Ω ,Q). The discounted barrier price process is a martingale givenby Vt := E

[

φ(Xτ0)I{τ0=T}|Ft
]

where

the filtration(Ft)t∈[0,T ] is as described in the beginning of Section 2. The identityI{τ0=T} = I{τ0>t}I{τt=T−t},

the facts{τ0 > t} ∈ Ft , τ0 = t + τt on the set{τ0 > t} and the Markov property ofX imply the following

path-wise representation for the barrier priceVt = I{τ0>t}Z(t,Xt), where the functionZ : [0,T]×R→ R is

given by

Z(t,x) := Et,x
[

φ(Xt+τt )I{t+τt=T}
]

. (B.1)

Here the processX starts at timet with valueXt = x.

It is often stated that the barrier option price satisfies a certain PDE with absorbing boundary conditions.

Such statements are in fact referring to the analyticity properties of the functionZ, which we make precise

and prove in Theorem B.1.

Theorem B.1 Let L g(t,x) :=
(

gt +Mgx+
Σ2

2 gxx

)

(t,x) be the infinitesimal generator of the diffusion

Y = (Yt)t∈[0,T], where Yt := (t,Xt) and the process X is as described above. Let the set C be as defined

in appendix A and assume thatC (the closure is taken in the spaceR× [0,T]) is contained in(0,∞)× [0,T].

Then, under the above hypothesis on the payoffφ and barriers b±, the function Z given by (B.1) is contin-

uous on the setC− (R×{T}) and solves the following parabolic boundary value problem:

L Z(t,x) = 0 for (t,x) ∈C,

Z(T,x) = φ(x) for x∈ (b−(T),b+(T)),

Z(t,b±(t)) = 0 for t ∈ [0,T].

In the single-barrier case, the local behaviour and the terminal condition satisfied by the function Z remain

the same, but the boundary conditions change as follows: foran up-and-out option the boundary conditions
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are Z(t,b+(t)) = 0 and Z(t,0) = φ(0), t ∈ [0,T], and in a down-and-out case we have Z(t,b−(t)) = 0 for

all t ∈ [0,T].

Proof. Assume first that both barriers are present. If in addition weassume thatφ : [b−(T),b+(T)] → R

is continuous and satisfiesφ(b−(T)) = φ(b+(T)) = 0, then by Theorems 6.3.6 and 6.5.2 in [16], function

Z defined by (B.1) is the solution of the parabolic PDE and satisfies the required boundary conditions. In

particularZ is continuous onC.

Assume now that the payoffφ is discontinuous. By assumptionφ only has a finite number of bounded

jumps. Hence we can express it asφ = limn→∞ φn, where the functionsφn are continuous withφn(b−(T)) =

φn(b+(T)) = 0 for all n∈N and the convergence is uniform on the complement of any neighbourhood of the

discontinuities ofφ . In fact we can choose the functionsφn so that there exists a decreasing sequence of open

setsNn ⊂R, such that the intersection∩∞
n=1Nn equals the set of discontinuities ofφ , andφ(x) = φn(x) on the

complement ofNn for all n∈ N. In the obvious notation we get|Z(t,x)−Zn(t,x)| ≤ AEt,x[INn(XT)], where

A is some constant independent ofn which exists sinceφ is a bounded function. As usualINn denotes the

indicator function of the setNn. Since the random variableXT has a density in the set(0,∞) which is smooth

in the parameter(t,x) (see the discussion preceding Theorem 2.5 in Section 2), theright-hand side of the last

inequality goes to zero uniformly on some neighbourhood of the point(t,x). This implies thatZ is a limit

of a uniformly convergent sequence of continuous functionsand is therefore continuous on the complement

of the finite set of discontinuities of the payoffφ . Note thatZ(t,b±(t)) = limn→∞ Zn(t,b±(t)) = 0 for all

t ∈ [0,T) and thatZ(T,x) = φ(x) by definition.

We now need to prove thatZ is in C1,2(C) and that it satisfies the PDEL Z = 0, whereL is the

infinitesimal generator of the diffusionY. These are local properties of the functionZ and it is therefore

enough to show that they hold on any bounded neighbourhoodU ⊂ C of an arbitrary point(t,x) ∈ C.

We can assume without loss of generality that the boundary∂U is smooth. Then the parabolic boundary

value problem forg : U → R, given byL g = 0 in U andg|∂U = Z|∂U , has a unique solution (see [16],

Theorem 6.3.6). LetτU be the first time the processY, which started at(t,x) ∈U , hits∂U . From Dynkin’s

formula (see [33], Theorem 7.4.1) and the fact thatg is the solution of the above Dirichlet problem we find

g(t,x) = Et,x[Z(Yt+τU )]. SinceZ satisfies the mean-value property (see [33], page 121, formula (7.2.9)), it

follows thatg(t,x) = Z(t,x) for all (t,x) ∈U . This proves the theorem in the double-barrier case.

