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Abstract Giles (Multilevel Monte Carlo path simulation Operations Research, 2008; 56:
607-617) introduced a multi-level Monte Carlo method for approximating the expected
value of a function of a stochastic differential equation solution. A key application is to
compute the expected payoff of a financial option. This new method improves on the
computational complexity of standard Monte Carlo. Giles analysed globally Lipschitz
payoffs, but also found good performance in practice for non-globally Lipschitz cases. In
this work, we show that the multi-level Monte Carlo method can be rigorously justified
for non-globally Lipschitz payoffs. In particular, we consider digital, lookback and barrier
options. This requires non-standard strong convergence analysis of the Euler—-Maruyama
method.

1 Background

Many models in mathematical finance take the form of Ito stochastic differential equations
(SDEs)
dS(t) =a(S(t))dt +0b(S(t))dW(t), 0<t<T, S(0) given, (1.1)

and the expected value of some functional of S(¢) is typically of interest [5, 8]. We focus
here on the case where S(t) represents the price of an asset at time ¢ and the expected
payoff of an option is required.

We assume that the SDE is scalar, with drift and diffusion coefficients satisfying global
Lipschitz bounds; so, for some constant L,

la(z) —a(y)| V [b(x) = b(y)] < Llz —yl, Vz,y €R, (1.2)
and note that this implies the linear growth bounds
la(x)| V |b(x)] < R+ Llz|, Yz €R, (1.3)

where R = |a(0)| v |b(0)|. We also suppose that the initial data has bounded moments;
that is, for any m > 0 there is a constant @), such that E[|S(0)|™] < Q..
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Approximating (1.1) with the Euler-Maruyama (EM) method produces the recurrence
{Xk}ﬁ/lzo, with Xo = S(O) and

where h = T/M is a fixed stepsize and AW, = W ((k + 1)h) — W (kh) is a Brownian
increment [9, 10].

For the purpose of illustration, consider now the problem of estimating the expected final
time solution value, E[S(T")]. Using the EM method (1.4) to compute N approximate
samples produces the standard Monte Carlo estimate

1 N
_ (1]

where X][\Z] is the numerical approximation to X (7") on the ith sample path. The overall
error may then be decomposed as

E[S(T)] —p = E[S(T) - Xus + Xar — 1]
E[S(T) — Xu] + (E[Xu] — p). (1.5)

The first term on the right-hand side in (1.5), E[S(T") — X ], is the bias. This is a property
of the numerical method. For EM (1.4), classical weak convergence theory shows that this
bias is O(h) [2]. The second term, E[X /] — u, is the statistical error that arises in any
Monte Carlo experiment. From the perspective of a confidence interval width, this error
is O(1/v/N) [5]. Overall, we may regard p as giving an accuracy of O(h) +O(1/v/N). To
achieve a target accuracy of O(e) we should therefore use the scaling h = 1/V/N = .

Measuring the cost of the computation either in terms of

e the number of evaluations of a(-),
e the number of evaluations of b(-), or

e the number of pseudo-random number calls to obtain the Brownian increments

AWk?

we have a computational complexity proportional to the product of the number of paths
and the number of steps per path, that is, O(N/h). In terms of the target accuracy e, since
h = 1/v/N = ¢, we have computational complexity of O(e~?). This type of complexity
analysis is standard and the conclusion holds when EM is used to solve a wide class of
problems [3].

