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In this paper, we consider a company where surplus follows a rather general diffusion

process and whose objective is to maximize expected discounted dividend payments. With

each dividend payment there are transaction costs and taxes and it is shown in [7] that

under some reasonable assumptions, optimality is achieved by using a lump sum dividend

barrier strategy, i.e. there is an upper barrier ū∗ and a lower barrier u∗ so that whenever

surplus reaches ū∗, it is reduced to u∗ through a dividend payment. However, these optimal

barriers may be unacceptably low from a solvency point of view. It is argued that in that

case one should still we should look for a barrier strategy, but with barriers that satisfy a

given constraint. We propose a solvency constraint similar to that in [6]; whenever dividends

are paid out the probability of ruin within a fixed time T and with the same strategy in

the future, should not exceed a predetermined level ε. It is shown how optimality can be

achieved under this constraint, and numerical examples are given.
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1. Introduction

Finding optimal dividend strategies is a classical problem in the financial and actuarial

literature. The idea is that the company wants to pay some of its surplus as dividends, and the

problem is to find a dividend strategy that maximizes the expected total discounted dividends

received by the shareholders. The typical time horizon is until ruin occurs, i.e. until the surplus

is negative for the first time.

However, left to their own, financial institutions may make decisions that can jeopardize

their solvency, and those with a claim on the company, e.g. account holders of a bank or

customers of an insurance company, have an unacceptably high probability of loosing all or

parts of their claims. As a consequence, most countries impose some regulation on financial

companies, and in addition the companies themselves will usually have their own, albeit

sometimes lax, capital requirements.

The task for the management is therefore not to maximize expected discounted dividends

as such, but to do it under proper solvency constraints. One such constraint was suggested in

[6], and we shall apply the same idea in this paper. We also let the capital of the company
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follow the same diffusion process as in [6], originally presented in [11]. To explain, in [11] it

was proved that with their model, and provided there are no costs or taxes associated with

dividend payments, if an optimal policy exists it is of barrier type, i.e. there is a barrier u∗

so that whenever capital reaches u∗, dividends are paid with infinitesimal amounts so that

capital never exceeds u∗. The resulting accumulated dividend process is a singular process,

hence the name singular control. With the same setup, in [6] it was proved that when solvency

requirements prohibit dividend payments unless capital is at least u0 > u∗, then it is optimal to

use a singular control at u0. Therefore, it is natural to use u0 as a barrier, and it was suggested

that u0 could be determined as follows: whenever capital is at u0, ruin within a fixed time T

by following the same policy should not exceed a small, predetermined number ε. We denote

the corresponding u0 by uε. Thus the problem of optimal dividend payments was linked to the

problem of calculating ruin probabilities, the latter being a key concept in risk theory. Clearly,

increasing u0 implies that the ruin probability is decreased, so the problem can be reduced to a

one dimensional search problem for uε. Although in both [11] and [6] there were no transaction

costs or taxes, proportional costs or taxes will not change the problem significantly. However,

when each dividend payment carries a fixed cost, the problem changes from a singular control

problem to an impulse control problem. It was shown in [7], using the same diffusion model

as in [11], that if there is an optimal dividend strategy it will be of a two-barrier type. To

explain, there is a lower barrier u∗ ≥ 0 and an upper barrier ū∗ so that when capital reaches

ū∗, dividends are paid bringing the capital down to u∗.

In this paper we will make the same assumptions as in [7], but slightly differently formulated.

With each dividend payment there is a fixed cost K and a tax rate 1 − k with 0 < k < 1. We

will argue that if the optimal policy is too risky, look for a lower barrier uε > 0 and an upper

barrier ūε that maximizes expected discounted dividends and at the same time satisfy the

solvency constraint as presented in the above paragraph. This problem is more difficult than

that in [6] since we must look for a pair (uε, ūε), not just a number uε. One issue is to find a

fast method to calculate the ruin probability for a given lower and upper barrier, and we will

show how we can adapt the Thomas algorithm for solving tridiagonal systems together with

the Crank-Nicolson algorithm to solve the relevant partial differential equations. The paper

ends with numerical examples.

2. The model and a general optimality result

Let (Ω,F , {Ft}t≥0, P ) be a probability space satisfying the usual conditions, i.e. the filtration

{Ft}t≥0 is right continuous and P -complete. Assume that the uncontrolled surplus process

follows the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x, (2.1)

where W is a Brownian motion on the probability space and µ(x) and σ(x) are Lipschitz-

continuous. Let the company pay dividends to its shareholders, but at a fixed transaction cost

K > 0 and a tax rate 0 < 1 − k < 1. This means that if ξ > 0 is the amount by which the

capital is reduced, then the net amount of money the shareholders receive is kξ − K. Since

every dividend payment results in a transaction cost K > 0, the company should not pay out
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dividends continuously but only at discrete time epochs. Therefore, a strategy can be described

by

π = (τπ1 , τ
π
2 , . . ., τ

π
n , . . .; ξ

π
1 , ξ

π
2 . . ., ξ

π
n , . . .),

where τπn and ξπn denote the times and amounts of dividends. Thus, when applying the strategy

π, the resulting surplus process Xπ
t is given by

Xπ
t = x+

∫ t

0
µ(Xπ

s )ds+

∫ t

0
σ(Xπ

s )dWs −
∞∑
n=1

1{τπn<t}ξ
π
n . (2.2)

The process Xπ is left continuous with right limits, so when applying e.g. Itô’s formula, it will

be on the right continuous with left limit version {Xt+}. Also, we define ∆Xt = Xt+ −Xt.

Sufficient conditions for existence and uniqueness of (2.2) are assumptions A1 and A2 below.

Definition 2.1. A strategy π is said to be admissible if

(i) 0 ≤ τπ1 and for n ≥ 1, τπn+1 > τπn on {τπn <∞}.

(ii) τπn is a stopping time with respect to {Ft}t≥0, n = 1, 2. . . .

(iii) ξπn is measurable with respect to Fτπn , n = 1, 2. . . .

(iv) P
(

lim
n→∞

τπn ≤ T
)

= 0, ∀T ≥ 0.

(v) 0 < ξπn ≤ Xπ
τn .

We denote the set of all admissible strategies by Π.

With each admissible strategy π we define the corresponding ruin time as

τπ := inf{t ≥ 0 : Xπ
t < 0}

and the performance function Vπ(x) as

Vπ(x) = Ex

[ ∞∑
n=1

e−λτ
π
n (kξπn −K)1{τπn≤τπ}

]
,

where by Px we mean the probability measure conditioned on X0 = x. Vπ(x) represents the

expected total discounted dividends received by the shareholders until ruin when the initial

reserve is x. Since we deal with the optimization problem on the time interval [0, τπ], we can

assume without loss of generality that Xπ
t ≡ 0 for t > τπ.

Define the optimal return function

V ∗(x) = sup
π∈Π

Vπ(x)

and the optimal strategy, if it exists, by π∗. Then Vπ∗(x) = V ∗(x).

Definition 2.2 A lump sum dividend barrier strategy π = πū,u with the parameters ū and u

satisfies for Xπ
0 < ū,

τπ1 = inf{t > 0 : Xπ
t = ū}, ξπ1 = ū− u,
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and for every n ≥ 2,

τπn = inf{t > τπn−1 : Xπ
t = ū}, ξπn = ū− u.

When Xπ
0 ≥ ū,

τπ1 = 0, ξπ1 = Xπ
0 − u,

and for every n ≥ 2, τπn is defined as above.

With a given lump sum dividend barrier strategy πū,u, the corresponding value function is

denoted by Vū,u(x).

The importance of the lump sum dividend barrier strategies is exemplified in e.g. Theorem

2.1 below, proved in [7]. In order to present the theorem, we make a list of assumptions.

A1. | µ(x) | + | σ(x) |≤ C(1 + x) for all x ≥ 0 and some C > 0.

A2. µ(x) and σ(x) are continuously differentiable and Lipschitz continuous, and the derivatives

µ′(x) and σ′(x) are Lipschitz continuous for all x ≥ 0.

A3. σ2(x) > 0 for all x ≥ 0.

A4. µ′(x) ≤ λ for all x ≥ 0, where λ is the discounting rate.

Define the operator L by

Lg(x) =
1

2
σ2(x)g′′(x) + µ(x)g′(x)− λg(x)

for g ∈ C2(0,∞). It is well known, see e.g. [7], that under the assumptions A1-A3 any solution

of Lg = 0 is in C2(0,∞). Let g1(x) and g2(x) be two independent solutions of Lg(x) = 0, chosen

so that g(x) = g1(0)g2(x)−g2(0)g1(x) has g′(0) > 0. Any such solution will be called a canonical

solution. Then any solution LV (x) = 0 with V (0) = 0 and V ′(0) > 0 is of the form

V (x) = cg(x), c > 0.

Consider the following set of problems.

B1: LV (x) = 0, 0 < x < ū∗,

V (0) = 0,

V (x) = V (ū∗) + k(x− ū∗), x > ū∗.

B2: V (ū∗) = V (u∗) + k(ū∗ − u∗)−K,

V ′(ū∗) = k,

V ′(u∗) = k.

B3: V (ū∗) = kū∗ −K,

V ′(ū∗) = k.

