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Abstract. Portfolio credit risk models as well as models for operational risk
can often be treated analogously to the collective risk model coming from in-
surance. Applying the classical Panjer recursion in the collective risk model
can lead to numerical instabilities, for instance if the claim number distribution
is extended negative binomial or extended logarithmic. We present a general-
ization of Panjer’s recursion that leads to numerically stable algorithms. The
algorithm can be applied to the collective risk model, where the claim number
follows, for example, a Poisson distribution mixed over a generalized tempered
stable distribution with exponent in (0, 1). De Pril’s recursion can be gener-
alized in the same vein. We also present an analogue of our method for the
collective model with a severity distribution having mixed support.
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1. Introduction

The aggregation of risks on a portfolio basis is a classical topic in insurance, which
gained increasing importance in the context of credit risk (e.g. CreditRisk+ [2, 9])
and the advanced measurement approach for operational risk [18, Chap. 10] and
[30]. By applying methods from the collective risk model to quantitative risk man-
agement, we work on the interface between actuarial sciences with their long history
and financial mathematics with its steadily growing challenges. Modeling the above-
mentioned losses on a portfolio basis, usually leads to the problem to calculate the
distribution of a compound sum

S =
NX

n=1

Xn, (1.1)

where the sequence {Xn}n2N of individual credit, operational or insurance losses,
respectively, is i. i. d. and independent from the N0-valued number N of losses. The
distribution of the random sum S is then called a compound distribution with
primary distribution L(N) and secondary distribution L(X1). According to the
Basel II regulations [1], the loss distribution in credit portfolios as well as of the
operational loss occurring to business lines of a bank has to be calculated up to high
quantiles such as the 99% level and above [18, Subsec. 10.1.3]. Recursive schemes
such as Panjer’s recursion o↵er a useful method to calculate the loss distribution,
avoiding the stochastic error which is associated with a Monte Carlo approach
(even when combined with variance reduction techniques). For calculating extreme
quantiles as required by the Basel II regulations, it seems crucial to us to avoid the
stochastic error.

Concerning the credit risk model CreditRisk+, the need for numerically stable
risk aggregation algorithms is repeatedly reported in the literature [7, 10]. It is
one of the prime examples where a numerically unstable algorithm was recognized
and remedies were proposed. We point out in Section 5.5, how a numerically stable
algorithm based on an iterated application of Panjer’s recursion can be constructed.
Using our results, in particular Lemma 5.10 and Algorithm 5.3, we indicate how
the CreditRisk+ model can be extended, retaining its numerical stability.

In this article we present several algorithms to calculate the distribution of a
random sum as given in (1.1), focusing on numerical stability. With the exception
of Section 9, we assume that X1 is N0-valued. If the distribution of N , denoted by
{qn}n2N0, belongs to a Panjer(a, b, k) class, then the classical procedure to calculate
the distribution of the aggregate loss S is to apply Panjer’s recursion (cf. Theorem
4.1 below). Recall that a probability distribution {qn}n2N0 is said to belong to the
Panjer(a, b, k) class with a, b 2 R and k 2 N0 if q0 = q1 = · · · = qk�1 = 0 and

qn =
⇣
a +

b

n

⌘
qn�1 for all n 2 N with n � k + 1. (1.2)
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All distributions belonging to a Panjer(a, b, k) class were identified by Sundt and
Jewell [29] for the case k = 0, Willmot [33] for the case k = 1, and finally Hess,
Liewald and Schmidt [11] for general k 2 N0. More general relations than (1.2) and
corresponding recursion schemes have been considered in articles by Sundt [28],
Hesselager [12], and Wang and Sobrero [31].

Panjer and Wang [21] show that, for non-degenerate severity distributions, the
numerical stability of Panjer’s recursion with claim number distribution in the
Panjer(a, b, k) class only depends on the values of a and b. They also establish
the stability of infinite order linear recurrences with non-negative coe�cients and
non-negative starting values [21, Theorem 7]. The Poisson, the logarithmic, and
the negative binomial distribution lead to recurrences of this kind, hence the com-
putation of the aggregate loss is numerically stable. However, in the case of the
extended negative binomial and the extended logarithmic distribution, quantities
of opposite sign are added during Panjer’s recursion, which can lead to numerical
inaccuracies.

After recalling the definitions of these two distributions in Section 2, we present
an illustrative example of a failed computation in Section 3. Section 4 contains our
main result, which is a generalization of the classical Panjer recursion. It leads to
stable algorithms for both distributions, which are presented in Sections 5.1 and
5.2. Albeit slower than Panjer’s recursion by a constant factor, they can reduce the
numerical error substantially, because cancellations cannot occur, cf. Table 3.1. The
gist of our method is the reduction to a random sum with a di↵erent claim number
distribution, whose computation by Panjer’s recursion, for example, is numerically
stable. Besides being of interest on its own as a claim number distribution, the
extended negative binomial distribution occurs in the collective risk model with
Poisson-mixed claim number distributions, which is the topic of Sections 5.3 and
5.4. In particular, we introduce the generalized tempered ↵-stable distribution as
Poisson mixture distribution and derive readily implementable, numerically stable
recursive schemes, which to our knowledge are new. The Lévy distribution, the in-
verse gamma distribution with half-integer parameter and the (generalized) inverse
Gaussian distribution are special examples for the case ↵ = 1/2.

Sections 6 and 7 present some other claim number distributions to which our
method can be applied. Similarly to our generalization of Panjer’s recursion,
De Pril’s recursion for the moments of a compound distribution is extended in
Section 8. Finally, we show in Section 9 how to adapt our method to severity
distributions with mixed support.

2. Extended distributions from the Panjer class

As noted in the introduction, numerical stability of Panjer’s recursion (4.2) cannot
be guaranteed for certain claim number distributions as positive and negative terms
are summed up. We briefly recall two families that will serve as typical examples
of claim number distributions, where cancellation can arise and where our stable
algorithm is applicable.

2.1. Extended negative binomial distribution. The extended negative bino-
mial distribution1 ExtNegBin(↵, k, p) with parameters k 2 N, ↵ 2 (�k,�k+1) and

1See for example Extended negative binomial distribution at http://en.wikipedia.org/wiki/,
version of July 2, 2008, for more detailed information.
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p 2 [0, 1) is defined by q0 = · · · = qk�1 = 0 and, with q = 1� p, by

qn =
�↵+n�1

n

�
qn

p�↵ �
Pk�1

j=0

�↵+j�1
j

�
qj

for n 2 N with n � k. (2.1)

The probability generating function (pgf) is given by

'(s) =
1X

n=k

qnsn =
(1� qs)�↵ �

Pk�1
j=0

�↵+j�1
j

�
(qs)j

p�↵ �
Pk�1

j=0

�↵+j�1
j

�
qj

for |s|  1
q
. (2.2)

For the important case k = 1, hence ↵ 2 (�1, 0), this simplifies to

'(s) =
1� (1� qs)�↵

1� p�↵
for |s|  1

q
. (2.3)

It is well known [11] and straightforward to verify that ExtNegBin(↵, k, p) is in the
Panjer(q, (↵� 1)q, k) class.

The ordinary negative binomial distribution NegBin(↵, p) with parameters ↵ > 0
and p 2 (0, 1) is also given by (2.1), its pgf by (2.2) for |s| < 1/q and its Panjer
class as above (with k = 0 in all three cases).

2.2. Extended logarithmic distribution. The second claim number distribu-
tion to which we want to apply our algorithm is the extended logarithmic distribu-
tion ExtLog(k, q) with parameters k 2 N \ {1} and q 2 (0, 1]. Its probability mass
function {qn}n2N0 is given by q0 = · · · = qk�1 = 0 and

qn =
�n

k

��1
qn

P1
l=k

� l
k

��1
ql

for n � k, (2.4)

For a closed-form expression of the probability generating function we need:

Lemma 2.1. For k 2 N \ {1} define

�k(x) =
(�1)k

k

1X
n=k

xn�n
k

� , |x|  1.

Then

�k(x) = (1� x)k�1 log(1� x) +
k�1X
i=1

ai,kxi, |x|  1, (2.5)

with the convention 0 log 0 = 0 for the natural logarithm and

ai,k =
i�1X
j=0

✓
k � 1

j

◆
(�1)j

i� j
, i 2 {1, . . . , k � 1}. (2.6)

Proof. The representation for �k can be verified as follows: Insert the Taylor series
log(1�x) = �

P
n2N xn/n to see that the coe�cients of x1, . . . , xk�1 vanish on the

right-hand side of (2.5). For the remaining coe�cients, note that the kth derivative
of the power series defining �k is proportional to the geometric series, more precisely

�(k)
k (x) = (�1)k (k � 1)!

1� x
, |x| < 1,

and that the kth derivative of (1� x)k�1 log(1� x) leads to the same result.
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Note that (2.6) simplifies to a1,k = 1 for k � 2, a2,k = 3
2 � k for k � 3, and

a3,k = 1
3 + 1

2 (k� 1)(k� 3) for k � 4. Using Lemma 2.1, we see that the probability
generating function of ExtLog(k, q) is given by

'(s) =
P1

n=k

�n
k

��1(qs)n

P1
l=k

� l
k

��1
ql

=
�k(qs)
�k(q)

for |s|  1
q
, (2.7)

We will sometimes use ExtLog(1, q) with q 2 (0, 1) to denote the logarithmic
distribution Log(q), where q0 = 0 and

qn = � qn

n log(1� q)
, n 2 N. (2.8)

The probability generating function of {qn}n2N0 is

'(s) =
log(1� qs)
log(1� q)

, |s| <
1
q
. (2.9)

Again, it is well known [11] and straightforward to verify that ExtLog(k, q) is in
the Panjer(q,�kq, k) class for k 2 N.

3. An example of numerical instability

Since ExtLog(k, q) and ExtNegBin(↵, k, p) are Panjer class distributions, we could
use Panjer’s recursion (cf. Theorem 4.1 below) to calculate the distribution {pn}n2N0

of the aggregate loss S given by (1.1). Numerical stability cannot be guaranteed,
however, because the term (a + bj/n) in (4.2) can change its sign as j runs from
1 to n. To show that numerical inaccuracies are a real danger, let us consider the
following example.

Example 3.1. Take k 2 N and ", p 2 (0, 1), define ↵ = �k + ", and let {qn}n2N0

denote the distribution of N ⇠ ExtNegBin(↵, k, p). Choose l 2 N with l � 3, and
P[X1 = 1] = P[X1 = l] = 1/2 as loss distribution. Since P[N  k � 1] = 0, we have

pk = P[N = k, X1 = · · · = Xk = 1] =
qk

2k

and

pk+l�1 =
kX

j=1

P[N = k, Xj = l, Xi = 1 for all i 2 {1, . . . , k} \ {j}]

+ P[N = k + l � 1, X1 = · · · = Xk+l�1 = 1] =
kqk

2k
+

qk+l�1

2k+l�1
.

We now apply the Panjer recursion formula (4.2) for a frequency distribution in
the Panjer(q, q(↵ � 1), k) class, where q = 1 � p. Since Sk takes values in the set
{k + j(l� 1) | j = 0, . . . , k}, which does not contain k + l, the recursion formula for
pk+l reduces to

pk+l = q
⇣
1 +

↵� 1
k + l

⌘pk+l�1

2
+ q

⇣
1 +

↵� 1
k + l

l
⌘pk

2

= q
k(l � 1) + "k

k + l

⇣ qk

2k+1
+

qk+l�1

k2k+l

⌘
� q

k(l � 1)� "l

k + l

qk

2k+1
.

Therefore, a severe cancellation occurs for pk+l when " is small and qk+l�1 ⌧
2l�1kqk. For example, the values " = 10�4, k = 1, l = 5, and p = 1/10 give

p6 ⇡ 0.14999261827� 0.14997008919 = 0.00002252908,
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Loss k Modified Panjer recursion Panjer with 5 digits
with double precision (relative error)

1 0.49996279266 ⇡ 0.00%
2 0.00001124916 33.33%
3 0.00000168754 33.33%
4 0.00000037971 33.33%
5 0.49996289519 ⇡ 0.00%
6 0.00002252908 77.55%
7 0.00000507252 96.47%
8 0.00000152220 104.36%
9 0.00000051380 106.99%
10 0.00001143414 34.53%

Table 3.1. Creation and propagation of cancellation errors by Panjer’s
recursion for Example 3.1. The probabilities pk in the middle column
are calculated with double precision by our numerically stable algorithm.
Relative errors when using Panjer’s recursion with five significant digits
are given in the last column. Using our numerically stable algorithm
with five significant digits, the relative errors stay below 0.01% for the
given probabilities.

hence we lose four significant digits in this case.

Table 3.1 compares the results of Panjer’s recursion and our alternative algorithm
(see Theorem 4.5(a) and Corollary 5.1 below) applied to the above setting.

4. A generalization of the Panjer recursion

The famous Panjer recursion [20, 29] is contained in the following theorem:

Theorem 4.1 (Extended Panjer recursion). Assume that the probability distribu-
tion {qn}n2N0 of N belongs to the Panjer(a, b, k) class and a P[X1 = 0] 6= 1. Then
the distribution {pn}n2N0 of the random sum S given in (1.1) can be calculated by

p0 = 'N (P[X1 = 0]) =

(
q0 if P[X1 = 0] = 0,
E
⇥
(P[X1 = 0])N

⇤
otherwise,

(4.1)

where 'N is the probability generating function of N , and the recursion formula

pn =
1

1� a P[X1 = 0]

✓
P[Sk = n] qk +

nX
j=1

⇣
a +

bj

n

⌘
P[X1 = j] pn�j

◆
(4.2)

for all n 2 N, where Sk = X1 + · · · + Xk.

The distribution of Sk can be computed with at most 2blog2 kc convolutions,
cf. Remark 4.3 below. The only compound distribution violating the condition
a P[X1 = 0] 6= 1 arises from a = 1 and P[X1 = 0] = 1. Obviously, p0 = 1 and
pn = 0 for all n 2 N in this trivial case.

