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PROVING REGULARITY OF THE MINIMAL PROBABILITY OF RUIN

VIA A GAME OF STOPPING AND CONTROL

ERHAN BAYRAKTAR AND VIRGINIA R. YOUNG

Abstract. We reveal an interesting convex duality relationship between two problems: (a) minimizing the

probability of lifetime ruin when the rate of consumption is stochastic and when the individual can invest

in a Black-Scholes financial market; (b) a controller-and-stopper problem, in which the controller controls

the drift and volatility of a process in order to maximize a running reward based on that process, and the

stopper chooses the time to stop the running reward and rewards the controller a final amount at that

time. Our primary goal is to show that the minimal probability of ruin, whose stochastic representation

does not have a classical form as does the utility maximization problem (i.e., the objective’s dependence

on the initial values of the state variables is implicit), is the unique classical solution of its Hamilton-

Jacobi-Bellman (HJB) equation, which is a non-linear boundary-value problem. We establish our goal by

exploiting the convex duality relationship between (a) and (b).

MSC 2000 Classification: Primary 93E20, 91B28; Secondary 60G40.
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1. Introduction and Motivation

The main goal of this paper is to prove regularity of the minimum probability of lifetime ruin when

the rate of consumption is stochastic and the individual invests in a Black-Scholes market to cover her

consumption needs. We will refer to this optimization problem as Problem 1. The Hamilton-Jacobi-

Bellman (HJB) equation corresponding to this problem is a boundary-value problem. A priori regularity

of this function is not clear, unlike the value functions corresponding to utility maximization problems,

since the dependence of the objective function on the initial values of the state variables is implicit.

(In this paper, we call a function regular when it is convex/concave and is the classical solution of the

corresponding HJB equation.) As a first step, we reduce the dimension of this problem. The resulting

problem, which we will refer to as Problem 2, surprisingly has also an economic meaning: It is the problem

of minimizing the probability of lifetime ruin for which the individual has constant consumption, with

the opportunity set to cover her consumption consisting of two risky assets.
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Next, we consider a controller-and-stopper game, which we will refer to as Problem 3. The analysis

of Problem 3 is crucial in the proof of the regularity of the minimum probability of ruin. In this game,

first, the controller controls the drift and volatility of a process in order to maximize a running reward

based on that process; then, the stopper chooses the time to stop the running reward and rewards the

controller a final amount at that time. We extensively analyze this problem, considering this problem

not only as an intermediary tool but as an interesting problem in its own right. In particular, we show

that the value function is concave and is a classical solution of the corresponding HJB equation. In fact,

we consider a sequence of controller-and-stopper problems parameterized by the pay-off function. By

taking the convex dual of each element, we obtain a sequence of convex, regular functions that uniformly

converges to the minimum probability of ruin. This fact leads to the proof of regularity the minimum

probability of ruin in Problem 2, which in turn leads to regularity of Problem 1. Please see Section 3.1

for a detailed outline of our proof of regularity of the value functions of Problems 1, 2, and 3, and in

particular, for the ordering of their regularity proofs.

When an individual determines an optimal investment policy, the resulting optimal policy depends on

the criterion used. Young (2004) proposes minimizing the probability of ruin as an alternative criterion

to maximizing one’s expected discounted utility of consumption and bequest. Minimizing the probability

that one outlives one’s wealth is arguably an “objective” goal as compared with the goal of maximizing

utility, in which one has to specify a “subjective” utility function. For further motivation of this problem,

see Bayraktar and Young (2007a,b), Browne (1995), Milevsky and Robinson (2000), Milevsky, Ho, and

Robinson (1997), and Milevsky, Moore, and Young (2006).

In the first of the two ruin minimization problems, we assume that the individual can invest in a

financial market with one risky and one riskless asset. Young (2004) considers this problem in the case

for which consumption is either constant or a constant proportion of wealth. In this paper, we assume

that the individual consumes at a rate that follows a diffusion that is correlated with the risky asset’s

price process. It is important to consider random consumption because even though consumption is to

some extent under the control of the individual, pressure from inflation or unexpected events can cause

even the most frugal of individuals to experience random required consumption. Note that the solutions

of the first two problems are useful in deriving mutual fund theorems for which the optimization criterion

is the probability of ruin. See the note by Bayraktar and Young (2008).

Games of stopping and control were recently studied by Karatzas and Sudderth (2001). They study

a zero-sum game for which the controller selects the coefficients of a linear diffusion on a given interval,

while the stopper can halt the process at any time. The arguments in this paper work when there is no

running reward. Karatzas and Zamfirescu (2006, 2008), on the other hand, develop a martingale approach

for studying controller-and-stopper games when only the drift can be controlled, and they find conditions

under which the game has a value. More recently, Buckdahn and Li (2009) considered controller and

stopper games in a very general framework and analyzed the viscosity solution property of the value

functions.

The remainder of the paper is organized as follows: In Section 2, we present the three control problems

along with our major theorems. Section 3 is home to our proofs. Here, we see how regularity of the
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controller-and-stopper problem leads to regularity of the minimum lifetime ruin probability. Please see

Section 3.1 for the outline of the proofs given in this section. Section 4 concludes the paper.

2. Three Related Optimal Control Problems

In this section, we describe three related optimal control problems. In Section 2.1, we consider our

main problem, the problem of minimizing the probability of lifetime ruin when the rate of consumption

is stochastic and when the individual can invest in a Black-Scholes financial market. In Section 2.2,

we consider the problem of minimizing the probability of lifetime ruin when the rate of consumption

is constant but the individual can invest in two risky correlated assets. In Section 2.3, we consider a

controller-and-stopper problem. First, the controller controls the drift and volatility of a process in order

to maximize a running reward based on that process. Then, the stopper chooses the time to stop the

running reward and pays the controller a final amount at that time. This final amount is a function

of the value of the process at the time of stopping. In Section 2.4, we show how the three control

problems described in Sections 2.1 through 2.3 are related: The second problem is obtained from the first

problem after reducing the dimension, and the third problem is the concave dual of the second. This last

relationship is crucial since it is not clear a priori that the value functions of the first two problems are

convex or smooth, and in Section 3 we heavily rely on this relationship in our proof to show the regularity

of these value functions.

One should note that in this section we merely state the problems, and their regularity results, and we

summarize the proofs and give the relationship among the three problems. It will be clear in Section 3

(please see the outline in Section 3.1), how the regularity of the third problem leads to the regularity of

the second, which in turn leads to the regularity of the first.

2.1. Probability of Lifetime Ruin with Stochastic Consumption. In this section, we present the

financial ingredients that affect the individual’s wealth, namely, random consumption, a riskless asset,

and a risky asset. We assume that the individual invests in order to minimize the probability that her

wealth reaches zero before she dies.

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space that supports two standard Brownian motions

Bc and BS, whose correlation coefficient is given by ρ ∈ (−1, 1). The individual consumes at a random

continuous rate ct at time t. One can interpret this consumption rate as the net consumption rate offset

by (possibly random) income. We assume that ct follows geometric Brownian motion given by

dct = ct(a dt+ b dBc
t ), c0 = c > 0,

in which b > 0. The individual invests in a riskless asset whose price at time t, Xt, follows the deterministic

process dXt = rXtdt,X0 = x > 0, for some fixed rate of interest r > 0. Also, the individual invests in a

risky asset whose price at time t, St, follows geometric Brownian motion given by

dSt = St(µdt+ σ dBS
t ), S0 = S > 0,

in which σ > 0. Note that we preclude |ρ| = 1 because one can explicitly compute the value function in

that case, as in Young (2004).
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Let Wt be the wealth at time t of the individual, and let πt be the amount that the decision maker

invests in the risky asset at that time. It follows that the amount invested in the riskless asset is Wt−πt,
and wealth follows the process

dWt = (rWt + (µ− r)πt − ct) dt+ σ πt dB
S
t , W0 = w > 0.

Define a hitting time τ0 associated with the wealth process by τw,c
0 = inf{t ≥ 0 : Wt ≤ 0}. This hitting

time is the time of ruin. Also, define the random time of death of the individual by τd. We assume that

τd is exponentially distributed with parameter λ (that is, with expected time until death equal to 1/λ);

this parameter is also known as the hazard rate of the individual. Even though we assume that τd is

exponentially distributed (which is equivalent to a constant hazard rate), all our results extend to the

case for which the hazard rate is time dependent. However, we only consider a constant hazard rate in

this paper to simplify the presentation. We assume that τd is independent of the σ-algebra generated by

the Brownian motions Bc and BS .

By probability of lifetime ruin, we mean the probability that wealth reaches 0 before the individual

dies, that is, τw,c
0 < τd. We minimize with respect to the set of admissible investment strategies A,

which is a collection of {Ft}-progressively measurable strategies π (in which Ft is the augmentation of

σ(Bc
s, B

S
s : 0 ≤ s ≤ t)) that satisfy the integrability condition

∫ t
0 π

2
s ds < ∞, almost surely, for all t ≥ 0.

The minimum probability of lifetime ruin ψ is given by

ψ(w, c) = inf
π∈A

P (τw,c
0 < τd) . (2.1)

We have the following theorem for the minimum probability of lifetime ruin ψ, which is the main result

of the paper.

Theorem 2.1. The minimum probability of lifetime ruin ψ given in (2.1) is strictly decreasing and strictly

convex with respect to w, strictly increasing with respect to c, and lies in C2(R2
+). Additionally, ψ is the

unique solution of the following Hamilton-Jacobi-Bellman (HJB ) equation on R2
+ :

λ v = (rw − c) vw + a c vc +
1

2
b2 c2 vcc +min

π

[
(µ− r)π vw +

1

2
σ2 π2 vww + σ π b c ρ vwc

]
,

v(0, c) = 1 and v(w, 0) = 0.

(2.2)

The optimal investment strategy π∗ is given in feedback form by

π∗t = −(µ− r)ψw (W ∗
t , ct) + σ b ρ ct ψwc(W

∗
t , ct)

σ2 ψww(W
∗
t , ct)

, (2.3)

in which W ∗ is the optimally controlled wealth process.

Proof. See Section 3.1, item 11, for an outline of the proof of this theorem, and see Section 3.4 for the

proof itself. �

Let us comment on the proof of this theorem: It is far from clear that ψ is convex or smooth. As a first

step, we reduce the dimension of the problem from two variables to one (and obtain the problem given in

the next section). We, then, construct a regular sequence of convex functions that converges uniformly

to the value function that we obtain after the dimension reduction. We construct this sequence by taking
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the Legendre transform of the controller-and-stopper problem we introduce in Section 2.3. The regularity

analysis of the stopper-controller problem in Section 2.3 turns out to be simpler, which, in turn, provides

us a useful means for proving regularity of ψ.

2.2. Probability of Lifetime Ruin with Two Risky Assets. Consider two (risky) assets with prices

S̃(1) and S̃(2) following the diffusions

dS̃
(1)
t = S̃

(1)
t

(
r̃ dt+ b

√
1− ρ2 dB̃

(1)
t

)
, dS̃

(2)
t = S̃

(2)
t

(
µ̃ dt+

√
b2(1− ρ2) + σ2 dB̃

(2)
t

)
,

in which r̃ = r− a+ b2 + (µ− r − σbρ)ρb/σ and µ̃ = µ− r − σbρ+ r̃. Also, B̃(1) and B̃(2) are correlated

standard Brownian motions on a probability space (Ω̃, F̃ , P̃) with correlation coefficient

ρ̃ =
b
√

1− ρ2√
b2(1− ρ2) + σ2

.