Note that k and K are equivalent to 1
1+d1

and d0
1+d1

in [7].

Theorem 2.1. (Theorem 2.1 in [7]) Assume that A1 − A4 hold. Then exactly one of the

following three cases will occur.
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(i) B1+B2 have a unique solution for unknown V (x), ū∗ and u∗ and V ∗(x) = V (x) = Vū∗,u∗(x)

for all x ≥ 0. Thus the lump sum dividend barrier strategy π∗ = πū∗,u∗ is an optimal

strategy.

(ii) B1+B3 have a unique solution for unknown V (x) and V ∗(x) = V (x) = Vū∗,0(x) for all

x ≥ 0. Thus the lump sum dividend barrier strategy π∗ = πū∗,0 is an optimal strategy.

(iii) There does not exist an optimal strategy, but

V ∗(x) = lim
ū→∞

Vū,u(ū)(x)

and this limit exists and is finite for every x ≥ 0. In terms of a canonical solution,

V ∗(x) =
kg(x)

limū→∞ g′(ū)
.

Here Vū,u(ū)(x) = supu∈[0,ū) Vū,u(x).

Remark 2.1. As pointed out in Remark 2.2e in [7], if limx→∞ g
′(x) =∞ then either B1+B2 or

B1+B3 apply, hence an optimal solution exists. That limx→∞ g
′(x) = ∞ is almost a necessary

condition for existence of a solution can be shown as in Proposition 2.4 of [8]. Therefore, for

simplicity we will typically assume that limx→∞ g
′(x) =∞.

Here is a useful sufficient condition for limx→∞ g
′(x) =∞. The proof is given in the appendix.

Proposition 2.1. Assume A1-A4 and that there exists an x0 ≥ 0 and an ε > 0 so that

µ′(x) ≤ λ− ε, x ≥ x0.

Then for any canonical solution g of Lg(x) = 0,

lim
x→∞

g′(x) =∞.

Remark 2.2. Arguing as in the end of the proof of Theorem 4.1, it follows that if there exists

an x0 ≥ 0 so that

µ′(x) = λ, x ≥ x0,

then limx→∞ g
′(x) <∞. Therefore, Proposition 2.1 is quite sharp.

3. Optimality under payout restrictions

Consider e.g. an insurance company that wants to use the optimal barriers ū∗ and u∗ for its

dividend payments. However, when policyholders pay their premiums in advance, they expect

to have their claims covered. It is therefore reasonable that the company should not be allowed

to pay dividends if that makes the surplus too small. One natural condition is that the surplus

is not allowed to be less than some u0 > 0 after a dividend payment. Mathematically, for a

policy π such a restriction can be written as∑
0≤τπn≤τπ

1{Xτπn+<u0} = 0. (3.1)
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Let Π0 denote the set of all admissible strategies satisfying (3.1). Define the new optimal return

function V ∗0 (x) as

V ∗0 (x) = sup
π∈Π0

Vπ(x). (3.2)

Our aim is to find the optimal return function V ∗0 (x) and the optimal strategy π0 ∈ Π0 such

that Vπ0(x) = V ∗0 (x).

Following Remark 2.1 we assume that limx→∞ g
′(x) = ∞ so that either B1+B2 or B1+B3

have a solution. Trivially, if B1+B2 have a solution V (x) for some c∗, ū∗ and u∗ ≥ u0,

the optimal strategy in case (i) of Theorem 2.1 is feasible under the constraint (3.1). Then

V ∗0 (x) = V (x) and the optimal strategy is as in case (i) of Theorem 2.1.

Therefore we consider the cases when B1+B2 have a solution V (x) for some c∗, ū∗ and

u∗ < u0, or the case when B1+B3 have a solution V (x) for some c∗, ū∗ and u∗ = 0. In

these cases, the optimal strategy given by Theorem 2.1 does not satisfy the constraint (3.1).

Consequently, we need to look for the optimal return function and the optimal strategy again.

To this end, consider the problem for unknown V and ū0:

C: LV (x) = 0, 0 < x < ū0,

V ′(ū0) = k,

V (0) = 0,

V (x) = V (u0) + k(x− u0)−K, x ≥ ū0.

The following result is proved in the appendix.

Theorem 3.1. Assume that A1-A4 hold and that limx→∞ g
′(x) = ∞. Let u0 > u∗, where u∗

is given in Theorem 2.1. Then Problem C has a unique solution for unknown V and ū0 and

V ∗0 (x) = V (x) = Vū0,u0
(x),

where V ∗0 (x) is defined in (3.2). Thus the lump sum dividend barrier strategy πū0,u0
is an

optimal strategy in Π0. Also, for given u1 so that u∗ < u0 < u1, for the corresponding optimal

upper barriers it holds that ū∗ < ū0 < ū1.

According to Theorems 2.1 and 3.1, for a given lower barrier u0 the optimal strategy is the

lump sum barrier strategy πũ,u1
where,

(ũ, u1) =


(ū0, u0), if u0 > u∗,

(ū∗, u∗), if u0 ≤ u∗.
(3.3)

Here (ū∗, u∗) is as in Theorem 2.1, while ū0 is as in Theorem 3.1. This addresses the problem of

not being allowed to pay dividends that brings the capital too far down. The next result looks

at the other end. What if the company cannot make a dividend payment when it wants, but

has to postpone it until capital reaches a higher level? Let ū1 > ũ and let Π1 be the set of all
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admissible policies satisfying ∑
0≤τπn≤τπ

1{Xτπn+<u1∪Xτπn<ū1} = 0, (3.4)

i.e. all policies so that paying dividends when capital is less than ū1 as well as reducing it below

u1 through a dividend payment are ruled out. Define the new optimal return function V ∗1 (x) as

V ∗1 (x) = sup
π∈Π1

Vπ(x). (3.5)

Consider the problem for unknown V .

D: LV (x) = 0, 0 < x < ū1,

V (0) = 0,

V (x) = V (u1) + k(x− u1), x > ū1.

We then have the following theorem. It is proved in the Appendix.

Theorem 3.2. Assume that A1-A4 hold and that limx→∞ g
′(x) = ∞. Let u0 and ū1 > ũ be

given, where ũ is defined in (3.3). Then Problem D has a unique solution for unknown V and

V ∗1 (x) = V (x) = Vū1,u1
(x),

where V ∗1 (x) is defined in (3.5) and u1 in (3.3). Thus the lump sum dividend barrier strategy

πū1,u1
is an optimal strategy in Π1

The messages of Theorems 3.1 and 3.2 is that if the optimal barriers are too small, it is

still optimal to use lump sum barrier strategies with the barriers as close to the optimal ones

as possible in some sense. Therefore, we should look for barrier strategies, but with barriers

sufficiently large to satisfy solvency requirements. This is the topic of Section 4.

4. Optimality under a solvency constraint

Having argued in Section 3 that barrier strategies are optimal also under reasonable constraints,

we will in this section show how optimal barriers can be found that satisfy a natural solvency

restriction. To describe this restriction, let T <∞ be a fixed time horizon and define the survival

probability as

φū,u(T, x) = Px(τπū,u > T ),

where as before Px means that X0 = x and πū,u is the lump sum dividend strategy with barriers

ū and u. For a given ruin tolerance ε we say that the strategy πū,u is solvency admissible if

φū,u(T, u) ≥ 1− ε. (4.1)

Note that φū,u(T, u) = φū,u(T, ū). This means that for a solvency admissible strategy πū,u, at

the time of paying a dividend the probability of survival during the next time interval of length

T using the same strategy cannot be smaller than 1− ε.
Also note that even when case (iii) of Theorem 2.1 applies, in principle condition (4.1) may
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not hold for any δ-optimal dividend strategy. The reason for this is that u(ū) may be bounded

as ū → ∞. The following result shows that even in case (iii) there will exist a δ-optimal

dividend strategy. It is proved in the appendix.

Theorem 4.1. Assume case (iii) of Theorem 2.1. Then for any b > 0 and ū > 0 there exists a

ũ(ū) < ū satisfying ũ(ū)→∞ as ū→∞ so that

Vū,ũ(ū)(x)→ V ∗(x) ∀x ∈ [0, b] as ū→∞.

By this result we can choose a u so large that for any δ > 0 there is a δ-optimal lump sum

dividend barrier that satisfies the constraint (4.1). Consequently, from now on it is assumed

that limx→∞ g
′(x) =∞ as in Remark 2.1.

As in [6] it can be proved that if there exists a C1,2((0, T )× (0, ū)) function v that satisfies

vt(t, x) =
1

2
σ2(x)vxx(t, x) + µ(x)vx(t, x), (t, x) ∈ (0, T )× (0, ū) (4.2)

with initial value

v(0, x) = 1, 0 ≤ x ≤ ū (4.3)

and boundary value for t > 0,

v(t, 0) = 0 and v(t, ū) = v(t, u), (4.4)

then v(T, x) = φū,u(T, x) is the survival probability. Here vt means the partial derivative w.r.t.

t and so on. In fact it is well known, see e.g. [5], that under assumptions A1-A3 any solution of

(4.2) is C1,2((0, T )× (0, ū)).