Recently, however, Giles [4] showed that by using EM more carefully, notably by taking a
range of stepsizes with more paths computed with cheaper, large, stepsizes, it is possible
to reduce the complexity. For an option with globally Lipschitz payoff, Giles showed
how to achieve complexity of O(e %log(e)?). Remarkably, both the algorithm and the
underlying analysis depend explicitly on the strong convergence property of EM, even
though the fundamental quantity to be computed is weak—an expected value. Giles also
gave numerical results for options where the payoff is not globally Lipschitz, and showed
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that improvements on the complexity of standard Monte Carlo also arise. Our aim in
this work is to fill a gap in [4] by giving a rigorous analysis of multi-level Monte Carlo for
the non-globally Lipschitz cases that were tested numerically. Theorem 3.1 of [4] gives
a general complexity result for multi-level Monte Carlo. Using that framework, we need
only focus attention on the mean-square error between the exact and numerical payoffs.
Hence, for specific types of option, our aim is to derive a bound of the form

E[(P — ﬁ)Q] = O(hP), for some (< 1, (1.6)

where P denotes the payoff from the exact SDE solution, S(t), and P denotes the corre-
sponding payoff from the EM approximation, {X;}#&_,. Under the assumption that there
is a corresponding weak error bound of the form

E[P — P]=O(h®),  for some a > 1, (1.7)

this allows us to conclude that the standard Monte Carlo complexity of O(e=271/%) is
improved to O(e"2~(1=9)/@) when the multi-level version is used. We note that for the
options considered here, we are not aware of a rigorously derived optimal weak order « in
(1.7), although work in this direction is progressing [6]. However, we emphasize that (a)
our results show that the multi-level approach gives an improvement whatever the value
of > 1 and (b) in Section 2, where we have § = 1 — ¢ for any 6 > 0, the multi-level
complexity becomes independent of «.

Our results are also of interest in their own right as non-standard strong error bounds in
stochastic numerical analysis.

For valuing path-dependent options we consider the basic numerical method that uses

the discrete numerical approximation {X;}M . However, we find it convenient to work
in continuous time, so we define the piecewise linear interpolant X (¢) by

X(kh+6h)=(1—60)X,+60Xp for0<6<1, k=0,1,2,.... (1.8)

We note that for the underlying discrete-time approximation there is a classical mean

square, or strong, error bound: there is a constant C' such that (for all sufficiently small
h)
IE( sup |S(kh) — Xk]2> < Ch. (1.9)

0<kh<T
More generally, for any m > 2 there is a constant C', such that

E( sup \S(kh)—Xk|m) < O i, (1.10)

0<kh<T

Proofs of these results can be found, for example, in [9], where it is also shown that the
analogous error moment bounds hold for a noncomputable extension of { X} to continuous
time.

For the computable approximation X (t), a continuous-time analogue of (1.10) is available
with a slight degradation in the order. Miiller-Gronbach [11] established an asymptotic

. 1/m
upper bound on <E<sup0§t§T |S(t) — X(t)]m)) that is proportional to y/|hlog(h)|.



For our purposes, it is sufficient to weaken this to the statement that given any m > 2
and any 0 > 0 there is a constant C,, 5 such that

E< sup |S(t) —Y(t)rﬂ) < O k™20, (1.11)
0<t<T
This basic error bound is a key ingredient for our analysis.

The following sections analyse the cases of digital, lookback, up-and-out and down-and-in
barrier options. To make the equations less cluttered we have not included the discount
factor e, where r is the interest rate (assumed constant). The same complexity results
hold, of course, for the discounted expected payoft.

Independent work by Avikainen also provides analysis that is relevant to the multi-level
Monte Carlo method. The results in [1] extend material in section 3 by providing a better

upper bound for a broader class of final-time payoff functions and an accompanying lower
bound.

2 Lookbacks

A floating strike lookback call option differs from the standard European call option
in that the strike price is replaced by the smallest asset price observed [5, 7]. So the
(undiscounted) lookback payoff is

P=S(T)— inf S(t).

0<t<T
Analogously, our numerical approximation to this payoff is

P=X(T)— inf X(1).

0<t<T

Hence, using (1.9),

E(|P - P]?) < 2E(|S(T>—7(T)|2)+2E(} inf S(t) — inf 7(15)\2)

0<t<T 0<t<T
. . ~ 2
— O(h) +2E(}O%?£T5(t) - nf X(0) ) (2.1)

It is straightforward to show that
| inf S(t)— inf X(¢)| < sup |S(t) — X(t)|. (2.2)

0<t<T 0<t<T 0<t<T

Thus, given any § > 0, using (2.1) and (1.11), we have

E(|P — P]?) < O(h) + 215:( sup | S(¢) — 7@)12) — O(R?).