Suppose an individual has wealth Zt at time t, consumes at the constant rate of 1, and wishes to invest

in these two assets in order to minimize her probability of lifetime ruin. Let π̃t be the dollar amount that

the individual invests in the second asset at time t; then, Zt− π̃t is the amount invested in the first asset

at time t.

It follows that the wealth process Z follows the dynamics

dZt = −dt+ (Zt − π̃t)
(
r̃ dt+ b

√
1− ρ2 dB̃

(1)
t

)
+ π̃t

(
µ̃ dt+

√
b2(1− ρ2) + σ2 dB̃

(2)
t

)

= ((r̃Zt − 1) + (µ − r − σbρ)π̃t) dt+ Zt b
√

1− ρ2 dB̃
(1)
t + π̃t

(√
b2(1− ρ2) + σ2 dB̃

(2)
t − b

√
1− ρ2 dB̃

(1)
t

)

(2.4)

with Z0 = z. Now, denote minimum probability of lifetime ruin for this individual by φ. Specifically,

define φ by

φ(z) = inf
π̃∈Ã

P̃ (τ̃ z0 < τd) , (2.5)

in which τ̃ z0 = inf{t ≥ 0 : Zt ≤ 0} is the time of ruin. Also, Ã is the set of admissible strategies for this

problem, defined similarly as we defined A.

Although it is not obvious, it turns out that ψ(w, c) = φ(w/c), as we will show later in Section 2.4;

therefore, φ arises by reducing the dimension of ψ. It is remarkable that φ itself is the minimum probability

of ruin for a problem that has economic meaning. We have the following theorem for the minimum

probability of lifetime ruin φ.

Theorem 2.2. The minimum probability of lifetime ruin φ given in (2.5) is strictly decreasing, strictly

convex, and C2 on R+. Additionally, φ is the unique classical solution of the following HJB equation on

R+ :

λ f = (r̃z − 1) f ′ +
1

2
b2 (1− ρ2) z2 f ′′ +min

π̃

[
(µ− r − σbρ) π̃ f ′ +

1

2
σ2 π̃2 f ′′

]
,

f(0) = 1 and lim
z→∞

f(z) = 0.

(2.6)
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The optimal investment strategy π̃∗ is given in feedback form by

π̃∗t = −µ− r − σbρ

σ2
φ′(Z∗

t )

φ′′(Z∗
t )
, (2.7)

in which Z∗ is the optimally controlled wealth process.

Proof. See Section 3.1, items 8 through 10, for an outline of the proof of this theorem and part of

Theorem 2.3, and see Section 3.3 for the proof itself. �

The proof of the previous theorem under this assumption is performed by constructing the following

sequence of functions, which we show (in Section 3) to be a regular sequence of functions that converges

uniformly to φ: Consider the hitting time τ̃ zM = inf{t ≥ 0 : Zt ≥ M}, for M > 0. If we were to suppose

that the goal of the individual were to minimize the probability of her wealth hitting 0 before dying or

before her wealth hitting M > 0, then we would have the modified minimum probability of lifetime ruin

as follows:

φM (z) = inf
π̃∈Ã

P̃ (τ̃ z0 < (τ̃ zM ∧ τd)) , (2.8)

Clearly, φM (z) = 0 for z ≥M . We have the following theorem for φM .

Theorem 2.3. The modified minimum probability of lifetime ruin φM given in (2.8) is continuous on

R+. Moreover, it is strictly decreasing, strictly convex, and C2 on (0,M). Additionally, φM is the unique

solution of the following HJB equation on [0,M ] :

λ f = (r̃z − 1) f ′ +
1

2
b2 (1− ρ2) z2 f ′′ +min

π̃

[
(µ− r − σbρ) π̃ f ′ +

1

2
σ2 π̃2 f ′′

]
,

f(0) = 1 and f(M) = 0.

(2.9)

The optimal investment strategy π̃∗M on (0,M) is given in feedback form by

(π̃∗M )t = −µ− r − σbρ

σ2
φ′M (Z∗

t )

φ′′M (Z∗
t )

, (2.10)

in which Z∗ is the optimally controlled wealth process. Furthermore, on R+, we have

lim
M→∞

φM (z) = φ(z). (2.11)

In fact, the convergence is uniform.

Proof. See Section 3.1, items 6 through 10, for an outline of the proof of this theorem and part of

Theorem 2.2, and see Section 3.3 for the proof itself. �

In the proof of the regularity and the uniform convergence of {φM} to φ as M → ∞, we use the fact

that each φM is the Legendre transform of a concave function, which is defined in the next section.
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2.3. Controller-and-Stopper Problem. For a positive constant M , define the following “payoff func-

tion” uM for y ≥ 0 by

uM (y) := min(My, 1). (2.12)

Fix values yM < 1/M < y0. Note that u is maximal among non-decreasing, concave functions f defined

on R+ that take values f(0) = 0, f(yM ) =MyM and f(y0) = 1.

Define a controlled stochastic process Y y,α by

dY y,α
t = Y y,α

t

[
(λ− r̃) dt+

µ− r − σbρ

σ
dB̂

(1)
t

]
+ αt

[
b
√

1− ρ2 dt+ dB̂
(2)
t

]
, (2.13)

with Y y,α
0 = y ≥ 0 in which B̂(1) and B̂(2) are independent standard Brownian motions on a probability

space (Ω̂, F̂ , P̂). We define the set of admissible controls as A(y) the collection of {F̂t}-progressively
measurable strategies α ≡ (αt)t≥0 (in which F̂t is the augmentation of σ(B̂

(1)
s , B̂2

s : 0 ≤ s ≤ t)) that

satisfy the integrability condition Ê[
∫ t
0 α

2
s ds] <∞ and Y y,α

t ≥ 0, almost surely, for all t ≥ 0.

Consider the controller-and-stopper problem given by

φ̂M (y) = sup
α∈A(y)

inf
τ
Ê

[∫ τ

0
e−λt Y y,α

t dt+ e−λτ uM (Y y,α
τ )

]
, (2.14)

in which τ is a stopping time with respect to (F̂t)t≥0. For this problem, the controller receives a (dis-

counted) running reward of Y y,α and seeks to make this as high as possible until the stopper ends the

game with the payoff of uM .

Although it is not obvious, it turns out that φ̂M is the concave dual of φM , as we will show later in

Section 2.4. It is remarkable that the concave dual of the probability of ruin is the value function for

a problem that has economic meaning. Moreover, it is the value function for a class of games that has

not been studied to a great extent, with the exception of the work of Karatzas and his co-authors (as

referenced in the Introduction); therefore, analyzing this value function is of interest on its own right.

We have the following theorem for the value function φ̂M defined in (2.14).

Theorem 2.4. (i) The controller-and-stopper problem in (2.14) has a continuation region given by D =

{y ∈ R+ : φ̂M (y) < uM (y)} = (yM , y0) for some 0 ≤ yM ≤ 1/M ≤ y0. The value function for this

problem, namely φ̂M , is non-decreasing (strictly increasing on [0, y0] ), concave, and C2 on R+ (except

for possibly at yM and y0, where it is C1). The value function is strictly concave on (yM , y0). (ii) Let us

define m by

m =
1

2

(
µ− r − σbρ

σ

)2

. (2.15)

Then φ̂M is the unique classical solution of the following boundary value problem among the positive

functions bounded above by uM :

λg = y + (λ− r̃)yg′ +my2g′′ +max
α

[
b
√

1− ρ2αg′ +
1

2
α2g′′

]
on D,

g(yM ) =MyM and g(y0) = 1.

(2.16)

Finally, φ̂M satisfies smooth pasting at the boundary of D; specifically, φ̂′M (yM ) =M and φ̂′M (y0) = 0.
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Proof. See Section 3.1, items 1 through 5, for an outline of the proof of this theorem, and see Section 3.2

for the proof itself. �

The optimal investment strategies for the controller and stopper problem are constructed Section 3 in

Proposition 3.11.

2.4. Relationship Among the Three Control Problems. In this section, we show how the three

control problems described in Sections 2.1 through 2.3 are related given the validity of Theorems 2.1

through 2.4. In Section 3, this relationship is heavily used to prove regularity of the problem of minimizing

the lifetime probability of ruin. A direct proof of regularity of this function is not available, whereas a

direct proof of regularity of the controller-and-stopper problem is.

Begin with φ̂M , the value function for the controller-and-stopper problem defined in (2.14). Because

φ̂M is concave on R+, we can define its convex dual via the Legendre transform (see, for example,

Karatzas and Shreve (1998, Section 3.4)) as follows:

ΦM(z) = max
y≥0

[
φ̂M (y)− zy

]
. (2.17)

Theorem 2.5. The convex dual, namely ΦM of φ̂M is a C2 solution of the boundary-value problem (2.9)

on [0,M ] with ΦM (z) = 0 for z ≥ M . The function z → ΦM (z) is strictly decreasing on [0,M ] and

strictly convex on z ∈ (0,M).

Proof. We have two cases to consider: (1) z ≥ M and (2) z < M . If z ≥ M , then ΦM (z) = 0 because

φ̂M (y) ≤ uM (y) ≤My ≤ zy, from which it follows that the maximum on the right-hand side of (2.17) is

achieved at y∗ = yM .

For the remainder of this proof, assume that z < M . In this case, the critical value y∗ solves the

equation φ̂′M (y) − z = 0. (Recall that the slope of φ̂M decreases from M at y = yM to 0 at y = y0

continuously.) Thus, y∗ = IM(z), in which IM is the inverse of φ̂′M on [yM , y0]. It follows that for z < M ,

we have

ΦM (z) = φ̂M [IM (z)] − zIM (z). (2.18)

Expression (2.18) implies that

Φ′
M (z) = φ̂′M [IM (z)] I ′M (z)− IM (z)− zI ′M (z) = zI ′M (z) − IM (z)− zI ′M (z) = −IM (z) < 0, z ∈ [0,M ].

(2.19)

Thus, the dual variable y is related to the original variable z via y∗ = IM (z) = −Φ′
M (z). Note that from

(2.19), we have

Φ′′
M (z) = −I ′M (z) = −1/φ̂′′M [IM (z)] .

Note that z → ΦM (z) is strictly convex on (0,M), since y → φ̂M (y) is strictly concave on (yM , y0).