Let us discuss how the optimal solvency admissible strategy can be found. By definition, for

u > 0, clearly

φū2,u(T, x) > φū1,u(T, x), ū2 > ū1,

φū,u2
(T, x) > φū,u1

(T, x), u2 > u1.

Let φ(T, x) = Px(Xt > 0 ∀t ∈ [0, T ]) be the survival probability when there is no control. If

φ(T, u) ≤ 1 − ε then u cannot be the lower barrier of a solvency admissible dividend strategy

since paying dividends surely increases the ruin probability. However, if φ(T, u) > 1 − ε then

for sufficiently large ū, πū,u will be a solvency admissible strategy. The lower bound um for the

lower barrier in a solvency admissible strategy is therefore of interest, and it is given by

φ(T, um) = 1− ε.

It is easy to show that if there exists a C1,2((0, T )× (0,∞)) function w that satisfies

wt(t, x) =
1

2
σ2(x)wxx(t, x) + µ(x)wx(t, x), (t, x) ∈ (0, T )× (0,∞) (4.5)
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with initial value

w(0, x) = 1, 0 ≤ x ≤ ∞ (4.6)

and boundary value for t > 0,

w(t, 0) = 0 and lim
x→∞

w(t, x) = 1, (4.7)

then w(T, x) = φ(T, x). Again, by A1-A3 any solution of (4.5) is C1,2((0, T )× (0,∞)).

We are now ready for the optimality algorithm. It is assumed that limx→∞ g
′(x) =∞.

1. Calculate the optimal V ∗(x) with corresponding barriers ū∗ and u∗.

2. Calculate φū∗,u∗(T, u
∗). If φū∗,u∗(T, u

∗) ≥ 1− ε, the optimal strategy satisfies the solvency

constraint and we are done. If not continue to step 3.

3. Find um as the unique solution of φ(T, um) = 1 − ε. This can be done using a one

dimensional search.

4. Let δ > 0 be a small number, and set ui = um + iδ, i = 1, 2, . . ..

5. For each ui, find the corresponding optimal upper barrier by solving Problem C, and call

this ui. Calculate φui,ui(T, ui) and if φui,ui(T, ui) ≥ 1 − ε, set ūi = ui. Also let c̄i be the

scaling factor so that the solution is V ∗0 (x) = c̄ig(x) for x ≤ ūi. On the other hand, if

φui,ui(T, ui) < 1− ε, increase ui in steps of δ until the solvency constraint is satisfied. Let

ūi be the corresponding upper barrier and c̄i the scaling factor found by solving Problem

D.

6. Do this until c̄i falls significantly. Then let cε be the highest c̄i and ūε and uε be the

corresponding ūi and ui respectively. The optimal solvency admissible strategy is then

πūε,uε and the corresponding value function is

Vε(x) =

{
cεg(x), 0 ≤ x ≤ ūε,

Vε(ūε) + k(x− ūε), x > ūε.

The equations (4.2) and (4.5) together with their respective initial and boundary conditions

are not easily solvable, but taking the Laplace transform brings them into ordinary differential

equations. To see how, consider (4.2) and define

ṽ(s, x) = Lv(s) =

∫ ∞
0

e−stv(t, x)dt.

Straightforward calculations, using (4.3), gives that ṽ satisfies

1

2
σ2(x)ṽxx(s, x) + µ(x)ṽx(s, x)− sṽ(s, x) = −1. (4.8)

A particular solution is given by ṽp(s, x) = s−1. Let ṽ1(s, x) and ṽ2(s, x) be independent solutions

of the homogeneous equation in (4.8). Then we have

ṽ(s, x) = a1(s)ṽ1(s, x) + a2(s)ṽ2(s, x) +
1

s
,
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where a1 and a2 are determined from the initial and boundary conditions. Now v(t, 0) = 0

implies that ṽ(s, 0) = 0 as well, and v(t, ū) = v(t, u) implies that ṽ(s, ū) = ṽ(s, u). Therefore,

after some straightforward calculations

a1(s) =
1

s

ṽ2(s, ū)− ṽ2(s, u)

ṽ2(s, 0)(ṽ1(s, ū)− ṽ1(s, u))− ṽ1(s, 0)(ṽ2(s, ū)− ṽ2(s, u))
(4.9)

a2(s) = −1

s

ṽ1(s, ū)− ṽ1(s, u)

ṽ2(s, 0)(ṽ1(s, ū)− ṽ1(s, u))− ṽ1(s, 0)(ṽ2(s, ū)− ṽ2(s, u))
(4.10)

Let L−1
h (t) be the inverse Laplace transform. Then Ls−1(t) = 1 and using the Laplace transform

property for integrals, we get that

v(T, x) = 1−
∫ T

0
L−1
h1+h2

(t)dt,

where

hi(s, x) = −sai(s)ṽi(s, x), i = 1, 2.

Therefore, P (τπ ∈ dt) = L−1
h1+h2

(t)dt when π = πū,u.

Similarly, w̃(s, x) = Lw(s) also satisfies (4.8) with w̃(s, 0) = 0 and limx→∞ w̃(s, x) = s−1.

Therefore, if we let w̃1(s, x) and w̃2(s, x) be two independent solutions of the homogeneous

equation, and assume that ŵi(s) = limx→∞ w̃i(s, x), i = 1, 2 exist, then

w̃(s, x) = b1(s)w̃1(s, x) + b2(s)w̃2(s, x) +
1

s
,

where

b1(s) =
1

s

1

w̃2(s, 0) ŵ1(s)
ŵ2(s) − w̃1(s, 0)

,

b2(s) =
1

s

1

w̃1(s, 0) ŵ2(s)
ŵ1(s) − w̃2(s, 0)

.

Inversion formulas are similar to those above.

Example 4.1 Assume that µ and σ2 are constants. Then it is easy to see that

ṽi(s, x) = w̃i(s, x) = eci(s)x, i = 1, 2,

where

c1(s) = − µ

σ2
+

√
µ2

σ4
+

2s

σ2
> 0 and c2(s) = − µ

σ2
−
√
µ2

σ4
+

2s

σ2
< 0.

Plugging this into (4.9) and (4.10) gives ṽ(s, x). Inverting this Laplace transform is unfortunately

not straightforward.

Also ŵ1(s) =∞ and ŵ2(s) = 0, hence b1(s) = 0 and b2(s) = −s−1. Therefore,

w̃(s, x) =
1

s
− 1

s
ec2(s)x.

This can be inverted using standard tables for the Laplace transform. However, the solution

can also be obtained by other methods, see e.g. [3] p.196, and is given by

w(T, x) = 1− 1√
2π

x

σ

∫ T

0
t−

3
2 e−

(x+µt)2

2σ2t dt.

10



Therefore, um is given as the unique solution of (in x)

x =

√
2πσε∫ T

0 t−
3
2 e−

(x+µt)2

2σ2t dt

.

5. Numerical Solutions

In order to provide a complete numerical solution to the problem, several differential equations,

both ordinary and partial, have to be solved.

For problems B, C and D it is necessary to find a canonical solution g, either analytically,

or if that is not possible or practical, numerically. In the latter case, the Runge-Kutta method

can be used, together with linear interpolation between the grid points, this for g, g′ and g′′. In

case the assumption of Proposition 2.1 does not hold, the numerical solution can be helpful to

assess whether limx→∞ g
′(x) =∞ or not.

Problems B1+B2 or B1+B3. In [7] it is shown how this can be reduced to a one dimensional

search problem, but for completeness and since the notation is somewhat different, we include

it here. This method will also reveal whether an optimal solution exists.

1. Find the x∗ ∈ (0,∞), if it exists, so that g′′(x∗) = 0. If g is convex, we set x∗ = 0, and if

it is concave we set x∗ =∞. In the second case there is no solution, and by Lemma A.2b,

x∗ = 0 is equivalent to µ(0) ≤ 0, so this case is easy to establish.

2. Choose x < x∗ and let c = k
g′(x) so that cg′(x) = k.

3. Find (if possible) a y > x∗ so that g′(y) = k
c . If this is not possible, try with a larger x

until it is satisfied.

4. Calculate k(y−x)− c(g(y)− g(x)). If this is larger than K increase x. Otherwise decrease

x.

5. Repeat the process until a solution is obtained, or until it is clear that there is no solution.

In case there is a solution, upon convergence u∗ = x, ū∗ = y and V ∗(x) = cg(x) for x ≤ ū∗.

Problem C. Assume it is clear that limx→∞ g
′(x) =∞. Then the following easy recipe works:

1. Choose an x > u0 and let c = k
g′(x) so that cg′(x) = k.

2. Calculate k(x−u0)−c(g(x)−g(u0)). If this is larger than K decrease x, otherwise increase

x.

3. Repeat the process until convergence is obtained. Upon convergence, ū0 = x and V (x) =

cg(x) for x ≤ ū0.

Problem D. The unique solution is given in (A.15) in the appendix.

The function v(t, x) of (4.2)-(4.4). This is a standard PDE, but with nonstandard boundary

conditions. It turns out that the Crank-Nicolson algorithm together with an adaption of the

11



Thomas algorithm to solve tridiagonal systems are well suited for this problem. For more details

on the Crank-Nicolson and the Thomas algorithms the reader can consult [1].