0<t<T

This shows that (1.6) holds with 5 =1 — ¢ for the floating strike lookback.

Similarly, we have

sup S(t) — sup Y(t)‘ < sup }S(t) - X ()], (2.3)

0<t<T 0<t<T 0<t<T
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which produces the same result for the floating strike lookback put, where P = supg;<r S(t)—
S(T).
A fixed strike lookback call [7] has
+ N o +
P = (sup S(t)—K) , andso P = (sup X(t)—K) :
0<t<T 0<t<T

Noting that the function (.)* = max(.,0) has a unit Lipschitz bound, it follows that

(Sup S(t)—K)+— ( sup Y(z&)—K)+

0<t<T 0<t<T

2

E(P-P]?) = E

2

< E|sup S(t)— sup X(¢)

0<t<T 0<t<T

Using (2.3) and (1.11) we conclude from (2.4) that E(|P — ﬁ\Q) = O(h'79).

In this manner we may also obtain the same result for the fixed strike lookback put [7],
where P = (K — info<;<r S(1))7.

Hence, all four varieties of lookback allow =1 — ¢ in (1.6), for any § > 0.

(2.4)

3 Digitals

We now consider a cash-or-nothing call option, which pays one unit if the final time
asset price exceeds the fixed strike price K, and pays zero otherwise [7, 8]. Thus, the
discontinuous payoff function has the form

P = 1¢s(m)>k},
with the corresponding EM value

P =1ixmysky
Here 14 denotes the indicator function for the set A. For a particular path, the exact and
numerical payoffs differ only when one solution exceeds K at expiry and the other does
not. In particular, we have

E(|P - P]) = P{S(T) > K} N {X(T) < K}) + P{S(T) < K} n{X(T) > K}). (3.1)
Now, for any given § € (0, %), we may choose m sufficiently large for

~ 1 1 1
<9 d set == - > — —0. 3.2
andset 5= =557 3 (32)
We consider first the event where only the exact solution path exceeds the strike price.

Then for h > 0,

2m + 2

P({S(T) > K} N {X(T) < K}) = PH{K +4°> S(T) > K}n{X(T) < K})
+P{S(T) > K + hP} n {X(T) < K})

< PUK + 1P > S(T) > K}) + P({S(T) — X(T) > h7}).

(3.3)



Here, we have introduced a threshold AP, On one hand we would like A7 to be small so that
K+h? > S(T) > K is a low probability event. On the other hand we would like h° to be
large so that, by appealing to the strong convergence behaviour of EM, S(T') — X (T) > hB
is a low probability event. The power B\ in (3.2) has been chosen to balance these two
aims. Under the global Lipschitz assumption (1.2) it follows from the Picard iteration
used to establish existence and uniqueness [10] that S(T") is a continuously-distributed
random variable with a bounded density. So

P({K +1° > S(T) > K1) = O(hP). (3.4)
But from the Markov inequality [9] and the error moment bound (1.10), we have

E|S(T) - X(T)|" _ Ch™”

P{S(T) = X(T) > W7}) < =5 e < =2

-0 (h%—ﬁ) — O(hP).
(3.5)
Combining (3.3)—(3.5) we find that

P({S(T) > K} n{X(T) < K}) = O(h”).

Similar arguments give

P({S(T) < K} n{X(T) > K}) = O(h"),
and so, in (3.1),
~ ~ 1
E(|P - P*) = O(h") = O(h2™").
Overall, we have shown that for any § > 0, (1.6) holds with g = % — 0.