Remark 4.2 (Calculation of the initial value). To apply the classical Panjer recur-
sion (4.2), the probability p0 of a loss of zero is needed as starting value, see
(4.1). If N ⇠ Poisson(�) with � > 0, then 'N (s) = e��(1�s) for all s 2 R. If
N ⇠ NegBin(↵, p) with ↵ > 0 and p 2 (0, 1), then 'N (s) = (p/(1 � qs))↵ for all
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|s| < 1/q by (2.2), where q := 1 � p. These distributions are in the Panjer(0,�, 0)
and the Panjer(q, (↵ � 1)q, 0) class, respectively. When modeling large portfolios
with the collective risk model (1.1) using one of these claim number distributions,
it can happen for large � or ↵, respectively, that p0 is so small that it can only
be represented as zero on a computer (numerical underflow). The recursion (4.2)
then produces pn = 0 for all n 2 N, which is clearly wrong. The standard solution,
cf. [16, Section 6.6.2], is to perform Panjer’s recursion with the reduced parameter
�0 := �/2n (resp. ↵0 := ↵/2n) instead, where n is chosen such that the new p0 is
properly representable on the computer. Afterwards, n iterative and numerically
stable convolutions are needed to calculate the original probability distribution.
This approach works because for independent N1, . . . , N2n ⇠ Poisson(�/2n), we
have that N = N1 + · · · + N2n ⇠ Poisson(�), similarly for the negative binomial
distribution; see Remark 5.11 below for more details. In general, this works for
claim number distributions closed under convolutions.

Remark 4.3 (Binomial distribution). The binomial distribution Bin(m,p) with m 2
N trails and success probability p 2 (0, 1) is in the Panjer(�p/q, (m+1)p/q, 0) class,
where q := 1 � p. If N ⇠ Bin(m,p), then 'N (s) = (q + ps)m for all s 2 R. If
n > m + 1, then the term a + bj/n in (4.2) changes sign while j runs from 1 to n,
hence Panjer’s recursion for the binomial distribution is numerically unstable due
to cancellations. The problem with numerical underflow during the calculation of
the initial value p0 can also occur for large m, cf. Remark 4.2. Since

'S(s) = 'N

�
'X1(s)

�
=

�
q + p'X1(s)

�m =
lY

k=0
ak=1

�
q + p'X1(s)

�2k

, s 2 R,

where m =
Pl

k=0 ak2k with a0, . . . , al�1 2 {0, 1}, al = 1 and l = blog2 mc denotes
the dyadic representation of m, we see that the distribution {pn}n2N0 of S can be
computed in a numerically stable way with a0 + · · · + al�1 + l  2l convolutions.

Remark 4.4. As a historical comment, we mention that Panjer’s recursion for bino-
mial, negative binomial, and extended negative binomial claim number distributions
is contained in a much older result: For ↵ 2 R and a power series f(s) =

P1
k=0 aksk

with a0 6= 0, the coe�cients {bn}n2N0 of the power series f�↵(s) satisfy the recur-
sion

bn =
1

na0

nX
k=1

((1� ↵)k � n)akbn�k, n 2 N.

Gould [8] has traced this remarkable, often rediscovered recurrence back to Euler [4,
Section 76]. Using the probability generating functions of the above distributions
and 'S = 'N � 'X1 , this formula applied to f(s) = 1 � q'X1(s) yields recursions
which indeed agree with the respective Panjer recursions.

Now we state and prove our main result. Instead of considering a single dis-
tribution that satisfies the Panjer recursion, we work with several claim number
distributions that are linked by relation (4.4) below. We show that the corre-
sponding compound distributions satisfy the weighted convolution relation (4.5).
In this way, the calculation for a claim number distribution whose Panjer recur-
sion is unstable can sometimes be reduced to one for which Panjer’s recursion is
stable. Part (b) of Theorem 4.5 aims at another relation between claim number
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distributions, a special case of which is given below in Corollary 4.7 by truncated
distributions modified up to a certain claim number.

Theorem 4.5. Fix l 2 N. Let {qn}n2N0 and {q̃i,n}n2N0 denote the probability
distributions of the N0-valued random variables N and Ñi for i 2 {1, . . . , l}, re-
spectively, which are independent of the N0-valued i. i. d. sequence {Xn}n2N. Let
{pn}n2N0 and {p̃i,n}n2N0 denote the probability distributions of the random sums
S = X1 + · · · + XN and S̃(i) = X1 + · · · + XÑi for i 2 {1, . . . , l}, respectively.

(a) Assume that there exist k 2 N0 and a1, . . . , al, b1, . . . , bl 2 R such that

q̃i,0 = · · · = q̃i,k+l�i�1 = 0 for all i 2 {1, . . . ,min(l, k + l � 1)} (4.3)

and

qn =
lX

i=1

⇣
ai +

bi

n

⌘
q̃i,n�i for all n 2 N with n � k + l. (4.4)

Then

pn =
k+l�1X

j=1

P[Sj = n] qj +
lX

i=1

nX
j=0

⇣
ai +

bij

in

⌘
P[Si = j] p̃i,n�j (4.5)

for all n 2 N, where Sj = X1 + · · · + Xj, and p0 is given by (4.1).
(b) Assume that there exist ⌫1, . . . , ⌫l 2 [0, 1] with ⌫1 + · · · + ⌫l  1 such that

qn =
Pl

i=1 ⌫i q̃i,n for all n 2 N. Then pn =
Pl

i=1 ⌫i p̃i,n for all n 2 N.

Note that Theorem 4.1 is a special case of Theorem 4.5(a): If {qn}n2N0 belongs
to the Panjer(a, b, k) class, then Theorem 4.5(a) is applicable by choosing l = 1
and q̃1,n = qn for all n 2 N0, which implies pn = p̃1,n for all n 2 N0. Using
q1 = · · · = qk�1 = 0, which implies (4.3), and solving (4.5) for pn yields (4.2).

Remark 4.6. Algorithm 5.3 for ExtNegBin(↵, k, p) as well as Algorithm 5.6 for
ExtLog(k, q), which are both based on Theorem 4.5, increases the computational
e↵ort relative to Panjer’s recursion (4.2) to gain numerical stability. As Remarks
4.2 and 4.3 show, this is a classical trade-o↵ between speed and numerical accuracy.

Proof of Theorem 4.5. (a) We extend the standard proof of Panjer’s recursion (cf.
Mikosch [19, Theorem 3.3.10] for the case k = 0 and l = 1) to our setting.

To prove the representation for the initial value given in (4.1), note that {S = 0,
N = 0} = {N = 0} and {S = 0, N � 1} = {X1 = 0, . . . ,XN = 0, N � 1}. Hence

p0 = P[S = 0] = P[S = 0, N = 0] + P[S = 0, N � 1]
= q0 + P[X1 = 0, . . . ,XN = 0, N � 1] .

If P[X1 = 0] = 0, the second term is zero. Otherwise use the independence of N
and {Xn}n2N as well as the i. i. d. assumption for this sequence to obtain

p0 = q0 +
X
n2N

(P[X1 = 0])n P[N = n] = E
⇥
(P[X1 = 0])N

⇤
.

We now prove (4.5) for fixed n 2 N. For this we need a preparation. Fix
i 2 {1, . . . , l}. For every m 2 N with m � i, we use the representations Sm =
X1 + · · · + Xm = Sm�i + Si,m with Si,m = Xm�i+1 + · · · + Xm and independent
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and identically distributed X1, . . . ,Xm. If P[Sm = n] > 0, we obtain

1 = E
hSm

n

���Sm = n
i

=
mX

j=1

E
hXj

n

���Sm = n
i

= m E
hXm

n

���Sm = n
i

= m E
hSi,m

in

���Sm = n
i
,

hence

ai +
bi

m
= E

h
ai +

biSi,m

in

���Sm = n
i

=
nX

j=0

⇣
ai +

bij

in

⌘
P[Si,m = j |Sm = n] . (4.6)

For every m � i we know that Sm�i and Si,m are independent and that Si,m has
the same distribution as Si, hence

P[Si,m = j, Sm = n] = P[Si,m = j, Sm�i = n� j]
= P[Si = j] P[Sm�i = n� j] .

(4.7)

Using the independence of Sm and N for every m 2 N,

pn = P[S = n] =
X
m2N

P[Sm = n, N = m] =
k+l�1X
m=1

P[Sm = n] qm + An, (4.8)

and rewriting the abbreviation An using the representation (4.4), it follows that

An :=
1X

m=k+l

P[Sm = n] qm =
1X

m=k+l

lX
i=1

⇣
ai +

bi

m

⌘
P[Sm = n] q̃i,m�i.

Inserting (4.6) and (4.7) yields

An =
1X

m=k+l

lX
i=1

nX
j=0

⇣
ai +

bij

in

⌘
P[Si = j] P[Sm�i = n� j] q̃i,m�i

=
lX

i=1

nX
j=0

⇣
ai +

bij

in

⌘
P[Si = j]

1X
m=k+l

P[Sm�i = n� j] q̃i,m�i,

where the rearrangement from the first to the second line is admissible, because we
will show that the series in the second line converge for every i 2 {1, . . . , l} and
j 2 {0, . . . , n}. Indeed, using (4.3), an index shift, and arguments as for (4.8),

1X
m=k+l

P[Sm�i = n� j] q̃i,m�i =
1X

m=i

P[Sm�i = n� j] q̃i,m�i

=
1X

m=0

P
⇥
Sm = n� j, Ñi = m

⇤
= P

⇥
S̃(i) = n� j

⇤
= p̃i,n�j .

Substituting this result into An and then An into (4.8) gives (4.5).
(b) Modifying the calculation in (4.8) using P[N = m] =

Pl
i=1 ⌫i P[Ñi = m] for

m 2 N, we obtain for every n 2 N

pn =
1X

m=1

P[Sm = n] P[N = m] =
lX

i=1

⌫i

1X
m=1

P[Sm = n] P[Ñi = m] =
lX

i=1

⌫i p̃i,n .
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The following corollary of Theorem 4.5(b) is useful, when only a k-truncation
of a probability distribution is in a Panjer(a, b, k) class as, e.g., in the case of a
distribution of the Panjer(a, b, k) class modified at 0, . . . , k � 1.

Corollary 4.7. Assume that {qn}n2N0 has mass at or above k 2 N. Let {q̃n}n2N0

denote its k-truncated probability distribution, i.e. q̃0 = · · · = q̃k�1 = 0 and

q̃n :=
qn

1�
Pk�1

j=0 qj

, n � k. (4.9)

Assume that N and Ñ, respectively, have these distributions. Let S = X1+· · ·+XN

and S̃ = X1 + · · · + XÑ denote the corresponding random sums with distributions
{pn}n2N0 and {p̃n}n2N0. Then p0 is given by (4.1) and

pn =
k�1X
i=1

qi P[Si = n] +
✓

1�
k�1X
j=0

qj

◆
p̃n, n 2 N. (4.10)

Proof. Apply Theorem 4.5(b) with l = k, ⌫i = qi and q̃i,i = 1 for i 2 {1, . . . , k�1},
⌫k = 1� (q0 + · · · + qk�1), q̃k,n = q̃n for all n � k, and all other q̃i,n = 0.

5. Application to numerical stability

5.1. Extended negative binomial distribution. As noted in Section 3, numer-
ical stability of Panjer’s recursion for the extended negative binomial distribution
cannot be guaranteed. In this section we develop a remedy to this problem, see
Algorithm 5.3 below.

Corollary 5.1. For the parameters k 2 N0, ↵ 2 (�k,�k + 1) and p 2 [0, 1), with
p 6= 0 for k = 0, let {qn}n2N0 denote the ExtNegBin(↵ � 1, k + 1, p) distribution
and {q̃n}n2N0 the ExtNegBin(↵, k, p) distribution, where ExtNegBin(↵, 0, p) stands
for the negative binomial distribution NegBin(↵, p). Then (4.4) holds with l = 1
and q̃1,n = q̃n for n � k + 1. The constants are given by a1 = 0 and

b1 = (↵� 1)q
p�↵ �

Pk�1
j=0

�↵+j�1
j

�
qj

p1�↵ �
Pk

j=0

�↵+j�2
j

�
qj

, (5.1)

hence (4.5) simplifies to the numerically stable weighted convolution

pn =
b1

n

nX
j=1

j P[X1 = j] p̃n�j , n 2 N, (5.2)

and p0 is given by (4.1) with pgf 'N from (2.2).

Proof. Using (2.1), we see that, for every n � k + 1,✓
(↵� 1) + n� 1

n

◆
qn =

(↵� 1)q
n

✓
↵ + (n� 1)� 1

n� 1

◆
qn�1,

hence qn = b1q̃n�1/n and Theorem 4.5(a) is applicable.

The case k = 0, p = 0 is excluded in the preceding corollary. We cannot reduce
the calculation for a claim number N ⇠ ExtNegBin(↵ � 1, k + 1, p) to the one for
N ⇠ ExtNegBin(↵, k, p) in this case, because the negative binomial distribution
is not defined for p = 0. However, a suitable limit p & 0 gives the following
numerically stable procedure.
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Lemma 5.2 (Stable recursion for ExtNegBin(↵� 1, 1, 0)). For ↵ 2 (0, 1) consider
a claim number N ⇠ ExtNegBin(↵ � 1, 1, 0). Then the distribution {pn}n2N0 of
the random sum S in (1.1) can be calculated by p0 = 1� (P[X1 � 1])1�↵ and

pn =

(
1�↵

n

Pn
j=1 j P[X1 = j] rn�j if P[X1 � 1] > 0,

0 if P[X1 � 1] = 0,
n 2 N,

where for the case P[X1 � 1] > 0 the non-negative sequence {rn}n2N0 is defined by
r0 = (P[X1 � 1])�↵ and recursively in a numerically stable way by

rn =
1

P[X1 � 1]

nX
j=1

n� j + ↵j

n
P[X1 = j] rn�j , n 2 N.

Proof. It su�ces to consider the non-trivial case P[X1 � 1] > 0. We start with
p 2 (0, 1) and let {p̃n(p)}n2N0 denote the distribution of S̃ = X1 + · · ·+ XÑ , where
Ñ ⇠ NegBin(↵, p), and {pn(p)}n2N0 the distribution of S = X1 + · · · + XN , where
N ⇠ ExtNegBin(↵�1, 1, p). Since NegBin(↵, p) is in the Panjer(q, (↵�1)q, 0) class,
a recursion for the auxiliary sequence

rn(p) := p�↵p̃n(p), n 2 N0, (5.3)

follows from the Panjer recursion (4.2) for {p̃n(p)}n2N0, namely

rn(p) =
1

1� q P[X1 = 0]

nX
j=1

q
⇣
1 +

↵� 1
n

j
⌘

P[X1 = j] rn�j(p) (5.4)

with starting value

r0(p) = (1� q P[X1 = 0])�↵ (5.5)

given by (4.1) with the pgf from (2.2). The weighted convolution (5.2) becomes

pn(p) =
p↵b1

n

nX
j=1

j P[X1 = j] rn�j(p), n 2 N, (5.6)

with b1 = (1� ↵)qp�↵/(1� p1�↵) from (5.1) and starting value

p0(p) =
1� (1� q P[X1 = 0])1�↵

1� p1�↵
(5.7)

given by (4.1) with pgf from (2.3). The normalization in (5.3) is chosen so that
we can take the limit p & 0 (i.e., q % 1) in (5.4)–(5.7), in particular p↵b1 tends
to 1� ↵. With rn := limp&0 rn(p) and pn := limp&0 pn(p), the lemma follows.

