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Abstract

This paper studies the utility maximization problem with chang-
ing time horizons in the incomplete Brownian setting. We first show
that the primal value function and the optimal terminal wealth are
continuous with respect to the time horizon T . Secondly, we exemplify
that the expected utility stemming from applying the T -horizon opti-
mizer on a shorter time horizon S, S < T , may not converge as S ↑ T

to the T -horizon value. Finally, we provide necessary and sufficient
conditions preventing the existence of this phenomenon.
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1 Introduction and summary

We consider an investor maximizing expected utility of terminal wealth in
a general incomplete Brownian based framework. We are interested in the
stability part of Hadamard’s well-posedness requirements and we will con-
sider two continuity questions related to the investment horizon parameter
T ∈ [0,∞). Our goal is to identify models which are stable in the sense that
the following questions can be answered negatively.

We first pose the question

Does a (marginal) misspecification of the investment horizon significantly
influence the investor’s optimal strategy?

We let X
(T )
t denote the optimal wealth process at time t ∈ [0, T ] and we let

U be the investor’s utility function. Our mathematically interpretation of
the above is question is whether or not we have

lim
K→T

E[U(X
(K)
K )] = E[U(X

(T )
T )]? (1.1)

Our first main result provides an affirmative anwer in the general incomplete
Brownian setting without imposing any additional conditions on the model.

The second question we seek to answer is

Can the optimal T -horizon strategy be (marginally) terminated pre-maturely
without the investor incurring a loss?

The mathematical quantification of this question is whether or not we have

lim
K↑T

E[U(X
(T )
K )] = E[U(X

(T )
T )]? (1.2)

Here X(T ) denotes the T -horizon optimal wealth process and X
(T )
K denotes its

value at time K, K < T . We explicitly exemplify that (1.2) does not hold in
general. Specifically, for the negative power investor U(a) := ap/p, p < 0 and
a > 0, we construct a complete financial model where (1.2) fails. We then
develop sufficient conditions on the utility function alone as well as combined
sufficient conditions on the utility function and the market structure for (1.2)
to hold in the incomplete Brownian setting.

Alternatively we could consider models which explicitly incorporate un-
certainty about the investment horizon. Such problems fall under the theory
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of robust utility maximization and typically involve a min-max objective, see
e.g., the textbook [9] and the references therein. These robust models seek
to provide a strategy which works well for a variety of parameters. This
is in contrast to our setting where the investor firmly believes in a fixed
time horizon and we are interested in various continuity properties of the
corresponding optimizer seen as a function of the horizon parameter.

In continuous time and state settings the problem of maximizing expected
utility of terminal wealth dates back to Merton’s original works. The general
existence of optimizers in the complete Brownian-based setting is provided
by the martingale method developed in [4] and [14]. [15] extend this method
to the incomplete Brownian setting by introducing duality. Finally, [19] and
[20] settle the question in the general semimartingale setting.

The two questions raised above are about the sensitivity of optimizers
with respect to the time horizon parameter T and there exist several related
research directions. Turnpike results show that if two utility functions for
large wealth levels align then the corresponding optimizers converge as T →
∞, see e.g., [7] and the references therein. [8] and [11] use ideas from the
theory of large deviations to characterize the long-run optimizer (T → ∞) in
various specific (Markovian) settings. Finally, we mention [3] who establish
the semimartingale structure of the collection of optimal terminal wealths
(X

(T )
T )T>0 in a general framework.
Our answer to the first question raised above partly rests on a variant of

the duality results developed in [21]. The second question is complicated by

the fact that X
(T )
K is typically strictly suboptimal for non-myopic investors

facing the investment horizon K with K < T . As a consequence, we do
not have a corresponding dual formulation which complicates the proofs (all
proofs are in the Appendix).

We base our analysis on a probability space (Ω,F ,F,P) where F :=
(Ft)t∈[0,T ] is the standard augmented filtration generated by a two dimen-

sional Brownian motion (B,W ) with T ∈ [0,∞) and we assume F = FT . Lk

denotes the set of measurable and adapted processes ν satisfying

P

(

∫ T

0

|νu|kdu < ∞
)

= 1, k = 1, 2.

For a local martingale M , we denote by E(M)t, t ∈ [0, T ], the stochastic
Doléans-Dade exponential of M with E(M)0 = 1. Finally, for a ∈ R we
define a− := max(−a, 0) and a+ := max(a, 0).
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2 The modeling framework

2.1 The financial market

The market consists of the money market account S
(0)
t with dynamics

dS
(0)
t := S

(0)
t rtdt, t ∈ (0, T ) S

(0)
0 := 1, (2.1)

for a nonnegative interest rate process r ∈ L1. The single risky security has
dynamics

dSt := St

(

µtdt + σtdBt

)

, t ∈ (0, T ), S0 := 1. (2.2)

We refer to µ ∈ L1 as the drift process and we call 0 < σ ∈ L2 the volatility
process. It is straightforward to extend the following results to allow for a
d-dimensional Brownian motion driving n risky stocks. We refer to the ratio
λ := (µ − r)/σ as the market price of risk process. It is important to note
that since the pair (r, λ) is allowed to depend on the W -Brownian motion, the
market (S(0), S) is in general incomplete and does not possess any Markovian
structure.

