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Abstract

Harrison and Kreps showed in 1978 how the heterogeneity of investor be-
liefs can drive speculation, leading the price of an asset to exceed its intrinsic
value. By focusing on an extremely simple market model – a finite-state
Markov chain – the analysis of Harrison and Kreps achieved great clarity
but limited realism. Here we achieve similar clarity with greater realism, by
considering an asset whose dividend rate is a mean-reverting stochastic pro-
cess. Our investors agree on the volatility, but have different beliefs about the
mean reversion rate. We determine the minimum equilibrium price explicitly;
in addition, we characterize it as the unique classical solution of a certain
linear differential equation. Our example shows, in a simple and transparent
manner, how heterogeneous beliefs about the mean reversion rate can lead to
everlasting speculation and a permanent “price bubble.”

1 Introduction

Are the prices of assets in financial markets determined by their intrinsic values?
This question has been debated for decades. The US internet stock bubble of 1998-
2000 and the market’s dramatic collapse in Fall 2008 suggest that prices can be
far above their intrinsic values even in a very efficient market. The mechanisms
underlying such price bubbles have been a continuing focus of attention in the
finance and economics literature.

The pioneering paper of Harrison and Kreps [7] was perhaps the first to explain
how heterogeneous beliefs can lead to speculation, thereby producing a bubble. The
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central idea is that an investor who owns an asset today might be able to sell it
tomorrow to a more optimistic investor at a relatively high price. So heterogeneity –
specifically, the possible emergence of more optimistic investors – makes the option
to sell the asset valuable. Therefore the price of the asset should be greater than
any investor’s assessment of its intrinsic value (the price the investor would pay if
forced to hold it forever). The paper [7] develops this idea in detail, for an asset
with finitely many possible dividend rates and Markovian dynamics.

The most widely used market models involve stochastic differential equations
(SDE’s) not Markov chains. Therefore it is natural to seek an SDE-based example
of the Harrison-Kreps mechanism. The main goal of the present paper is to give
such an example.

We consider an asset that entitles its holder to a continuous dividend stream.
The dividend rate has mean-reverting dynamics

dD = κ(θ −D) dt+ σ dw.

Our investors agree on the values of σ and θ, but they disagree on the mean reversion
rate κ. Notice that when D < θ the most optimistic investor is the one with the
largest value of κ, but when D > θ the situation is opposite – the most optimistic
investor is the one with the smallest value of κ. Since the value of D crosses
θ repeatedly, our investors change from optimistic to pessimistic and vice-versa.
Newly-pessimistic investors sell to newly-optimistic ones, at a price that exceeds
either investor’s intrinsic value.

Our framework is the continuous-time analogue of Harrison and Kreps’. In
particular, our investors are risk-neutral, and short-selling is prohibited. Our main
result is an explicit formula for the minimal equilibrium price. We also characterize
this price as the unique classical solution (with linear growth at infinity) of a certain
second-order, linear differential equation. Finally, we examine its dependence on
the parameters of the model.

We are not the first to discuss an SDE version of the Harrison and Kreps frame-
work. That distinction belongs to Scheinkman and Xiong, who studied how over-
confidence can lead to speculative bubbles [11, 12]. Their work is related to ours:
they, too, consider an asset that pays continuous dividends, with a mean-reverting
dividend rate. There are, however, important differences:

(a) We assume the dividend rate is observable. Scheinkman and Xiong assume it
is not – rather, their investors see only “signals,” i.e. noisy measurements of
the rate.

(b) We assume the investors differ by using distinct choices of the mean rever-
sion rate κ when predicting future dividends. Scheinkman and Xiong assume
instead that the investors differ by placing greater confidence in different “sig-
nals.”

(c) We ignore transaction costs, while Scheinkman and Xiong include them; in
particular, they study the degree to which transaction costs influence the size
of the bubble.
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In brief: our goal is different from that of Scheinkman and Xiong. We discuss a
simpler model, focusing on the underlying PDE issues; the result is a transparent,
PDE-based version of the Harrison-Kreps framework. Scheinkman and Xiong by
contrast discuss a more complex model; the result is a more realistic framework,
with broader financial and economic implications.

We mention in passing a related but different theme in the recent literature
on market heterogeneity. Can “irrational investors” survive, and can they have
significant market impact? Milton Friedman famously argued that the answer is
no: an irrational investor will inevitably lose money, thereby being driven from the
market [6]. But other authors have questioned this view. For example, DeLong et
al [4] discuss a model in which an irrational investor can survive in the long run –
and can even earn a higher return than a rational investor. Kogan et al [8] use a
finite-horizon lognormal model to demonstrate that survival and price impact are
independent issues: though the wealth of an irrational investor may quickly become
relatively small, he may still have substantial price impact. Yan [13] takes a different
approach, defining a “survival index” and arguing that the investors with the lowest
value of the index will survive in the long run.

The viewpoint of the present paper is different from those of the articles just
cited. We do not distinguish between “rational” and “irrational” investors, and we
do not examine the long-term experience of any investor. However our model is
consistent with the hypothesis that one of our two investors is rational (i.e. his
model for the evolution of the dividend rate is correct). With this interpretation,
the model provides a mechanism by which the presence of irrational investors can
lead to speculation, raising the market prices of assets to levels well above their
intrinsic values.