Algorithm 5.3. Corollary 5.1 and Lemma 5.2 lead to the following numerically sta-
ble algorithm for the calculation of the distribution of the aggregate loss in the col-
lective risk model (1.1), where N ⇠ ExtNegBin(↵, k, p) with k 2 N, ↵ 2 (�k,�k+1)
and p 2 [0, 1):

• If p > 0, perform a stable Panjer recursion according to Theorem 4.1 for
N ⇠ NegBin(↵ + k, p), followed by a stable weighted convolution according
to Corollary 5.1 to pass to N ⇠ ExtNegBin(↵ + k � 1, 1, p).

• If p = 0, use Lemma 5.2 to calculate the distribution of the compound sum
S for N ⇠ ExtNegBin(↵ + k � 1, 1, p).

Calculate k � 1 weighted convolutions according to (5.2) to pass iteratively to
N ⇠ ExtNegBin(↵ + k � 2, 2, p), . . . , and finally to N ⇠ ExtNegBin(↵, k, p).
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Of course, compared to the ordinary (but possibly unstable) Panjer recursion
of Theorem 4.1, Algorithm 5.3 increases the numerical e↵ort by a factor of k + 1.
Note that the weighted convolution in (5.2) is not a recurrence, hence unavoidable
rounding errors do not propagate as in a recursive calculation.

5.2. Extended logarithmic distribution. Similar results as in the previous sub-
section can be obtained for the extended logarithmic distribution.

Corollary 5.4. For the parameters k 2 N and q 2 (0, 1] with q < 1 in case k = 1,
let {qn}n2N0 denote the ExtLog(k+1, q) distribution and {q̃n}n2N0 the ExtLog(k, q)
distribution, where ExtLog(1, q) stands for Log(q). Then (4.4) holds with l = 1
and q̃1,n = q̃n for n � k + 1. The constants are given by a1 = 0 and

b1 = (k + 1)q
P1

l=k

� l
k

��1
ql

P1
l=k+1

� l
k+1

��1
ql

=

8<
:
� q log(1�q)

q+(1�q) log(1�q) if k = 1,

�kq�k(q)
�k+1(q)

if k � 2,
(5.8)

where �k is given in Lemma 2.1, hence (4.5) again simplifies to the numerically
stable weighted convolution (5.2) and p0 is given by (4.1) with pgf 'N from (2.7).

Proof. Using (2.4), we see that, for every n � k + 1,

qn� n
k+1

� =
(k + 1)q

n

qn�1�n�1
k

� ,

hence qn = b1q̃n�1/n and Theorem 4.5(a) is applicable.

In the excluded case (k, q) = (1, 1), we cannot reduce the calculation for N ⇠
ExtLog(2, q) to that for N ⇠ ExtLog(1, q) = Log(q), because the logarithmic dis-
tribution in (2.8) is not defined for q = 1. Fortunately, a similar limit consideration
as for the extended negative binomial distribution works.

Lemma 5.5 (Stable recursion for ExtLog(2, 1)). Assume that N ⇠ ExtLog(2, 1).
Then the distribution {pn}n2N0 of the random sum S in (1.1) can be calculated by

p0 = P[X1 = 0] + P[X1 � 1] log P[X1 � 1]

with the convention 0 log 0 = 0, and

pn =

(
1
n

Pn
j=1 j P[X1 = j] rn�j if P[X1 � 1] > 0,

0 if P[X1 � 1] = 0,
n 2 N,

where for the case P[X1 � 1] > 0 the non-negative sequence {rn}n2N0 is defined by
r0 = � log P[X1 � 1] and recursively in a numerically stable way by

rn =
1

P[X1 � 1]

✓
P[X1 = n] +

1
n

n�1X
j=1

j P[X1 = n� j] rj

◆
, n 2 N.

Proof. Again, it su�ces to consider the non-trivial case P[X1 � 1] > 0. We start
with q 2 (0, 1) and let {p̃n(q)}n2N0 denote the distribution of S̃ = X1 + · · · + XÑ ,
where Ñ ⇠ Log(q), and {pn(q)}n2N0 the distribution of S = X1 + · · · + XN , where
N ⇠ ExtLog(2, q). This time we define the auxiliary sequence rn(q) by

rn(q) := �p̃n(q) log(1� q), n 2 N0. (5.9)
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Since Log(q) is in the Panjer(q,�q, 1) class, it satisfies

rn(q) =
q

1� q P[X1 = 0]

✓
P[X1 = n] +

1
n

n�1X
j=0

j P[X1 = n� j] rj(q)
◆

, n 2 N,

(5.10)

with starting value

r0(q) = � log(1� q P[X1 = 0]) (5.11)

given by (4.1) with the pgf from (2.9). Using (5.8) for k = 1, the weighted convo-
lution (5.2) turns into

pn(q) =
q

q + (1� q) log(1� q)
1
n

nX
j=1

j P[X1 = j] rn�j(q), n 2 N, (5.12)

with starting value

p0(q) =
q P[X1 = 0] + (1� q P[X1 = 0]) log(1� q P[X1 = 0])

q + (1� q) log(1� q)
. (5.13)

Due to the normalization in (5.9), we can take the limit q % 1 in (5.10)–(5.13).
Defining rn = limq%1 rn(q) and pn = limq%1 pn(q) finishes the proof.

Algorithm 5.6. Corollary 5.4 and Lemma 5.5 lead to the following numerically sta-
ble algorithm for the calculation of the distribution of the aggregate loss S in the
collective risk model (1.1), where N ⇠ ExtLog(k, q) with k 2 N\{1} and q 2 (0, 1]:

• If q < 1, perform a stable Panjer recursion according to Theorem 4.1 for
N ⇠ Log(q), followed by stable weighted convolution according to Corollary
5.4 to pass to N ⇠ ExtLog(2, q).

• If q = 1, use Lemma 5.5 to calculate the distribution of the compound sum
S for N ⇠ ExtLog(2, 1).

If k � 3, calculate k�2 weighted convolutions according to (5.2) to pass iteratively
to N ⇠ ExtLog(3, q), N ⇠ ExtLog(4, q), . . . , and finally to N ⇠ ExtLog(k, q).

Of course, compared to a (possibly unstable) ordinary Panjer recursion according
to Theorem 4.1 applied directly to N ⇠ ExtLog(k, q), Algorithm 5.6 increases the
numerical e↵ort by a factor of k.

5.3. Poisson mixed over generalized tempered stable distributions. In this
subsection and the following one, we show how the extended negative binomial
distribution arises naturally in the collective risk model with claim number dis-
tributions mixed over a tempered stable distribution (e.g. the Lévy or the inverse
Gaussian distribution) respectively mixed over a generalized tempered stable dis-
tribution, and how our weighted convolution (5.2) can improve numerical stability.

For a given parameter � > 0 and a probability distribution function F with
support contained in [0,1), called the mixing distribution, we can define the cor-
responding Poisson mixture distribution {qn}n2N0 by

qn =
Z 1

0

(�x)n

n!
e��x F (dx), n 2 N0. (5.14)

Mixed Poisson distributions serve as a rich class of claim number distributions, as
they can exhibit e↵ects such as heavy tails and over-dispersion.
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It is well known that a mixed Poisson distribution is infinitely divisible if and
only if the mixing distribution is infinitely divisible [17]. Furthermore, a theorem
in Feller [5, Chapter 12, p. 290] says that any infinitely divisible distribution on
the non-negative integers can be represented as a compound Poisson distribution.
Considering compound sums where the claim number follows a mixed Poisson dis-
tribution, Willmot [32] has noted that this implies that the distribution of the
aggregate claims can be calculated by applying the Panjer recursion twice.

We start with a general observation on mixed Poisson distributions, which we
illustrate by two examples, and give the application to the generalized tempered
stable distribution afterwards.

Lemma 5.7 (Mixed claim numbers distributions). Let F denote a probability dis-
tribution function with support contained in [0,1). Assume that the expectation
c :=

R1
0 xF (dx) is in (0,1). Then

F̃ (x) =
1
c

Z
[0,x]

y F (dy), x 2 [0,1), (5.15)

is a probability distribution function.
(a) For � > 0 and F , define the Poisson mixture distribution {qn}n2N0 by (5.14)

and define {q̃n}n2N0 similarly using F̃ . Then

qn =
c�

n
q̃n�1, n 2 N. (5.16)

(b) The negative binomial distribution NegBin(r, p) with parameters p 2 (0, 1)
and r > 0 can be written as✓

n + r � 1
n

◆
pr(1� p)n =

✓
n + r � 1

n

◆
Qn

(1 + Q)n+r
, n 2 N0,

with Q := (1� p)/p 2 (0,1). Define the mixture distribution

qn(r) =
✓

n + r � 1
n

◆Z 1

0

(Qx)n

(1 + Qx)n+r
F (dx), n 2 N0,

and define {q̃n(r)}n2N0 similarly using F̃ . Then

qn(r) =
cQr

n
q̃n�1(r + 1), n 2 N.

Proof. (a) Just note that

qn =
c�

n

Z 1

0

(�x)n�1

(n� 1)!
e��x x

c
F (dx), n 2 N0.

(b) Note that

qn(r) =
cQr

n

✓
n + r � 1

n� 1

◆Z 1

0

(Qx)n�1

(1 + Qx)n+r

x

c
F (dx), n 2 N0,

To illustrate the relationship between F and F̃ , let us consider two examples.

Example 5.8 (Mixing with beta distribution). Let

f↵,�(x) =
�(↵ + �)
�(↵)�(�)

x↵�1(1� x)��1, x 2 (0, 1), (5.17)
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denote the density of the beta distribution with parameters ↵,� > 0. If F has
density f↵,�, then c = ↵

↵+� and f↵+1,� is a density of F̃ in (5.15).

Example 5.9 (Mixing with gamma distribution). For parameters ↵,� > 0,

g↵,�(x) =
�↵

�(↵)
x↵�1e��x, x > 0, (5.18)

is a density of the gamma distribution Gamma(↵,�). For later use note that the
Laplace transform of ⇤ ⇠ Gamma(↵,�) is given by

E[e�⇤s] =
⇣ �

� + s

⌘↵
for s > ��, (5.19)

as can be seen by rewriting the integrand in terms of g↵,�+s. If F has density g↵,�,
then c = ↵/� and g↵+1,� is a density of F̃ in (5.15).

The family of stable distributions [25, 26] is a very flexible family of infinitely
divisible distributions denoted by S↵(�,�, µ) with ↵ 2 (0, 2], � > 0, � 2 [�1, 1],
and µ 2 R. The support of S↵(�,�, µ) is [0,1) if ↵ 2 (0, 1), � = 1 and µ = 0
(see [25, p. 15]). It can thus serve as a mixing distribution F in (5.14). Note
that the densities of this distribution family do in general not have a closed form,
and therefore this family is usually characterized by its Laplace transform or its
characteristic function. For Y ⇠ S↵(�, 1, 0) the Laplace transform is given by

E[exp(�sY )] = exp(��↵,�s↵) for s � 0 with �↵,� :=
�↵

cos(↵⇡/2)
, (5.20)

cf. [25, Prop. 1.2.12]. We now generalize this distribution by introducing the addi-
tional parameters ⌧ � 0 and m 2 N0 to define the distribution function

F↵,�,⌧,m(y) =
E[Y �me�⌧Y 1{Yy}]

E[Y �me�⌧Y ]
, y 2 R. (5.21)

To see that this is well-defined, it su�ces to show that the moment E[Y �m] exists.
For a > 0, integration by parts yieldsZ 1

a
y�mF↵,�,0,0(dy) = �a�mF↵,�,0,0(a) + m

Z 1

a
y�m�1F↵,�,0,0(y) dy. (5.22)

It is a consequence of the Hardy–Littlewood–Karamata Tauberian theorem that

F↵,�,0,0(y) = o(exp(��↵,�y�↵)) as y & 0.

See Feller [6, Section XIII.6, Theorem 1] for a proof of this fact in the case �↵,� = 1,
which trivially extends to �↵,� > 0. This implies that the right-hand side of (5.22)
converges as a& 0, hence E[Y �m] <1.

Now suppose that ⇤⌧,m ⇠ F↵,�,⌧,m, and consider a mixture model according to
(5.14), where

L(N (m)|⇤⌧,m) a.s.= Poisson(�⇤⌧,m) with � > 0. (5.23)

The probability generating function of N (m) is given by

'N(m)(s) = E
⇥
sN(m)⇤

= E
⇥
E[sN(m) |⇤⌧,m]

⇤
= E[e��(1�s)⇤⌧,m ]

=
E[Y �me�(⌧+�(1�s))Y ]

E[Y �me�⌧Y ]
for |s|  ⌧ + �

�
.

(5.24)
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In the special case m = 0, the distribution F↵,�,⌧,0 is known as a ⌧ -tempered ↵-
stable distribution [24]. Using (5.20) and (5.21), we see that the Laplace transform
of ⇤⌧,0 ⇠ F↵,�,⌧,0 is given by

L⇤⌧,0(s) = E[exp(�s⇤⌧,0)] = exp
�
��↵,�

�
(s + ⌧)↵ � ⌧↵

��
, s � �⌧. (5.25)

Since L0⇤⌧,0
(s) = �↵�↵,�(s + ⌧)↵�1L⇤⌧,0(s) for s > �⌧ , we obtain for ⌧ > 0

E[⇤⌧,0] = �L0⇤⌧,0
(0) = ↵�↵,�⌧↵�1 (5.26)

and

Var(⇤⌧,0) = L00⇤⌧,0
(0)�

�
L0⇤⌧,0

(0)
�2 = ↵(1� ↵)�↵,�⌧↵�2 =

1� ↵

⌧
E[⇤⌧,0] . (5.27)

We have the following representation of the distribution of N (0).

Lemma 5.10. Fix ↵ 2 (0, 1), �,� > 0 and ⌧ � 0. Define � = �↵,�

�
(�+ ⌧)↵� ⌧↵

�
and p = ⌧

�+⌧ . Let M ⇠ Poisson(�) and Ni ⇠ ExtNegBin(�↵, 1, p) for i 2 N be
independent random variables. Then N (0) equals N1 + · · · + NM in distribution.