We proceed to find the boundary-value problem that ΦM solves given that φ̂M solves the free-boundary

problem in (2.16). In the differential equation for φ̂M in (2.16) with the optimal control substituted for

α, let y = IM (z) = −Φ′
M(z) to obtain

λφ̂M [IM (z)] = IM (z) + (λ− r̃)IM (z)φ̂′M [IM (z)] +mI2M(z)φ̂′′M [IM (z)]− 1

2
b2(1− ρ2)

(
φ̂′M [IM (z)]

)2

φ̂′′M [IM (z)]
.
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Rewrite this equation in terms of ΦM to get

λ
[
ΦM (z)− zΦ′

M (z)
]
= −Φ′

M (z)− (λ− r̃)zΦ′
M (z) +m

(Φ′
M (z))2

−Φ′′
M(z)

− 1

2
b2(1− ρ2)

z2

−1/Φ′′
M (z)

,

or equivalently,

λΦM(z) = (r̃z − 1)Φ′
M (z) −m

(Φ′
M (z))2

Φ′′
M (z)

+
1

2
b2(1− ρ2)z2Φ′′

M (z), (2.20)

which is identical to the differential equation in (2.9) that φM solves on [0,M ].

Next, consider the boundary conditions in (2.16). The boundary conditions at y = yM , namely

φ̂M (yM ) =MyM and φ̂′M (yM) =M , imply that the corresponding dual value of z is M and that

ΦM (M) = 0, (2.21)

as earlier discussed in the case when z ≥ M . Similarly, the boundary conditions at y = y0, namely

φ̂M (y0) = 1 and φ̂′M (y0) = 0, imply that the corresponding dual value of z is 0 and that

ΦM(0) = 1. (2.22)

Thus, we have shown that the Legendre transform ΦM of the value function of the optimal controller-and-

stopper problem φ̂M in (2.14), or equivalently the solution of the free-boundary problem in (2.16), is the

solution of the boundary-value problem (2.20)-(2.22) on [0,M ]. Note that the boundary-value problem

for ΦM is identical to the one for φM in (2.9). Additionally, we showed that for z ≥ M , ΦM (z) = 0,

which is also clearly true for φM . �

In other words, we have shown that under the validity of Theorems 2.3 and 2.4, the Legendre transform

of φ̂M equals the minimum probability of ruin φM . Next, note that it is natural that limM→∞ φM (z) =

φ(z) on R+, and we show this result below in Section 3.3; see Propositions 3.14 through 3.16.

Finally, we relate φ in (2.5) and (2.6) to ψ in (2.1) and (2.2). Indeed, define Ψ on R2
+ by Ψ(w, c) =

φ(w/c). Then, after a fair amount of calculus, one can show that Ψ solves (2.2). By the uniqueness of

the solution of (2.2), it follows that Ψ = ψ. In other words, φ and ψ are related by φ(z) = ψ(z, 1) and

ψ(w, c) = φ(w/c). Moreover, the optimal investment strategy π∗ for the problem in Section 2.1 is related

to the optimal investment strategy π̃∗ for the problem in Section 2.2 by

π∗t = c

(
π̃∗t + ρ

b

σ
Z∗
t

)
, (2.23)

in which Z∗ is the optimally-controlled wealth.

3. Proofs of Theorems 2.1-2.4

In this section, we prove Theorems 2.1 through 2.4, namely, that each of the value functions for the

problems described in Sections 2.1 through 2.3 is smooth and is the unique solution of its respective HJB.

We will see that Theorems 2.4 and 2.5 are the primary ingredients of the proof of our main theorem,

Theorem 2.1.

In Section 3.1, we outline our program for proving these theorems. In Section 3.2, we prove Theorem 2.4

via a series of propositions. In Section 3.3, we first prove Theorem 2.3 using Theorem 2.4. Theorem 2.2

follows as a corollary of Theorem 2.3. Finally, we prove Theorem 2.1 in Section 3.4 using Theorem 2.2.
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3.1. Scheme for Proving Theorems 2.1-2.4. To show that value functions for the three problems have

the properties stated in Theorems 2.1-2.4 and to show that each is the unique solution of its corresponding

HJB, we will proceed as follows:

Proof of Theorem 2.4 and extensive analysis of the controller-and-stopper problem:

1. Show that φ̂M is a viscosity solution of the HJB-VI (2.16); see Propositions 3.1 through 3.3.

2. Prove a comparison theorem for (2.16); see Proposition 3.6. From this result, conclude that φ̂M

is the unique viscosity solution of the HJB-VI; see Corollary 3.7.

3. Show that smooth pasting holds for the controller-and-stopper problem; see Proposition 3.8.

4. Show that φ̂M is C2 and strictly concave in the continuation region; see Propositions 3.9. From

this result, conclude that φ̂M is in C1(R+) ∩ C2(R+ − {yM} − {y0}), in which (yM , y0) is the

continuation region.

5. Conclude that φ̂M is the unique solution in C1(R+)∩C2(R+−{yM}−{y0}) of the free-boundary
problem onR+ given in (2.16); see Corollary 3.10 and Proposition 3.11. The latter also constructs

optimal stopping and control strategies for the controller and stopper problem.

Proof of the regularity portion of Theorem 2.3 as a corollary of Theorem 2.4:

6. Then, from Theorem 2.5 in Section 2.4, conclude that the convex dual, namely ΦM , of φ̂M (via

the Legendre transform) is a C2 solution of (2.9) on [0,M ] with ΦM (z) = 0 for z ≥M .

7. Show via a verification lemma that the minimum probability of ruin φM defined in (2.8) equals

ΦM ; see Lemma 3.12 and Proposition 3.13.

Proof of the limit result of Theorem 2.3 and of Theorem 2.2 as a corollary of Theorem 2.3:

8. Show that limM→∞ φM is a viscosity solution of (2.6); see Proposition 3.14.

9. Show that limM→∞ φM is smooth; see Proposition 3.15.

10. Show that limM→∞ φM = φ on R+ and that φ is the unique smooth solution of (2.6); see

Proposition 3.16.

Proof of Theorem 2.1 as a corollary of Theorem 2.2:

11. Because φ is a classical solution of (2.6), it follows that (w, c) → φ(w/c) defines a classical

solution of (2.2). Then, via a verification lemma, we conclude that the minimum probability of

ruin ψ defined in (2.1) is given by ψ(w, c) = φ(w/c); see Proposition 3.17.

In other words, our primary goal is to show that the minimal probability of ruin for the problem in

Section 2.1 is the unique classical solution of its HJB equation; that is, show that it is regular. It is not

clear a priori that the value functions of the two problems in Section 2.1 and 2.2 are convex or smooth,

and we prove their regularity via the related problem in Section 2.3. Specifically, we (a) show that φ̂M

is regular (items 1 through 5 above); (b) then, we show that the convex dual of φ̂M equals φM and is

regular (items 6 and 7 above); (c) then, we show that limM→∞ φM = φ and is regular (items 8 through

10 above) by using the fact that φ is uniformly approximated by a regular sequence of functions; and (d)

finally, we show that ψ(w, c) = φ(w/c) and that ψ is regular.
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3.2. Proof of Theorem 2.4 and an Extensive Analysis of the Controller-and-Stopper Problem.

To prove Theorem 2.4, we begin with a series of propositions that give us useful properties of φ̂M .

Proposition 3.1. φ̂M ≤ uM on R+, and φ̂M (0) = 0. Moreover, φ̂M is non-decreasing, concave, and

continuous on [0,∞). In fact, φ̂M is uniformly continuous on [0,∞).

Proof. That φ̂M ≤ uM on R+ is clear. If y = 0, then because φ̂M (0) ≤ uM (0) = 0, the best that the

stopper can do is to set τ = 0 so that φ̂M (0) = uM (0) = 0.

For y > 0 and α ∈ A(y), it is straightforward to show that if Y y,α
0 = y, then

Y y,α
t = Ht

(
y +

∫ t

0

αs

Hs

[
b
√

1− ρ2ds+ dB̂(2)
s

])
, (3.1)

in which H is the process defined by

Ht = exp

((
λ− r̃ − 1

2

(
µ− r − σbρ

σ

)2
)
t+

µ− r − σbρ

σ
B̂

(1)
t

)
.

Now, suppose 0 < y1 < y2; then, for α ∈ A(y1), we have α ∈ A(y2). From (3.1), it follows that

Y y1,α < Y y2,α. Then, because the expression in the expectation of (2.14) is non-decreasing with respect

to Y y,α, we conclude that φ̂M is non-decreasing on R+.

Next, we prove that the function φ̂M is concave:

φ̂M (ωy1 + (1− ω)y2) = sup
α∈A(ωy1+(1−ω)y2)

inf
τ
Ê

[∫ τ

0
e−λt Y

ωy1+(1−ω)y2,α
t dt+ e−λτ uM (Y ωy1+(1−ω)y2,α

τ )

]

≥ sup
α1∈A(y1),α2∈A(y2)

inf
τ
Ê

[ ∫ τ

0
e−λt Y

ωy1+(1−ω)y2,ωα1+(1−ω)α2

t dt+ e−λτ uM

(
Y ωy1+(1−ω)y2,ωα1+(1−ω)α2
τ

)]

≥ sup
α1∈A(y1),α2∈A(y2)

inf
τ
Ê

[∫ τ

0
e−λt (ωY y1,α1 + (1− ω)Y y2,α2) dt+ e−λτ (ωuM (Y y1,α1

τ ) + (1− ω)uM (Y y2,α2
τ ))

]

≥ ωφ̂M (y1) + (1− ω)φ̂M (y2).

Here, the first inequality follows since for any αi ∈ A(yi) for i = 1, 2, we have that ωα1 + (1 − ω)α2 ∈
A(ωy1 + (1− ω)y2). The second inequality follows since Y y,a is a linear in both y and α (see (3.1)), and

uM is concave.

Because φ̂M is concave on R+, the only place that it might be discontinuous is at y = 0. However,

φ̂M (0) = 0 and φ̂M ≤ uM , so φ̂M does not have a discontinuity at y = 0. Therefore, we conclude that

φ̂M is continuous on R+.

Because φ̂M is non-decreasing, concave, and is dominated by uM (which implies that the slope at 0 is

bounded by M), it follows that

|φ̂M (y)− φ̂M (x)| ≤M |y − x|, (3.2)

for any (x, y) ∈ R2
+. This Lipschitz continuity of φ̂M implies that it is uniformly continuous on [0,∞). �

Define the region

D = {y ∈ R+ : φ̂M (y) < uM (y)}, (3.3)
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Later, in Proposition 3.11, we show that D is the continuation region for this controller-and-stopper

problem. That is, it is optimal for the stopper to let the game continue if and only if y ∈ D.

Proposition 3.2. There exist 0 ≤ yM ≤ 1/M ≤ y0 ≤ ∞ such that D = (yM , y0).

Proof. Suppose that y1 > 0 is such that φ̂M (y1) = uM (y1). First, suppose that y1 ≤ 1/M ; then, because

φ̂M (0) = 0 and because φ̂M is non-decreasing, concave, and bounded above by the line My it must be

that φ̂M (y) =My for all 0 ≤ y ≤ y1. Thus, if y1 ≤ 1/M is not in D, then the same is true for y ∈ [0, y1].

Finally, suppose that y1 ≥ 1/M ; then, because φ̂M is non-decreasing, concave, and bounded above by

the horizontal line 1 it must be that φ̂M (y) = 1 for all y ≥ y1. Thus, if y1 ≥ 1/M is not in D, then the

same is true for y ∈ [y1,∞).