2 The model

As mentioned in the Introduction, we present a continuous-time version of the
Harrison-Kreps framework. Two groups of investors compete for ownership of the
dividend stream of an asset. Each believes the dividend rate D is mean-reverting,
but they have different beliefs about the mean reversion rate: group i uses the
model

dD = κi(θ −D) dt+ σ dw, (1)

where i = 1, 2, and κ1 > κ2 > 0. Note that while the models used by the two groups
are different, the associated measures on path space are absolutely continuous by
Girsanov’s theorem. Thus the two groups have the same view about which paths
are “possible;” they simply differ about which are more likely.

Our investors are risk-neutral; thus, they assess the attractiveness of the asset
by considering the expected present value of its dividends (while it is held) plus the
amount realized by its sale (if it is sold). Each group of investors has unlimited
resources, and short-selling is prohibited. Therefore the asset will be held, at any
particular time, by the group that assigns it the higher value. One could consider
more than two groups of investors; but there is no reason to do so, because (as will
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become clear in due course) only the groups with the lowest and highest values of
κ would ever own the asset.

We shall explain the notion of an “equilibrium price,” demonstrate the exis-
tence of the minimal equilibrium price and provide an explicit formula for it. More
specifically:

• In this section we briefly summarize the Harrison-Kreps framework, explaining
in particular the notion of an “equilibrium price.”

• In Section 3 we discuss the minimal equilibrium price, showing in particular
that it is strictly greater than the asset’s intrinsic value.

• In Section 4 we offer a PDE characterization of the minimal equilibrium price.
Specifically, we suggest that it is the unique classical solution (with linear
growth at infinity) of a certain linear differential equation. This solution can
be written explicitly in terms of parabolic cylinder functions. We also show in
Section 4 that group 1 holds the asset when D(t) < θ, while group 2 holds it
when D(t) > θ. This confirms the intuition offered in the Introduction that
the asset is always held by the more optimistic group.

• In Section 5 we prove that the solution of the PDE considered in Section 4 is
indeed the minimal equilibrium price discussed in Section 3. Our main tool
is a comparison result from the theory of viscosity solutions.

• In Section 6 we discuss the equilibrium price and its dependence on the pa-
rameters of our model.

Before defining an equilibrium price, we must discuss the “intrinsic value” of the
asset. As already mentioned, our investors are risk-neutral. To keep the model
simple, we assume they discount future income at the same constant rate λ. So at
time t, a member of group i calculates that the present value of the asset if held
forever is

EQi

{∫ ∞

t

e−λ(s−t)D(s) ds | D(t)
}
,

where Qi is the measure associated with the process (1), i = 1, 2. The asset will be
held by the group assigning it a higher value, so we define its intrinsic value to be:

max
i=1,2

EQi

{∫ ∞

t

e−λ(s−t)D(s) ds | D(t)
}
.

Since D(t) is a stationary process, the asset’s intrinsic value depends only on the
value of D at time t. Thus the intrinsic value at time t is I(D(t)) where

I(D) = max
i=1,2

EQi

{∫ ∞

0

e−λsD(s) ds | D(0) = D
}
. (2)

Since the evolution of D is very simple, the function I is easy to evaluate. An
investor of type i calculates that

D(t) = θ + e−κit(D(0) − θ) + σ

∫ t

0

eκi(s−t) dw(s). (3)
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So EQi(D(t)) = θ + e−κit(D(0) − θ), and

EQi

{∫ ∞

0

e−λsD(s) ds
}

=
∫ ∞

0

e−λsEQi(D(s)) ds

=
θ

λ
+

1
λ+ κi

(D(0) − θ).

Maximizing over i = 1, 2 we get

I(D) =

{
θ
λ + 1

λ+κ1
(D − θ) = D

λ+κ1
+ θκ1

λ(λ+κ1) if D ≤ θ
θ
λ + 1

λ+κ2
(D − θ) = D

λ+κ2
+ θκ2

λ(λ+κ2) if D ≥ θ
(4)

Notice that the intrinsic value can be negative, if D is sufficiently negative.
We turn now to the notion of an equilibrium price. Suppose at time t the

dividend rate is D(t) and the price of the asset is P (D(t), t). Assume furthermore
that group i holds the asset. They could sell it at at any stopping time τ ≥ t, and
the present value of the resulting income stream would be

sup
τ≥t

EQi

{∫ τ

t

e−λ(s−t)D(s) ds+ e−λ(τ−t)P (D(τ), τ) | D(t)
}
.

At equilibrium, for the group that holds the asset, this should be equal to P (D(t), t).
Therefore we make the definition:

Definition. An equilibrium price is a continuous function P (D, t), defined for D ∈
R and t ≥ 0, such that

P (D, t) ≥ I(D)

and

P (D, t) = max
i=1,2

sup
τ≥t

EQi

{∫ τ

t

e−λ(s−t)D(s) ds+ e−λ(τ−t)P (D(τ), τ) | D(t) = D
}
,

where τ ranges over nonnegative stopping times.

As stated in Harrison and Kreps [7], this is a partial-equilibrium version of
Radner’s approach [10]. In particular, we are assuming that the investors’ views
about the future are common knowledge.

Our simple mean-reverting model for the dividend rate D(t) has the drawback
that D can become negative. This issue is familiar: many widely-used interest rate
models (for example the Vasicek and Hull-White models) have the same feature.
By choosing suitable parameters, we can arrange that the probability of D being
negative is relatively small. Note that in the presence of carrying costs, negative
dividend rates may be realistic.