Proof. Define q = 1 � p. Using (5.20), the probability generating function (5.24)
for n = 0 can be rewritten as

'N(0)(s) = exp
�
��↵,�

�
(⌧ + �(1� s) )↵ � ⌧↵

��
= exp

�
��↵,�(� + ⌧)↵

�
(p + q(1� s))↵ � p↵

��
, |s|  1

q
.

Furthermore, 'M (s) = exp
�
��(1� s)

�
for s 2 R and, according to (2.3),

'N1(s) =
1� (p + q(1� s))↵

1� p↵
for |s|  1

q
.

Therefore,

E
⇥
sN1+···+NM

⇤
= 'M ('N1(s)) = exp

⇣
��

(p + q(1� s))↵ � p↵

1� p↵

⌘
, |s|  1

q
.

Note that �/(1� p↵) = �↵,�(� + ⌧)↵, hence 'N(0) and 'M � 'N1 agree.

Before applying this result to derive numerically stable recursions, we also need
the following fact.

Remark 5.11. Let M and {Ni}i2N denote (possibly dependent) N0-valued random
variables and define N = N1 + · · ·+NM . Here M can be interpreted as the random
number of batches containing N1, N2, . . . , NM claims. Let {Xj}j2N denote an i.i.d.
sequence of N0-valued claim sizes, independent of random variables relating to claim
numbers. Define the sum of all claims in batch i 2 N by

S(i) =
N1+···+NiX

j=N1+···+Ni�1+1

Xj (5.28)

and note that the probability generating functions satisfy

'S(i)(s) = E
⇥
E[sS(i) |N1, . . . , Ni]

⇤
= E

⇥
('X1(s))

Ni
⇤

= 'Ni('X1(s))

for |s|  1, hence S(i) equals X1 + · · ·+XNi in distribution. According to definition
(5.28), S := X1 + · · · + XN = S(1) + · · · + S(M). Observe that, for every i 2 N,

E[sS(1) . . . sS(i) |N1, . . . , Ni]
a.s.= ('X1(s))

N1+···+Ni , |s|  1.

Hence, if {Ni}i2N are independent, it follows that {S(i)}i2N are independent.
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Algorithm 5.12. We can use Lemma 5.10 and Remark 5.11 to calculate the dis-
tribution of S = X1 + · · · + XN(0) with L(N (0)) given by (5.23) in a numerically
stable way. First, we calculate the distribution of S(1) := X1 + · · · + XN1 with
N1 ⇠ ExtNegBin(�↵, 1, p) using Algorithm 5.3. For p > 0, corresponding to ⌧ > 0,
this means to use Panjer’s recursion from Theorem 4.1 for NegBin(1� ↵, p) followed
by our stable weighted convolution (5.2) from Corollary 5.1 with

b1 = ↵q
p↵�1

1� p↵
. (5.29)

In the case p = 0, arising from ⌧ = 0, we apply the recursion in Lemma 5.2
for ExtNegBin(�↵, 1, 0) to obtain L(S(1)). Second, letting S(2), S(3), . . . denote
independent copies of S(1), we calculate the distribution of S(1)+· · ·+S(M), which is
equal to S in distribution by Remark 5.11. For this purpose, we use the previously
calculated L(S(1)) as severity distribution and apply the numerically stable Panjer
recursion from Theorem 4.1 for M ⇠ Poisson(�) with � given in Lemma 5.10.

To extend Algorithm 5.12 to calculate the distribution of X1+· · ·+XN(m) , where
the distribution of the claim number N (m) is obtained by a Poisson mixture over
⇤⌧,m ⇠ F↵,�,⌧,m, we need the expectation and the Laplace transform of ⇤⌧,m. The
special case ↵ = 1/2 is needed in Examples 5.20 and 5.22 below. The following
lemma and its corollary generalize (5.25) and (5.26) and give the higher moments,
too, which can be useful for calibration purposes. We start with the ↵-stable case.

Lemma 5.13. Given ↵ 2 (0, 1) and � > 0, let Y ⇠ S↵(�, 1, 0). Then

E
⇥
Y �me�sY

⇤
= I↵,�(m, s), s > 0, m 2 Z, (5.30)

and also for s = 0 if m 2 N0, where

I↵,�(m, s) :=
Z 1

s

(t� s)m�1

(m� 1)!
exp(��↵,�t↵) dt, m 2 N, s � 0, (5.31)

I↵,�(0, s) := exp(��↵,�s↵) for s � 0, and

I↵,�(�m, s) := (�1)m dm

dsm
exp(��↵,�s↵), m 2 N, s > 0. (5.32)

In particular, if s = 0, then (5.31) simplifies to

I↵,�(m, 0) =
�(m/↵)

↵�m/↵
↵,� (m� 1)!

, m 2 N. (5.33)

For the special case 1/↵ 2 N, we have

I↵,�(m, s) =
exp

�
��↵,�s↵

�
�m/↵

↵,�

pm,1/↵

�
�↵,�s↵

�
, m 2 N0, s � 0, (5.34)

where the polynomial pm,n of degree m(n� 1) is defined by

pm,n(x) =
mnX

j=m

cj(m,n)j!
m!

xmn�j , m 2 N0, n 2 N, x 2 R, (5.35)

where in turn cj(m,n) denotes the natural number which appears as the coe�cient
of xj in the polynomial representation ((x + 1)n � 1)m =

Pmn
j=m cj(m,n)xj.
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Proof. If m = 0, then (5.30) is just the definition (5.20) of Y ⇠ S↵(�, 1, 0). For
negative m 2 Z, (5.30) follows by iterated di↵erentiation from the case m = 0. For
m 2 N, the dominated convergence theorem implies that the left- and the right-
hand side of (5.30) converge to 0 as s ! 1. Hence we can finish the proof of
(5.30) by induction on m 2 N by noting that the derivatives of both sides of (5.30)
are equal due to the induction hypothesis. To prove (5.33), perform the integral
substitution u = �↵,�t↵ in (5.31) and use the definition of the gamma function.

If m = 0, then (5.34) follows from the definitions. To prove (5.34) for general
m 2 N, use integration by parts in (5.31) and afterwards the integral substitution
u = �↵,�(t↵ � s↵) to obtain

I↵,�(m, s) =
Z 1

s

(t� s)m

m!
↵�↵,� t↵�1 exp(��↵,�t↵) dt

=
exp(��↵,�s↵)

m!

Z 1

0

⇣⇣ u

�↵,�
+ s↵

⌘1/↵
� s

⌘m
e�u du.

(5.36)

When 1/↵ 2 N, we can rewrite

⇣⇣ u

�↵,�
+ s↵

⌘1/↵
� s

⌘m
= sm

m/↵X
j=m

cj(m, 1/↵)
⇣ u

�↵,�s↵

⌘j
.

Substitute this into (5.36) and use the definition of the gamma function to obtain

I↵,�(m, s) =
sm exp(��↵,�s↵)

m!

m/↵X
j=m

cj(m, 1/↵) j!
(�↵,�s↵)j

, m 2 N, s � 0,

which can be rearranged to give (5.34).

Remark 5.14. By the binomial formula, cj(m, 2) = 22m�j
� m
2m�j

�
for all m 2 N0

and j 2 {m, . . . , 2m}. Using also the multinomial formula, one can show that

cj(m,n) = m!
mX

k1,...,kn=0
k1+···+kn=m

1k1+···+nkn=j

nY
l=1

1
kl!

✓
n

l

◆kl

, m 2 N0, n 2 N, j 2 {m, . . . ,mn}.

For an alternative representation, note that cj(m,n) = 1
j!

dj

dxj fm(gn(x))
��
x=0

with
fm(x) := (x� 1)m and gn(x) := (x + 1)n. With Faà di Bruno’s formula we obtain

cj(m,n) =
m!
j!

Bj,m

�
g0n(0), . . . , g(j�m+1)

n (0)
�

with g(l)
n (0) =

l�1Y
i=0

(n� i)

for all m 2 N0, n 2 N, j 2 {m, . . . ,mn}, and l 2 {1, . . . , j �m + 1}, where the Bell
polynomial Bj,m in the variables x1, . . . , xj�m+1 is defined by

Bj,m(x1, . . . , xj�m+1) = m!
mX

k1,...,kj�m+1=0
k1+···+kj�m+1=m

1k1+···+(j�m+1)kj�m+1=j

j�m+1Y
l=1

1
kl!

⇣xl

l!

⌘kl

.
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Remark 5.15. Using Faà di Bruno’s formula, we can express (5.32), for all m 2 N
and s > 0, by

I↵,�(�m, s) = (�1)m m! exp(��↵,�s↵)
sm

mX
k1,...,km=0

1k1+···+mkm=m

mY
l=1

1
kl!

✓
�

✓
↵

l

◆
�↵,�s↵

◆kl

.

Corollary 5.16. Given ↵ 2 (0, 1), � > 0, ⌧ � 0, and m 2 N0, let ⇤⌧,m ⇠ F↵,�,⌧,m

as defined in (5.21). Then, using the notation of Lemma 5.13,

E[⇤l
⌧,m exp(�s⇤⌧,m)] =

I↵,�(m� l, s + ⌧)
I↵,�(m, ⌧)

, l 2 Z, s > �⌧ , (5.37)

which also holds for s = �⌧ if l  m. For the special case ⌧ = 0,

E
⇥
⇤l

0,m

⇤
=

8><
>:

↵�m/↵
↵,� (m� 1)!

�
�(m

↵ ) if l = m 2 N,

�(m�l)/↵
↵,�

(m� 1)!
(l � 1)!

�(m�l
↵ )

�(m
↵ )

if l 2 Z, m 2 N, l  m� 1.
(5.38)

For the special case 1/↵ 2 N, we have, for all l 2 Z and m 2 N0 with l  m and
for all real s � �⌧ ,

E
⇥
⇤l

⌧,m exp(�s⇤⌧,m)
⇤

= �l/↵
↵,�

exp(�↵,�⌧↵)
exp

�
�↵,�(s + ⌧)↵

� pm�l,1/↵

�
�↵,�(s + ⌧)↵

�
pm,1/↵(�↵,�⌧↵)

. (5.39)

Proof. The expectation in (5.37) follows from (5.21) and Lemma 5.13. The special
case (5.38) follows from (5.37) for s = ⌧ = 0, (5.33), and I↵,�(0, 0) = 1. The second
special case (5.39) for 1/↵ 2 N follows from (5.37) and (5.34).

Note that the expressions given in Lemma 5.13 and its corollary can be evaluated
in a numerically stable way in the sense that no cancellations occur. In particular
the integrand in (5.31) and the coe�cients of the polynomial in (5.35) are positive.

Remark 5.17. In general, I↵,�(m, s) given by (5.31) or equivalently (5.36) can be
evaluated by numerical integration. Alternatively, using the integral substitution
v = u + �↵,�s↵ in (5.36) and then the binomial formula, we obtain

I↵,�(m, s) =
1
m!

mX
j=0

✓
m

j

◆
(�s)m�j

�j/↵
↵,�

�(1 + j/↵, �↵,�s↵), s � 0,

with the upper incomplete gamma function, which is implemented in software pack-
ages. However, due to the alternating sign, this representation might not evaluate
in a numerically stable way.

We can now present our algorithm for generalized ⌧ -tempered ↵-stable Poisson
mixture distributions.

Algorithm 5.18. For m 2 N, the distribution {p(m)
n }n2N0 of X1+ · · ·+XN(m) can be

calculated iteratively in a numerically stable way by m applications of the weighted
convolution (4.5) from the distribution of X1 + · · ·+XN(0) , which can be calculated
by Algorithm 5.12. More precisely, for ↵ 2 (0, 1), �,� > 0 and tempering parameter
⌧ � 0, let L(N (m)) be given by (5.23) with ⇤⌧,m ⇠ F↵,�,⌧,m according to (5.21).
Then F↵,�,⌧,m�1 is the F̃ arising from F↵,�,⌧,m via (5.15), hence

q(m)
n =

� E[⇤⌧,m]
n

q(m�1)
n�1 , m, n 2 N,
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by Lemma 5.7(a), where {q(m)
n }n2N0 denotes the distribution of N (m) for m 2 N0.

Therefore, (4.4) (with k = 0, l = 1, a1 = 0 and b1 = � E[⇤⌧,m]) holds and the
weighted convolution (4.5) from Theorem 4.5(a) implies that

p(m)
n = � E[⇤⌧,m]

nX
j=1

j

n
P[X1 = j] p(m�1)

n�j , m, n 2 N,

where E[⇤⌧,m] is given by Corollary 5.16 (with l = 1). Furthermore,

p(m)
0 = E

⇥
exp

�
�� P[X1 � 1]⇤⌧,m

�⇤
, m 2 N0,

by (4.1) and (5.24). This is the Laplace transform at s = � P[X1 � 1], which is
given in Corollary 5.16 (with l = 0).

The class of generalized ⌧ -tempered ↵-stable distributions, for which the Algo-
rithms 5.12 and 5.18 are applicable, covers several families of well-known distribu-
tions as special cases. They all originate from the Lévy distribution corresponding
to ↵ = 1/2, for which a density is available in closed form.

Example 5.19 (Lévy distribution). The Lévy distribution is the special case when
↵ = 1/2 and m = ⌧ = 0. A density of ⇤0,0 = Y ⇠ F1/2,�,0,0 = S1/2(�, 1, 0) is given
by

fL(y) =
⇣ �

2⇡y3

⌘1/2
exp

⇣
� �

2y

⌘
, y > 0, (5.40)

cf. [25, Eq. (1.1.15)] and [6, Chap. XIII.3, Ex. (b)]. According to Lemma 5.10, the
mixing distribution given by (5.14) using F1/2,�,0,0 can be represented as N1 + · · ·+
NM with independent M ⇠ Poisson

�p
��/2

�
and Ni ⇠ ExtNegBin(�1/2, 1, 0) for

i 2 N. Algorithm 5.12 using the stable recursion of Lemma 5.2 is applicable.

Example 5.20 (Inverse gamma distribution with a half-integer shape parameter).
As in Example 5.19, let Y ⇠ S1/2(�, 1, 0) with density fL given by (5.40). Using
(5.30) and (5.33) as well as �1/2,� =

p
2� from (5.20), we see that

E[Y �m] = I1/2,�(m, 0) =
2�(2m)

(2�)m(m� 1)!
=

(2m)!
(2�)mm!