It follows that there exist 0 ≤ yM ≤ 1/M ≤ y0 ≤ ∞ such that D = (yM , y0). Note that if D is empty,

we can take yM = 1/M = y0. �

We want to show that φ̂M is the unique solution of (2.16) and that it is C2, except possibly at yM and

y0. To this end, we first show that φ̂M is a viscosity solution, in which we define a viscosity solution as

follows:

Definition 3.1. (i) g ∈ C(R+) is a viscosity supersolution (respectively, subsolution) of the controller-

stopper problem if for all y1 ∈ R+ it holds that

max

[
λg(y1)− y1 − (λ− r̃)y1f

′(y1)−my21f
′′(y1)−max

α

[
b
√

1− ρ2 αf ′(y1) +
1

2
α2f ′′(y1)

]
,

g(y1)− uM (y1)

]
≥ 0,

(3.4)

(respectively, ≤ 0) whenever f ∈ C2(R+) and g − f has a global minimum (respectively, maximum).

(ii) g is a viscosity solution if it is both a viscosity super- and subsolution.

We will use the dynamic programming principle for differential games, see Fleming and Souganidis

(1989). Although this theorem is stated in terms of two controllers we can still apply this theorem by

turning the stopper into a controller by assigning vτ = 1{τ<t} for each stopping time τ . As a result of the

dynamic programming principle (DPP), φ̂M is a viscosity solution of the HJB-VI in (3.4), as we show in

the following proposition:

Proposition 3.3. The function φ̂M is a viscosity solution of the HJB-VI in (3.4).

Proof. The proof follows from Theorem 4.1 of Buckdahn and Li (2009). Here, we will present the proof of

the viscosity subsolution property using more classical arguments similar to the ones used in Proposition

4.3.2 in Pham (2009).

First recall that φ̂M ∈ C(R+) from Proposition 3.1. We will show that

max

[
λf(y1)− y1 − (λ− r̃)y1f

′(y1)−my21f
′′(y1)−max

α

[
b
√

1− ρ2 αf ′(y1) +
1

2
α2f ′′(y1)

]
,

f(y1)− uM (y1)

]
≤ 0,

(3.5)
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for f ∈ C2(R+) such that φ̂M − f has a global maximum at y1. Without loss of generality, we can

assume that φ̂M (y1) = f(y1), φ̂M ≤ f on R+, and that y1 is a strict maximum point of φ̂M − f . Because

φ̂M (y1) ≤ uM (y1), it is enough to prove the following inequality at y1:

λf(y1) ≤ y1 + (λ− r̃)y1f
′(y1) +my21f

′′(y1) + max
α

[
b
√
1− ρ2 αf ′(y1) +

1

2
α2f ′′(y1)

]
. (3.6)

We will prove that (3.6) holds by contradiction. Assume that

λf(y1) > y1 + (λ− r̃)y1f
′(y1) +my21f

′′(y1) + max
α

[
b
√

1− ρ2 αf ′(y1) +
1

2
α2f ′′(y1)

]
(3.7)

Observe that (3.7) holds for a test function f if either f ′′(y1) < 0 or f ′′(y1) = f ′(y1) = 0. First, we will

show that the latter scenario is not possible. To this end, observe that

0 = lim
h↓0

f(y1 + h)− f(y1)

h
≥ lim

h↓0

φ̂M (y1 + h)− φ̂M (y1)

h
:= D+φ̂M (y1), (3.8)

where the last expression denotes the right-derivative of φ̂M , which always exits thanks to the concavity of

φ̂M . Since φ̂M is increasing, (3.8) implies that D+φ̂M (y1) = 0. Now, using the fact that φ̂M is increasing

again, we obtain that φ̂′M (y) = 0 for y > y1. We can conclude that φ̂M (y) = φ̂M (y1), y ≥ y1. Let us

define τ ε(α) := inf{t ≥ 0 : Y y1,α
t ≥ y1 + ε}, with the convention that inf ∅ = ∞. The DPP applied to

(2.14) yields

φ̂M (y1) = sup
α∈A(y1)

inf
τ
Ê

[∫ τ∧τε(α)

0
e−λt Y y1,α

t dt+ e−λ(τ∧τε(α)) φ̂M

(
Y y1,α
τε(α)∧τ

)]

≤ sup
α∈A(y1)

inf
τ
Ê

[∫ τ∧τε(α)

0
e−λt(y1 + ε)dt+ e−λ(τ∧τε(α)) φ̂M (y1)

]

=
y1 + ε

λ
+ sup

α∈A(y1)
inf
τ
Ê

[(
φ̂M (y1)−

(y1 + ε)

λ

)
e−λ(τ∧τε(α))

]
.

(3.9)

We will show that (3.9) implies

φ̂M (y1) ≤
y1 + ε

λ
. (3.10)

Let us assume the contrary. Then (3.9) implies that

sup
α∈A(y1)

Ê

[
e−λτε(α)

]
= 1. (3.11)

Let us define

u(y) := sup
α∈A(y)

Ê

[
e−λτ̃ε(α)

]
, where τ̃ ε(α) := inf{t ≥ 0 : Y y,α

t ≥ y1 + ε},

which is an example of a stochastic exit time problem. It follows that u is a viscosity solution of

λu(y)− (λ− r̃)yu′(y)−my2u′′(y)−max
α

[
b
√

1− ρ2 αu′(y1) +
1

2
α2u′′(y1)

]
= 0, y ∈ (0, y1 + ε), (3.12)

with boundary condition u(y1+ε) = 1; see e.g. Bayraktar et al. (2010). Since u(y1) = 1 (see (3.11)), and

u ≤ ũ ≡ 1, it follows from the viscosity subsolution property of u (applying the subsolution inequality to

the test function ũ ≡ 1) that λ ≤ 0, which contradicts the choice of λ. Therefore, u(y1) < 1 and as a result
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(3.10) holds. Since ε is arbitrary we have that φ̂M (y1) ≤ y1/λ. However, this inequality contradicts (3.7),

because this equation together with f ′(y1) = f ′′(y1) = 0 implies that φ̂M (y1) = f(y1) > y1/λ. Therefore,

we can not have that f ′(y1) = f ′′(y1) = 0.

In what follows, we will assume, for the ease of notation, that y1 > 0. Similar arguments to those below

hold when y1 = 0. We have so far proven that (3.7) (together with the fact that φ̂ is nondecreasing and

concave) implies that f ′′(y1) < 0. As a result, for small enough δ > 0, there exists η > 0 and ε ∈ (0, δλ]

such that

max{φ̂M (y1 − η)− f(y1 − η), φ̂M (y1 + η)− f(y1 + η)} = −δ,

λf(y)− y − (λ− r̃)yf ′(y)−my21f
′′(y)−max

α

[
b
√

1− ρ2 αf ′(y) +
1

2
α2f ′′(y)

]
≥ ε, (3.13)

for y ∈ (y1 − η, y1 + η). Given T > 0 and α ∈ A(y1), define

θ(α) := inf {t ≥ 0 : |Y y1,α
t − y1| ≥ η} , τT (α) := T ∧ θ(α). (3.14)

with the convention that inf ∅ = ∞. The DPP applied to (2.14) yields

φ̂M (y1) = sup
α∈A(y1)

inf
τ
Ê

[∫ τ∧τT (α)

0
e−λt Y y1,α

t dt+ e−λ(τ∧τT (α)) φ̂M

(
Y y1,α
τT (α)∧τ

)]
, (3.15)

Let α∗ ∈ A(y1) be an ε/(2λ)-optimal strategy for the right-hand-side of (3.15). Then

φ̂M (y1)−
ε

2λ
≤ inf

τ
Ê

[∫ τ∧τT (α∗)

0
e−λt Y y1,α∗

t dt+ e−λ(τ∧τT (α∗)) φ̂M

(
Y y1,α∗

τT (α∗)∧τ

)]

≤ Ê

[∫ τT (α∗)

0
e−λt Y y1,α∗

t dt+ e−λτT (α∗) φ̂M

(
Y y1,α∗

τT (α∗)

)]
.

It follows that

− ε

2λ
≤ Ê

[∫ τT (α∗)

0
e−λt Y y1,α∗

t dt+ e−λτT (α∗) f
(
Y y1,α∗

τT (α∗)

)
− f(y1)− δe−λτT (α∗)1{θ(α∗)≤T}

]
. (3.16)

By applying Itô’s formula to e−λt f
(
Y y1,α∗

t

)
, we obtain

e−λτT (α∗)f
(
Y y1,α∗

τT (α∗)

)
= f(y1) +

∫ τT (α∗)

0
e−λt

(
−λf

(
Y y1,α∗

t

)
+
(
(λ− r̃)Y y1,α∗

t + α∗
t b
√
1− ρ2

)
f ′
(
Y y1,α∗

t

))
dt

+

∫ τT (α∗)

0
e−λt

(
m ·

(
Y y1,α∗

t

)2
+

1

2
(α∗

t )
2

)
f ′′
(
Y y1,α∗

t

)
dt+

µ− r − σbρ

σ

∫ τT (α∗)

0
e−λtf ′

(
Y y1,α∗

t

)
Y y1,α∗

t dB̂
(1)
t

+

∫ τT (α∗)

0
e−λtα∗

t f
′
(
Y y1,α∗

t

)
dB̂

(2)
t ,

(3.17)
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which, thanks to the definition of τT (α∗) and to the fact that Ê
[∫ T

0 (α∗
s)

2ds
]
< ∞ (see the definition of

admissible strategies), leads to

Ê

[
e−λτT (α∗) f

(
Y y1,α∗

τT (α∗)

)
− f(y1)

]

= Ê

[ ∫ τT (α∗)

0
e−λt

(
−λf

(
Y y1,α∗

t

)
+
(
(λ− r̃)Y y1,α∗

t + α∗
t b
√

1− ρ2
)
f ′
(
Y y1,α∗

t

))
dt

+

∫ τT (α∗)

0
e−λt

(
m · (Y y1,α∗

t )2 +
1

2
(α∗

t )
2

)
f ′′
(
Y y1,α∗

t

)
dt

]
.

(3.18)

Using (3.13), (3.16), and (3.18), we can write

− ε

2λ
≤ Ê

[∫ τT (α∗)

0
e−λt

(
Y y1,α∗

t − λf
(
Y y1,α∗

t

)
+ (λ− r̃)Y y1,α∗

t f ′
(
Y y1,α∗

t

)
+m ·

(
Y y1,α∗

t

)2
f ′′
(
Y y1,α∗

t

))
dt

]

+ Ê

[∫ τT (α∗)

0
e−λt

(
b
√

1− ρ2 α∗
t f

′
(
Y y1,α∗

t

)
+

1

2
(α∗

t )
2 f ′′

(
Y y1,α∗

t

))
dt− δe−λτT (α∗)1{θ(α∗)≤T}

]

≤ Ê

[∫ τT (α∗)

0
e−λt

(
Y y1,α∗

t − λf
(
Y y1,α∗

t

)
+ (λ− r̃)Y y1,α∗

t f ′
(
Y y1,α∗

t

)
+m ·

(
Y y1,α∗

t

)2
f ′′
(
Y y1,α∗

t

))
dt

]

+ Ê

[∫ τT (α∗)

0
e−λtmax

c

(
b
√

1− ρ2 cf ′
(
Y y1,α∗

t

)
+

1

2
c2f ′′

(
Y y1,α∗

t

))
dt− δe−λτT (α∗)1{θ(α∗)≤T}

]

≤ −Ê

[∫ τT (α∗)

0
εe−λtdt+ δe−λτT (α∗)1{θ(α∗)≤T}

]

= − ε

λ
+ Ê

[( ε
λ
− δ
)
e−λτT (α∗)1{θ(α∗)≤T} +

ε

λ
e−λτT (α∗)1{θ(α∗)>T}

]

≤ − ε

λ
+ Ê

[ ε
λ
1{θ(α∗)>T}e

−λτT (α∗)
]
.