SinceD can be negative, so can the intrinsic value I(D). We’ll show in due course
that the minimum equilibrium price can also be negative; in fact, as D → −∞ it
approaches I(D). It might seem odd that we permit the price of an asset to be
negative. But this is consistent with the Harrison-Kreps framework, which requires

5



that the asset be held by one of the two groups of investors. This framework
ignores the possibility that the investors may have other, more attractive investment
opportunities.

We are assuming that although the existence of diverse beliefs is common knowl-
edge, each group stays firm in its choice of a market model. This assumption seems
reasonable, since the mean reversion rate is notoriously difficult to estimate from
historical data (much more difficult than σ or θ). It is, however, quite different
from the framework used in [11, 12] or [5], where investors adjust their models
using signals from the market and some sort of filtering.

A central issue in the economics of speculation is whether the resulting bubble
must eventually burst. The mechanism considered here produces a bubble that is
permanent, in the sense that it persists as long as the model remains valid. However,
if the investors change their estimates of κ the bubble could disappear.

3 The minimal equilibrium price

We now give a characterization of the minimal equilibrium price. We will show in
the process that the minimal equilibrium price is independent of time.

Theorem 1. Define a sequence Pk(D, t), k = 0, 1, . . . as follows: P0(D, t) = I(D);
and for each k = 2, 3, . . .

Pk(D, t) = max
i=1,2

sup
τ≥t

EQi

{∫ τ

t

e−λ(s−t)D(s) ds

+ e−λ(τ−t)Pk−1(D(τ), τ) | D(t) = D
}
.

Then Pk(D, t) is nondecreasing in k. The limit

P∗(D, t) = lim
k→∞

Pk(D, t)

is time independent and is the minimal equilibrium price.

Proof. Because P0(D, t) doesn’t depend on time t and D(t) is a stationary process,
Pk(D, t) is independent of t for every k; thus Pk(D, t) = Pk(D) where

Pk(D) = max
i=1,2

sup
τ≥0

EQi

{∫ τ

0

e−λsD(s) ds+ e−λτPk−1(D(τ)) | D(0) = D
}
. (5)

Since τ = 0 is a stopping time, we have Pk(D) ≥ Pk−1(D), so {Pk(D)}k≥1 is a
nondecreasing series. Therefore

P∗(D) = lim
k→∞

Pk(D)

exists. Passing to the limit in (5), we see that P∗ is an equilibrium price.
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To show this is the minimal equilibrium price, consider any equilibrium price
Q(D, t). It suffices to show that Q(D, t) ≥ Pk(D) for all k, and we do this by induc-
tion. The initial step is clear, sinceQ(D, t) ≥ I(D) = P0(D) from the very definition
of an equilibrium price. For the inductive step, suppose Q(D, t) ≥ Pk−1(D). Then

Q(D, t) ≥ max
i=1,2

sup
τ≥t

EQi

{∫ τ

t

e−λ(s−t)D(s) ds+

e−λ(τ−t)Pk−1(D(τ)) | D(t) = D
}

= Pk(D)

by combining the definition of an equilibrium price with the inductive hypothesis.
The induction is now complete, and we conclude in the limit k → ∞ that

Q(D, t) ≥ P∗(D).

Thus P∗(D) is the minimal equilibrium price.

It is natural to ask whether the minimal equilibrium price has a speculative
bubble. In other words, is P∗(D) strictly larger than I(D)? The answer is yes. In
fact, even P1 is strictly larger than I(D). To see this, consider the choice τ = 1 in
the definition of P1:

P1(D) ≥ max
i=1,2

EQi

{∫ 1

0

e−λsD(s) ds+ e−λI(D(1)) | D(0) = D
}
. (6)

Taking the viewpoint of group i, and always conditioning on D(0) = D, we have

EQiI(D(1)) > EQi

{ θ
λ

+
1

λ+ κi
(D(1) − θ)

}
using (4). We emphasize that the inequality is strict, because both the events
{D(1) < θ} and {D(1) > θ} have positive probability. Recalling the derivation of
(4), we conclude that

EQi

{
e−λI(D(1))

}
> EQi

{∫ ∞

1

e−λsD(s) ds
}
.

Combining this with (6), we get

P1(D) > max
i=1,2

EQi

{∫ ∞

0

e−λsD(s) ds | D(0) = D
}

= I(D)

Thus P1(D) is strictly larger than I(D), as asserted.
The preceding calculation reveals rather clearly the origin of the speculative

bubble. At equilibrium, each investor is willing to bid more than the expected
value of the future dividend stream to buy the asset. The reason is that if the
investor holds the asset until time 1, there is a positive probability that the other
group will offer a higher bid than his valuation of the future dividend stream. Such
speculative behavior keeps pushing up the asset price until it reaches equilibrium.

There are other equilibrium pricing functions besides P∗. For example, P (D, t) =
P∗(D) + ceλt is an equilibrium price for any positive value of the constant c. This
pricing function is like a Ponzi scheme. We take the view, following Harrison and
Kreps, that the minimal equilibrium price is the one of practical interest.
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4 A differential equation for the minimal equilib-
rium price

In this section, we provide a differential equation characterization of the minimal
equilibrium price. More specifically, we introduce a differential equation and show
there there is a unique C2 solution with linear growth at infinity. Moreover, this
unique solution is an equilibrium price. Later, in Section 5, we will show it is the
minimal equilibrium price. At the end of this section, we demonstrate that the
asset is always held by the more optimistic group of investors.