=
2m

p
⇡�m

�
�
m + 1

2

�

for every m 2 N, the resulting equation even holds for m = 0. By (5.21) a density
of ⇤0,m ⇠ F1/2,�,0,m is given by

f0,m(y) =
y�mfL(y)
E[Y �m]

=
1
y2

g↵m,�

⇣1
y

⌘
, y > 0,

for every m 2 N0, where g↵m,� denotes the gamma density given in (5.18) with
parameters ↵m := m + 1

2 and � := �/2. Therefore, 1/⇤0,m ⇠ Gamma(↵m,�) and
⇤0,m has an inverse gamma distribution.

Example 5.21 (Inverse Gaussian distribution). For µ, �̃ > 0 and define � = µ2/�̃2

and tempering parameter ⌧ = 1/(2�̃2). Then the Laplace transform (5.25) of
⇤⌧,0 ⇠ F1/2,�,⌧,0 is

E[exp(�s⇤⌧,0)] = exp
⇣ µ

�̃2

�
1�

p
1 + 2�̃2s

�⌘
for s � � 1

2�̃2
.
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Using (5.21) and the Laplace transform (5.20) for Y ⇠ S1/2(�, 1, 0) as well as the
Lévy density given in (5.40), we see that a density of F1/2,�,⌧,0 is given by

fIG(y) =
e�⌧yfL(y)
E[e�⌧Y ]

= exp
�
�⌧y +

p
�⌧/2

�
fL(y)

=
µp

2⇡�̃2y3
exp

✓
�(y � µ)2

2�̃2y

◆
, y > 0,

(5.41)

which coincides with the density given in [32]. By Lemma 5.10 the mixing dis-
tribution (5.14) with F = F1/2,�,⌧,0 has the representation N1 + · · · + NM with
independent M ⇠ Poisson

�p
�/2(

p
� + ⌧ �p⌧)

�
and Ni ⇠ ExtNegBin(�1/2, 1, p)

for i 2 N, where p = ⌧
�+⌧ . Algorithm 5.12 is applicable and the constant b1 in

(5.29) reduces to

b1 =
1
2

⇣
1 +

1
p

p

⌘
=

1 +
p

1 + 2��̃2

2
.

Example 5.22 (Generalized inverse Gaussian distribution). For �, ⌧ > 0 and m 2 N
consider a Lévy distributed Y ⇠ F1/2,�,0,0 as in Example 5.19 and let ⇤⌧,m ⇠
F1/2,�,⌧,m. Using (5.21), the Lévy density fL from (5.40), as well as (5.30) and
(5.34), and in addition �1/2,� =

p
2� from (5.20), it follows that a density of

F1/2,�,⌧,m on the half-line y > 0 is given by

f⌧,m(y) =
y�me�⌧yfL(y)
E[Y �me�⌧Y ]

=
r

�

2⇡
(2�)m

pm,2(
p

2�⌧)ym+3/2
exp

✓
�(
p

2⌧y �p�)2

2y

◆
.

Substituting m = 0, � = µ2/�̃2 and ⌧ = 1/(2�̃2) into this formula, we obtain fIG

given by (5.41), hence the term generalised inverse Gaussian distribution (with half-
integer parameter m+1/2) for f⌧,m is justified. This distribution is discussed more
generally (with m+1/2 replaced by a real number) in [14] and [23, Example 4.14.7].

5.4. Convolutions and reciprocal generalized inverse Gaussian distribu-
tion. Fix r 2 N and let us start with a simple remark.

Remark 5.23. For every i 2 {1, . . . , r}, let Ni denote a random claim number and
{Xi,j}j2N an i.i.d. sequence of N0-valued claim sizes. We assume that the collection
of all these random variables is independent. If the distribution of S(i) := Xi,1 +
· · · + Xi,Ni can be computed in a numerically stable way for every i 2 {1, . . . , r}
(for example by Panjer’s recursion or one of our numerically stable versions), then
the distribution of S := S(1) + · · · + S(r) can be computed iteratively by r � 1
numerically stable convolutions.

We now specialize Remark 5.11 to extend the mixture model (5.14). Suppose
that P[M = r] = 1 and that (⇤1, . . . ,⇤r) is a vector of [0,1)-valued (possibly
dependent) random variables. Assume that the random claim numbers N1, . . . , Nr

are conditionally independent given ⇤1, . . . ,⇤r. Furthermore, assume that there
are parameter �1, . . . ,�r > 0 such that, for every i 2 {1, . . . , r},

L(Ni|⇤1, . . . ,⇤r)
a.s.= L(Ni|⇤i)

a.s.= Poisson(�i⇤i) . (5.42)

The conditional probability generating function of the total claim number N =
N1 + · · · + Nr is given by

E[sN |⇤1, . . . ,⇤r]
a.s.= exp

�
�(1� s)(�1⇤1 + · · · + �r⇤r)

�
, s 2 R, (5.43)
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hence
L(N |⇤1, . . . ,⇤r)

a.s.= Poisson(�1⇤1 + · · · + �r⇤r) .

This corresponds to the mixture model (5.14) with F denoting the distribution
function of the convex combination ⇤ := (�1⇤1+· · ·+�r⇤r)/� with � = �1+· · ·+�r.

Suppose now that ⇤1, . . . ,⇤r are independent. It then follows by using (5.43)
that N1, . . . , Nr are independent, hence S(1), . . . , S(r) are independent by Remark
5.11 and the distribution of S can be calculated by convolutions according to Re-
mark 5.23. Note that the distribution function of ⇤ can be computed iteratively
from the distribution functions of ⇤1, . . . ,⇤r by r � 1 convolutions.

The following example shows that the reciprocal generalized inverse Gaussian
distribution, when used as mixing distribution, fits into the above framework.

Example 5.24 (Reciprocal generalized inverse Gaussian distribution). Fix �, ⌧ > 0,
m 2 N0 and r = 2. Assume that ⇤1 follows the generalized inverse Gaussian distri-
bution F1/2,�,⌧,m from Example 5.21 with density f⌧,m. Furthermore, consider an
independent ⇤2 ⇠ Gamma(m+1/2, ⌧) with density given in (5.18). Then a density
fm of ⇤ := ⇤1 + ⇤2 is given by the convolution

fm(x) =
Z x

0
f⌧,m(y)

⌧m+1/2(x� y)m�1/2 e�⌧(x�y)

�(m + 1/2)
dy, x > 0.

Using �(m + 1/2) =
p

⇡4�m(2m)!/m!, substituting for f⌧,m and rearranging the
argument of the exponential function, we see that

fm(x) =
r

⌧

⇡

(4⌧)m

pm,2(
p

2�⌧)
xm�1/2 exp

✓
�(
p

2⌧x�p�)2

2x

◆

⇥ 2mm!
(2m)!

Z x

0

2p
2⇡

✓
�

x� y

xy

◆m

exp
⇣
��

2
x� y

xy

⌘ p
�xdy

2
p

(x� y)y3
, x > 0.

Using the substitution z =
p

�(x� y)/(xy), the integral reduces to E[Z2m], where
Z has a standard normal distribution. Since E[Z2m] = (2m)!/(2mm!), the density
fm is given by the first line. Note that 1/⇤ ⇠ F1/2,2⌧,�/2,m, hence ⇤ has a reciprocal
generalized inverse Gaussian distribution, cf. Example 5.22. In particular, f0 is a
density of the usual reciprocal inverse Gaussian distribution, cf. [32, Example 6.2].

Finally, fix � > 0 and consider independent claim numbers N1 and N2 satisfying
(5.42). Then N1 follows a Poisson mixture distribution given by (5.14), where F =
F1/2,�,⌧,m is the generalized inverse Gaussian distribution from Example 5.22. Thus
we can calculate the distribution of S(1) by the numerically stable Algorithm 5.18.
It follows from (5.43) and (5.19) that, for |s| < 1/q,

E
⇥
sN2

⇤
= E[exp(�(1� s)�⇤2)] =

⇣ ⌧

⌧ + (1� s)�

⌘m+1/2
=

⇣ p

1� qs

⌘m+1/2
,

where p := ⌧
�+⌧ and q := 1�p. Hence N2 ⇠ NegBin(m + 1/2, p) by comparison with

(2.2), which belongs to the Panjer(q, (m� 1/2)q, 0) class, and Panjer’s recursion in
Theorem 4.1 for computing the distribution of S(2) is numerically stable. Finally
one convolution delivers the distribution of S = S(1) + S(2).

5.5. Application and extension of CreditRisk+. We briefly recall the math-
ematical basis of CreditRisk+, cf. [2, 9], including a slight extension to stochastic
exposures/recoveries.
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Let r 2 N0 denote the number of non-idiosyncratic risk factors. For i 2 {0, . . . , r}
let {Xi,j}j2N be independent, N0-valued i. i. d. sequences of credit losses due to risk
factor i given default, and let 'Xi,1 denote the corresponding probability generating
function. Usually, L(Xi,1) is a mixture distribution arising from individual stochas-
tic credit losses caused by obligors exposed to risk factor i. Independently of the
size of the credit losses, the N0-valued random variables N0, . . . , Nr are modeled,
describing the number of losses caused by risk i 2 {0, . . . , r}. In the standard ver-
sion of CreditRisk+, N0 is assumed to be Poisson(�0), independent of N1, . . . , Nr.
Furthermore, it is assumed that the risk factors ⇤1, . . . ,⇤r are independent with
⇤i ⇠ Gamma(1/�2

i , 1/�2
i ) and �2

i > 0, meaning that E[⇤i] = 1 and Var(⇤i) = �2
i .

The numbers N1, . . . , Nr of defaults are assumed to be conditionally independent
given (⇤1, . . . ,⇤r) and to satisfy (5.42) for every i 2 {1, . . . , r}, meaning that ⇤i

models the stochastic variability of the Poisson parameter for Ni. The task is then
to calculate the distribution of the credit portfolio loss

S =
rX

i=0

S(i) with S(i) =
NiX
j=1

Xi,j . (5.44)

By (5.42) and (5.19), for every i 2 {1, . . . , r},
'Ni(s) = E

⇥
E
⇥
sNi |⇤i

⇤⇤
= E[exp(��i⇤i(1� s))]

=
⇣ 1/�2

i

1/�2
i + �i(1� s)

⌘1/�2
i

=
⇣ pi

1� qis

⌘1/�2
i (5.45)

with pi = 1/(1 + �i�2
i ), qi = 1 � pi and |s| < 1/qi, hence Ni ⇠ NegBin

�
1/�2

i , pi

�
by comparison with (2.2). Since N0 ⇠ Poisson(�0), Panjer’s recursion in Theorem
4.1 can be used to calculate the distribution of S(i) for every i 2 {0, . . . , r}, and
Remark 5.23 suggests to calculate the distribution of S = S(0) + · · · + S(r) by r
convolutions. This algorithm would be numerically stable.

The main advantage of CreditRisk+ is the observation that these r convolutions
can be replaced by the numerically much faster convex combination of probabilities
in (5.46) below. The probabilistic essence is the fact that the negative binomial
distribution is a compound Poisson sum, cf. [5, Example in Section XII.2]. To
explain the details, let M1, . . . ,Mr and {N1,j}j2N, . . . , {Nr,j}j2N be a collection
of independent random variables, where the sequences are i. i. d., Mi ⇠ Poisson(�0i)
with �0i := �(log pi)/�2

i and Ni,1 ⇠ Log(qi) for i 2 {1, . . . , r}. Then, using (2.9),
for every i 2 {1, . . . , r},

E
⇥
sNi,1+···+Ni,Mi

⇤
= E

⇥�
E
⇥
sNi,1

⇤�Mi
⇤

= E
✓

log(1� qis)
log pi

◆Mi
�

= exp
✓

log pi

�2
i

✓
1� log(1� qis)

log pi

◆◆
=

⇣ pi

1� qis

⌘1/�2
i

for |s| < 1/qi, which agrees with (5.45), hence Ni equals Ni,1 + · · · + Ni,Mi in
distribution. Similarly to (5.28), we define

S(i,j) =
Ni,1+···+Ni,jX

k=Ni,1+···+Ni,j�1+1

Xi,k, i 2 {1, . . . , r}, j 2 N.

Hence, instead of replacing the Poisson parameter �i by the stochastic version
�i⇤i to model the number of defaults caused by risk factor i 2 {1, . . . , r}, we may
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equivalently think of a Poisson(�0i)-distributed number of events Mi due to risk i,
each one causing a cluster of Ni,j credit defaults with cluster credit loss S(i,j) for
j 2 {1, . . . ,Mi}. By Remark 5.11, for every i 2 {1, . . . , r}, the sequence {S(i,j)}j2N
is i. i. d. and, since Log(qi) is in the Panjer(qi,�qi, 1) class, the distribution of S(i,1)

and therefore the coe�cients of its pgf 'S(i,1) can be calculated in a numerically
stable way using Panjer’s recursion from Theorem 4.1. The total portfolio loss
(5.44) can be represented as

S
d=

N0X
k=1

X0,k +
rX

i=1

MiX
j=1

S(i,j),

hence its pgf is given by

E
⇥
sS

⇤
= exp

�
�0('X0,1(s)� 1)

� rY
i=1

exp
�
�0i('S(i,1)(s)� 1)

�
= exp

�
�('(s)� 1)

�

for |s| < s0 := min{1/q1, . . . , 1/qr}, where � := �0 + �01 + · · · + �0r and

'(s) :=
�0

�
'X0,1(s) +

rX
i=1

�0i
�

'S(i,1)(s), |s| < s0, (5.46)

is the pgf of a mixture distribution of L(X0,1) and L(S(1,1)), . . . ,L(S(r,1)). The
coe�cients of ' are convex combinations of probabilities, hence cancellations are
not possible. A final, numerically stable Panjer recursion for Poisson(�) with loss
size distribution given by ' produces the distribution of S.

This algorithm is essentially the same as the one, for which Haaf et al. [10]
proved numerical stability by directly treating the pgf, without referring to Panjer’s
recursion and the representation of the negative binomial distribution as compound
Poisson sum.

Our results allow us to generalize CreditRisk+ and the above algorithm in a
numerically stable way as follows. For a risk factor i 2 {1, . . . , r}, instead of
modeling the stochastic variation of �i by ⇤i ⇠ Gamma(1/�2

i , 1/�2
i ), we can take a

tempered stable distribution with ↵i 2 (0, 1), n = 0 and ⌧i > 0 as defined in (5.21),
where the parameter �̃i > 0 is determined by ↵i�̃

↵i
i ⌧↵i�1

i = cos(↵i⇡/2). Then
E[⇤i] = 1 and Var(⇤i) = (1�↵i)/⌧i by (5.20), (5.26) and (5.27). Therefore, for fixed
variance, there remains some freedom to vary the shape of the mixing distribution,
see Figures 5.1 and 5.2. The Poisson distribution, mixed with this tempered ↵i-
stable distribution according to (5.14), can then be represented according to Lemma
5.10. Therefore, we can think of a Poisson(�0i) distributed number of credit loss
clusters due to risk factor i, where we redefine

�0i =
�
(�i + ⌧i)↵i � ⌧↵i

i

�
↵i⌧

↵i�1
i

=
1� pi

↵ipi
⌧i with pi =

⌧i

�i + ⌧i
,

and of ExtNegBin(�↵i, 1, pi) distributed cluster sizes. Panjer’s recursion for this
extended negative binomial distribution can be replaced by our stable Algorithm
5.3, which however doubles the numerical e↵ort in this case.