The minimal martingale density Zλ defined by the Doléans-Dade expo-
nential

Zλ
t := E(−λ ·B)t := exp

(

−
∫ t

0

λudBu −
1

2

∫ t

0

λ2
udu

)

, t ∈ [0, T ], (2.3)

is a strictly positive supermartingale for λ ∈ L2. We refer to [10] for more
information about the minimal density Zλ.

In order to ensure that (2.1), (2.2), and (2.3) are well-defined we assume
throughout the paper that the following regularity condition is satisfied.

Assumption 2.1. The processes (r, µ, σ) satisfy the following: σ ∈ L2 is
strictly positive, r ∈ L1 is nonnegative, and λ := (µ− r)/σ ∈ L2 is such that
Zλ is a genuine martingale.

♦
In order to be in the familiar setting of no free lunch with vanishing risk

(see [5]) we assume that Zλ is a genuine martingale1. Cauchy-Schwartz’s
inequality ensures that µ ∈ L1 under Assumption 2.1, hence, the dynamics
(2.2) are well-defined.

1In the case rt := 0, i.e., S
(0)
t

= 1 for all t ∈ [0, T ], [6] illustrate that Assumption 2.1 is
strictly stronger than the no free lunch with vanishing risk condition.
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2.2 The investor’s problem

The investor’s wealth at time t ∈ [0, T ] is denoted by Xt = X
(x,π)
t where

x > 0 is the initial endowment and π denotes a wealth fraction π invested in
the risky asset S. The self-financing wealth dynamics are given by

dXt = Xtrtdt + Xtπt

(

(µt − rt)dt + σtdBt

)

, t ∈ (0, T ). (2.4)

To ensure that these dynamics are well-defined we require π to satisfy that
πσ ∈ L2. In this case, the regularity imposed on (r, λ) in Assumption 2.1
ensures together with Cauchy-Schwartz’s inequality that we have π(µ− r) ∈
L1. Furthermore, under Assumption 2.1 there are no arbitrage opportunities
in this class of strategies, see e.g., [15].

The investor’s preferences are modeled by a utility function U defined
on the positive axis. We assume that U is strictly increasing, strictly con-
cave, and continuously differentiable as well as satisfies the Inada and the
reasonable asymptotic elasticity conditions, i.e.,

lim
a↓0

U ′(a) = +∞, lim
a→+∞

U ′(a) = 0, lim sup
a→+∞

aU ′(a)

U(a)
< 1.

The main example of such a utility function is given by U(a) := ap/p for
p ∈ (−∞, 1) and a > 0 with p := 0 interpreted as the myopic log-investor.
We assume that the investor seeks to maximize expected utility of terminal
wealth

u(K)(x) := sup
π :πσ∈L2

E[U(XK)] = E[U(X
(K)
K )], K ∈ [0, T ]. (2.5)

Implicitly in this definition is the usual convention that if π renders

E[U+(XK)] = E[U−(XK)] = +∞,

we define E[U(XK)] := −∞. We have explicitly augmented the value func-

tion u(K)(x) as well as the optimal terminal wealth process X
(K)
t , t ∈ [0, K],

with the maturity index K ∈ [0, T ]. Since shorter horizon strategies are al-
ways admissible for a longer horizon and since r is assumed nonnegative, it
is clear that u(K)(x) is nondecreasing in K. In Appendix A.2 we show how
to adjust the duality theory developed in [19] and [20] to produce the unique
optimizer X(K) in the present case of nonnegative interest raets.
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3 Continuity of the optimal behavior

We first provide the left-continuity part for the first question (1.1).

Theorem 3.1. Under Assumption 2.1 we have for T ∈ [0, T ]

1. u(T )(x) < ∞ for all x > 0 implies that we have u(K)(x) ↑ u(T )(x) as
K ↑ T for all x > 0,

2. u(T )(x) = +∞ for all x > 0 implies that we have u(K)(x) ↑ +∞ as
K ↑ T for all x > 0.

We next exemplify that even though u(K)(x) is finite for all K ∈ [0, T )
and all x > 0 we can have u(T )(x) = +∞ for all x > 0 where T < ∞. The
following example is a simplified version of the celebrated Kim and Omberg
model developed in [16], see also [22] for various affine extensions. [17] list
a sequence of other standard models which can display a similar exploding
phenomenon.