Theorem 2. Consider the following differential equation:

max{κ1(θ −D), κ2(θ −D)}Φ′ +
1
2
σ2Φ′′ − λΦ +D = 0. (7)

(a) There is a unique C2 solution Φ of (7) with the property that Φ(D) = O(D)
as D → ±∞. Moreover, Φ has the explicit form:

Φ(D) =
{ C1F−υ1(

θ−D
σ/

√
2κ1

) + D
λ+κ1

+ θκ1
λ(λ+κ1) , if D ≤ θ

C2F−υ2(
D−θ

σ/
√

2κ2
) + D

λ+κ2
+ θκ2

λ(λ+κ2) , if D ≥ θ
(8)

where C1 and C2 are positive constants. Here we assume as usual that κ1 >
κ2; we have set υi = λ

κi
; and e−w2/4F−υi(w) are called parabolic cylinder

functions or Weber-Hermite functions. (For information about F−υi , see for
example Borodin and Salminen [1], A 2.9, pg. 639.)

(b) The solution Φ has linear growth as D → ±∞; in fact

Φ =
D

λ+ κ1
+

θκ1

λ(λ + κ1)
+ o(1) as D → −∞, and

Φ =
D

λ+ κ2
+

θκ2

λ(λ + κ2)
+ o(1) as D → ∞.

Also, Φ is convex and increasing, with 1
λ+κ1

< Φ′(D) < 1
λ+κ2

for all D.

(c) The solution Φ is an equilibrium price.

Proof. We begin by solving the PDE, i.e. proving (a). The discussion is parallel
to that Levendorskii [9] in his analysis of a perpetual option on a mean-reverting
underlying. When D ≤ θ, (7) reduces to:

κ1(θ −D)Φ′ +
1
2
σ2Φ′′ − λΦ +D = 0.

Defining Ψ(D) = Φ(D) − D
λ+κ1

− θκ1
λ(λ+κ1) , we see that Ψ(D) satisfies:

κ1(θ −D)Ψ′ +
1
2
σ2Ψ′′ − λΨ = 0. (9)
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Setting σ̂ = σ/
√

2κ1, w = (D−θ)/σ̂, and Ψ(D) = ew2/4ψ(w), equation (9) becomes:

(λ− κ1∂
2
w + κ1w∂w)ew2/4ψ(w) = 0. (10)

Letting υ1 = λ/κ1, and noticing that e−w2/4∂we
w2/4ψ(w) = (∂w + w/2)ψ(w), we

divide (10) by −κ1e
w2/4 to get

(∂2
w +

1
2
− υ1 − w2

4
)ψ(w) = 0. (11)

Equation (10) is called the Weber differential equation. Notice that if ψ(w) is a
solution, then ψ(−w) is also a solution. The general solution has the form

ψ = A1e
−w2/4F−υ1(−w) +B1e

−w2/4F−υ1(w),

where e−w2/4F−υi(±w) are called Weber-Hermite functions. Undoing the changes
of variables, this gives

Ψ(D) = A1F−υ1(
θ −D

σ/
√

2κ1
) +B1F−υ1(

D − θ

σ/
√

2κ1
).

The Weber-Hermite functions have a series representation (see the Appendix). For
numerical evaluation, however, it is more convenient to use the software package
Mathematica, specifically its routine ParabolicCylinderD [−v,±w].

Renaming the constants and working with Φ rather than Ψ, we have shown that
for D < θ the general solution of (7) is

Φ(D) = C1F−υ1(
θ −D

σ/
√

2κ1
) + c1F−υ1(

D − θ

σ/
√

2κ1
) +

D

λ+ κ1
+

θκ1

λ(λ+ κ1)
.

Similarly, for D > θ the general solution is

Φ(D) = c2F−υ2(
θ −D

σ/
√

2κ2
) + C2F−υ2(

D − θ

σ/
√

2κ2
) +

D

λ+ κ2
+

θκ2

λ(λ+ κ2)
.

The asymptotics of F−υi(w) as w → ±∞ are discussed for example in [2] (see
particularly eqns (5a) and (5b) on page 92 and eqn (25) on page 40). As w → +∞
we have

F−υi(w) = w−υi(1 + O(w−2)), (12)

F−υi(−w) =
√

2π
Γ(υi)

ew2/2|w|υi−1(1 + O(w−2)). (13)

The four constants c1, c2, C1, C2 are determined by the conditions that

(i) Φ has at most linear growth at as D → ±∞, and

(ii) Φ and Φ′ are continuous at D = θ.
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By (13), (i) requires that c1 = c2 = 0. To get C1 and C2 explicitly, we use the
relation

F ′
−υi

(w) = −υiF−υi−1(w) (14)

(see e.g. [1] page 639). After a bit of algebra, we find that the continuity of Φ and
Φ′ at D = θ is equivalent to

C1F−υ1(0) +
θ

λ+ κ1
+

θκ1

λ(λ + κ1)
= C2F−υ2(0) +

θ

λ+ κ2
+

θκ2

λ(λ + κ2)

C1
λ

σ

√
2
κ1
F−υ1−1(0) +

1
λ+ κ1

= −C2
λ

σ

√
2
κ2
F−υ2−1(0) +

1
λ+ κ2

This 2 × 2 linear system determines the values of C1 and C2. A more explicit
formula, which shows clearly that C1 and C2 are positive, is given in the Appendix.