Very similar arguments can be used to obtain the same § = % — 0 result for a cash-
or-nothing put option, where P = 1;5(1y<k). Alternatively, the same complexity arises
immediately by valuing the put in terms of the call, since their sum is riskless [7, Exer-
cise 17.1]. Similarly, an asset-or-nothing call option, where P = S(T')15(1)>k}, could be
valued via the relation “European call equals asset-or-nothing call minus cash-or-nothing
call” and an asset-or-nothing put option, where P = S(T')1s(r)<k3, could be valued in
terms of an asset-or-nothing call [7, Exercise 17.8].

4 Barriers

4.1 Ups

An up-and-out call gives a European payoff if the asset never exceeds the barrier, B,
where B > K, otherwise it pays zero [5, 7, 8]. So, for the exact solution we have

P = (S(T) - K>+1{Sup0§t§T S()<B}>

and for the EM approximation
P = (Y(T> - K)—i—l{supOStSTY(t)SB}'
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Consider the events

F={sup S(t)<B} and G ={sup X(¢t) < B}.

0<t<T 0<t<T

E(|P—PP?) = E((S(T) - K)*1p — (X(T) - K)*1c)
= <|<S<T> )Y — (X(T) = K)* PLiprcy)
E(|(S(T) — K)*Lpneey) + E((X(T) — K)*Lianre)
<|S<T> X(T)*1(prey)
+ (B - K)’P(FNG°) + (B — K)’P(G N F°)
E(|S(T) — _(T)] )+ (B — K)Q[IP(F NG°) +P(GN Fe)]
O(h) + (B — K) [P(F NG +P(GNF9), (4.1)

IN

IA A

where the final step used (1.9).
Now, for any ¢ € (0, ), choose m sufficiently large and v > 0 sufficiently small for

2v+1 ~ 1 29+1 1
<§ sothat B:=-— > - _3§ 42
2m + 2 sothat =2 -0 —=5>7 (4.2)

Then

P(FNGY) = PU{B-h®< sup S(t) < B}NG")

0<t<T

+P({ sup S(t) < B—1P}NGo)

0<t<T

< P(B- e < sup S(t) < B)
0<t<T

+P(sup X(t)— sup S(t) > hP). (4.3)

0<t<T 0<t<T

Since supg;<r S(t) is a continuously-distributed random variable with bounded density,
we have

P(B -k < sup S(t) < B) = O(hP). (4.4)

0<t<T

Also, using (2.3), the Markov inequality and the error moment bound (1.11)

P(sup X(t)— sup S(t) > h’) < P(sup (X(t) - S(t) > h’)

0<t<T 0<t<T 0<t<T
< h%E( sup | X () — S(t)|™)
<
= O(hP). (4.5)

Using (4.4) and (4.5) in (4.3) we see that P(F'N G°) = O(hﬁ). Similarly, we can show
. ~ _ 1
P(G N F°) = O(h?), and hence, in (4.1) we have E(|P — P|*) = O(hP) = O(hif‘s).
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An up-and-out put, for which P = (K — S(T))J“l{supogtg s()<B}, can be analysed in an
analogous manner (under the reasonable condition that S(¢f) > 0 over 0 < ¢t < T with
probability one) giving the same mean square order.

Up-and-in calls and puts may then be valued with the same complexity using the relation
“in plus out equals European” [7, Exercise 19.3].

4.2 Downs

Before analysing options that knock in or out based on a lower bound, we state and prove
a lemma.

Lemma 4.1 Suppose S is a nonnegative scalar random variable such that for any integer
qg>0
E[SY] =¢, < 0.

Then for any x > 0 and integer n > 0

E[Sq1{5>$}] < \/02q+2nxin'

Proof.  Since
S gsey = ST (S 1(s5a}) s

the Holder inequality gives

E[S"Lis50y] < (E[S272"]) % (B[S " Ls201]) " < ezgrane ™

A down-and-in call [8] knocks in when the minimum asset price dips below the barrier B,
so that

P = (S(T) - K>+1{inf0§t§T S(t)<B}»
and, accordingly, o
P = (X(T> - K)+1{inf0§t§'f X(t)<B}-

We can use a similar style of analysis to that in section 4.1 for the up-and-out-call. Denote
the events B
H={inf S(t)<B} and I={ inf X(¢) < B}.