(3.19)

We get a contradiction by sending T to infinity: −ε/(2λ) ≤ −ε/λ. �

Corollary 3.4. If M > 1/λ, then D = (yM , y0) is non-empty. In particular, yM < 1/M < λ ≤ y0.

Proof. Suppose M > 1/λ, and suppose that D is empty. Then, for all y ≥ 0, we have φ̂M (y) = uM (y) =

min(My, 1). By Proposition 3.3, φ̂M = uM is a viscosity solution of the controller-stopper problem.

Because M > 1/λ, there exists y1 ∈ (1/M,λ). The value function is identically 1 in a neighborhood of

y1, so that (3.4) evaluated at y = y1 becomes max[λ − y1, 0] = 0, which contradicts y1 < λ. Thus, the

region D is non-empty. �

In the next proposition, we provide a comparison result from which it follows that (together with

Proposition 3.1) φ̂M is the unique viscosity solution of the controller-stopper problem. Our proof proof

follows arguments that are used in the proof of Theorem 5.1 (pages 31-33) of Crandall et al. (1992)

(see Touzi (2002) for a nice exposition on the viscosity solutions in the context of stochastic control

problems). Since the controls are unbounded, the proof is a little more complicated. We use some of the

techniques developed in the proofs of Theorem 4.2 in Duffie and Zariphopoulou (1993) and Theorem 4.1
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in Zariphopoulou (1994) to overcome these difficulties. In proving the comparison result, it will be more

convenient to characterize the concept of viscosity solutions using parabolic semijets; see Crandall et al.

(1992, Definition 2.2 and Remarks 2.3 and 2.4 (pages 10-11)).

Lemma 3.5. Define the parabolic superjet of v ∈ C(R+) at y ∈ R+ by

J2,+v(y) := {(p,X) ∈ R2 : v(x) ≤ v(y) + p(x− y) +
1

2
X(x− y)2 + o

(
|x− y|2

)
as x→ y}.

Also, define the parabolic subjet of v by J2,−v(y) := −J2,+(−v(y)). Then, v ∈ C(R+) is a viscosity

supersolution (subsolution) of the controller-stopper problem if and only if for all (p,X) ∈ J2,−v(y) (resp.

J2,+v(y)), we have

max

[
λv(y)−y−(λ− r̃)yp−my2X−max

α

[
b
√

1− ρ2 αp +
1

2
α2X

]
, v(y)−uM (y)

]
≥ (resp. ≤) 0, (3.20)

for all y ∈ R+.

Proposition 3.6. Let u and v be nonnegative functions that are a viscosity subsolution and supersolution

of (3.20) on R+, respectively. If u is continuous and v is uniformly continuous on R+, then u ≤ v on

R+.

Proof. We will prove the statement by a contradiction argument. Suppose that

C := sup
x∈R+

(u(x)− v(x)) > 0. (3.21)

Observe that C ≤ 1 because u ≤ uM , thanks to its subsolution property, and v ≥ 0.

Given θ ∈ (0, 1), we can choose an ε > 0 sufficiently small so that

sup
x∈R+

[u(x)− v(x)− εxθ] > 0.

Otherwise, there would exist a sequence (εn)n∈N+ , with limn→∞ εn = 0, satisfying

sup
x∈R+

[u(x)− v(x) − εnx
θ] ≤ 0.

But then

0 ≥ sup
n

sup
x∈R+

[u(x) − v(x) − εnx
θ] = sup

x∈R+

sup
n
[u(x)− v(x)− εnx

θ] = sup
x∈R+

[u(x)− v(x)],

which contradicts (3.21).

Since 0 ≤ u ≤ 1, v ≥ 0, and u and v are both continuous, there exists a point x̃ ∈ R+ such that

sup
x∈R+

[u(x)− v(x)− εxθ] = u(x̃)− v(x̃)− εx̃θ. (3.22)

For β > 0, define

Ψ(x, y) := u(x)− v(y)− β

2
|x− y|2 − εxθ, (x, y) ∈ R2

+.

The maximum of Ψ is attained at a point (x̂(β, ε), ŷ(β, ε)) ∈ R2
+ at which we have

β

2
|x̂(β, ε) − ŷ(β, ε)|2 + εx̂(β, ε)θ < u(x̂(β, ε)) − v(ŷ(β, ε)) ≤ 1, (3.23)
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in which the first inequality follows from

Ψ(x̂(β, ε), ŷ(β, ε)) ≥ Ψ(x̃, x̃) > 0. (3.24)

Let us show that x̂(β, ε) 6= 0. First, note that u(0) = 0, which follows from 0 ≤ u ≤ uM . If x̂(β, ε) = 0,

then (3.23) would yield
β

2
ŷ(β, ε)2 < −v(ŷ(β, ε)).

This gives us a contradiction because v is a non-negative function.

For later use, we will now show that

lim
β→∞

β|x̂(β, ε) − ŷ(β, ε)|2 = 0, (3.25)

and that

lim
ε→0

lim
β→∞

εx̂(β, ε)θ = 0. (3.26)

The limit in (3.25) is a result of the following sequence of inequalities:

β

2
|x̂(β, ε) − ŷ(β, ε)|2 = u(x̂(β, ε)) − v(ŷ(β, ε)) − εx̂(β, ε)θ −Ψ(x̂(β, ε), ŷ(β, ε))

≤ u(x̂(β, ε)) − v(x̂(β, ε)) − εx̂(β, ε)θ − u(x̃) + v(x̃) + εx̃θ + (v(x̂(β, ε)) − v(ŷ(β, ε)))

≤ wv

(√
2

β

)
,

(3.27)

where wv is a modulus of continuity of the uniformly continuous function v. The first inequality in (3.27)

follows from (3.24); and the second inequality is thanks to (3.22) and (3.23).

Due to (3.23), εx̂(β, ε)θ is bounded above uniformly in β. Hence (along a subsequence), we have that

limβ→∞ x̂(β, ε) = x0(ε) for some x0(ε) ∈ R+. Letting β → ∞ in (3.24) yields

u(x0(ε))− v(x0(ε)) − εx0(ε)
θ ≥ u(x)− v(x)− εxθ, for all x ∈ R+. (3.28)

Taking the limit as ε→ 0 (along a subsequence), we obtain that

lim
ε→0

(u(x0(ε))− v(x0(ε))) − lim
ε→0

εx0(ε)
θ ≥ u(x)− v(x), for all x ∈ R+,

which implies that (3.26) holds.

Again for future use, we will now analyze the parabolic superjet of u at x̂(β, ε) and the parabolic subjet

of v at ŷ(β, ε). We first apply Theorem 3.2 of Crandall et al. (1992) choosing k = 2, u1(x) := u(x)− εxθ,

u2(x) = −v(y), and ϕ(x, y) = (β/2)(x− y)2. In this case, ∂xϕ(x̂(β, ε), ŷ(β, ε)) = −∂yϕ(x̂(β, ε), ŷ(β, ε)) =
β(x̂(β, ε)− ŷ(β, ε)). As a result, A = D2ϕ(x̂(β, ε), ŷ(β, ε)) is given by

A = β

(
1 −1

−1 1

)
,

which satisfies A2 = 2βA. Therefore, for every δ > 0, there exists a pair (X,Y ) ∈ R2 such that

(β(x̂(β, ε) − ŷ(β, ε)),X) ∈ J̄2,+u1(x̂(β, ε)), (β(x̂(β, ε) − ŷ(β, ε)), Y ) ∈ J̄2,−v(ŷ(β, ε)),
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and

−
(
1

δ
+ 2β

)(
1 0

0 1

)
≤
(
X 0

0 −Y

)
≤ (A+ δA2) = β(1 + 2δβ)

(
1 −1

−1 1

)
.

(For two matrices M and N , we write M ≥ N to mean that M −N is positive semi-definite.) Here, J̄2,−

and J̄2,+ are defined as in page 11 of Crandall et al. (1992).

Choosing δ = 1/β, we obtain

− 3β

(
1 0

0 1

)
≤
(
X 0

0 −Y

)
≤ 3β

(
1 −1

−1 1

)
. (3.29)

It follows from (3.29) that

X ≤ Y, X, Y ∈ [−3β, 3β], (3.30)

Since for any (b,B) ∈ J̄2,+u1(x̂(β, ε)), (b + εθx̂(β, ε)θ−1, B + εθ(θ − 1)x̂(β, ε)θ−2) ∈ J̄2,+u(x̂(β, ε)), we

also have that

(β(x̂(β, ε) − ŷ(β, ε)) + εθx̂(β, ε)θ−1,X + εθ(θ − 1)x̂(β, ε)θ−2) ∈ J̄2,+u(x̂(β, ε)),

(β(x̂(β, ε) − ŷ(β, ε)), Y ) ∈ J̄2,−v(ŷ(β, ε)).
(3.31)

At this point we have gathered enough ammunition to contradict the assumption in (3.21). Let us

denote

F (x, p, Z) = x+ (λ− r̃)xp+mx2Z +max
α

[
b
√
1− ρ2αp +

1

2
α2Z

]
. (3.32)

Either of the two cases holds for a given pair (β, ε) depending on the value of Y :

Case I. When Y > 0 or when both Y = 0 and x̂(β, ε) > ŷ(β, ε), then

F (ŷ(β, ε), β(x̂(β, ε) − ŷ(β, ε)), Y ) = ∞.

However, thanks to (3.20) we have that v(ŷ(β, ε)) ≥ uM (ŷ(β, ε)). On the other hand, since u is

a viscosity subsolution of (3.20), it necessarily satisfies u(x̂(β, ε)) ≤ uM (x̂(β, ε)). As a result we

have

0 < u(x̂(β, ε)) − v(ŷ(β, ε)) ≤ uM (x̂(β, ε)) − uM (ŷ(β, ε)). (3.33)

Case II. Otherwise, F (ŷ(β, ε), β(x̂(β, ε)− ŷ(β, ε)), Y ) <∞. Since X ≤ Y ≤ 0 and θ ∈ (0, 1), we also have

that

F (x̂(β, ε), β(x̂(β, ε)− ŷ(β, ε)) + εθx̂(β, ε)θ−1,X + εθ(θ − 1)x̂(β, ε)θ−2) <∞.