We have almost finished part (a) of the Theorem. The only remaining assertion
is that Φ′′ is continuous at D = θ. This follows from equation (7) (which has now
been established away from D = θ). Taking the limit as D ↑ θ gives

1
2
σ2Φ′′(θ−) = λΦ(θ) − θ

and taking the limit as D ↓ θ gives

1
2
σ2Φ′′(θ+) = λΦ(θ) − θ.

Thus Φ′′ is continuous at θ. (We remark that the third derivative is not continu-
ous. Its limiting values as D approaches θ from above and below can be found by
differentiating (7) then arguing as above.)

Part (b) of the theorem is almost immediate. The linear behavior as D → ±∞
is an immediate consequence of (12). The convexity of Φ follows from the convexity
of F−υ , which is evident from the representation

F−υ(w) =
1

Γ(υ)

∫ ∞

0

tυ−1e−
1
2 t2−wt dt

(see e.g. equation (36b) on page 44 of [2]). The final assertion of part (b), that
1

λ+κ1
< Φ′(D) < 1

λ+κ2
follows immediately from the convexity of Φ combined with

its asymptotic behavior as D → ±∞.
We turn to part (c) of the theorem, which asserts that the function Φ just

determined is an equilibrium price. Taking the viewpoint of group i, and applying
Ito’s formula, we have

d(e−λtΦ(D(t))) = −λe−λtΦ dt+ e−λtΦ′ dD +
1
2
e−λtΦ′′ (dD)2

= e−λt[κi(θ −D)Φ′ +
1
2
σ2Φ′′ − λΦ] dt+ σe−λtΦ′ dw.

Since |Φ′| is bounded,

EQi

(∫ ∞

0

e−λtΦ′ dw
)2

≤ C

∫ ∞

0

e−2λtdt <∞;
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it follows that for every stopping time τ ≥ 0, EQi(
∫ τ

0
e−λtΦ′ dw) = 0. Therefore

EQi

{
e−λτΦ(D(τ))

}
= Φ(D0) + EQi

∫ τ

0

e−λt[κi(θ −D)Φ′ +
1
2
σ2Φ′′ − λΦ] dt

≤ Φ(D0) + EQi

∫ τ

0

e−λt[−D(t)] dt,

using (7) for the last step. Thus

Φ(D) ≥ EQi

{∫ τ

0

e−λsD(s) ds+ e−λτΦ(D(τ)) | D(0) = D
}
.

This is true for any τ ≥ 0 and for i = 1, 2, so

Φ(D) ≥ max
i=1,2

sup
τ≥0

EQi

{∫ τ

0

e−λsD(s) ds+ e−λτΦ(D(τ)) | D(0) = D
}
. (15)

Taking τ = N → ∞ we see that

Φ(D) ≥ max
i=1,2

EQi

{∫ ∞

0

e−λsD(s) ds
}

= I(D).

Moreover when we take τ = 0 in the expression on the right side of (15) we get
Φ(D). Therefore the inequality is actually an equality:

Φ(D) = max
i=1,2

sup
τ≥0

EQi

{∫ τ

0

e−λsD(s) ds+ e−λτΦ(D(τ)) | D(0) = D
}
.

Thus Φ(D) is an equilibrium price. (The argument also shows that the choice τ = 0
is optimal.)

We asserted in the Introduction that the asset is always held by the more op-
timistic group. We now prove this statement, using the fact (which will be shown
in the next Section) that Φ is actually the minimal equilibrium price. Given any
D0 6= θ, let

τθ = inf{t > 0 : D(t) = θ}, (16)

and note that τθ > 0. Let us assume for the moment that D0 < θ. Then for any
0 < t < τθ we have:

max{κ1(θ −D(t)), κ2(θ −D(t))} = κ1(θ −D(t)) (17)

Therefore

EQ1

{
e−λτθΦ(D(τθ))

}
= Φ(D0) + EQ1

∫ τθ

0

e−λt[κ1(θ −D)Φ′ +
1
2
σ2Φ′′ − λΦ] dt,

= Φ(D0) + EQ1

∫ τθ

0

e−λt[−D(t)] dt,

11



using (7), (17), and the positivity of Φ′ for the last step. Thus

Φ(D) = EQ1

{∫ τθ

0

e−λsD(s) ds+ e−λτθΦ(D(τθ)) | D(0) = D
}
. (18)

On the other hand, for any 0 < t < τθ we also have:

max{κ1(θ −D(t)), κ2(θ −D(t))} > κ2(θ −D(t)) (19)

Therefore for any stopping time τ > 0:

EQ2

{
e−λτΦ(D(τ))

}
= Φ(D0) + EQ2

∫ τ

0

e−λt[κ2(θ −D)Φ′ +
1
2
σ2Φ′′ − λΦ] dt

< Φ(D0) + EQ2

∫ τ

0

e−λt[−D(t)] dt,

using (7) and (19) for the last step. Thus

Φ(D) > EQ2

{∫ τ

0

e−λsD(s) ds+ e−λτΦ(D(τ)) | D(0) = D
}
. (20)

From (18) and (20) we see that when D < θ, the asset is owned by the investors
in group 1. This is consistent with the fact that group 2 is more pessimistic since
κ1 > κ2. A symmetric argument shows that when D > θ the asset is owned by the
investors in group 2. Evidently, trading occurs precisely when the dividend rate D
crosses θ, as the two groups exchange ownership of the asset.