To explain how this adaption works, let h be the grid length and ih, i = 0, 1, . . . ,m the

gridpoints so that mh = ū. Similarly, let k be the grid length and jk, j = 0, 1, . . . , n the

gridpoints so that nk = T Previously k is defined as the tax rate, but there should be no

ambiguity so we follow the standard notation. Let σ2
i = σ2(ih) and µi = µ(ih), i = 0, 1, . . . ,m.

With vji an approximation to v(ih, jk), the Crank-Nicolson finite difference scheme is

1

k
(vj+1
i − vji ) =

1

4h2

[
σ2
i

(
vj+1
i+1 − 2vj+1

i + vj+1
i−1 + vji+1 − 2vji + vji−1

)
+µih

(
vj+1
i+1 − v

j+1
i−1 + vji+1 − v

j
i−1

)]
.

Collecting terms, this can be written as

αiv
j+1
i−1 + βiv

j+1
i + γiv

j+1
i+1 = dji , (5.1)

where with r = k
h2 ,

αi = −r
4

(
σ2
i − µih

)
,

βi = 1 +
1

2
rσ2

i ,

γi = −r
4

(
σ2
i + µih

)
,

dji = −αivji−1 + (1− 1

2
rσ2

i )v
j
i − γiv

j
i+1.

To start the iterations we use the intial value v(0, x) = 1 giving v0
i = 1 as well, and so the d0

i ,

i = 0, 1, . . . ,m can be calculated.

Now to the Thomas algorithm. To use it, for numerical stability we should have

|αi|+ |γi| < |βi|, i = 0, 1, . . . ,m. (5.2)

Let us check this condition:

1. σ2
i ≥ µih. Then |αi|+ |γi| = 1

2rσ
2
i < βi, so this case is unproblematic.

2. σ2
i < µih. Then |αi|+ |γi| = 1

2rµih < βi if and only if r < 2
µih−σ2

i
.

In order to have case 1 at all gridpoints, we can let

h ≤ max
i

σ2
i

µi
,

and then for good convergence, a typical choice of r is r = 1
2 .

Assume that (5.2) is satisfied, and for simplicity write vi = vj+1
i and di = dji in (5.1). The

idea of the Thomas algorithm is to write

vi = pi+1vi+1 + qi+1 (5.3)

for unknown pi+1 and qi+1. Using this in (5.1) with i− 1 instead of i, we get

αi(pivi + qi) + βivi + γivi+1 = di. (5.4)

12



Comparing (5.3) and (5.4) gives

pi+1 = − γi
αipi + βi

and qi+1 =
di − αiqi
αipi + βi

. (5.5)

The boundary condition v(t, 0) = 0 implies that 0 = v0 = p1v1 + q1, which is satisfied if

p1 = q1 = 0. We can now use (5.5) to recursively calculate (pi, qi), i = 2, . . . ,m. Then using

(5.3) backwards yields

vm =
vm−1 − qm

pm

=
1

pm

(
vm−2 − qm−1

pm−1
− qm

)
= · · ·

=
1

Pml+1

vl −
m∑

i=l+1

qi
Pmi

,

where

Pmi =
m∏
j=i

pj .

The boundary condition v(t, ū) = v(t, u) implies that vm = vl where hl = u. Therefore,

vm = −

∑m
i=l+1

qi
Pmi

1− 1
Pml+1

=
ql+1 +

∑m
i=l+2 P

i−1
l+1 qi

1− Pml+1

.

We can now go backwards using (5.3) again.

Remark 5.1 Since in the Crank-Nicolson method k = rh2, the space grid is typically much

coarser than the time grid. In our problem we are searching for optimal points in the space

variable, and therefore a fully implicit scheme with k = rh for some r may be more suitable,

since this allows for a finer space grid with the same computation time. The relation (5.1) will

still apply, but with different coefficients, and so the Thomas algorithm is again applicable.

However, we have not tried this method.

The function w(t, x) of (4.5)-(4.7). This is basically the same problem as that discussed

above, except that instead of the nonstandard boundary condition v(t, ū) = v(t, u), we impose

the standard boundary condition w(t, ū) = 1 for some large ū. This will result in a slightly

overestimate of the survival probability, but if ū is chosen large enough, it should not be a real

problem. Deciding when ū is large enough is not an obvious task, but one way may be to keep

x fixed at a moderate value, and then try with increasing ū until the solution w(0, x) stabilizes.

Given the ū, the Crank-Nicolson algorithm together with the standard Thomas algorithm

should work fine. Also, to find w analytically is easier than to find v, as we saw in Example 4.1.

6. Numerical examples

In this section we will give two numerical examples where optimal solutions with and without

the solvency constraint are compared. In all plots, solid lines are for the case with the solvency
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constraint, while dashed lines are without solvency constraints. Each figure is split into three

panels, where the first panel shows the optimal upper and lower barriers, both without and with

the solvency constraint. The second panel shows the amount of dividends paid each time, i.e.

ūε − uε and ū∗ − u∗. The third panel shows the constants cε and c∗ so that the value functions

equal Vε(x) = cεg(x), x ≤ ūε and V ∗(x) = c∗g(x), x ≤ ū∗, where g is a canonical solution to

be specified in each example. This means that for x ≤ ū∗, 1− cε
c∗ is the percentage loss of value

due to the solvency constraint.

Before we give the examples, a few words on the numerics. All programs were written in

R, but with subprograms in C for the number crunching. The simple algorithm described in

Section 4 had to be modified. The reason is that the finite difference scheme (5.1) for solving

(4.2) is accurate of order 2. However, a perturbation of size h of the boundary condition of a

PDE will in general induce a change in the solution of order O(h). Experimentally this seems

to be the case also in this case for perturbations of ū and u, i.e. the most accurate numerical

evaluations of the survival probability φū,u for a given lump sum strategy πū,u seem to come

when u and ū are both nodes on the PDE grid. This is especially true for u. The general idea

behind the program is therefore to minimize the calculations of off-grid u and ū by defining the

grids so that u is on the grid. To find the smallest solvency admissible ū for a fixed u > um, the

program iterates as follows:

1. Start with a fairly coarse grid and find two adjacent points v̄1 < w̄1 so that according to

the numerical solution πw̄1,u is solvency admissible, while πv̄1,u is not. Then one iteration

of the secant method is used to find a ū1 between v̄1 and w̄1.

2. Repeat the procedure with a finer grid, and find adjacent points v̄2 < w̄2 with the same

properties as v̄1 and w̄1. Since the grid has changed, so has the numerical solution of the

ruin probability, and frequently this resulted in v̄2 > w̄1.

3. Repeat the process a certain number of times. We repeated it until there was about 100

million nodes, where we used k = 1
2h

2.

Although a bit circumstantial, this routine was in fact quite efficient in terms of total running

time. As is seen from several of the figures below, the upper estimated values of ū are sometimes

quite erratic. However, this does not matter much since the corresponding values of cε do not

vary much. When comparing different plots it is important to note that the y-axis varies, and

when the span on the y-axis is very small the results may look more erratic than they actually are.

Example 6.1 Let µ(x) = µ and σ(x) = σ be constants, so that (2.1) becomes

Xt = x+ µt+ σWt.

By Proposition 2.1, limx→∞ g
′(x) =∞, hence an optimal strategy always exists.

In Figures 1-5 µ = σ = 1 and the canonical solution chosen is

g(x) = αe−θx sinh(βx)

with α = 0.9636 (a bit arbitrary, admittedly) and

θ =
µ

σ2
and β =

1

σ2

√
2λσ2 + µ2.
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The other parameter values used are

λ = 0.1, T = 10, k = 0.95, K = 0.05, ε = 0.01.

In the figures 4 of these are kept fixed, while one is varying. In the discussion below, ū is generic

for both the unconstrained upper barrier ū∗ and the constrained ūε, and similar with u.

In Figure 1, the discounting factor λ is varied. When there is no solvency constraint, we see

from the first panel that both upper and lower barriers decrease as λ increases, which reflects

the fact that with large values of λ early payments are important, since later payments are

heavily discounted. When λ is small, the solvency constraint is not binding due to the long term

perspective, and hence the necessity to avoid early ruin provides sufficiently large barriers. As

λ increases, the constraint becomes binding, and the lower barrier even increases. The reason

for this is that with a given constraint, there is more to gain by decreasing the upper barrier

ūε a lot, even if that means a small increase in the lower barrier uε. However, it is interesting

to see from the middle panel that the actual payout ū− u is not much affected by the solvency

constraint. From the right panel, we see that the relative impact of the solvency constraint on

the values c∗ and cε increases quite a lot with λ, but for moderate values of λ it only causes

small reductions in the value of the company.

In Figure 2 the time horizon T varies. Without the solvency constraint, the optimal solution

is independent of T , which is also seen from the figure. For small T , the optimal solution

gives sufficiently high survivial probability, hence the solvency constraint is not binding. As T

increases, with the solvency constraint both the lower and upper barriers increase, but it is seen

from the middle panel that the actual payout is again not much affected by the constraint. Why

the payout first goes down and then increases we cannot explain. The ruggednes of the graph

in the middle panel is due to numerical issues as discussed above. However, looking at the scale

on the y-axis, we see that the variations are not severe. From the right panel it is seen that

although the barriers are much influenced by the solvency constraint, the actual values cε are

far less so.