Example 3.2. We consider the complete model specification rt := 0, σt := 1,
and the OU-drift µ (equivalently, the market price of risk process λ)

dµt := κ(θ − µt)dt + βdBt, t > 0 µ0 ∈ R, (3.1)

for strictly positive constants (κ, θ, β). U denotes the positive power in-
vestor’s utility function, i.e., U(a) := ap/p for a ≥ 0 and p ∈ (0, 1).

Lemma 3.3. Let µ be defined by (3.1) and let p ∈ (0, 1). Then Zµ
t defined

by (2.3) is a genuine martingale for all t ∈ [0,∞). Furthermore, for κ > 0
sufficiently small there exists T ∈ (0,∞) such that mapping E defined by

[0, T ) ∋ K → E(K) := E

[

Z
p/(p−1)
K

]

, (3.2)

is continuous and finite-valued, however, converges to +∞ as K ↑ T .

Because µ is driven solely by B, the model (S(0), S) is complete and
the martingale method from [14] and [4] produces the (candidate) optimal

terminal wealth X
(K)
K := (yZµ

K)1/(p−1). Here y = y(x) > 0 is the Lagrange
multiplier corresponding to the investor’s budget constraint, i.e., y satisfies

x = E[Zµ
K(yZµ

K)1/(p−1)] = y1/(p−1)E[(Zµ
K)p/(p−1)], K ∈ [0, T ).

As pointed out and exemplified in [17] care must given to verify that this
candidate X(K) indeed is optimal (as stated on p.152 in [16], [16] does not
verify their HJB-argument).
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Lemma 3.4. Let µ be defined by (3.1), let p ∈ (0, 1), and let κ > 0 be small
enough so Lemma 3.3 can be applied. The primal value function is given by

u(K)(x) = E(K)(1−p)xp/p, x ≥ 0, K ∈ [0, T ), (3.3)

where E(·) is defined by (3.2).

From (3.3) we indeed see that u(K)(x) is finite-valued for K ∈ [0, T ), how-
ever, explodes as K ↑ T by Lemma 3.3 whenever κ > 0 is sufficiently small.
Finally, we mention that κ := 0 also displays this exploding phenomenon in
finite time (as long as p ∈ (0, 1) and β 6= 0).

♦

The next result completely settles the first question (1.1) and constitutes
our first main result.

Theorem 3.5. Under Assumption 2.1 and u(T+ǫ)(x) < ∞ for some ǫ > 0
such that T + ǫ ≤ T we have

1. u(K)(·) → u(T )(·) uniformly on compacts of (0,∞) as K → T ,

2. X
(K)
K → X

(T )
T in P-probability as K → T .

4 Continuity and exiting pre-maturely

4.1 Formulation and a necessary condition

In this section we consider the performance of the optimal investment strat-
egy corresponding to the T -horizon on a shorter horizon K with K < T ≤ T ,
see (1.2). More specifically, we let X

(T )
K be the optimal wealth process at time

K corresponding to the T -horizon and to measure its performance up to time
K we are interested in the following quantity

u(T )(K, x) := E

[

U
(

X
(T )
K

)]

, X
(T )
0 := x, K ∈ [0, T ].

This quantity measures the expected utility the investor obtains from fol-
lowing the T -horizon optimal strategy up to time K, K < T . From this
definition it is clear that we have the following ranking

u(T )(K, x) ≤ u(K)(x) ≤ u(T )(x), K ∈ [0, T ]. (4.1)
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The previous section shows that u(K)(x) converges to u(T )(x) as K ↑ T . A
trivial application of Fatou’s lemma and the path continuity of (S(0), S) show
that when U is uniformly bounded from below we also have u(T )(K, x) →
u(T )(x) as K ↑ T . In particular, this includes the positive power investor
U(a) := ap/p for p ∈ (0, 1) and a ≥ 0, however, as the following result
illustrates we do not in general have this convergence property.

Theorem 4.1. Let U satisfy U(0) = −∞, U is uniformly bounded from
above, and U satisfies

lim inf
a→+∞

aU ′(a) = 0. (4.2)

Then there exists a complete financial model satisfying Assumption 2.1 such
that u(T )(x) is finite-valued for all x > 0, however, limK↑T u(T )(K, x) = −∞
for some x > 0.

This result shows that exiting an optimal strategy pre-maturely can have
severe costs (measured in terms of loss in expected utility) for the investor.
We stress that this result covers the widely used class of negative power
utility, i.e., U(a) := ap/p for p < 0 and a > 0. The assumption of U
being bounded from above only serves to ensure finiteness of the primal
value function u(T )(x).