5 Identification of Φ as the minimal equilibrium
price

In the last section we identified a particular equilibrium price Φ(D) by solving the
differential equation (7). It is natural to ask whether Φ(D) is somehow special
within the family of equilibrium prices. The answer is yes: we show in this section
that it is the minimal equilibrium price.

Our argument uses a comparison result from the theory of “viscosity solutions.”
Roughly, the idea is that the definition of an equilibrium price resembles a stochastic
optimal control problem. So we expect P∗ to be a viscosity solution of the associated
differential equation. But Φ is also a viscosity solution, and the viscosity solution
is unique, so P∗ = Φ.

The preceding assertions are true, but the efficient argument proceeds a little
differently. Since we already know that P∗ ≤ Φ, it suffices to prove the opposite
inequality. We do this by showing that P∗ is a viscosity supersolution. Since Φ is a
viscosity subsolution, a standard comparison theorem gives P∗ ≥ Φ.

We begin by reminding the reader about the definition of a viscosity solution of
(7). To match the standard convention, we change the sign of the equation to make
the coefficient of second-order term to negative; thus we consider viscosity solutions
of

−max{κ1(θ −D), κ2(θ −D)}Φ′ − 1
2
σ2Φ′′ + λΦ −D = 0. (21)
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Definition. A function µ(D) is a viscosity subsolution of (21) if it is upper semi-
continuous and for any ψ ∈ C2 and any local minimum point d of ψ − µ, we have

−max{κ1(θ − d), κ2(θ − d)}ψ′ − 1
2
σ2ψ′′ + λµ− d ≤ 0. (22)

Similarly, µ(D) is a viscosity supersolution of (21) if it is lower semicontinuous
and for any ψ ∈ C2 and any local maximum point d of ψ − µ, we have

−max{κ1(θ − d), κ2(θ − d)}ψ′ − 1
2
σ2ψ′′ + λµ− d ≥ 0. (23)

Finally, µ(D) is a viscosity solution of (21) if it is both a viscosity subsolution and
a viscosity supersolution.

The argument summarized informally at the beginning of this section is realized by
the following theorem.

Theorem 3. The equilibrium price Φ(D) identified in Section 4 and the minimal
equilibrium price P∗(D) discussed in Section 3 have the following properties:

(a) P∗(D) ≤ Φ(D);

(b) Φ(D) is an upper semicontinuous function;

(c) P∗(D) is a lower semicontinuous function;

(d) Φ(D) is a viscosity subsolution of (21);

(e) P∗(D) is a viscosity supersolution of (21);

(f) P∗ and Φ grow at most linearly, i.e. they satisfy

|P∗(D)| + |Φ(D)| ≤ A|D| +B

for all D ∈ R, where A and B are suitable constants.

Furthermore, conditions (b) − (f) imply

Φ(D) ≤ P∗(D).

So Φ = P∗. Thus, the unique classical solution of the differential equation with
linear growth at infinity is in fact the minimal equilibrium price.

Proof. Part (a) is obvious, since Φ is an equilibrium price. Part (b) is also obvious
since Φ is a C2 function. Part (d) follows from the general result that a classical
solution of (21) is automatically a viscosity solution.

We now prove (c). Our task is to show that for any sequence Dj → D we have
P∗(D) ≤ lim infj→∞ P∗(Dj). Our main tool is the fact that

P∗(D) = max
i=1,2

sup
τ≥0

EQi

{∫ τ

0

e−λsD(s) ds+ e−λτP∗(D(τ)) | D(0) = D
}

13



since P∗ is an equilibrium price. Fixing the sequence Dj and its limit D, let τj be
the first time the process reaches D(t) = D, starting from D(0) = Dj . Evidently

P∗(Dj) ≥ EQ
{∫ τj

0

e−λsD(s) ds+ e−λτjP∗(D)
}
.

for both groups, i.e. for both Q = Q1 and Q = Q2. Thus

P∗(D) ≤ P∗(Dj)
EQ{e−λτj} −

EQ
{∫ τj

0 e−λsD(s) ds
}

EQ{e−λτj} (24)

We want to pass to the limit in (24)). Since Dj → D, we have τj → 0 almost surely.
Therefore (by the dominated convergence theorem) the denominators have

lim
j→∞

EQ{e−λτj} = 1.

As for the numerator of the far right term, it is easy to see from (3) that

EQ{
∫ ∞

0

e−λsD(s)ds} <∞

Therefore (using dominated convergence again) we have

lim
j→∞

EQ
{∫ τj

0

e−λsD(s) ds
}

= 0.