6. Further distributions for the generalized Panjer recursion

Theorem 4.5 obviously covers all distributions in Sundt’s class [28] by choosing l 2 N
and q̃n,i = qn for n 2 N. It generalizes the algorithm given by Sundt [28, Theo-
rem 11]. The representation in Equation (7.1) allows us to identify claim number
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Figure 5.1. Density plots of ⇤ ⇠ F↵,�,⌧,0 with varying ↵ in comparison
to ⇤ ⇠ Gamma(1/�̃2, 1/�̃2), where � > 0 and ⌧ � 0 as well as �̃2 are
chosen such that E[⇤] = 1 and Var(⇤) = 0.3.
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Figure 5.2. Density plots of ⇤ ⇠ F↵,�,⌧,0 with varying ⌧ in comparison
to ⇤ ⇠ Gamma(1/�̃2, 1/�̃2) where ↵ 2 (0, 1) and � > 0 (resp. �̃2) are
chosen such that E[⇤] = 1 and Var(⇤) = 0.3. Note that the gamma
distribution gives substantially more weight to the small values.
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distributions that satisfy the condition (4.4). Further claim number distributions
satisfying (4.4) can be constructed in the following way.

Fix k 2 N0, l 2 N and consider claim number distributions {q̃i,n}1n=k+l�i for
i 2 {1, . . . , l} such that there are numerically stable algorithms to calculate the
distributions of the corresponding compound sums. These algorithms can, for ex-
ample, be Panjer’s recursion in its usual form for distributions of the Panjer(a, b, k)
class where it is stable. Furthermore, the algorithms given by Sundt [28] or by
Wang and Sobrero [31] for the corresponding class can be applied, whenever they
can be shown to be numerically stable. Further examples are, of course, algo-
rithms using our results, like Algorithm 5.3 for ExtNegBin(↵, k, p), Algorithm 5.6
for ExtLog(k, q), Algorithms 5.12 and 5.18 for the extended tempered stable distri-
butions given by (5.21), and extensions by convolution outlined in Section 5.4, in
particular Example 5.24. The following Theorem 6.1 helps to construct claim num-
ber distributions satisfying the requirements of Theorem 4.5(a), therefore yielding
distribution for which the compound sum can be calculated in a numerically stable
way. The first two moments of the constructed distribution can be calculated using
(7.2) and (7.3).

Alternatively we can take subconvex combinations of claim number distributions
in order to construct distributions in the context of Theorem 4.5(b). Obviously the
above constructions can be iterated and combined.

Theorem 6.1 (Combination of truncated distributions). Fix k 2 N0, l 2 N and
weights ↵i � 0 and �i � �i↵i for all i 2 {1, . . . , l} such that at least one of
the 2l inequalities is strict. For every i 2 {1, . . . , l} assume that the N0-valued
random variable Ñi satisfies P[Ñi < k + l � i] = 0. Let q0, . . . , qk+l�1 � 0 with
q0 + · · · + qk+l�1  1 be given and define

qn = c
lX

i=1

⇣
↵i +

�i

n

⌘
P[Ñi = n� i] for all n 2 N with n � k + l, (6.1)

where

c =
✓

1�
k+l�1X
n=0

qn

◆� lX
i=1

✓
↵i + �i E


1

i + Ñi

�◆
. (6.2)

Then {qn}n2N0 is a probability distribution satisfying (4.4) in Theorem 4.5(a) with
ai = c↵i and bi = c�i for all i 2 {1, . . . , l}, and only non-negative terms are added
up in (4.5), hence we have numerical stability.

Remark 6.2. If numerical stability of (4.5) is not an issue, the above requirements
on the weights ↵i,�i 2 R can be relaxed. We only need that the denominator of
(6.2) di↵ers from zero and that qn � 0 for all n 2 N with n � k + l.

Proof of Theorem 6.1. It only remains to check that c is the correct constant. Using
(6.1) for n � k + l we obtain that

X
n2N0

qn =
k+l�1X
n=0

qn + c
lX

i=1

✓
↵i P[Ñi � k + l � i] + �i

1X
n=k+l

P[Ñi = n� i]
n

◆
.

Note that P[Ñi � k + l � i] = 1 for every i 2 {1, . . . l}. An index shift shows that
the last series is equal to E[1/(i + Ñi)], hence (6.2) is the right condition to turn
{qn}n2N0 into a probability distribution.
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To apply Theorem 6.1 in practice, we need to compute

E


1
i + Ñi

�
=

1X
n=k+l�i

1
i + n

P[Ñi = n]

whenever �i 6= 0. For the distributions in the extended Panjer class with unbounded
support, closed-form expressions for this series are available and given in the fol-
lowing lemmas, where we use the notation of Theorem 6.1. Note that truncated
distributions were defined in (4.9).

Lemma 6.3 (Truncated Poisson distribution). Assume that the random variable
Ñi follows a (k + l� i)-truncated Poisson distribution with parameter � > 0. Then

E


1
i + Ñi

�
= (�1)i (i� 1)!

ci�i

✓
e�� �

i�1X
n=0

(��)n

n!

◆
� e��

ci

k+l�i�1X
n=0

�n

(i + n)n!
, (6.3)

where

ci = 1� e��
k+l�i�1X

n=0

�n

n!

denotes the normalizing constant of the truncated Poisson distribution.

Proof. Note that

E


1
i + Ñi

�
=

e��

ci�i

1X
n=k+l�i

�i+n

(i + n) n!
(6.4)

and

d

dx

1X
n=k+l�i

xi+n

(i + n)n!
= xi�1

1X
n=k+l�i

xn

n!
= xi�1ex �

k+l�i�1X
n=0

xi+n�1

n!
. (6.5)

Integrating (6.5) from 0 to �, using integration by parts and induction over i for
the term xi�1ex, we get

(�1)i (i� 1)!
✓

1� e�
i�1X
n=0

(��)n

n!

◆
�

k+l�i�1X
n=0

�i+n

(i + n)n!
.

Substituting this result into (6.4) yields (6.3).

Lemma 6.4 (Truncated extended negative binomial distribution). Assume that
the random variable Ñi follows a (k + l � i)-truncated

(a) ExtNegBin(↵,m, p) given by (2.1) with parameters m 2 {1, . . . , k + l � i},
p 2 (0, 1) and ↵ 2 (�m,�m + 1) or

(b) NegBin(↵, p) with parameters ↵ > 0 and p 2 (0, 1).
Then, using the abbreviation q = 1� p,

E


1
i + Ñi

�
=

1
ciqi

i�1X
n=0

(�1)n

✓
i� 1

n

◆
dn �

1
ci

k+l�i�1X
n=0

✓
↵ + n� 1

n

◆
qn

i + n
,

where

ci = p�↵ �
k+l�i�1X

n=0

✓
↵ + n� 1

n

◆
qn
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denotes the normalizing constant of the truncated distribution, and

dn =

(
� log(1� q) if n = ↵� 1,
1�(1�q)n�↵+1

n�↵+1 otherwise.

Proof. Note that

E


1
i + Ñi

�
=

1
ciqi

1X
n=0

✓
↵ + n� 1

n

◆
qi+n

i + n
� 1

ci

k+l�i�1X
n=0

✓
↵ + n� 1

n

◆
qn

i + n
(6.6)

and that, using the binomial series,

d

dx

1X
n=0

✓
↵ + n� 1

n

◆
xi+n

i + n
= xi�1

1X
n=0

✓
↵ + n� 1

n

◆
xn

= (1� (1� x))i�1(1� x)�↵

=
i�1X
n=0

(�1)n

✓
i� 1

n

◆
(1� x)n�↵.

(6.7)

Finally, integrate (6.7) from 0 to q and plug the result into (6.6).

Lemma 6.5 (Truncated logarithmic distribution). Assume that k + l� i � 1 and
that Ñi follows the (k+l�i)-truncation of a logarithmic distribution with parameter
q 2 (0, 1) given by (2.8). Then

E


1
i + Ñi

�
=

1
ici

✓ k+l�1X
n=k+l�i

qn

n
� 1� qi

qi
c0

◆
, (6.8)

where the normalizing constants for the truncated distributions are defined by

cj =
1X

n=k+l�j

qn

n
= � log(1� q)�

k+l�j�1X
n=1

qn

n
for j 2 {0, i}.

Proof. Note that

E


1
i + Ñi

�
=

1
ci

1X
n=k+l�i

qn

(i + n)n
. (6.9)

Using a partial fraction decomposition and an index shift, we obtain
1X

n=k+l�i

qn

(i + n)n
=

1
i

1X
n=k+l�i

✓
qn

n
� 1

qi

qi+n

i + n

◆

=
1
i

k+l�1X
n=k+l�i

qn

n
+

1
i

✓
1� 1

qi

◆ 1X
n=k+l

qn

n
,

where the last series equals c0. Substitute this into (6.9) to get (6.8).

Lemma 6.6 (Truncated extended logarithmic distribution). Assume that k + l�
i � 1 and that Ñi follows the (k + l � i)-truncation of a ExtLog(m, q) given by
(2.4) with parameters m 2 {1, . . . , k + l � i} and q 2 (0, 1) for m = 1 or q 2 (0, 1]
for m � 2, respectively. Then

E


1
i + Ñi

�
=

1
c0(q)

iX
j=1

cj(q)
(j + m)qj

j�1Y
n=1

n� i

n + m
, (6.10)



PANJER’S RECURSION AND NUMERICAL STABILITY 29

where cj(q) for j 2 {0, 1, . . . , i} is the normalizing constant of the (j + k + l � i)-
truncated ExtLog(j + m, q) given by

cj(q) =
1X

n=j+k+l�i

qn� n
j+m

� = (�1)j+m(j + m)�j+m(q)�
j+k+l�i�1X

n=j+m

qn� n
j+m

� (6.11)

with �j+m defined in Lemma 2.1.

Proof. Note that

E


1
i + Ñi

�
=

q�i

c0(q)

1X
n=k+l�i

qi+n

(i + n)
�n
m

� =
q�i

c0(q)

Z q

0
xi�1c0(x) dx (6.12)

because xi�1c0(x) with c0(x) defined by (6.11) is the derivative of the series. Since
c0j(x) = (j + m)cj�1(x) for j 2 {1, . . . , i}, integration by parts shows thatZ q

0
xi�jcj�1(x) dx = qi�j cj(q)

j + m
+

j � i

j + m

Z q

0
xi�(j+1)cj(x) dx,

hence by induction
Z q

0
xi�1c0(x) dx =

iX
j=1

qi�j cj(q)
j + m

j�1Y
n=1

n� i

n + m
.

Substituting this result into (6.12) proves (6.10).

7. Study of the recurrence relation

7.1. Characterization and moments of distributions. The following proposi-
tion aims at characterizing distributions satisfying the relation given in (4.4). The
formulas for the first and the second moment are needed in order to fit a distribution
constructed from (4.4) by its moments as described in the paragraph below.

Lemma 7.1. Consider the assumptions of Theorem 4.5(a) and furthermore let 'N

and 'Ñi
for i 2 {1, . . . , l} denote the corresponding probability generating functions

of the claim numbers, then

'0N (s) =
lX

i=1

⇣
ais

i'0
Ñi

(s) +
�
iai + bi

�
si�1'Ñi

(s)
⌘

+
k+l�1X
n=1

nqnsn�1 (7.1)

holds at least for all s 2 C with |s| < 1. If E[Ñi] < 1 for i = 1, . . . , l, then the
expectation of N is given by

E[N ] =
lX

i=1

⇣
ai E[Ñi] + iai + bi

⌘
+

k+l�1X
n=1

nqn (7.2)

and, if E[Ñ2
i ] <1 for i = 1, . . . , l, then the second moment of N is given by

E[N2] =
lX

i=1

⇣
ai E[Ñ2

i ] + (2iai � ai + bi) E[Ñi] + (iai + bi)(i� 1)
⌘

+
k+l�1X
n=2

n(n� 1)qn + E[N ].

(7.3)
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Proof. To prove the relation (7.1) between the derivatives of the probability gener-
ating functions, note that by (4.4)

'0N (s) =
1X

n=1

nqnsn�1 =
k+l�1X
n=1

nqnsn�1 +
1X

n=k+l

n
lX

i=1

⇣
ai +

bi

n

⌘
q̃i,n�is

n�1

=
k+l�1X
n=1

nqnsn�1 +
lX

i=1

1X
n=k+l�i

(nai + iai + bi)q̃i,nsn+i�1.

Using (4.3), this yields (7.1). For s% 1 we get the expectation in (7.2), using that
'0

Ñi
(1�) = E[Ñi] and 'Ñi

(1) = 1 for i = 1, . . . , l. Di↵erentiating (7.1) gives

'00N (s) =
lX

i=1

⇣
ais

i'00
Ñi

(s) + (2iai + bi)si�1'0
Ñi

(s) + (iai + bi)(i� 1)si�2'Ñi
(s)

⌘

+
k+l�1X
n=2

n(n� 1)qnsn�2

at least for s 2 C with |s| < 1. Taking s % 1 and using '00X(1�) = E[X2] � E[X],
valid for N0-valued random variables X with finite second moment, we get (7.3).

7.2. Further distributions satisfying the recurrence relation. We want to
present some distributions satisfying relation (4.4) for k = 0, l = 1 and a1 = 0.

For x 2 R and n 2 N0 define the Pochhammer symbol (also known as rising
factorial) by

(x)n =
n�1Y
k=0

(x + k),

where (x)0 = 1 is the usual definition for the empty product.

Lemma 7.2. Let i, j 2 N0. For i � 1 let � 2 Ri and for j � 1 let � 2 Rj. Take
�, c�,� 2 R and let {µk}k2N0 be a sequence of real numbers. Assume that

qn(�, �) :=
c�,��n

n!