If we only have a lower barrier, we can express the functionZ as a limit of double-barrier option prices

where the “artificial” upper barrier tends to infinity. Usinga similar argument as above, and the fact that the

maximum of the processX is finiteQ-almost surely in the time interval[0,T] (by Lemma 2.1 the processX

does not explode to infinity in finite time) it is not hard to seethat the convergence is locally uniform, which

in turn implies that the functionZ is continuous on the complement (inC) of the discontinuities ofφ . Once

we have established continuity, the same “local” argument as in the paragraph above proves the theorem in

the case where there is no upper barrier.

In the up-and-out case, we introduce a constant lower barrier at some small levelε with the boundary

conditionZ(t,ε) = φ(ε) for all t ∈ [0,T]. Since the functionφ is continuous at zero, the argument similar
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to the one above yields continuity of the solution of the parabolic problem obtained in the limit asε → 0.

Once we have continuity of the solution, the “local” behaviour follows as in the preceding two cases.�

C Proofs of Lemmas 2.1, 2.3 and 2.6

We start by proving Lemma 2.1.

Proof. By Feller’s test for explosions (see Theorem 5.5.29 in [25])it is well know that the statement of the

lemma holds if the following iterated integral diverges
∫ ∞

z

dx
x2σ(x)2 exp(B(x))

∫ ∞

x
exp(−B(y))dy= ∞, where B(x) := 2µ

∫ x

x0

du
uσ(u)2 ,

for somez,x0 ∈ (0,∞). This is clearly true if the limit limx→∞ B(x) is finite. If this is not the case, a simple

application of L’Hôpital’s rule implies that the functionx 7→ exp(B(x))
∫ ∞

x exp(−B(y))dy is asymptotically

equal to the functionx 7→ xσ(x)2. This proves the lemma. �

Next is the proof of Lemma 2.3.

Proof. The lemma is a consequence of Schauder’s boundary estimatesfor the solutions of the initial

parabolic partial differential equations proved in [14]. Let us first consider the double-barrier case. Recall

thatC denotes the domain of the solution of the PDE from (b) of Lemma2.2. Denote byF : ∂C− ({0}×
(b−(0),b+(0)))→ R+ a continuous function which maps the curvesb±([0,T]) to zero and coincides with

the payoffφ on the interval[b−(T),b+(T)]. By Theorem 3.3.7 on page 65 in [15] the partial derivatives

ZS,ZSS,Zt of the solutionZ of the PDE in (b) of Lemma 2.2 will be Hölder continuous of orderα ∈ (0,1) on

C, if we can find an extensionΨ :C→R+ of the functionF , whose partial derivativesΨS,ΨSS,Ψt are Hölder

continuous of orderα on the domainC. Theorem 3.3.7 in [15] applies in our case because the volatility

functionx 7→ xσ(x) is uniformly elliptic on the domainC since it is strictly positive on the compact setC.

Before constructing an extensionΨ explicitly, let us show that Hölder continuity of the partial derivatives

of Z implies the lemma.

Pick a sequence(εn)n∈N of positive real numbers which converges to zero. Since the second derivative

ZSS is Hölder continuous on a bounded domainC, its modulus must be bounded by some constantc (i.e.

|ZSS(t,x)| < c for all points (t,x) ∈ C). Therefore, by Lagrange’s theorem, we have|ZS(t,b+(t)− εn)−
ZS(t,b+(t)− εk)| < c|εn− εk| for all n,k ∈ N and allt ∈ [0,T]. Since the right-hand side of this inequality

is independent of timet, the sequence of functions(t 7→ ZS(t,b+(t)− εn))n∈N is uniformly Cauchy on the

interval [0,T] and therefore converges uniformly to the continuous limit∆+. The same argument can be

used for the lower barrier. This implies part (a) of the lemma.

For part (b) let us choose a real numberδ > 0 such that the point(t,b+(t)−2δ ) lies in the domainC for

all t ∈ [0,T]. Since the barrierb+ is uniformly continuous on the interval[0,T], there existsδ0 > 0 with the

following property: if |t − s|< δ0, then|b+(t)−b+(s)| < δ for all s, t ∈ [0,T]. Choose anyε ∈ (0,δ ) and

assume thatti ∈ [0,T] satisfy 0= t0 < t1 < .. . < tn = T and max{ti − ti−1; i = 1, . . . ,n}< δ0. Note that this

implies that, ifb+(ti)≥ b+(ti−1), for anyi ∈ {1, . . . ,n−1}, the point(ti ,b+(ti−1)− ε) lies in the domainC.
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Similarly if b+(ti) < b+(ti−1) we find that the point(ti−1,b+(ti)− ε) is in C. Using these observations we

obtain

|Z(ti ,b+(ti)− ε)−Z(ti−1,b+(ti−1)− ε)| ≤ |Z(ti ,b+(ti)− ε)−Z(ti−1,b+(ti)− ε)|+
|Z(ti−1,b+(ti)− ε)−Z(ti−1,b+(ti−1)− ε)|

≤ A(ti − ti−1)+D|b+(ti)−b+(ti−1)|
≤ (A+DE)(ti − ti−1),

where the constantsA,D,E are upper bounds on the absolute values of the derivativesZt ,ZS,b′+ respectively.