Thus we can pass to the limit in (24), getting

P∗(D) ≤ lim inf
j→∞

P∗(Dj)

as desired.
Next we prove (e), arguing by contradiction. If P∗ is not a viscosity supersolution

then there exist a C2 function ψ and a real number D0 such that D0 is a local
maximum of ψ − P∗, ψ(D0) = P∗(D0), and

−max{κ1(θ −D0), κ2(θ −D0)}ψ′ − 1
2
σ2ψ′′ + λψ −D0 ≤ −δ

for some strictly positive constant δ. Let us assume for now that D0 < θ. (The cases
D0 > θ and D0 = θ will be addressed later.) Then by taking ε small enough we can
find an interval [D0−ε,D0+ε] with D0+ε < θ such that for anyD ∈ [D0−ε,D0+ε],

max{κ1(θ −D), κ2(θ −D)}ψ′ +
1
2
σ2ψ′′ − λψ +D ≥ δ

2
> 0. (25)

Choosing ε smaller if necessary, we can also arrange that

ψ − P∗ ≤ 0 on [D0 − ε,D0 + ε]. (26)
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Let T be the first time D(s) reaches an endpoint of this interval, starting from
D(0) = D0:

T = inf{s > 0 : D(s) = D0 − ε or D0 + ε}. (27)

This stopping time has the property that

T > 0 with probability 1; (28)

moreover, using (25) and the assumption that D0 + ε < θ,

κ1(θ −D(t))ψ′ +
1
2
σ2ψ′′ − λψ +D(t) ≥ δ

2
> 0 for 0 ≤ t ≤ T (29)

From Ito’s formula, we have:

d(e−λtψ(D(t))) = −λe−λtψ dt+ e−λtψ′ dD +
1
2
e−λtψ′′ (dD)2

= e−λt[κ1(θ −D)ψ′ +
1
2
σ2ψ′′ − λψ] dt + σe−λtψ′dw.

Since |ψ′(D(t))| is uniformly bounded in [0, T ], from investor 1’s perspective we
have

EQ1

(∫ T

0

e−λtψ′ dw

)2

≤ C

∫ T

0

e−2λt dt <∞,

whence EQ1

(∫ T

0 e−λtψ′ dw
)

= 0. Therefore

EQ1

{
e−λTψ(D(T )

}
= ψ(D0) + EQ1

∫ T

0

e−λt[κ1(θ −D)ψ′ +
1
2
σ2ψ′′ − λψ] dt

≥ ψ(D0) + EQ1

∫ T

0

e−λt(
δ

2
−D(t)) dt,

using (29). Thus

ψ(D0) ≤ EQ1

{∫ T

0

e−λsD(s) ds+ e−λTψ(D(T ))
}
− δ

2
EQ1

∫ T

0

e−λt dt.

On the other hand, since P∗ is an equilibrium price we have

P∗(D0) ≥ EQ1

{∫ T

0

e−λsD(s) ds+ e−λTP∗(D(T )
}
.

Combining these inequalities with the relation ψ(D0) = P∗(D0), we conclude that

EQ1

{
e−λT [ψ(D(T )) − P∗(D(T ))]

}
≥ δ

2
EQ1

∫ T

0

e−λt dt. (30)

The right hand side is strictly positive, by (28); but the left hand side is less than
or equal to zero by (26). This is the desired contradiction.
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The case D0 > θ is handled similarly. Of course ε must then be chosen so that
D0 − ε > θ. The argument is otherwise unchanged, except that κ1 gets replaced by
κ2 since maxi=1,2{κi(θ −D)} = κ2(θ −D) for D > θ, and probability measure Q1

replaced by Q2.
The case D0 = θ is only slightly different. The interval [D0 − ε,D0 + ε] used

for the previous cases must be replaced by an interval [D1, D2] containing D0 = θ,
such that for any D ∈ [D1, D2]:∣∣∣max{κ1(θ −D), κ2(θ −D)}ψ′

∣∣∣ ≤ δ

6
,

max{κ1(θ −D), κ2(θ −D)}ψ′ +
1
2
σ2ψ′′ − λψ +D ≥ 5δ

6
, and

ψ(D) ≤ P∗(D).

The first two inequalities imply

1
2
σ2ψ′′ − λψ +D ≥ 2δ

3
> 0. (31)

We argue as before, using T = inf{s > 0 : D(s) = D1 or D2}. Clearly T > 0 with
probability 1, and Ito’s formula gives

EQ
{
e−λTψ(D(T ))

}
≥ ψ(D0) + EQ

∫ T

0

e−λt(− δ
6

+
2δ
3

−D(t)) dt

= ψ(D0) + EQ

∫ T

0

e−λt(
δ

2
−D(t)) dt,

whence

ψ(D0) ≤ EQ
{∫ T

0

e−λsD(s) ds+ e−λTψ(D(T ))
}
− δ

2
EQ

∫ T

0

e−λt dt.

Using ψ(D0) = P∗(D0) and the fact that P∗ is an equilibrium price, we conclude as
before that

EQ
{
e−λT [ψ(D(T )) − P∗(D(T ))]

}
≥ δ

2
EQ

∫ T

0

e−λt dt.

The right side is strictly positive while the left side is nonpositive, which is again a
contradiction. This completes part (e).

The proof of (f) is relatively easy. The fact that Φ has the desired properties
was part (b) of Theorem 2. As for P∗, recall that P∗ ≥ I and the intrinsic value I is
piecewise linear by (4). So P∗ is certainly bounded below by a linear function. On
the other hand, we already know from part (a) that P∗ ≤ Φ. So P∗ is also bounded
above by a linear function, and (f) is complete.

The final assertion of the Theorem is that (b)–(f) imply Φ(D) ≤ P∗(D) for all D.
This follows from the basic comparison theorem for viscosity super and subsolutions,
see e.g. Theorem 5.1 of [3].
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Figure 1: The minimal equilibrium price (thick line) and the intrinsic value (thin
line) as a function of the initial dividend rate D, when the parameters are given by
(32).