1X
k=0

µk
(�1)k+n · · · (�i)k+n

(�1)k+n · · · (�j)k+n
, n 2 N, (7.4)

together with q0(�, �) 2 [0, 1) forms a well-defined probability distribution. Further-
more, assume that qn(� + 1, � + 1), with the 1 added to every component of � and
�, and defined by the analogue of (7.4) for all n 2 N0, is a well-defined probability
distribution, too. Then

qn(�, �) =
�c�,�

nc�+1,�+1

�1 · · · �i

�1 · · · �j
qn�1(� + 1, � + 1), n 2 N.

Proof. Just note that (x)k+n = x(x + 1)k+n�1 for all k + n 2 N and x 2 R.

Example 7.3 (Poisson mixed over beta distribution). Consider a Poisson distribu-
tion with parameter � > 0, which is reduced according to a beta distribution with
parameters ↵,� > 0, i.e.,

qn(↵) =
Z 1

0

(�x)n

n!
e��xf↵,�(x) dx, n 2 N0,
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with f↵,� from (5.17). Inserting the series of e��x =
P1

k=0
(��x)k

k! , interchanging
the series with the integral using dominated convergence, and rewriting the integral
in terms of f↵+k+n,� leads to

qn(↵) =
�(↵ + �)
�(↵)�(�)

�n

n!

1X
k=0

(��)k

k!
�(↵ + k + n)�(�)
�(↵ + � + k + n)

, n 2 N0.

By the functional equation of the gamma function, (x)l = �(x + l)/�(x) for all
x > 0 and l 2 N0. Hence qn(↵) simplifies to

qn(↵) =
�n

n!

1X
k=0

(��)k

k!
(↵)k+n

(↵ + �)k+n
, n 2 N0,

which is the representation of (7.4), hence

qn(↵) =
↵�

(↵ + �)n
qn�1(↵ + 1), n 2 N,

which coincides with (5.16) in the setting of Example 5.8.

Example 7.4 (Negative hypergeometric). Consider the negative hypergeometric dis-
tribution [13] (also called Pólya–Eggenberg distribution), which arises as a binomial
distribution on {0, . . . ,m} with m 2 N mixed over a beta distribution, i.e.,

qn(↵,m) =
Z 1

0

✓
m

n

◆
pn(1� p)m�nf↵,�(p) dp, n 2 {0, . . . ,m},

with f↵,� from (5.17). Rewriting the integral using the density f↵+n,�+m�n yields

qn(↵,m) =
�(↵ + �)
�(↵)�(�)

�(↵ + n)�(� + m� n)
�(↵ + � + m)

✓
m

n

◆
(7.5)

=
(↵)n(�)m�n

(↵ + �)m

m!
n!(m� n)!

=

�↵+n�1
n

���+m�n�1
m�n

�
�↵+�+m�1

m

� , n 2 {0, . . . ,m},

which justifies the name of the distribution. Note that (x� n + 1)n = (�1)n(�x)n

for all x 2 R. Applying this for x 2 {m,� + m� 1}, we obtain

(�)m�n

(m� n)!
=

(�)m

m!
(m� n + 1)n

(� + m� n)n
=

(�)m

m!
(�m)n

(�� �m + 1)n
,

hence (7.5) can be written as

qn(↵,m) =
(�)m

(↵ + �)m

1
n!

(↵)n(�m)n

(1� � �m)n
, n 2 N0, (7.6)

where we consider the last quotient as zero for n > m because (�m)n = 0 in this
case. The representation (7.6) is of the form (7.4). Hence, if m � 2, then

qn(↵,m) =
↵m

(↵ + �)n
qn�1(↵ + 1,m� 1), n 2 N,

by Lemma 7.2. Of course, this can also be seen directly using (7.5).
Let {pn(↵,m)}n2N0 denote the distribution of the random sum S = X1+· · ·+XN

with N ⇠ {qn(↵,m)}n2{0,...,m} and let '↵,m denote the pgf of N . Then

p0(↵, 1) =
�

↵ + �
+

↵

↵ + �
P[X1 = 0]
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and

pn(↵, 1) =
↵

↵ + �
P[X1 = n] , n 2 N.

For m � 2, Theorem 4.5(a) gives the recursion

pn(↵,m) =
↵m

(↵ + �)n

nX
j=0

j P[X1 = j] pn�j(↵ + 1,m� 1), n 2 N, (7.7)

with p0(↵,m) = '↵,m(P[X1 = 0]). The weighted convolution (7.7) is numerically
stable. If P[X1 = 0] = 0, then

p0(↵,m) = q0(↵,m) =
� + m� 1

↵ + � + m� 1
q0(↵,m� 1), m � 2,

with q0(↵, 1) = �
↵+� . In this case our recursion scheme is slightly more e�cient

than the obvious formula

pn(↵,m) =
mX

k=0

P[Sk = n] qk(↵,m), n 2 N0,

with S0 := 0, where the distribution of Sk = X1 + · · ·+Xk is calculated recursively
by convolution, because (7.7) avoids the explicit computation of the distribution
{qn(↵,m)}n2{0,...,m} given by (7.5). Note that Hesselager [12] as well as Panjer and
Willmot [22] derives faster recursions for compound sums with loss numbers that
follow a negative hypergeometric distribution, but the numerical stability of their
algorithms cannot be guaranteed.

Example 7.5 (Laplace–Haag). The Laplace–Haag distribution arises in the context
of the Laplace–Haag matching problem [13, Chapter 10, p. 410]. The probabilities
are given by

qn(m,M) =
�n

n!

m�nX
k=0

(�1)k �k

k!
m!(M � n� k)!
(m� n� k)!M !

, n 2 {0, . . . ,m}, (7.8)

where m,M 2 N with m M and � > 0 such that q0(M,m), . . . , qm�1(M,m) given
by (7.8) are non-negative. This is certainly the case for � 2 (0,M/m], because then
the summands in (7.8) are non-increasing in absolute value as k increases from 0
to m � n. We define qn(m,M) = 0 for n 2 N with n > m. Rewriting (7.8) using
Pochhammer symbols we get

qn(m,M) =
�n

n!

m�nX
k=0

(�1)k �k

k!
(�m)n+k

(�M)n+k
, n 2 {0, . . . ,m}. (7.9)

Note that (7.9) is of the form (7.4), since (�m)n+k/(�M)n+k vanishes whenever
n + k � m + 1.

If m,M 2 N with 2  m M and � 2 (0,M/m], then also �  (M �1)/(m�1)
and Lemma 7.2 shows that

qn(m,M) =
�m

Mn
qn�1(m� 1,M � 1), n 2 {1, . . . ,m}.
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8. A generalization of De Pril’s recursion

De Pril’s recursion [3] allows for the calculation of higher moments of the aggre-
gate loss S in the collective model (1.1) with claim number distributions in the
Panjer(a, b, 1) class, cf. [27]. We extend this recursion to the Panjer(a, b, k) class in
Theorem 8.1 below (compare [11, Corollary 4.4] for binomial moments) and then
apply Theorem 4.5 in order to generalize this once more in Theorem 8.2. The
knowledge of higher moments of the compound sum is in particular useful when
some approximate series expansion (such as the Edgeworth expansion) is used as
alternative to the recursive calculation of the distribution. Using recursion (8.3)
below, we can again guarantee numerical stability in these recursions for some of
the cases where (8.1) or (8.2) might be unstable.

Theorem 8.1 (Extension I of De Pril’s recursion). Consider the collective model
given by (1.1). Assume that the distribution of N belongs to the Panjer(a, b, k)
class. Define Sk = X1 + · · · + Xk and note that E[S0] = 1 by convention.

(a) If a < 1 and E[X n̄
1 ] <1 for an n̄ 2 N, then E[Sn

k ] <1 and

E[Sn] =
1

1� a

✓
P[N = k] E[Sn

k ] +
nX

j=1

✓
n

j

◆⇣
a +

bj

n

⌘
E[Sn�j ] E[Xj

1 ]
◆

(8.1)

for every n 2 {1, . . . , n̄}.
(b) If a = 1 and �b > 2 as well as E[X n̄

1 ] <1 for an n̄ 2 N\{1} and E[X1] > 0,
then E[Sn+1

k ] <1 and

E[Sn] =
1

(�b� 1� n) E[X1]

✓
P[N = k] E[Sn+1

k ]

+
nX

j=1

✓
n

j

◆⇣n + 1
j + 1

+ b
⌘

E[Sn�j ] E[Xj+1
1 ]

◆
(8.2)

for every n 2 {1, . . . , n̄� 1} with n < �b� 1.

Theorem 8.1(b) applies in particular to ExtLog(k, 1) with k � 3, which is in the
Panjer(1,�k, k) class, and to ExtNegBin(↵, k, 0) with k 2 N\{1} and ↵ 2 (�k,�k+
1), which is in the Panjer(1,↵ � 1, k) class. It also applies to truncations of these
distributions, cf. (4.9). Note that for N ⇠ ExtLog(k, 1) or N ⇠ ExtNegBin(↵, k, 0),
the moment of order n 2 N0 is finite if and only if n  k�2 or n < �↵, respectively.
Theorem 8.1 will be proved using the proof of the following extension, which we
state using the notation of Theorem 4.5.

Theorem 8.2 (Extension II of De Pril’s recursion).

(a) In addition to the assumptions of Theorem 4.5(a), suppose that X1 and S̃(i)

for i = 1, . . . , l have finite moments up to order n̄ 2 N. Then

E[Sn] =
k+l�1X

j=1

qj E[Sn
j ] +

lX
i=1

nX
j=0

✓
n

j

◆⇣
ai +

bi j

in

⌘
E[S̃n�j

(i) ] E[Sj
i ] (8.3)

for every n 2 {1, . . . , n̄}, where every Sj = X1 + · · · + Xj has also finite
moments up to order n̄ and E[S0

i ] = E[S̃0
(i)] = 1 by convention.
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(b) Under the assumptions of Theorem 4.5(b),

E[Sn] =
lX

i=1

⌫i E[S̃n
(i)]

for all n 2 N, where both sides may be infinite.

Proof of Theorem 8.2. (a) By Jensen’s inequality, for every j 2 N,

Sn
j = jn

⇣X1 + · · · + Xj

j

⌘n
 jn�1(Xn

1 + · · · + Xn
j ), (8.4)

hence Sj has finite moments up to order n̄. By (4.5) from Theorem 4.5(a) we have

MX
m=1

mnpm =
k+l�1X

j=1

qj

MX
m=1

mn P[Sj = m] +
lX

i=1

Ei,M (8.5)

for every M 2 N with the expressions

Ei,M =
MX

m=1

mn
mX

r=0

⇣
ai +

bir

im

⌘
P[Si = r] p̃i,m�r, i 2 {1, . . . , l}.

Changing the order of summation in Ei,M , we see that

Ei,M =
MX

r=0

MX
m=max{1,r}

⇣
aim

n +
bir

i
mn�1

⌘
P[Si = r] p̃i,m�r.

In the case r = 0 we may add the term for m = 0, because it is zero. Shifting the
summation index m down by r yields

Ei,M =
MX

r=0

M�rX
m=0

⇣
ai(m + r)n +

bir

i
(m + r)n�1

⌘
P[Si = r] p̃i,m.

By using the binomial formula for (m + r)n�1, shifting the summation index j up
by 1 and adding the term for j = 0, which is zero, we get that

r(m + r)n�1 =
n�1X
j=0

✓
n� 1

j

◆
mn�1�jrj+1 =

nX
j=0

j

n

✓
n

j

◆
mn�jrj .

Using the binomial formula also for (m+r)n and changing the order of summation,

Ei,M =
nX

j=0

✓
n

j

◆⇣
ai +

bi j

in

⌘ MX
m=0

mn�j p̃i,m

M�mX
r=0

rj P[Si = r] . (8.6)

Substituting (8.6) into (8.5), sending M !1, and using that all the expectations
of the right-hand side of (8.3) are finite, we see that E[Sn] is finite and (8.3) holds.

(b) Using Theorem 4.5(b) and exchanging the order of summation, which is
allowed because all terms are non-negative, we get that

E[Sn] =
1X

m=1

mnpm =
1X

m=1

lX
i=1

mn⌫i p̃i,m =
lX

i=1

⌫i

1X
m=1

mnp̃i,m =
lX

i=1

⌫i E[S̃n
(i)].
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Proof of Theorem 8.1. (a) If N ⇠ {qn}n2N0 belongs to the Panjer(a, b, k) class, then
the proof of Theorem 8.2(a) is applicable by choosing l = 1 and q̃1,m = qm, hence
pm = p̃1,m for all m 2 N0. Substituting (8.6) into (8.5), using q1 = · · · = qk�1 = 0
and moving the term for j = 0 to the left-hand side, we see that

MX
m=1

�
1� a P[X1 M �m]

�
mnpm (8.7)

= qk

MX
m=1

mn P[Sk = m] +
nX

j=1

✓
n

j

◆⇣
a +

bj

n

⌘ MX
m=0

mn�jpm

M�mX
r=0

rj P[X1 = r] .

For n 2 {1, . . . , n̄} assume as induction hypothesis that E[S0], . . . , E[Sn�1] are fi-
nite, which is true for n = 1. For M ! 1, the right-hand side of (8.7) converges
to the term in parentheses on the right-hand side of (8.1), where every expectation
is finite. Since a < 1, all terms on the left-hand side of (8.7) are non-negative, and
Fatou’s lemma applied to the counting measure on N and the functions defined by
fM (m) =

�
1 � a P[X1 M �m]

�
mnpm1{1,...,M}(m) for m,M 2 N therefore im-

plies that (1� a) E[Sn] <1. Hence N 3 m 7! (1+ |a|)mnpm is summable, and the
dominated convergence theorem implies that the left-hand side of (8.7) converges
to (1� a) E[Sn] as M !1. This proves (8.1).

(b) Set a = 1 in (8.7). Moving the term for j = 1 to the left-hand side of
(8.7), replacing n by n + 1, shifting the summation index j down by 1, and using�n+1

j+1

�
=

�n
j

�
n+1
j+1 , we obtain

MX
m=1

P[X1 > M �m]mn+1pm � (b + n + 1)
MX

m=0

mnpm

M�mX
r=0

r P[X1 = r]

= qk

MX
m=1

mn+1 P[Sk = m]

+
nX

j=1

✓
n

j

◆⇣n + 1
j + 1

+ b
⌘ MX

m=0

mn�jpm

M�mX
r=0

rj+1 P[X1 = r] .