0<t<T 0<t<T

Then, using the strong convergence result (1.9),

E(|P - P]*) = E(|(S(T) - K)*1y — (X(T) — K)*1,?)

= E(I(S(T) - K)" = (X(T) — K)*|*1{unn)

+E(I(S(T) = K) " Lgunsey) +E (|(X(T) = K)* P 1ynmey)
< E(|(S(T) - X(T)")

+E([(S(T) = K)" Limnrey) + E (|[(X(T) = K)" [ 1inme)



Now, for any given 6 € (0, 1), choose m > 2 sufficiently large and > 0 sufficiently small

for
2 2941 ) ~ 1 2y+1 1 ¢
2 sothat fi==— R
max<m—2’2m+2)<2 sothat = =g = 272 2
Letting J = {S(T) > h=/("=2} we have
E([(S(T) = K)*Lianry) = E(|(S(T) — K)* Limnrensy)
VE((S(T) = K) Pl (47)

Using Lemma 4.1 with ¢ = 2, x = h~Y(=2) and n = m —2, we see that there is a constant
D,, such that

E (|(S(T) = K)**Leneeny) < E (|(S(T) = K)*[*1y) < Dinh. (45)

Also,
E (|(S(T) — K) "L unrensey) < B2 IP(HNI°). (4.9)

Now
(& _ B 3 < c
PHNIY) = IP’({B h <0i1tl<fTS(t)_B}ﬂI)

+P ({ inf S(t) < B — hP} ﬂIC)

0<t<T
< P(B—hﬁ< inf S(t)gB)
0<t<T
+1P>< inf X(¢)— inf S(t) > hﬁ). (4.10)
0<t<T 0<t<T

Since info<;<7 S(t) is a continuously-distributed random variable, we have

P <B —hP < inf S@t) < B) — O(hP). (4.11)

0<t<T

Using the Markov inequality, (2.2) and (1.11), we then have

IP( inf X(t)— inf S(t) > hB) < P < sup (X(t) — S(1)) > hﬁ)

0<t<T 0<t<T 0<t<T

IN

0<t<T
Cyh"/*
hm
= O(h"). (4.12)

S (s X0 - s

IN

Using (4.11) and (4.12) in (4.10) we have P (H N I¢) = O(h?), whence (4.8) and (4.9) in
(4.7) give

E(|(S(T) ~ K) Plignie) = O(hasP) = O(h2 ™). (4.13)
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Next we note from (1.11) that E[|X(T)|™] has an upper bound that is uniform over small
h, so that Lemma 4.1 remains applicable. So, analogously to (4.13), we can show that

E ([(X(T) = K)*P1ynmey) = O(h%ﬂs),

~ 1
so that, from (4.6), the overall error bound E(|P — P|?) = O(h2™°) holds for any & > 0.

Entirely analogous arguments give the same order for the down-and-in put [7], where
P = (K- S(T))+1{inf0§t§T s@<By, and, as mentioned in section 4.1, the “out” versions
can be valued via “in plus out equals European” [7, Exercise 19.3].

5 Discussion

Our aim in this work was to develop new mean square convergence rates for Euler—
Maruyama approximations to non-globally Lipschitz option payoffs. Specifically, we have
shown that, for any § > 0, (1.6) holds with § = 1 — § in the case of lookbacks and with
B = 1 — ¢ in the case of digitals and barriers. As discussed in section 1, these results
allow us to quantify an improvement in computational complexity when standard Monte
Carlo is replaced by the multi-level version of [4]; they also explain the numerical results
presented there. Promising topics for further work in this area include the analysis of (a)
the weak error rate « in (1.7) for path-dependent options, (b) methods with higher strong

order, and (c) quasi-Monte Carlo.
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