In Figure 3 the retention rate k varies. As k increases, the amount received, k(ū− u)−K,

gets positive for lower amounts ū − u paid, and so both barriers decrease with k, both in the

unconstrained and the constrained case. The effect of the solvency constraint is just to increase

the barriers, but from the middle panel we see that again the payout ū−u is not much affected.

From the right panel it is seen that the actual value of the company is not much affected neither.

In Figure 4 the fixed cost K is varied. Since for K large, the payout ū− u must be large in

order for the dividend received, k(ū− u)−K, to be positive, the optimal payout must increase

with K, which is confirmed in the middle panel. For the rest, the picture is much the same as

before, with the solvency constrained barriers lying above those without the solvency constraint,

but with the payout ū − u rather unaffected. Also, as seen from the right panel, the solvency

constraint does not reduce the value of the company by very much.

Finally, in Figure 5 the ruin tolerance ε varies. For sufficient large values of ε the solvency

constraint is not binding, but as soon as the constraint becomes binding (read the x-axis from

right to left), the picture is much the same as before with both lower and upper barriers increased

due to the solvency constraint, but with payouts ū−u almost the same, and values cε moderately

lower than the optimal c∗. When the solvency constraint is binding, the somewhat rugged
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behaviour of the curves in the first two panels is again due to numerical issues, but it is seen

from the right panel that the optimal values cε is not much influenced, hence these numerical

issues are rather unproblematic.

The tentative conclusion we can draw from this example is that the solvency constraint can

have a quite large impact on the optimal barriers, but except in rather extreme cases, the impact

on the actual payout ū − u as well as on the value cε versus c∗, is much more modest. This is

good news for the shareholders, since what counts for them is how much smaller cε is than c∗,

i.e. their ”loss” due to the solvency constraint.

Figure 6 shows the values of Vε(x) and V ∗(x) for the standard parameter choice. This gave

(ūε, uε) = (4.65, 3.13) and (ū∗, u∗) = (3.81, 2.22). Not so easy to see from the figure, but V ∗(x)

is concave up to x = 2.82 and then convex. As of Vε(x) it is also concave up to x = 2.82, and

then convex up to ūε. However, V ′ε (ūε−) = 0.978 > V ′ε (ūε+) = k = 0.95, and so Vε is not

convex from x = 2.82. That V ′ε (ūε−) ≥ V ′ε (ūε+) is a general fact, proved in Lemma A.6 in the

appendix.
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Figure 1: Values for varying λ in Example 6.1. The other values are kept fixed at T = 10, k =
0.95, K = 0.05, ε = 0.01.

Example 6.2 Let the basic income process follow the linear Brownian motion

Pt = x+ µt+ σPWP,t,

and assume that assets are invested in a risky investment so that the dynamics of the noncon-

trolled process is

dXt = dPt +XtdRt.

We assume that R is a Black-Scholes investment generating process, i.e. Rt = (λ−α)t+σRWR,t,

and that WP and WR are independent. Here λ can be seen as the market rate, also used for

discounting, while α is a proportional cost associated with the investment.

We can write X as (same weak solution)

dXt = (µ+ (λ− α)Xt)dt+
√
σ2
P + σ2

RX
2
t dWt,

where W is a Brownian motion.
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Figure 2: Values for varying T in Example 6.1. The other values are kept fixed at λ = 0.1, k =
0.95, K = 0.05, ε = 0.01.
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Figure 3: Values for varying k in Example 6.1. The other values are kept fixed at λ = 0.1, T =
10, K = 0.05, ε = 0.01.
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Figure 4: Values for varying K in Example 6.1. The other values are kept fixed at λ = 0.1, T =
10, k = 0.95, ε = 0.01.
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Figure 5: Values for varying ε in Example 6.1. The other values are kept fixed at λ = 0.1, T =
10, k = 0.95, K = 0.05.
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Figure 6: Values of Vε(x) and V ∗(x) for varying x in Example 6.1. The parameters are λ =
0.1, T = 10, k = 0.95, K = 0.05, ε = 0.01.
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By Proposition 2.1, limx→∞ g
′(x) = ∞, hence an optimal strategy exists when α > 0.

Actually, using arguments similar to those in Section 3 in [7] together with the solutions given

in the appendix in [9], it can be proved that an optimal strategy exists if and only if α > 0. Again

using the solutions in that appendix, a canonical solution can be found, but it is complicated

so we used the more convenient Runge Kutta method to obtain a numerical solution of g(x),

scaled so that g′(0) = 1.

In Figures 7-12 µ = σP = 1, σR = 0.25 and α = 0.02. The other parameters used are the

same as in Example 6.1, and in the figures 5 of these are kept fixed, while one is varying.

In Figure 7 the discounting factor λ is varied. This is a somewhat different situation from

that in Figure 1. Ignoring the random elements, in Example 1 the only income is the linear µ,

which is heavily deflated with an increasing λ. In this example there is in addition an investment

income λ − α, which is exponential in nature and therefore partially offsets an increase in λ.

When λ is small, the linear income µ dominates, but as λ increases the exponential investment

income takes over. This can explain the middle panel in Figure 7, where for small λ the payout

decreases with λ as in Figure 1, but as λ increases it starts to increase again. From the left

panel we see that the upper barrier starts to increase when λ gets big both in the unconstrained

and in the constrained case. However, from the right panel it is seen that the overall effect of

increasing λ is somewhat smaller in Figure 7 than in Figure 1, which is to be expected.

Figures 8-11 do not differ very much from Figures 2-5, except that the effect of the solvency

constraint seems even less serious here. In Figures 8 and 11 (as well as in Figure 7), the

solvency constraint caused some ruggedness due to numerical issues, but again looking at the

corresponding right panels shows that this is of no importance.

In Figure 12, the effect of varying the cost factor α is shown. With small α, the investment

return λ−α is almost as large as the discounting factor λ, and therefore there is no urgency to pay

out dividends, hence the barriers can be set high, and the solvency constraint is not binding.

As α increases, it is more urgent to pay dividends, and therefore the optimal unconstrained

barriers will not satisfy the solvency constraint. Again the payouts ū− u are almost unaffected

by the solvency constraint, and from the right panel we see that the reduction in value due to

the solvency constraint is not very large.

The conclusion here is much the same as in Example 6.1, the solvency constraint can have

a fairly large impact on the optimal policy, but the actual payout as well as the value of the

company are only moderately affected.

We also tried with an ”investment risk free” version, i.e. with σR = 0 so that

dXt = (µ+ (λ− α)Xt)dt+ σdWt.

However, this gave much the same results, indicating the the results are quite robust.
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Figure 7: Values for varying λ in Example 6.2. The other values are kept fixed at T = 10, k =
0.95, K = 0.05, ε = 0.01.
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Figure 8: Values for varying T in Example 6.2. The other values are kept fixed at λ = 0.1, k =
0.95, K = 0.05, ε = 0.01.
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Figure 9: Values for varying k in Example 6.2. The other values are kept fixed at λ = 0.1, T =
10, K = 0.05, ε = 0.01.
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Figure 10: Values for varying K in Example 6.2. The other values are kept fixed at λ =
0.1, T = 10, k = 0.95, ε = 0.01.
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Figure 11: Values for varying ε in Example 6.2. The other values are kept fixed at λ = 0.1, T =
10, k = 0.95, K = 0.05.
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Figure 12: Values for varying α in Example 6.2. The other values are kept fixed at λ = 0.1, T =
10, k = 0.95, K = 0.05.

21



Appendix

In this appendix we will prove Proposition 2.1, Theorems 3.1-3.2 and Theorem 4.1. To do so

we need the following lemmas, which are the same as Lemmas 2.1 and 2.2 in [7].

Lemma A.1 Let µ(x) and σ(x) satisfy A2 − A4 and let f be a solution of Lf(x) = 0.

Consider the interval [0,∞).

a) If f has a zero on [0,∞), then f ′ has no zero on [0,∞).

b) If for some x̃ ∈ [0,∞), f ′(x̃) > 0 and f
′′
(x̃) ≤ 0, then f is a concave function on [0, x̃).

Lemma A.2 Let µ(x) and σ(x) satisfy A2 − A4 and let f satisfy Lf(x) = 0, f(0) = 0 and

f(x̂) > 0 for some x̂ > 0.

a) f is strongly increasing.

b) There is an x∗ ≥ 0 (possibly taking the value infinity) so that f is concave on (0, x∗) and

convex on (x∗,∞). In particular x∗ = 0 if and only if µ(0) ≤ 0 and trivially f
′′
(x∗) = 0 when

0 < x∗ <∞.

Proof of Proposition 2.1. To keep initial conditions fixed, we restrict the definition of a

canonical solution to mean that g(0) = 0 and g′(0) = 1. First note that for any δ > 0,

µ(x) < µ(0) + λx0 + δ + (λ− ε)x,

and therefore it follows from Lemma 2.3 in [7] that it is sufficient to prove that for any a, a

canonical solution of

1

2
σ2(x)f ′′(x) + (a+ (λ− ε)x)f ′(x)− λf(x) = 0,

satisfies limx→∞ f
′(x) =∞.