Using the supersolution property of v, the subsolution property of u, and the fact that max{a, b}−
max{c, d} ≥ 0 implies either a ≥ c or b ≥ d, we obtain that either

0 < u(x̂(β, ε)) − v(ŷ(β, ε)) ≤ uM (x̂(β, ε)) − uM (ŷ(β, ε)) (3.34)

or

0 < λ(u(x̂(β, ε)) − v(ŷ(β, ε)))

≤ F (x̂(β, ε), β(x̂(β, ε) − ŷ(β, ε)) + εθx̂(β, ε)θ−1,X + εθ(θ − 1)x̂(β, ε)θ−2)− F (ŷ(β, ε), β(x̂(β, ε) − ŷ(β, ε)), Y )

= x̂(β, ε) − ŷ(β, ε) + (λ− r̃)β(ŷ(β, ε) − x̂(β, ε))2 + (λ− r̃)θεx̂(β, ε)θ + C1 + C2,

(3.35)
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in which

C1 = mx̂(β, ε)2X −mŷ(β, ε)2Y ≤ 3βm(x̂(β, ε) − ŷ(β, ε))2, (3.36)

and

C2 = max
α

[
αb
√

1− ρ2
(
β(x̂(β, ε) − ŷ(β, ε)) + εθx̂(β, ε)θ−1

)
+

1

2
α2
(
X + εθ(θ − 1)x̂(β, ε)θ−2

)]

−max
α

[
αb
√

1− ρ2β(x̂(β, ε) − ŷ(β, ε)) +
1

2
α2Y

]

≤ max
α

[
αb
√

1− ρ2εθx̂(β, ε)θ−1 +
1

2
α2
(
X − Y + εθ(θ − 1)x̂(β, ε)θ−2

)]

= −1

2

(
b
√

1− ρ2εθx̂(β, ε)θ−1
)2

X − Y + εθ(θ − 1)x̂(β, ε)θ−2
≤ −b

2(1− ρ2)θ

2(θ − 1)
εx̂(β, ε)θ .

(3.37)

The estimate in (3.36) can be obtained by calculating

(
x̂(β, ε) ŷ(β, ε)

)(X 0

0 −Y

)(
x̂(β, ε) ŷ(β, ε)

)′
≤ 3β

(
x̂(β, ε) ŷ(β, ε)

)( 1 −1

−1 1

)(
x̂(β, ε) ŷ(β, ε)

)′
,

Now, thanks to (3.25) and (3.26), the right-hand-sides of (3.33), (3.34) and (3.35) all go to zero when we

first let β → ∞ and then ε→ 0. This contradicts (3.21). �

Since φ̂M is uniformly continuous and is bounded above by uM , from Propositions 3.3 and 3.6 we

deduce the following corollary:

Corollary 3.7. φ̂M is the unique viscosity solution of (3.4) among uniformly continuous positive func-

tions.

Proposition 3.8. Assume that M > 1/λ. Let y0 < ∞. The function φ̂M satisfies the smooth pasting

condition, that is,

D−φ̂M (y0) = 0, and D+φ̂M (yM ) =M,

in which D− denotes the left derivative operator and D+ the right derivative operator.

Proof. The proof is motivated by the proof of Propositon 8.2 in Shreve and Soner (1994). We will prove

the smooth pasting condition at y0 (assuming that y0 < ∞). Smooth pasting at yM follows similarly.

Thanks to the concavity of φ̂M , the right and the left derivatives exist at y0. Assume that

D+φ̂M (y0) < D−φ̂M (y0).

Let

δ ∈ (D+φ̂M (y0),D−φ̂M (y0)) = (0,D−φ̂M (y0)).

Then, for any ε > 0

ψε(y) = 1 + δ(y − y0)−
(y − y0)

2

2ε
,

dominates φ̂M locally at y0. Since φ̂M is a viscosity subsolution of (3.4) we have that

λ− y0 − (λ− r̃)y0δ +
my20
ε

+
1

2
b2(1− ρ2)

δ2

ε
≤ 0. (3.38)
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Since (3.38) can not hold for all ε > 0, our assumption that D+φ̂M (y0) < D−φ̂M (y0) is not correct. We

already know that D+φ̂M (y0) = 0; thus D−φ̂M (y0) = 0. �

Proposition 3.9. For a point ŷ ∈ D, consider a neighborhood N := (ŷ − ε, ŷ + ε) ⊂ D for some ε > 0.

The function y → φ̂M (y), y ∈ [ŷ − ε, ŷ + ε], is the unique classical solution of the following non-linear

boundary value equation:

λg = y + (λ− r̃)yg′ +my2g′′ +max
α

[
b
√

1− ρ2 αg′ +
1

2
α2g′′

]
on N,

g(ŷ − ε) = φ̂M (ŷ − ε) and g(ŷ + ε) = φ̂M (ŷ + ε),

Moreover, y → φ̂M (y) is strictly increasing and concave on N .

Proof. (i) First, assuming that y → φ̂M (y), y ∈ D, is C2, we will show that φ̂′′M (y) < 0, y ∈ D. Since

y → φ̂M (y) is concave, we already have that φ̂′′M (y) ≤ 0, y ∈ D. Because y → φ̂M (y) satisfies (3.20)

with inequality ≥, it is clear that φ̂′′M (y) < 0 for any y ∈ D satisfying φ̂′M (y) > 0. We only need to show

that there is no y ∈ D such that φ̂′′M (y) = 0 and φ̂′M (y) = 0. Let ỹ ∈ R+ be the smallest such point;

then, it would satisfy φ̂M (ỹ) = ỹ/λ, again due to (3.20). That is, ỹ lies at the intersection of y → y/λ

and y → φ̂M (y). Moreover, ỹ ≤ λ since φ̂M (y) ≤ uM (y) for all y ∈ R+. If ỹ = λ, then our claim that

φ̂′′M (y) < 0 for all y ∈ D holds since in that case uM (y) = φ̂M (y), y ≥ ỹ = λ; i.e., λ is an element of the

stopping region and not an element of D.

Thus, ỹ < λ. Since φ̂M is concave and nondecreasing, φ̂′M (y) = 0 for y > ỹ. Therefore, φ̂M (y) = ỹ/λ

for y ≥ ỹ. Let ŷ ∈ D be such that ŷ > ỹ. We have that φ̂′′M (ŷ) = 0 and φ̂′M (ŷ) = 0. According to (3.20), ŷ

should satisfy φ̂M (ŷ) = ŷ/λ, which contradicts our observation that φ̂M (ŷ) = ỹ/λ, and hence contadicts

ỹ < λ.

(ii) Since φ̂′′M (y) < 0, y ∈ D, and φ̂′M (y0) = 0, we must have that φ̂′M (y) > 0 for y ∈ D.

(iii) In the rest of the proof, we will show that φ̂M is a classical solution of the above non-linear

boundary value problem. The proof follows steps that are similar to the ones in the proof of Theorem 5

in Duffie et al. (1997). We will point out only the necessary modifications. For L ∈ Z+, define

wL(y) = inf
τ

sup
α∈A(y),−L≤α≤L

Ê
y

[∫ τ

0
e−λt Y α

t dt+ e−λτ uM (Y α
τ )

]
.

Observe that wL is concave, which follows from the same line of argument as for the concavity of φ̂M .

One can show (as in Propositions 3.3 and 3.6, and Corollary 3.7) that wL is the unique viscosity solution

of [
λg − y − (λ− r̃)y′ −my2g′′ − max

−L≤α≤L

[
b
√

1− ρ2 αg′ +
1

2
α2g′′

]
, g − uM

]
= 0

among positive concave functions bounded above by uM . Note that wL satisfies |wL(x)−wL(y)| ≤M |x−y|
for all x, y ∈ R+; that is, {wL} is an equicontinuous sequence of functions. Since each wL is bounded above

by 1, the increasing sequence {wL} converges to some function, say ŵ, which is continuous (continuity

follows from the equicontinuity of the approximating sequence). Now from Dini’s theorem (since {wL} is

an increasing sequence of continuous functions converging to a continuous function), we have that {wL}
converges to ŵ uniformly on compact sets. Then for any x, y ∈ R+ and for any ε > 0, there exists an
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L(ε) such that for any L ≥ L(ε), ‖wL‖∞ > ‖ŵ‖∞ − ε. We already know that ŵ > wL on R+. Together

with the concavity of wL, this leads to

ŵ(γx+ (1− γy)) ≥ γwL(x) + (1− γ)wL(y)

≥ γŵ(x) + (1− γ)ŵ(y)− ε,

for γ ∈ [0, 1] and x, y ∈ R+. Because ε is arbitrary, this implies that ŵ is concave. Therefore wL converges

locally uniformly to a concave function ŵ.

From Theorem I.3 of Lions (1983) (a result on the stability of viscosity solutions), it follows that ŵ is a

viscosity solution of (2.13). Note that ŵ is positive concave, and is bounded by uM . On the other hand,

from Proposition 3.6, it follows that (2.13) has a unique viscosity solution among uniformly continuous,

concave functions. Therefore, from Corollary 3.7, we conclude that wL → φ̂M locally uniformly in (0,∞).

Since D defined in (3.3) is a subset of the corresponding set for wL, namely DL := {y ∈ R+ : wL(y) <

uM (y)}, it follows that wL is a viscosity solution of

λg = y + (λ− r̃)yg′ +my2g′′ + max
−L≤α≤L

[
b
√

1− ρ2 α g′ +
1

2
α2g′′

]
on N,

g(ŷ − ε) = wL(ŷ − ε) and g(ŷ + ε) = wL(ŷ + ε).

(3.39)

By using Theorem II.1 of Lions (1983), one can prove that, indeed, wL is the unique viscosity solution of

(3.39). The rest of our proof follows the same arguments after equation (6.3) in the proof of Theorem 5

in Duffie et al. (1997). �

Corollary 3.10. The value function φ̂M is a classical solution of (2.16).

Proof. Since φ̂M (y) = uM (y) for y /∈ D, the claim is a corollary of Proposition 3.9.

�

The following result shows that (2.14) has a saddle point.

Proposition 3.11. (i) Let us define α∗ : D → R+ by

α∗(y) = −b
√

1− ρ2
φ̂′M (y)

φ̂′′M (y)
. (3.40)

This function is locally Lipschitz and satisfies 0 ≤ α(y) ≤ Cy, y ∈ D, for some positive constant C.

(ii) Extend α∗ from D to R+ in such a way that it still is locally Lipschitz, it has linear growth, and

α∗(0) = 0. Let Y ∗ denote the diffusion whose dynamics are given by

dY ∗
t = Y ∗

t

[
(λ− r̃)dt+

µ− r − σbρ

σ
dB̂

(1)
t

]
+ α∗(Y ∗

t )
[
b
√

1− ρ2dt+ dB̂
(2)
t

]
, Y ∗

0 = y. (3.41)

This stochastic differential equation has a unique strong solution. Moreover, Ê[
∫ t
0 (α

∗(Y ∗
s ))

2ds] < ∞ for

all t ∈ R+.