In this inequality we assumed thatb+(ti) < b+(ti−1). In caseb+(ti) ≥ b+(ti−1) a similar bound with the

same constants, which is also independent ofε, can be obtained. This inequality implies that the family of

functions(t 7→ Z(t,b+(t)− ε))ε∈(0,δ ) has a uniformly bounded total variation. Lower barrier can be dealt

with in an analogous way. This proves part (b) of our lemma.

We are now left with the task of showing that the payoffφ can be extended to a functionΨ :C→R+ with

Hölder continuous derivativesΨt ,ΨS,ΨSS. We start by defining a global diffeomorphismβ : [0,T]×R→
[0,T]×R, which straightens the barriers of the regionC, given by

β (t,S) := (t,B(t,S)), where B(t,S) :=
b+(T)−b−(T)
b+(t)−b−(t)

(S−b−(t))+b−(T).

Note thatβ (t,b±(t)) = (t,b±(T)) for all t ∈ [0,T] andβ (T,S) = (T,S) for all S∈ R. We can therefore

defineΨ(t,S) := φ(B(t,S)) for any point(t,S) ∈C. A simple calculation shows the following:

ΨS(t,S) = φ ′(B(t,S))
b+(T)−b−(T)
b+(t)−b−(t)

,

ΨSS(t,S) = φ ′′(B(t,S))

(

b+(T)−b−(T)
b+(t)−b−(t)

)2

,

Ψt(t,S) = −φ ′(B(t,S))
b+(T)−b−(T)
b+(t)−b−(t)

(

b′−(t)+
(S−b−(t))(b′+(t)−b′−(t))

b+(t)−b−(t)

)

.

The desired properties of the functionΨ follow directly from the assumptions in the lemma on the payoff

φ and the boundary functionsb±.

Our final task is to prove the lemma in the case where there is only one barrier. Theorem 3.3.7 on page 65

in [15] can only be applied if the domainC is bounded. Assume we only have, say, a lower barriert 7→ b(t).

Then by Theorem B.1 the discounted time-dependent single-barrier option priceZ(t,S) still solves the PDE

from (b) of Lemma 2.2. We can now introduce artificially a constant upper barrier at some large value

B and formulate a parabolic initial-boundary value problemUt(t,S) + µSUS(t,S) +
S2σ2(S)

2 USS(t,S) = 0

on the bounded domainC′ := {(t,S) : t ∈ [0,T],S∈ [b(t),B]} with the payoff functionφ : [b(T),B] → R

and boundary conditionsU(t,b(t)) = 0,U(t,B) = Z(t,B) for all t ∈ [0,T]. Like in the double-barrier case,

because the domainC′ is bounded, our assumption on the volatility functionσ implies that the differential

operator is uniformly elliptic. By Theorem 4 in [14] such a problem has a unique solution and therefore

U(t,S) = Z(t,S) for all (t,S) ∈ C′. Furthermore the same argument as above implies that functionst 7→



LOCAL TIME AND THE PRICING OF TIME-DEPENDENT BARRIER OPTIONS 31

US(t,b(t)+ ε) converge uniformly to a continuous functiont 7→ ∆(t) defined on[0,T] and that the total

variation oft 7→U(t,b(t)+ ε) is bounded uniformly for all small positiveε. This proves the lemma in the

case of a single-barrier option with a lower barrier. The single upper barrier case can be dealt with similarly.

�

Finally we demonstrate Lemma 2.6.

Proof. Since the setK is compact, it follows from definition (2.1) that it is enoughto prove the lemma for

the transition densityp(u− t;x,y) of the processS. As mentioned on page 10 (see also [20], page 149)

the function(u,x) → p(u− t;x,y) solves the parabolic PDE problem on the bounded domain(t,T]×K.

Let the function(u,x) → v(u− t;x,y) be the solution of the same PDE satisfying the boundary conditions

v(u− t;x,y) =−p(u− t;x,y) for all u∈ [t,T] andx∈ ∂K (the symbol∂K denotes the two boundary points

of the intervalK) and the initial conditionv(0;x,y) = 0 for all x ∈ K − ∂K. Such a solution exists and is

bounded because the PDE is uniformly parabolic on the domain(t,T]×K and the boundary conditions

are continuous and bounded. Furthermore, by Section 5 in [15], there exists a non-negative fundamental

solution f for our parabolic PDE that satisfies the inequality in Lemma 2.6. By the maximum principle

(see [15], Theorem 2.1 on page 34), the functionf dominates the solutionv+ p of the PDE on the entire

domain(t,T]×K. Since thev is bounded the lemma follows. �
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