6 Discussion

We have shown that Φ is the minimal equilibrium price, and that if κ1 > κ2 then
this market has a bubble, i.e. Φ(D) is greater than the intrinsic value I(D). As an
example, Figure 1 shows the minimal equilibrium price and the intrinsic value as
functions of initial dividend rate when

κ1 = 0.2, κ2 = 0.1, θ = 0.04, λ = 0.02, σ = 0.02. (32)

Here κ1 and κ2 differ rather significantly (by a factor of two) and the long-term
dividend rate is 4% (a fairly conventional rate). Since the volatility σ is half the
size of the long-term rate, D(t) is positive most of the time.

Besides raising the price of the asset, speculative trading also smooths the price
of the asset. Indeed, the slope of the intrinsic value I(D) is discontinuous at D = θ,
while the minimal equilibrium price is C2 (though not C3) at D = θ.

Since we have formulas for Φ and I, our results make it easy to see how the size
of the bubble depends on the parameters of the model. In fact, from (4) and (8),
the bubble B(D) = Φ(D) − I(D) is given by:

B(D) =

{
C1F−υ1(

θ−D
σ/

√
2κ1

) if D ≤ θ

C2F−υ2(
D−θ

σ/
√

2κ2
) if D ≥ θ

(33)

So the size of the bubble is controlled by the constants C1 and C2 in (33): the
existence of a bubble comes from the positivity of these constants, and the bubble
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Figure 2: The relative magnitude of the bubble, R(D) = Φ(D)/I(D) − 1, when the
parameters are given by (32).

gets larger as C1, C2 increase. These constants are given explicitly in the appendix.
The formulas confirm the following very intuitive trends:

(i) The bubble gets larger as κ1 − κ2 increases with the other parameters held
fixed.

(ii) The bubble disappears as κ1 − κ2 → 0.

(iii) The bubble gets larger as λ decreases with the other parameters held fixed.

(iv) The magnitude of the bubble decreases asD → ±∞ with the other parameters
held fixed.

(v) The bubble gets larger as σ increases with the other parameters held fixed.

Points (i) and (ii) reflect the fact that our bubble is due to speculation, driven by
the heterogeneity of investor beliefs. Point (iii) is natural because the difference
Φ− I reflects the present value of the option to sell in the future; a smaller discount
rate makes the present value larger. To explain point (iv), we recall that the group
with higher estimate of the mean reversion rate κ owns the asset when D < θ, while
the group with lower estimate of κ owns the asset when D > θ. In particular, the
investors exchange ownership when D(t) crosses θ. Now, if the initial dividend rate
D(0) is far from θ, it will (probably) take a relatively long time for D(t) to reach
θ. Since speculative trading is far in the future, its present value is relatively small.
The explanation of point (v) is similar: as σ increases, D(t) becomes more volatile,
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Figure 3: The bubble B(θ) = Φ(θ) − I(θ) as a function of κ1, when the parameters
are given by (32) except κ1.

so D(t) crosses θ more often. Since there is more speculative trading, the bubble is
larger.

It is natural to consider the relative size of the bubble, R(D) = P∗(D)/I(D)−1.
This is plotted in Figure 2, using the same parameters as for Figure 1. Notice that
when D is near θ = .04 (which happens most of the time) the relative size of the
bubble is about 20%. Figure 2 also shows that R can be much larger than 20%.
Actually, there is even a (negative) value of D where R = ∞: this occurs when
I(D) = 0.

Figure 3 explores the dependence of the bubble on the mean reversion rates.
The figure displays the size of the bubble at D = θ, as a function of κ2, when all
the other parameters are held fixed at the values in (32). Notice that the size is
approximately linear in κ1 − κ2. This is consistent with the fact that C1 and C2

are smooth functions of κ1 and κ2 which vanish linearly as κ1 − κ2 → 0.
Figure 4 explores the dependence of the bubble on the volatility σ, by repro-

ducing Figure 1 with different choices of σ. The size of the bubble increases with
σ, consistent with observation (v) above.
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Figure 4: The minimum equilibrium prices Φ(D) for different choices of σ, when
the parameters are given by (32) except σ.

Appendix

The following series representation of F−υi(w) is given on page 639 of [1]:

F−υi(w) =
√

π

2υi

{ 1
Γ(υi+1

2 )

(
1 +

∞∑
k=1

υi(υi + 2) . . . (υi + 2k − 2)
(2k)!

w2k
)
−

√
2w

Γ(υi

2 )

(
1 +

∞∑
k=1

(υi + 1)(υi + 3) . . . (υi + 2k − 1)
(2k + 1)!

w2k
)}

In Section 4 we gave a 2×2 linear system that determines the constants C1 and
C2 in the formula (8) for Φ. Solving that system and using the series representation
just given, one finds that

C1 =
2

υ1
2 σ(κ1 − κ2)√

πΓ(υ2+1
2 )λ(λ + κ1)(λ + κ2)

F

C2 =
2

υ2
2 σ(κ1 − κ2)√

πΓ(υ1+1
2 )λ(λ + κ1)(λ + κ2)

F

where
F =

( 1√
κ1Γ(υ1+2

2 )Γ(υ2+1
2 )

+
1√

κ2Γ(υ1+1
2 )Γ(υ2+2

2 )

)−1
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