(iii) Define τ∗(Y y,α) = inf{t ≥ 0 : Y y,α
t /∈ D}. Then, φ̂M is the unique classical solution of (2.16) and

satisfies

φ̂M (y) = Ê

[∫ τ∗(Y ∗)

0
e−λtY ∗

t dt+ e−λτ∗(Y ∗)uM

(
Y ∗
τ∗(Y ∗)

)]
. (3.42)
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Moreover,

Ê

[∫ τ∗(Y y,α)

0
e−λtY y,α

t dt+ e−λτ∗(Y y,α)uM

(
Y y,α
τ∗(Y y,α)

)]
≤ φ̂M (y) ≤ Ê

[∫ τ

0
e−λtY ∗

t dt+ e−λτuM (Y ∗
τ )

]
,

(3.43)

for any stopping time τ of the filtration generated by B(1) and B(2) and for any admissible strategy α,

which implies that the the controller stopper problem satisfies the min-max principle, i.e.,

φ̂M (y) = sup
α∈A(y)

inf
τ
Ê

[∫ τ

0
e−λt Y y,α

t dt+ e−λτ uM (Y y,α
τ )

]
= inf

τ
sup

α∈A(y)
Ê

[∫ τ

0
e−λt Y y,α

t dt+ e−λτ uM (Y y,α
τ )

]
,

and that the pair (τ∗, α∗) is a saddle point.

Proof. (i) Using the fact that φ̂M satisfies (2.16) and that it is strictly concave and strictly increasing on

D we can write the function α∗ on D as

α∗(y) =
1

b
√

1− ρ2




−
[
y − λφ̂M (y)

φ̂′M (y)
+ (λ− r̃)y

]
+

√√√√
[
y − λφ̂M (y)

φ̂′M (y)
+ (λ− r̃)y

]2
+ 2b2(1− ρ2)my2





≤
√
2my.

(3.44)

The first line shows that y → α∗(y), y ∈ D, is locally Lipschitz. The second line shows that the same

function has linear growth.

(ii) The SDE for Y ∗ has a unique strong solution since α∗ on R+ is locally Lipschitz and has linear

growth. (Note that (3.44) can be used to extend α from D to R+ for values of y that are close to zero.)

The fact that Ê[
∫ t
0 (α

∗(Y ∗
s ))

2ds] <∞ for all t ∈ R+, holds since α
∗ satisfies the linear growth condition

in (i). The proof follows from Lemma 11.5 on page 129 of Rogers and Williams (2000) and Gronwall’s

inequality.

(iii) Next, (3.42) follows from applying Itô’s formula to e−λt φ̂M (Y ∗
t ) and by using the fact that φ̂M

satisfies (2.16). In fact, thanks to Itô’s formula, any solution of (2.16) can be represented by the right-

hand-side of (3.42).

To show the second inequality in (3.43), we will argue that the function η defined by

η(y) := inf
τ
Ê

[∫ τ

0
e−λtY ∗

t dt+ e−λτuM (Y ∗
τ )

]
, (3.45)

is equal to φ̂M on R+; specifically, the infimum in (3.45) is attained at τ∗(Y ∗). To this end, define a

process X by

Xt :=

∫ t

0
e−λsY ∗

s ds+ e−λtuM (Y ∗
t ). (3.46)

By using the strong Markov property of Y ∗, we can write the Snell envelope ξ of X as

ξt := inf
τ≥t

Ê{Xτ

∣∣F̂t} =

∫ t

0
e−λsY ∗

s ds+ e−λtη(Y ∗
t ). (3.47)
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The derivation of this equation is similar to the derivation of equation (7.6) in Chapter 2 of Karatzas

and Shreve (1998). Now, from Theorem D.12 in Karatzas and Shreve (1998), it follows that the stopping

time

τ̃ := inf{t ≥ 0 : ξt = Xt}

is optimal. Note, by (3.46) and (3.47), that τ̃ = τ∗(Y ∗), which proves that η = φ̂M .

We now prove the first inequality in (3.43). By applying Itô’s formula to e−λt φ̂M (Y α
t ), we get

φ̂M (y) = Ê

[
e−λτ∗(Y y,α)φ̂M

(
Y y,α
τ∗(Y y,α)

)]
+

Ê

[∫ τ∗(Y y,α)

0
e−λt

(
λφ̂M (Y α

t )− φ̂′M (Y α
t )(Y α

t (λ− r̃) + αtb
√

1− ρ2)− φ̂′′M (Y α
t )

(
m+

1

2
α2
t

))
dt

]

≥ Ê

[∫ τ∗(Y y,α)

0
e−λtY y,α

t dt+ e−λτ∗(Y y,α)uM

(
Y y,α
τ∗(Y y,α)

)]
,

in which the inequality follows from the definition of τ∗(Y y,α) and the fact that φ̂M satisfies (2.16). �

3.3. Proofs of Theorems 2.2 and 2.3. In this section, we prove Theorems 2.2 and 2.3 through a series

of propositions as outlined in items 6 through 10 in Section 3.1. First, we define a second-order differential

operator associated with the minimization problem in (2.8) as follows: For an open set G ⊂ (0,M),

v ∈ C2(G), and α ∈ R, define the function Lαv : G→ R by

Lαv(z) = −λv(z) + [(r̃z − 1) + (µ− r − σbρ)α] v′(z) +
1

2

[
b2(1− ρ2)z2 + σ2α2

]
v′′(z). (3.48)

We have the following verification lemma that shows that a suitably smooth solution of (2.9) equals φM ,

with the optimal investment strategy given in (2.10).

Lemma 3.12. Suppose the real-valued functions v on R+ and β on (0,M) satisfy the following conditions:

(0) v is continuous and non-increasing on R+;

(i) v ∈ C2(R+ − {M});
(ii) minα Lαv(z) = Lβ(z)v(z) = 0;

(iii) v(0) = 1 and v(z) = 0 for z ≥M .

Under the above conditions, the modified minimum probability of the lifetime ruin φM in (2.8) is given by

φM (z) = v(z), z ∈ R+. (3.49)

Proof. For an arbitrary strategy π̃ ∈ Ã, let Z π̃ denote the wealth process when we use π̃ as the investment

policy. Recall the hitting times τ̃ z0 = inf{t ≥ 0 : Z π̃
t ≤ 0} and τ̃ zM = inf{t ≥ 0 : Z π̃

t ≥ M}. (Technically,

we should apply the superscript π̃ to the stopping times, but we omit it because the notation is otherwise

too cumbersome.) Because the time of death of the individual τd is independent of the Brownian motions
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B(1) and B(2), we can write φM as

φM (z) = inf
π̃∈Ã

Ẽ

∫ ∞

0
λe−λs 1{τ̃z0 <τ̃z

M
∧s} ds

= inf
π̃∈Ã

Ẽ

∫ ∞

τ̃z0

λe−λs 1{τ̃z0 <τ̃z
M

} ds = inf
π̃∈Ã

Ẽ
(
e−λτ̃z0 1{τ̃z0 <τ̃z

M
}

)
.

(3.50)

By using this formulation of the problem, the verification lemma follows from classical arguments, as we

proceed to demonstrate. First, for any positive integer n, define the stopping time τ̃n by τ̃n = inf{t ≥ 0 :∫ t
0 π̃

2
s ds ≥ n} ∧ inf{t ≥ 0 :

∫ t
0 (Z

π̃
s − π̃s)

2 ds ≥ n} ∧ inf{t ≥ 0 : Z π̃
t ≤ 1/n}. Then, define the stopping time

τ̃ (n) = τ̃ z0 ∧ τ̃n ∧ τ̃ zM .

Assume that we have the function v as specified in the statement of this lemma. By applying Itô’s

formula to the function f given by f(z, t) = e−λt v(z), we have

e−λ(t∧τ̃ (n))v
(
Z π̃
t∧τ (n)

)
= v(z) − λ

∫ t∧τ̃ (n)

0
e−λs v(Z π̃

s ) ds

+

∫ t∧τ̃ (n)

0
e−λs

((
r̃Z π̃

s − 1
)
+ (µ− r − σbρ) π̃

)
v′(Z π̃

s ) ds

+
1

2

∫ t∧τ̃ (n)

0
e−λs

(
b2(1− ρ2)(Z π̃s)2 + σ2π̃2

)
v′′(Z π̃

s ) ds

+

∫ t∧τ̃ (n)

0
e−λs v′(Z π̃

s )
(
b
√

1− ρ2 (Z π̃
s − π̃s) dB̃

(1)
s + π̃s

√
b2(1− ρ2) + σ2 dB̃(2)

s

)

= v(z) +

∫ t∧τ̃ (n)

0
e−λs Lπ̃sv(Z π̃

s )ds

+

∫ t∧τ̃ (n)

0
e−λs v′(Z π̃

s )
(
b
√

1− ρ2 (Z π̃
s − π̃s) dB̃

(1)
s + π̃s

√
b2(1− ρ2) + σ2 dB̃(2)

s

)
,

(3.51)

in which the second equality follows from the definition of Lα in (3.48).

If we take the expectation of both sides, the expectation of the last term in (3.51) is zero because

Ẽ

[∫ t∧τ̃ (n)

0
e−2λs

(
b2(1− ρ2)(Z π̃

s − π̃s)
2 + (b2(1− ρ2) + σ2) π̃2s

)
(v′(Z π̃

s ))
2 ds

]

≤ max
z∈[1/n,M ]

(v′(z))2

(
(b2(1− ρ2) + σ2)Ẽ

[∫ t∧τ̃ (n)

0

(
(Z π̃

s − π̃s)
2 + π̃2s

)
ds

])
<∞,

because v′(z) is bounded on [1/n,M ] and because of the definition of τ̃n. Thus, we have

Ẽ
[
e−λ(t∧τ̃ (n))v(Z π̃

t∧τ (n))
]
= v(z) + Ẽ

[∫ t∧τ̃ (n)

0
e−λs Lπ̃sv(Z π̃

s )ds

]
≥ v(z), (3.52)

where the inequality follows from assumption (ii) of the proposition.

Because v is bounded, v(0) = 1, and v(M) = 0, it follows from (3.52) and the dominated convergence

theorem that

v(z) ≤ Ẽ
(
e−λτ̃z0 v(Z π̃

τ̃z0
)1{τ̃z0 <τ̃z

M
}

)
= Ẽ

(
e−λτ̃z0 1{τ̃z0 <τ̃z

M
}

)
, (3.53)
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for any π ∈ Ã. Thus, it follows from (3.50) that v ≤ φM .

Now, let β be as specified in the statement of this lemma; that is, β is the minimizer of Lπ̃v. It follows

from the above argument that we will have equality in (3.53), from which it follows that v = φM . �

The following proposition follows easily from Lemma 3.12:

Proposition 3.13. The Legendre transform of φ̂M solves the HJB equation (2.9) on [0,M ] and thereby

equals the minimum probability of ruin φM . As a result, φM is strictly decreasing on [0,M ] and strictly

convex on (0,M). Also, the optimal investment strategy is given by the expression in (2.10).

Proof. As we showed in Theorem 2.5, the Legendre transform ΦM of φ̂M given (2.17) satisfies the con-

ditions given in Lemma 3.12. This proves that ΦM = φM . Recall the convexity and the monotonicity

properties of ΦM from Theorem 2.5.

Let us define β(z) := −µ−r−σbρ
σ2

φ′

M (z)

φ′′

M
(z)

for z ∈ (0,M). This function minimizes Lαφ̂M (z) over α; hence

it is a candidate optimal strategy. To conclude the optimality of this strategy we need to show that β is

locally Lipschitz, which implies that (2.4) (with π̃t replaced by β(Zt)) has a unique strong solution up to

the first time τ such that Zτ is equal to either 0 or M .