(8.8)

For n 2 {1, . . . , n̄� 1} with n < �b� 1 assume as induction hypothesis that E[S0],
. . . , E[Sn�1] are finite, which is true for n = 1. It follows from Jensen’s inequality
that E[Sn+1

k ] <1, cf. (8.4). By assumption, E[X2
1 ], . . . , E[Xn+1

1 ] are finite. Letting
M ! 1 in (8.8), we see that the right-hand side converges to the term in paren-
theses on the right-hand side of (8.2), which is finite. Since the second term on the
left-hand side of (8.8) converges to �(b+n+1) E[Sn] E[X1] � 0, it follows that E[Sn]
is finite. To prove (8.2), it remains to show that the first term in (8.8), which is

IM :=
MX

m=1

P[X0 > M �m]mn+1pm = E
⇥
Sn+11{SM<S+X0}

⇤

with X0 such that {Xj}j2N0 is i. i. d., converges to zero as M !1.
By (8.4), Sn+1

j  jn(Xn+1
1 + · · · + Xn+1

j ) for every j 2 N. Since (Sj , Sj+1)
equals (Sj , Sj +X0) in distribution, the independence of N and the i. i. d. sequence
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{Xj}j2N0 implies

IM =
1X

j=k

E
⇥
Sn+1

j 1{SjM<Sj+1}
⇤
qj 

1X
j=k

jn+1qj E
⇥
Xn+1

1 1{SjM<Sj+1}
⇤
.

Define ⌧M =
P

j2N 1{SjM}. Then ⌧M = j on {Sj  M < Sj+1} for every j 2 N0

and the upper estimate for IM can be rewritten as

IM  E
⇥
Xn+1

1 ⌧n+1
M q⌧M 1{k⌧M <1}

⇤
. (8.9)

Using (1.2), we see that, for all j � k + 1,

jn+1qj =
⇣ j

j � 1

⌘n+1⇣
1 +

b

j

⌘
(j � 1)n+1qj�1 

⇣
1� 1

j

⌘�b�n�1
(j � 1)n+1qj�1,

where we used Bernoulli’s inequality 1+ bx  (1�x)�b = (1�x)n+1(1�x)�b�n�1

for x = 1/j. Since 1�x  e�x for all x 2 R and since the harmonic series diverges,
it follows that

QK
j=k+1(1 � 1/j)  exp

�
�

PK
j=k+1 1/j

�
& 0 as K ! 1. Since

�b � n � 1 > 0, it follows that jn+1qj & 0 as j ! 1. Since ⌧M ! 1 a. s. as
M !1 and E[Xn+1

1 ] <1 by assumption, it follows from (8.9) by the dominated
convergence theorem that IM ! 0 as M !1.

For the case that only a k-truncation of the claim number distribution belongs
to a Panjer(a, b, k) class, we can nevertheless calculate higher moments recursively
using the following corollary of Theorem 8.2(b).

Corollary 8.3. Under the assumptions of Corollary 4.7,

E[Sn] =
k�1X
j=1

qj E[Sn
j ] +

✓
1�

k�1X
j=0

qj

◆
E[S̃n]

for all n 2 N, where both sides may be infinite.

Proof. Either use Theorem 8.2(b) with the right parameters or repeat the above
proof of Theorem 8.2(b) using (4.10) instead of Theorem 4.5(b).

9. Extension of Panjer’s recursion to severities with mixed support

In this section we analyze the situation in the collective model S = X1 + · · · + XN

given in (1.1) with severities Xn having mixed support. More precisely, we assume
that the distribution of the non-negative i. i. d. sequence {Xn}n2N has a possible
atom of aX 2 [0, 1] at zero and a (substochastic) density f on [0,1) for the
absolutely continuous part, meaning that P[X1 2 A] = aX �0(A)+

R
A f(x) dx for all

Lebesgue-measurable subsets A of [0,1), where �0 denotes the Dirac measure at
0. Obviously the distribution of S also has a mixed support with an atom of aS at
zero and a (substochastic) density fS on [0,1). If the claim number distribution
belongs to a Panjer(a, b, k) class, an integral equation for fS can be derived, cf. [23].
For example, in the case N ⇠ ExtNegBin(↵, 1, p) the integral equation [22, (2.7)] is

fS(x) =
⇣ ↵p↵q

1� p↵
+ ↵aSq

⌘ f(x)
1� aXq

+
q

1� aXq

Z x

0

⇣
1� (1� ↵)

y

x

⌘
f(y)fS(x� y) dy

for almost all x > 0. As ↵ 2 (�1, 0), the integrand can change its sign in the interval
[0, x] and cancellation e↵ects can occur in the numerical solution of this equation
for fS . In the following we propose a remedy for this problem by providing a result
analogous to Theorem 4.5. The statement is split into two parts. The first theorem
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deals with the relation of Laplace transforms of the aggregate loss in collective risk
models if the claim numbers fulfill certain conditions.

Recall that the Laplace transform of a non-negative random variable Y is given
by LY (s) = E[exp(�sY )] at least for all real s � 0 and that it uniquely determines
the distribution of Y [15, p. 86]. Furthermore, LY is infinitely di↵erentiable on the
positive half-line, because Y n exp(�sY )  (n/s)ne�n for all n 2 N0 and s > 0.

Theorem 9.1. Fix l 2 N. Let {qn}n2N0 and {q̃i,n}n2N0 denote the probability dis-
tributions of the N0-valued random variables N and Ñi for i 2 {1, . . . , l}, respec-
tively, which are independent of the non-negative i. i. d. sequence {Xn}n2N. Define
S = X1 + · · · + XN and S̃(i) = X1 + · · · + XÑi for i 2 {1, . . . , l}.

(a) Assume that there exist k 2 N0 and a1, . . . , al, b1, . . . , bl 2 R such that (4.3)
and (4.4) hold. Then the derivative L0S satisfies

L0S(s) =
lX

i=1

�
aiLSi(s)L0S̃(i)

(s) + (iai + bi)LSi�1(s)LS̃(i)(s)L0X1
(s)

�

+
k+l�1X

j=1

qjL0Sj
(s), s > 0,

(9.1)

where Sj = X1 + · · · + Xj for j 2 N.
(b) Assume that there exist ⌫1, . . . , ⌫l 2 [0, 1] with ⌫1 + · · · + ⌫l  1 such that

qn =
Pl

i=1 ⌫i q̃i,n for all n 2 N. Then

L0S(s) =
lX

i=1

⌫iL0S̃(i)
(s), s > 0. (9.2)

Proof. (a) Condition (4.4) can be rewritten as nqn =
Pl

i=1(ainq̃i,n�i + biq̃i,n�i) for
all n 2 N with n � k + l. Multiplying each side by Ln�1

X1
(s), summing over n and,

for the second equality, rearranging and shifting the index of summation leads to
1X

n=k+l

nqnLn�1
X1

(s)

=
lX

i=1

✓
ai

1X
n=k+l

nq̃i,n�iLn�1
X1

(s) + bi

1X
n=k+l

q̃i,n�iLn�1
X1

(s)
◆

=
lX

i=1

✓
aiLi

X1
(s)

1X
n=k+l�i

(n + i)q̃i,nLn�1
X1

(s) + biLi�1
X1

(s)
1X

n=k+l�i

q̃i,nLn
X1

(s)
◆

.

Using Lj
X1

(s) = LSj(s) for j 2 N0, multiplying both sides by L0X1
(s) and adding

the terms for n = 1, . . . , k + l � 1 to both sides yields (9.1).
(b) Considering that qn =

Pl
i=1 ⌫iq̃i,n for n 2 N, we multiply the equation by

nLn�1
X1

(s)L0X1
(s) and sum over n 2 N to obtain

1X
n=1

nqnLn�1
X1

(s)L0X1
(s) =

1X
n=1

lX
i=1

n⌫iq̃i,nLn�1
X1

(s)L0X1
(s).

Finally exchanging the order of summation yields (9.2).
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The distribution of severities in Theorem 9.1 is a general one with support in
[0,1). In Corollary 9.2 we specialize to severities with mixed support (with a
possible atom only at zero) and find integral equations that can improve the stability
of numerical solving procedures of the resulting integral equations. Note that these
results usually significantly simply if the claim size distribution is assumed to have
no atom at all. For every i 2 N0 we will use the distribution of Si = X1 + · · ·+ Xi,
where aSi denotes its atom at zero and fSi denotes its substochastic (also called
defective) density on [0,1). In particular, aS0 = 1 and fS0

a.e.= 0.

Corollary 9.2. In addition to the assumptions of Theorem 9.1, assume that the
distribution of X1 is absolutely continuous on (0,1) with substochastic density f
and with a possible atom of aX at zero. Then the following integral representation
for a substochastic density fS of the absolutely continuous part of the distribution
of S holds for almost all x > 0:

(a)

fS(x) =
k+l�1X

j=1

qjfSj(x) +
lX

i=1

✓
ai

✓Z x

0
fSi(x� y)

y

x
fS̃(i)(y) dy + aSi

fS̃(i)(x)
◆

+ (iai + bi)
✓Z x

0
↵(x� y)

y

x
f(y) dy + aSi�1

Z x

0
fS̃(i)(x� y)

y

x
f(y) dy

+ aS̃(i)

Z x

0
fSi�1(x� y)

y

x
f(y) dy + aSi�1

aS̃(i)
f(x)

◆◆
, (9.3)

where the auxiliary function ↵ is given by ↵(x) =
R x
0 fSi�1(x � y)fS̃(i)(y) dy

for x > 0 and aS̃ = P[S̃ = 0] = 'Ñ (aX) with the pgf 'Ñ of Ñ ;
(b)

fS(x) =
lX

i=1

⌫ifS̃(i)
(x). (9.4)

In both cases the distribution of S has the atom

aS = P[S = 0] = 'N (aX) (9.5)

at zero, where 'N is the probability generating function of N .

Proof. Let f̂ , f̂S , f̂S̃(i) and f̂Si denote the Laplace transforms of the absolutely
continuous part of the distribution of X1, S, S̃(i) and Si for i = 1, . . . , l, respectively.
Then LX1(s) = f̂(s) + aX and analogously for the other transforms.

Note that f̂ 0S(s) = �
R1
0 e�sxxfS(x) dx for s > 0. Using (9.3) and noting that

Laplace transforms of convolutions are products of Laplace transforms, we get

f̂ 0S(s) =
k+l�1X

j=1

qj f̂
0
Sj

(s) +
lX

i=1

⇣
ai

�
f̂Si(s) + aSi

�
f̂ 0

S̃(i)
(s)

+ (iai + bi)
�
(f̂Si�1(s) + aSi�1)(f̂S̃(i)(s) + aS̃(i)

)f̂ 0(s)
�⌘

, s > 0. (9.6)

Comparing (9.6) and (9.1) and using the uniqueness of the Laplace transform [15,
p. 86], the representation of the substochastic density in (9.3) is proved.

For case (b) we multiply (9.4) by �x and calculate the Laplace transform to
obtain f̂ 0S(s) =

Pl
i=1 ⌫if̂ 0S̃(i)

(s) for s > 0. Comparing this to (9.2) we get the
assertion by the uniqueness of the Laplace transform. The representation of the
atom aS is clear.
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Again we find an analogue to Corollary 4.7 for the case, when the k-truncation
of a probability distribution is in a Panjer(a, b, k) class.

Corollary 9.3. Assume that {qn}n2N0 has mass at or above k 2 N. Let {q̃n}n2N0

denote its k-truncated probability distribution, i.e. q̃0 = · · · = q̃k�1 = 0 and (4.9)
holds. Assume that N and Ñ, respectively, have these distributions, and let S =
X1 + · · ·+XN and S̃ = X1 + · · ·+XÑ denote the corresponding random sums with
(substochastic) densities fS and fS̃ on (0,1) and atoms aS and aS̃ at zero. Then
aS is given by (9.5) and fS satisfies

fS(x) =
k�1X
j=1

qjfSj (x) +
✓

1�
k�1X
j=0

qj

◆
fS̃(x)

for almost all x > 0, where fSj denotes a density of the absolutely continuous part
of the distribution of Sj = X1 + · · · + Xj for j = 1, . . . , k � 1.

Proof. Apply Corollary 9.2(b) with l = k, ⌫i = qi and q̃i,i = 1 for i 2 {1, . . . , k�1},
⌫k = 1� (q0 + · · · + qk�1), q̃k,n = q̃n for all n � k, and all other q̃i,n = 0.

The above results can directly help to improve the numerical stability in the case
of the extended negative binomial and the extended logarithmic distribution.

Corollary 9.4. For the parameters k 2 N0, ↵ 2 (�k,�k + 1) and p 2 [0, 1), with
p 6= 0 for k = 0, let {qn}n2N0 denote the ExtNegBin(↵ � 1, k + 1, p) distribution
and {q̃n}n2N0 the ExtNegBin(↵, k, p) distribution, where ExtNegBin(↵, 0, p) stands
for the negative binomial distribution NegBin(↵, p). Then (4.4) holds with l = 1
and q̃1,n = q̃n for n � k + 1. The constants are given by a1 = 0 and (5.1), hence
(9.3) simplifies to

fS(x) = b1aS̃f(x) +
b1

x

Z x

0
yf(y)fS̃(x� y) dy for almost all x > 0. (9.7)

Proof. Analogously to Corollary 5.1, Corollary 9.2(a) is applicable.

Corollary 9.5. For the parameters k 2 N and q 2 (0, 1] with q < 1 if k = 1, let
{qn}n2N0 denote the ExtLog(k + 1, q) distribution and {q̃n}n2N0 the ExtLog(k, q)
distribution, where ExtLog(1, q) stands for Log(q). Then (4.4) holds with l = 1
and q̃1,n = q̃n for n � k + 1. The constants are given by a1 = 0 and (5.8), hence
(9.3) again simplifies to the numerically stable weighted convolution (9.7).

Proof. Analogously to Corollary 5.4, Corollary 9.2(a) is applicable.

Remark 9.6. In Lemmas 5.2 and 5.5 we gave, for discrete claim size distributions,
limit arguments to deal with cases ExtNegBin(↵ � 1, 1, 0) for ↵ 2 (0, 1) and
ExtLog(2, 1), respectively. If the claim size distribution is absolutely continuous
(without an atom at zero), then a completely analogous reasoning applies. First,
consider N and Ñ as in Lemma 5.2. Then an integral equation for the auxiliary
function r(p, x) = p�↵fS̃(x), defined for p 2 (0, 1) and x � 0, follows from the
Panjer-style integral equation of fS̃ , cf. [22, (2.7)], and the limit q % 1 can be
taken in this equation and the integral representation of fS by r, which is obtained
from (9.7). For the continuous variant of Lemma 5.5, one can proceed in the same
way, using r(q, x) = � log(1� q)fS̃(x). This approach does not work with a claim
size atom at zero, though: The normalization can keep the factor b1 at the integral
in (9.7) from exploding in the limit, but not the b1 that sits at the summand before
it. The details are left to the reader.
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