By Lemma A.2b, such a canonical solution f is either ultimately convex or ultimately con-

cave. In either case there exists a c ≤ ∞ so that

lim
x→∞

f ′(x) = c and lim
x→∞

f(x)

x
= c.

Assume that c <∞. Then, since

f ′(x) = 1 +

∫ x

0
f ′′(y)dy,

there must exist a sequence {xn} with xn →∞ as n→∞ so that f ′′(xn) = o(x−1
n ). Also

1

2

σ2(x)

x
f ′′(x) = −a+ (λ− ε)x

x
f ′(x) + λ

f(x)

x
→ εc as x→∞.

Then, considering only the leading terms,

σ2(xn)

x2
n

∼ 2εc

xno(x
−1
n )
→∞ as n→∞.

But this contradicts A1, hence c =∞ and we are done. �
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The next step is to prove that Problem C really has a solution.

Lemma A.3 Under the assumptions of Theorem 3.1, Problem C has exactly one solution and

ū0 > x∗, where x∗ is given in Lemma A.2.

Proof. We are looking for a solution (c̄, ū0) of

c̄g′(ū0) = k, (A.1)

c̄g(ū0) = c̄g(u0) + k(ū0 − u0)−K. (A.2)

Let

ĉ =


k

g′(x∗) , u0 ≤ x∗,

k
g′(u0) , u0 > x∗,

For given c > 0, consider the equation

cg′(uc) = k for some uc ≥ max{u0, x
∗}. (A.3)

If u0 ≤ x∗, since g′(x) is increasing on [x∗,∞), it is easy to see that (A.3) has a solution if and

only if c ≤ ĉ. A similar argument shows that this holds when u0 > x∗ as well. We can therefore

define the function

I(c) =

∫ uc

u0

(k − cg′(y))dy, 0 < c ≤ ĉ.

Then (A.1) and (A.2) are equivalent with the existence of a c so that I(c) = K. By the implicit

function theorem, uc is continuously differentiable w.r.t. c and I ′(c) = −
∫ uc
u0
g′(y)dy < 0, i.e. I

is continuous and strictly decreasing in c ∈ (0, ĉ). Also limc→0 uc = ∞, hence limc→0 I(c) = ∞
as well. Therefore, if we can prove that I(ĉ) ≤ 0, there must exist a unique c̄ ∈ (0, ĉ) so that

I(c̄) = K.

To prove that I(ĉ) ≤ 0, assume first that u0 ≤ x∗. Then since g′ has a minimum at x∗,

ĉg′(x) =
g′(x)

g′(x∗)
k ≥ k,

and consequently I(ĉ) ≤ 0. If u0 > x∗, then g′ is increasing on [u0,∞), hence ĉg′(x) ≥ k for

x ∈ [u0,∞), and so I(ĉ) ≤ 0 again.

Denoting the corresponding uc̄ by ū0 so that c̄g′(ū0) = k we can thus conclude that

V (x) =


c̄g(x), 0 ≤ x ≤ ū0,

V (ū0) + k(x− ū0), x > ū0.

�

Lemma A.4 Under the assumptions of Theorem 3.1, let V be as in Lemma A.3. Then

V ′(x) < k for x ∈ [u0, ū0).
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Proof. By Lemma A.2, it is sufficient to prove that V ′(u0) < k. If u0 ≥ x∗ the result is trivially

true by convexity of g on [x∗,∞). Assume therefore that u0 < x∗ and let V ∗(x) = c∗g(x) be

the optimal solution from Theorem 2.1. Assume that c̄ ≥ c∗. Then since c∗g′(ū∗) = c̄g′(ū0) it is

necessary that ū0 ≤ ū∗. But then

K =

∫ ū0

u0

(k − c̄g′(x))dx ≤
∫ ū0

u0

(k − c∗g′(x))dx <

∫ ū∗

u∗
(k − c∗g′(x))dx = K,

a contradiction. Therefore, c̄ < c∗ and by concavity of g on [u∗, x∗],

V ′(u0) = c̄g′(u0) < c∗g′(u0) < c∗g′(u∗) = k.

�

For a function φ : [0,∞) 7→ [0,∞) define the maximum utility operator M by

Mφ(x) :=


sup{φ(x− η)−K + kη : 0 ≤ η ≤ x− u0}, if x ∈ [u0,∞),

−∞, if x ∈ [0, u0).
(A.4)

Lemma A.5. Let V be as in Lemma A.3. Then V satisfies the quasi-variational inequalities

LV (x) ≤ 0, (A.5)

V (x) ≥MV (x), (A.6)

(V (x)−MV (x))(LV (x)) = 0, (A.7)

V (0) = 0. (A.8)

Furthermore, MV (x) < V (x) when x ∈ [0, ū0) and MV (x) = V (x) when x ∈ [ū0,∞).

Proof. We first prove (A.5). Since LV (x) = 0 when x ≤ ū0, assume that x > ū0. Since

by Lemma A.3, ū0 > x∗, V ′′(ū0−) > 0 while trivially V ′′(ū0+) = 0. Using that V (x) =

V (ū0) + k(x− ū0) we get by Assumption A4,

LV (x) = µ(x)k − λ(V (ū0) + k(x− ū0))

= k

∫ x

ū0

(µ′(y)− λ)dy + kµ(ū0)− λV (ū0)

≤ kµ(ū0)− λV (ū0)

≤ 1

2
σ2(ū0−)V ′′(ū0−) + µ(ū0−)V ′(ū0−)− λV (ū0−) = 0.

We proceed to prove (A.6). For x ∈ [0, u0], MV (x) = −∞, hence the inequality is trivially

satisfied. When x > u0, by Lemma A4 and the definition of V (x), V ′(x) < k when x ∈ [u0, ū0),

and V ′(x) = k when x ∈ [ū0,∞). Therefore the function V (x − η) + kη −K is increasing in η

for nonnegative η and takes its maximum when η = x− u0. Hence, for x ∈ [u0, ū0),

MV (x)−V (x) = V (u0)+k(x−u0)−K−V (x) =

∫ x

u0

(k−V ′(y))dy−K <

∫ ū0

u0

(k−V ′(y))dy−K = 0.
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For x ≥ ū0 we have

MV (x) = V (u0) + k(x− u0)−K = V (x).

This also proves (A.7) since LV (x) = 0 for x ∈ (0, ū0) and MV (x) = V (x) for x ∈ [ū0,∞).

Finally (A.8) follows by definition of V . �

Proof of Theorem 3.1. Let π ∈ Π0 be an arbitrary strategy. By definition, V is continuously

differentiable on (0,∞) and twice continuously differentiable on (0, ū0) ∪ (ū0,∞). However, for

x = ū0, the continuity of V ′′ might fail. Since {0 ≤ t < τπ : Xπ
t = ū0} has Lebesgue measure

zero under each Px, we can use Itô’s formula, see e.g. [2] p.460, together with (A.5) to get

e−λ(t∧τπ)V (Xπ
t∧τπ+) = V (x) +

∫ t∧τπ

0
e−λsL(Xπ

s )ds

+

∫ t∧τπ

0
e−λsσ(Xπ

s )V ′(Xπ
s )dWs +

∑
0≤τπn≤t∧τπ

e−λτ
π
n

(
V (Xπ

τπn+)− V (Xπ
τπn

)
)

(A.9)

≤ V (x) +

∫ t∧τπ

0
e−λsσ(Xπ

s )V ′(Xπ
s )dWs +

∑
0≤τπn≤t∧τπ

e−λτ
π
n

(
V (Xπ

τπn+)− V (Xπ
τπn

)
)
.

Here we can let V ′′(ū0) = V
′′−(ū0). Another argument for this formula would be to use Lemma

A.8 below where now k = k1.

Since V ′ is bounded and the process satisfies Assumptions A1-A4, it is fairly straightforward

to show that ∫ t∧τπ

0
e−λsσ(Xπ

s )V ′(Xπ
s )dWs

is a martingale. Taking expectations on both sides of (A.9) therefore yields

Ex

[
e−λ(t∧τπ)V (Xπ

t∧τπ+)
]
≤ V (x) + Ex

 ∑
0≤τπn≤t∧τπ

e−λτ
π
n

(
V (Xπ

τπn+)− V (Xπ
τπn

)
) . (A.10)

From (A.6) and the fact that Xπ
τπn
> Xπ

τπn+ ≥ u0, it follows that

e−λτ
π
n

(
V (Xπ

τπn+)− V (Xπ
τπn

)
)
≤ −e−λτπn (kξπn −K), n = 1, 2, · · · . (A.11)

on {τπn ≤ t ∧ τπ}. Then (A.10) and (A.11) together give

0 ≤ V (x)− Ex

[ ∞∑
n=1

e−λτ
π
n (kξπn −K)1{τπn≤t∧τπ}

]
− Ex

[
e−λ(t∧τπ)V (Xπ

t∧τπ+)
]
. (A.12)

Letting t→∞ in (A.12), we have by nonnegativity of V ,

V (x) ≥ Ex

[ ∞∑
n=1

e−λτ
π
n (kξπn −K)1{τπn≤τπ}

]
= Vπ(x), (A.13)

which implies that V (x) ≥ V ∗0 (x).