Using the fact that φM solves (2.6), we can write

β(z) =
1

µ− r − ρσb


−

(−λφM
φ′M

+ r̃z − 1

)
+

√(−λφM
φ′M

+ r̃z − 1

)2

+

(
µ− r − ρbσ

σ2

)2

b2(1− ρ2)z2


 ,

which shows that β is indeed locally Lipschitz, since it is a continuously differentiable function. �

In the next sequence of propositions, we prove Theorem 2.2 and that limM→∞ φM = φ on R+.

Proposition 3.14. Define φ̃ on R+ by

φ̃(z) = lim
M→∞

↑ φM (z). (3.54)

Then, φ̃(0) = 1, φ̃ is convex and it is a viscosity solution of (2.6). Moreover, the convergence in (3.54) is

uniform.

Proof. Since φM (0) = 1 for all M , it follows that φ̃(0) = 1. It immediately follows that φ̃ is convex since

it is the upper envelope of convex functions; that is, φ̃(z) = supM φM (z) for z ∈ R+.

Since {φM (z)} is increasing with respect to M > 0 for all z ∈ R+, we can apply Dini’s theorem

and conclude that φM converges to φ̃ uniformly on compact sets of R+. Below, we will show that φ̃ is

a viscosity subsolution of (2.6). The fact that it is a viscosity supersolution of (2.6) can be similarly

proved.

Define F by

F (z, u(z), u′(z), u′′(z)) = λu(z)− (r̃z − 1)u′(z)− 1

2
b2(1− ρ2)z2u′′(z)

−min
π̃

[
(µ− r − σ b ρ)π̃u′(z) +

1

2
σ2π̃2u′′(z)

]
,

(3.55)
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for a test function u ∈ C2(R+) and for z ∈ R+. Note that F is non-increasing with respect to its fourth

argument u′′(z). For O ⊂ R+ open, let ψ ∈ C2(O), and suppose φ̃ − ψ has a strict local maximum at

z0 ∈ O. We will show that

F (z0, φ̃(z0), ψ
′(z0), ψ

′′(z0)) ≤ 0, (3.56)

and conclude by using Remark I.9 in Lions (1983). If δ > 0 is small enough, [z0 − δ, z0 + δ] ⊂ O and

(φ̃− ψ)(z0) > max{(φ̃− ψ)(z0 − δ), (φ̃ − ψ)(z0 + δ)}.

Since {φM} converges to φ̃ uniformly on compact sets, we can choose M =M(δ) (> z0 + δ) large enough

so that

max
z∈[z0−δ,z0+δ]

(φM − ψ)(z) > max{(φM − ψ)(z0 − δ), (φM − ψ)(z0 + δ)}.

As a result, there exists zδ ∈ (z0 − δ, z0 + δ) such that

max
z∈[z0−δ,z0+δ]

(φM − ψ)(z) = (φM − ψ)(zδ). (3.57)

Thus, zδ is a local maximum of φM − ψ, from which we conclude that φ′M (zδ) = ψ′(zδ) and φ′′M (zδ) ≤
ψ′′(zδ). From Proposition 3.13, we know that φM is a smooth solution of (2.9) on [0,M ]. Thus,

F (z, φM (z), φ′M (z), φ′′M (z)) ≤ 0

for z ∈ [z0 − δ, z0 + δ] (recall that M(δ) > z0 + δ). It follows from (3.57) that

F (zδ , φM (zδ), ψ
′(zδ), ψ

′′(zδ)) ≤ 0,

because F is non-increasing with respect to its fourth argument.

Observe that as δ → 0, we have zδ → z0 and φM (zδ) → φ̃(z0). Moreover, since ψ ∈ C2(O), it follows

that ψ′(zδ) → ψ′(z0) and ψ
′′(zδ) → ψ′′(z0). Finally, the continuity of F implies that (3.56) holds. �

Proposition 3.15. The function φ̃ given in (3.54) is a smooth solution of (2.6).

Proof. Due to the convexity of φ̃ we can choose points z1 < z2 such that the derivative of φ̃ at points z1

and z2 exists. (Also, recall that φ̃ is almost everywhere differentiable.)

For a given positive h < (z2 − z1)/2, we can find a sufficiently large M such that

0 ≤ φ̃(z)− φM (z) ≤ h, z ∈ R+, (3.58)

thanks to Proposition 3.14. Using the convexity of φM and φ̃, we deduce that

φ′M (z) ≥ φM (z)− φM (z − h)

h
≥ φ̃(z)− φ̃(z − h)

h
− 1 ≥ C1 := φ̃′(z1)− 1,

for any z ≥ z1 + h. On the other hand,

φ̃′(z2) ≥
φ̃(z2)− φ̃(z2 − h)

h
≥ φM (z2)− φM (z2 − h)

h
+ 1 ≥ φ′M (z2 − h) + 1,

which implies that

C2 := φ̃′(z2)− 1 ≥ φ′M (z2 − h) ≥ φ′M (z),
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for z ≤ z2 − h. Since C1 and C2 do not depend on h, which can be taken to be arbitrarily small, we have

that

C1 ≤ φ′M (z) ≤ C2, z ∈ (z1, z2).

Since φM is decreasing and convex, we have that φ′M (0) ≤ φ′M (z) ≤ 0 for all z ∈ [0,M ]. Next,

for z < z2, we will show that φ′′M (z) > K(z) > 0 for some K(z) that does not depend on M . From

Proposition 3.13, we know that φM ∈ C2(0,M) satisfies

− λφM (z) + (r̃z − 1)φ′M (z) +
1

2
b2(1− ρ2)z2φ′′M (z)−m

(φ′M (z))2

φ′′M (z)
= 0, (3.59)

for z ∈ (0,M), with the constantm defined in (2.15). After multiplying both sides of (3.59) by φ′′M (z) > 0,

we obtain

P (φ′′M (z)) :=
1

2
b2(1− ρ2)z2(φ′′M (z))2 + (r̃z − 1)φ′M (z)φ′′M (z)−m(φ′M (z))2 > 0, (3.60)

for z ∈ (0,M), since φM (z) > 0 for z ∈ (0,M). The polynomial P has one positive and one negative

root, r+(z) and r−(z), respectively. Since φ′′M (z) > 0, it follows from (3.60) that φ′′M (z) ≥ r+(z) =

γ(z)φ′M (z) > 0 for z ∈ (0,M), where

γ(z) :=
−(r̃z − 1)−

√
(r̃z − 1)2 + 2mb2(1− ρ2)z2

b2(1− ρ2)z2
< 0.

Since φ′M (z) ≤ C2 < 0 for z < z2, we have that φ′′M (z) > K(z) := C2γ(z) for z < z2.

In the rest we will assume that µ > r + σbρ. The case when µ ≤ r + σbρ can be similarly handled.

(Note that this condition merely changes the sign of the optimizer in the HJB equation for φM .)

The function φM is a smooth solution of

λ f = (r̃z − 1) f ′ +
1

2
b2 (1− ρ2) z2 f ′′ + min

0≤π̃≤L(z)

[
(µ− r − σbρ) π̃ f ′ +

1

2
σ2 π̃2 f ′′

]
,

f(z1) = φM (z1) and f(z2) = φM (z2),

in which L(z) = −µ−r−bρσ
σ2

C1
C2γ(z)

.

Next, by repeating the proof of Proposition 3.14 after replacing F in (3.55) with

F (z, u(z), u′(z), u′′(z)) = λu(z)− (r̃z − 1)u′(z)− 1

2
b2(1− ρ2)z2u′′(z)

− min
0≤π̃≤L(z)

[
(µ− r − σ b ρ)π̃u′(z) +

1

2
σ2π̃2u′′(z)

]
,

we obtain that the function φ̃ is a viscosity solution of

λ f = (r̃z − 1) f ′ +
1

2
b2 (1− ρ2) z2 f ′′ + min

0≤π̃≤L(z)

[
(µ− r − σbρ) π̃ f ′ +

1

2
σ2 π̃2 f ′′

]
,

f(z1) = φ̃(z1) and f(z2) = φ̃(z2).

(3.61)

On the other hand, (3.61) has a unique viscosity solution; see Ishii and Lions (1990). In addition, (3.61)

has a unique smooth solution; see Duffie et al. (1997, page 767) or Krylov (1987). Because the choices of
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z1 and z2 are arbitrary, we conclude that φ̃ ∈ C2(R+). Since we have already proved in Proposition 3.14

that φ̃ is a viscosity solution of (2.6), we can immediately conclude that φ̃ is classical solution of (2.6). �

Proposition 3.16. Let φ be as in (2.5) and φ̃ as in (3.54). Then, φ = φ̃ on R+. Moreover, φ is

the unique classical solution of (2.6) with optimal investment strategy given in (2.6), and φ is strictly

decreasing and strictly convex.

Proof. By using a verification lemma similar to Lemma 3.12, we can show that if there exists a smooth

solution to the HJB equation in (2.6), then it equals φ with optimal investment strategy given in (2.6).

But, as we have shown in Proposition 3.15, φ̃ is a classical solution of (2.6); therefore, the first claim

follows. The convexity of φ follows since φ̃, being the upper envelope of convex functions, is convex. Since

φ satisfies (2.6) it is strictly convex. That φ is strictly decreasing follows from the fact that each φM is

decreasing on [0,M ] and that φ is strictly convex on R+. �

3.4. Proof of Theorem 2.1. In this section, we complete our long series of propositions with a brief

proof of Theorem 2.1.

Proposition 3.17. Define ψ̃ on R2
+ by ψ̃(w, c) = φ(w/c). Then, ψ = ψ̃ on R2

+. Moreover, ψ is the

unique classical solution of (2.2) with optimal investment strategy given in (2.3). Also, ψ is strictly

decreasing and strictly convex with respect to w and strictly increasing with respect to c.

Proof. By using a verification lemma similar to Lemma 3.12, we can show that if there exists a smooth

solution to the HJB equation in (2.2), then it equals ψ with optimal investment strategy given in (2.3). It

is straightforward to show that ψ̃ solves (2.2); therefore, the claim follows. Next, ψ is strictly decreasing

and strictly convex with respect to w because φ is strictly decreasing and strictly convex on R+. Finally,

ψ is strictly increasing with respect to c because φ is strictly decreasing on R+. �

4. Summary and Conclusions

We studied three important problems of optimal control and showed how their value functions are

related. We first showed that our value functions are viscosity solutions of the corresponding HJB

(in)equalities and later upgraded the regularity of the solutions by using the fact that the functions we

analyzed are known to be value functions rather than merely solutions of HJB equations. As a result,

we used both probabilistic arguments (or arguments from control theory) and differential equations to

show this further regularity. We used a wide variety of techniques to prove these properties, including

methods from viscosity solutions (Propositions 3.3, 3.6, 3.9, 3.14, and 3.15), optimal stopping theory

(Proposition 3.11), probabilistic arguments (Proposition 3.8), and verification lemmas (Lemma 3.12 and

Propositions 3.13, 3.16, and 3.17).
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