Now consider the lump sum dividend barrier strategy πū0,u0
given in Theorem 3.1. Since
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Xπ0
s does not exceed ū0, L(Xπ0

s ) = 0 a.s. for 0 < s < τπ0 . Therefore, the inequality in (A.9)

becomes an equality with the strategy π0, i.e.

e−λ(t∧τπ0 )V (Xπ0
t∧τπ0+) = V (x) +

∫ t∧τπ0

0
e−λsσ(Xπ0

s )V ′(Xπ0
s )dWs

+
∑

0≤τπ0
n ≤t∧τπ0

e−λτ
π0
n

(
V (Xπ0

τ
π0
n +

)− V (Xπ0

τ
π0
n

)
)
. (A.14)

Assume that x = X0 ≥ ū0. Then

V (x) = MV (x) = V (u0) + k(x− u0)−K, x ≥ ū0,

and

ξπ0
1 = x− u0, ξπ0

n = ū0 − u0, n = 2, 3, · · · .

We can conclude that

V (Xπ0

τ
π0
1 +

)− V (Xπ0

τ
π0
1

) = V (Xπ0

τ
π0
1

− ξπ0
1 )− V (Xπ0

τ
π0
1

) = −kξπ0
1 +K,

and

V (Xπ0

τ
π0
n +

)− V (Xπ0

τ
π0
n

) = −kξπ0
n +K, n = 2, 3, · · · .

Also by boundedness of Xπ0
t∧τπ0+ and the fact that P (τπ0 < ∞) = 1 and Xπ0

τπ0+ = 0, it follows

from the bounded convergence theorem that

lim
t→∞

Ex

[
e−λ(t∧τπ0 )V (Xπ0

t∧τπ0+)
]

= 0.

Therefore, taking expectations in (A.14) and then letting t→∞ gives

V (x) = Vū0,u0
(x),

which implies that V (x) ≤ V ∗0 (x). In summary, we get V (x) = V ∗0 (x) = Vū0,u0
(x).

When the initial reserve X0− = x < ū0, the result is proved similarly.

To prove the last part of the theorem, let u∗ ≤ u0 < u1, and let Vi(x) = Vūi,ui(x) be

the two value functions. Write Vi(x) = c̄ig(x) for x ∈ [0, ūi]. By what we have just proved,

V0(x) > V1(x), hence c̄0 > c̄1. Therefore, for V ′i (ūi) = k it is necessary that ū1 > ū0. �

Now to the proof of Theorem 3.2. To prove that there is exactly one solution to the equations

in Assumption D, just let V (x) = c̄g(x) so that we get the equation

c̄g(ū1) = c̄g(u1) + k(ū1 − u1)−K.

Solving for c̄ gives

V (x) =


k(ū1−u1)−K
g(ū1)−g(u1) g(x), 0 ≤ x ≤ ū1,

V (ū1) + k(x− ū1), x > ū1.
(A.15)

Lemma A.6. Let V be the solution of Problem D. Then there is a û ∈ [u1, ū1] so that

V ′(x) ≤ k on [u1, û] and V ′(x) ≥ k on [û, ū1].
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Proof Since ũ is an upper optimality point, see (3.3) and what follows there, by the previous

analysis we know that the corresponding value function is

V ∗0 (x) =


k g(x)
g′(ũ) , 0 < x ≤ ũ,

V ∗0 (u1) + k(x− u1)−K, x ≥ ũ.

Since V ∗0 (ũ) = V ∗0 (u1) + k(ũ− u1)−K, we can conclude that

k

∫ ũ

u1

(
1− g′(y)

g′(ũ)

)
dy = K.

Define the function G as

G(x) = k

∫ ū1

u1

(
1− g′(y)

g′(x)

)
dy, ũ ≤ x ≤ ū1.

Since ū1 > ũ > x∗, g′(x) is increasing on [ũ, ū1]. Therefore, G is a continuous and increasing

function. Furthermore,

G(ũ) = k

∫ ū1

u1

(
1− g′(y)

g′(ũ)

)
dy

= k

∫ ũ

u1

(
1− g′(y)

g′(ũ)

)
dy + k

∫ ū1

ũ

(
1− g′(y)

g′(ũ)

)
dy

= K + k

∫ ū1

ũ

(
1− g′(y)

g′(ũ)

)
dy ≤ K,

and

G(ū1) = k

∫ ū1

u1

(
1− g′(y)

g′(ū1)

)
dy ≥ k

∫ ũ

u1

(
1− g′(y)

g′(ū1)

)
dy ≥ k

∫ ũ

u1

(
1− g′(y)

g′(ũ)

)
dy = K,

so there must exist a û ∈ [ũ, ū1] such that G(û) = K, that is

k

∫ ū1

u1

(
1− g′(y)

g′(û)

)
dy = K. (A.16)

Let V̂ be defined as

V̂ (x) =

 k g(x)
g′(û) , 0 < x ≤ ū1,

V̂ (ū1) + k(x− ū1), x > ū1.
(A.17)

Then LV̂ (x) = 0 for 0 < x < ū1 and by (A.16),

V̂ (ū1) = V̂ (u1) + k(ū1 − u1)−K.

Using this together with (A.17) then gives for x > ū1,

V̂ (x) = V̂ (u1) + k(x− u1)−K.

Therefore, V̂ also solves Problem D, so by uniqueness V̂ = V .
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To finish the proof, let first x ∈ [u1, ũ]. It follows from [7] when (ũ, u1) = (ū∗, u∗), and from

Lemma A4 when (ũ, u1) = (ū0, u0), that V ∗
′

0 (x) = k g
′(x)
g′(ũ) ≤ k. Since û ≥ ũ > x∗ and g′(x) is

increasing on (x∗,∞), V ′(x) = k g
′(x)
g′(û) ≤ k g

′(x)
g′(ũ) ≤ k. Finally, let x ∈ [ũ, ũ1]. Since V ′(ũ) ≤ k,

V ′(û) = k and V ′(x) = k g
′(x)
g′(û) is increasing on [ũ, ū1), we can conclude that V ′(x) ≤ k on [ũ, û]

and V ′(x) ≥ k on [û, ū1). �

Note that V ′(x) and V ′′(x) exist and are continuous except for when x = ū1. Let V
′−(ū1)

and V
′+(ū1) be the left derivative and right derivative of V (x) at ū1. From Lemma A.6 we can

see that V
′−(ū1) ≥ k = V

′+(ū1). Therefore V (x) may fail to be differentiable at the point ū1

if V
′−(ū1) > k. Thus, the classical Itô formula can not be applied, but its generalization, the

Meyer-Itô formula is applicable. Since we are working with functions of the form e−λtf(Yt), the

standard Meyer-Itô formula needs a slight, but straightforward, modification.

Lemma A.7. Let f be the difference of two convex functions and f
′− be its left derivative. Let

Lat =

∫ t

0
e−λtdLat,0,

where Lat,0 is the local time of Y at a. Then for a semimartingale Y the following equation holds:

e−λtf(Yt) = f(Y0) +

∫ t

0
e−λsf

′−(Ys−)dYs −
∫ t

0
λe−λsf(Ys−)ds

+
∑

0<s≤t
e−λs

(
f(Ys)− f(Ys−)− f ′−(Ys−)∆Ys

)
+

1

2

∫ +∞

−∞
Latµ(da),

where µ is the signed measure (when restricted to compacts) which is the second derivative of f

in the generalized function sense. Furthermore, for every bounded Borel measurable function v,∫ +∞

−∞
Lat v(a)da =

∫ t

0
e−λsv(Ys)d[Y, Y ]cs, (A.18)

where [Y, Y ]cs is the quadratic variation of the continuous martingale part of Y .

Proof. The first part follows from Theorem 70, Chapter IV, in [10] using that

d(e−λtf(Yt)) = −λe−λtf(Yt)dt + e−λtdf(Yt) and Fubini’s theorem on the local time term.

Formula (A.18) follows from Corollary 1, Chapter IV, in [10] and an application of Fubini’s

theorem.

Lemma A.8. Let V be the solution of Problem D. Then, for π ∈ Π1, the following equation

holds:

e−λ(t∧τπ)V (Xπ
t∧τπ+) = V (Xπ

0 ) +

∫ t∧τπ

0
e−λsV

′−(Xπ
s )dXπ

s −
∫ t∧τπ

0
λe−λsV (Xπ

s )ds

+
∑

0<s≤t
e−λs

(
V (Xπ

s+)− V (Xπ
s )− V ′−(Xπ

s )∆Xπ
s

)
−1

2
Lū1
t∧τπ(k1 − k) +

1

2

∫ t∧τπ

0
e−λsσ2(Xπ

s )V
′′−(Xπ

s )ds,
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where k1 is the left derivative of V (x) at ū1.

Proof Since V ′(x) and V ′′(x) exist and are continuous except for at x = ū1, and V
′±(ū1),

V
′′±(ū1) exist and are finite, some fairly straightforward calculations show that V (x) can be

written as the difference of the two convex functions

V1(x) = xV
′+(0) +

∫ x

0

∫ y

0
(V
′′
(z))+dzdy,

V2(x) = (k1 − k)(x− ū1)+ +

∫ x

0

∫ y

0
(V
′′
(z))−dzdy,

where x+ = max(x, 0) and x− = −min(x, 0). By the property of V (x), we have that

1

2

∫ +∞

−∞
Lat∧τπµ(da) =

1

2
Lū1
t∧τπ(V

′+(ū1)− V ′−(ū1)) +
1

2

∫ +∞

−∞
Lat∧τπV

′′−(a)da

=
1

2
Lū1
t∧τπ(k − k1) +

1

2

∫ +∞

−∞
Lat∧τπV

′′−(a)da.

The identity (A.18) shows that

1

2

∫ +∞

−∞
Lat∧τπV

′′−(a)da =
1

2

∫ t∧τπ

0
e−λsσ2(Xπ

s )V
′′−(Xπ

s )ds.

The result now follows from Lemma A.7. �

Lemma A.9 Let V be the solution of Problem D and define the operator L− by

L−V (x) =
1

2
σ2(x)V

′′−(x) + µ(x)V
′−(x)− λV (x).

Then V satisfies the following quasi-variational inequalities

L−V (x) = 0, 0 < x ≤ ū1, (A.19)

L−V (x) ≤ 0, x > ū1, (A.20)

V (x) = MV (x), x ≥ ū1. (A.21)

Here the operator M is as in (A.4), but with the lower limit there u0 replaced by u1.

Proof By the construction of V (x), (A.19) holds. To prove (A.20), let x > ū1. Then

L−V (x) =
1

2
σ2(x)V

′′−(x) + µ(x)V
′−(x)− λV (x) = µ(x)k − λV (x).

Since by Assumption A4, µ′(x) ≤ λ, and the fact that V ′(x) = k on (ū1,∞), the function

µ(x)k − λV (x) is decreasing on (ū1,∞). Therefore,

L−V (x) = µ(x)k − λV (x) ≤ µ(ū1)k − λV (ū1).

If µ(ū1) ≤ 0, then clearly L−V (x) ≤ 0. If µ(ū1) > 0, by ū1 > ū > x∗, V
′′−(ū1) = k g

′′(ū1)
g(û) ≥ 0.

Then, since V
′−(ū1) ≥ k and µ(ū1) > 0, we have

µ(ū1)k − λV (ū1) ≤ 1

2
σ2(ū1)V

′′−(ū1) + µ(ū1)V
′−(ū1)− λV (ū1) = 0, x > ū1.
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Finally, we prove (A.21). By Lemma A.6, for x ≥ ū1,

V ′(x− η)− k


≥ 0, 0 < η < x− û,

≤ 0, x− û ≤ η ≤ x− u1,

so optimality is achieved either by remaining at x or by going down all the way to u1. This gives

MV (x) = Max{V (x)−K,V (u1)− k(x− u1)−K}

= Max{V (u1)− k(x− u1)− 2K,V (u1)− k(x− u1)−K} (A.22)

= V (u1)− k(x− u1)−K = V (x).

�

Proof of Theorem 3.2. For π ∈ Π1 we easily get from Lemma A.8

e−λ(t∧τπ)V (Xπ
t∧τπ+) = V (x) +

∫ t∧τπ

0
e−λsL−V (Xπ

s )ds+

∫ t∧τπ

0
e−λsσ2(Xπ

s )V
′−(Xπ

s )dWs

+
∑

0≤τπn≤t∧τπ
e−λτ

π
n

(
V (Xπ

τπn+)− V (Xπ
τπn

)
)
− 1

2
Lt∧τπ(ū1)(k1 − k).

Since π ∈ Π1 it is necessary that that Xπ
τπn− ≥ ū1. Then by Lemma A.9 and the fact that k1 ≥ k,

e−λ(t∧τπ)V (Xπ
t∧τπ+) ≤ V (x) +

∫ t∧τπ

0
e−λsσ2(Xπ

s−)V
′−(Xπ

s )dWs +
∑

0≤τπn≤t∧τπ
e−λτ

π
n (K − kξπn).

Taking expectations gives

0 ≤ V (x)− Ex

 ∑
0≤τπn≤t∧τπ

e−λs(kξπn −K)

− Ex[e−λ(t∧τπ)V (Xπ
t∧τπ+)].

Letting t→∞, we have by nonnegativity of V ,

V (x) ≥ Ex

[ ∞∑
n=1

e−λτ
π
n (kξπn −K)

]
= Vπ(x).

Taking the supremum over all strategies in Π1 gives

V (x) ≥ V ∗1 (x). (A.23)

Now consider the lump sum dividend barrier strategy π1 = πū1,u1
. By definition of that

strategy, Xπ1
s ≤ ū1 for all s > 0. Therefore, L−(Xπ1

s ) = Lū1
s = 0 for all s > 0 and so

e−λ(t∧τπ1 )V (Xπ1
t∧τπ1+) = V (x) +

∫ t∧τπ1

0
e−λsσ2(Xπ1

s )V
′−(Xπ1

s )dWs

+
∑

0≤τπ1
n ≤t∧τπ1

e−λτ
π1
n

(
V (Xπ1

τ
π1
n +

)− V (Xπ1

τ
π1
n

)
)
.

Furthermore, by (A.22)

V (x) = MV (x) = V (u1) + k(x− u1)−K, x ≥ ū1.
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Arguing as at the end of the proof of Theorem 3.1 now gives

e−λ(t∧τπ1 )V (Xπ1
t∧τπ1+) = V (x) +

∫ t∧τπ1

0
e−λsσ2(Xπ1

s )V
′−(Xπ1

s )dWs +
∑

0≤τπ1
n ≤t∧τπ1

e−λτ
π1
n (K − kξπ1

n ).

Taking expectations and then letting t → ∞ results in V (x) = Vū1,u1
(x) which implies that

V (x) ≤ V ∗1 (x). Together with (A.23) we can therefore conclude that V ∗1 (x) = V (x) = Vū1,u1
(x).

�

Proof of Theorem 4.1. By Theorem 2.1 and its proof in [7], Vū,u(ū)(x) is increasing in ū. If

u(ū) → ∞ as ū → ∞, there is nothing to prove, so assume that u(ū) ≤ m for all ū for some

positive m. Given δ > 0, choose ū > b so large that Vū,u(ū)(x) > V ∗(x)− δ
2 ∀x ∈ [0, b], and also

so that ln ū > m. Consider the two dividend barrier lump sum strategies:

1. The strategy π0 = πū,u(ū).

2. The strategy π1 = πū,ln ū.

The strategy π1 clearly satisfies the conditions of the theorem. Let τ be the first time the process

hits ū (with τ = ∞ if it hits 0 before ū). By definition, τ is the same for both strategies when

x ≤ ū. By the strong Markov property we have for x ∈ [0, b],

Vπi(x) = Ex[e−λτ ]Vπi(ū), i = 0, 1.

Now since ln ū > m,

Vπ0(ū) ≤ kū+ Vπ0(ln ū)−K,

Vπ1(ū) = k(ū− ln ū) + Vπ1(ln ū)−K.

Therefore

Vπ0(x)− Vπ1(x) ≤ Ex[e−λτ ](k ln ū+ Vπ0(ln ū)− Vπ1(ln ū)).

Using this equation with x = ln ū gives

Vπ0(ln ū)− Vπ1(ln ū) ≤ k
Eln ū

[
e−λτ

]
1− Eln ū [e−λτ ]

ln ū,

and so

Vπ0(x)− Vπ1(x) ≤ kEx[e−λτ ]
1

1− Eln ū [e−λτ ]
ln ū. (A.24)

By Assumption A4, µ(x) ≤ µ(0) +λx, so by letting τ ′ be the same as τ , but with the drift µ(x)

replaced by µ(0) + λx, it is clear that Ex[e−λτ ] ≤ Ex[e−λτ
′
]. Define hū(x) = Ex[e−λτ

′
] so that

hū(0) = 0 and hū(ū) = 1. Furthermore, by standard results, see e.g. [4] Ch. 15.3, hū satisfies

1

2
σ2(x)h′′ū(x) + (λx+ µ(0))h′ū(x)− λhū(x) = 0.

One solution of this equation is

h1(x) = λx+ µ(0).
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Another solution is then given as, see e.g. [12] p.31,

h2(x) = h1(x)

∫ ∞
x

1

h2
1(y)

e
−2

∫ y
0
λt+µ(0)

σ2(t)
dt
dy

≤ h1(x)

∫ ∞
x

1

h2
1(y)

e−c
∫ y
0

1
1+t

dtdy

= h1(x)

∫ ∞
x

1

h2
1(y)

(1 + y)−cdy → 0 as x→∞.

Here we used Assumption A.1 in the first inequality, where c is a suitable positive constant.

Fitting the boundary conditions we get

hū(x) =
1

λū+ µ(0)
(

1− h2(ū)
h2(0)

) (λx+ µ(0)

(
1− h2(x)

h2(0)

))
.

Therefore, hū(x) ∼ (λū)−1 as ū gets large and x is fixed, and this proves the result by (A.24),

choosing ū so large that Vπ0(x) − Vπ1(x) ≤ δ
2 for all x ∈ [0, b]. Note that in the proof we may

have used ūγ with 0 < γ < 1 instead of ln ū. �
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