Finally, we will try to give some interpretation of the construction un-
derlying Theorem 4.1. First of all, since Assumption 2.1 holds, there is no
arbitrage in the underlying model, however, the model construction is in-
spired by the classical doubling strategy. The idea is that some “good event”
is bound to happen before time T but its timing can be arbitrarily close to
T . Therefore, the T -horizon investor eventually receives this “good payoff”,
however, during [0, T ) the strategy leads to wealth levels very close to zero.
Consequently, when an investor with U(0) = −∞ is forced to liquidate the
position prematurely, the resulting expected utility can be arbitrary nega-
tive. On the other hand, if the strategy is held to maturity T the “good
event” is realized bringing the expectation up to a finite value.

4.2 Sufficient conditions

Our first result places sufficient conditions on the utility function alone.
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Theorem 4.2. Under Assumption 2.1, u(T )(x) < ∞ for x > 0, U(0) = −∞,

inf
a>0

aU ′(a) > 0, and lim sup
a↓0

aU ′(a) < +∞, (4.3)

we have u(T )(K, x) → u(T )(x) as K ↑ T for x > 0.

This result includes the myopic log-investor where U(a) := log(a), a > 0.
As usual we denote by I(·) the inverse function of U ′(·). Condition (4.3) can
then equivalently be stated as

inf
b>0

bI(b) > 0, and lim sup
b→+∞

bI(b) < +∞. (4.4)

The next results place conditions on both the utility function and the
underlying market. The first result is stated for the negative power investor.

Theorem 4.3. Under Assumption 2.1 and U(a) := ap/p, p < 0 and a > 0:
If there exist constants ǫ > 0 and γ < p(1 − p) < 0 such that

sup
t∈[T−ǫ,T ]

E

[

exp

(

−γ

∫ T

t

rudu

)(

Zλ
T

Zλ
t

)γ]

< ∞, (4.5)

we have u(T )(K, x) → u(T )(x) as K ↑ T for x > 0.

The proof of this result only hinges on the behavior of the utility function
U near zero and as a consequence we have the following corollary.

Corollary 4.4. Under Assumption 2.1: Assume the utility function U sat-
isfies u(T )(x) < ∞ as well as for some p < 0 we have

0 < lim inf
a↓0

U ′(a)

ap−1
≤ lim sup

a↓0

U ′(a)

ap−1
< ∞. (4.6)

Then condition (4.5) ensures u(T )(K, x) → u(T )(x) as K ↑ T for x > 0.

We next provide an easily verifiable Novikov-type of condition on the
interest rate and market price of risk process which ensures that (4.5) holds.

Lemma 4.5. Assume there exist constants ǫ > 0 and δ > 0 such that r ∈ L1

and λ ∈ L2 satisfy that the function

[T − ǫ, T ] ∋ t → E

[

exp
(

δ(rt + λ2
t )
)

]

∈ (0,∞),

is continuous. Then (4.5) holds for any γ < 0.
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We conclude this section by presenting a simple example illustrating this
lemma’s usefulness.

Example 4.6. Let rt := 0 and let v denote the Feller process with v0 > 0
and the dynamics

dvt := κ(θ − vt)dt + β
√
vt

(

ρdBt +
√

1 − ρ2dWt

)

, t > 0, (4.7)

for positive constants (κ, θ, β) and ρ ∈ [−1, 1]. We model the market price
of risk process as

λt :=
C0√

C1 + vt
+ C2

√

C3 + vt, t ∈ [0, T ], (4.8)

where C0, ..., C3 are nonnegative constants. For C0 := C3 := 0 this model is
the Chacko-Viceira model (see [1]) and [18] presents a closed form solution for
the power investor. The specification (4.8) for λ is inspired by the extended
affine class of models developed in [2] which is embedded by setting C1 :=
C3 := 0.

[12] show that for C0 6= 0 the usual exponential affine structure consid-
ered in e.g., [22] of the involved Laplacian breaks down and consequently no
known closed form solution exists for the power investor. However, the next
observation ensures the validity of Lemma 4.5.

Lemma 4.7. For C1 > 0 the market price of risk process (4.7)-(4.8) satisfies
the condition of Lemma 4.5.

♦

5 Conclusion

Based on Hardamard’s classical well-posedness criteria, we have studied sen-
sitivity of utility optimizers in the general incomplete Brownian setting. We
have shown that the optimal terminal wealth depends continuously on the
time horizon parameter without any further assumptions on the model. Sub-
sequently, we considered the performance of the longer horizon optimizer on
a shorter horizon and we illustrated that exiting an optimal strategy pre-
maturely can have severe costs in terms of loss in expected utility. Finally,
we provided easily verifiable conditions ruling out such behavior.

As a side implication, we have extended the dual existence results of [19]
to the cover the case of nonnegative stochastic interest rates.
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A Proofs

This Appendix contains all the proofs. Since the proof of Theorem 4.1 is
construction based we present it first. We then extend the duality theory of
[19] to include nonnegative stochastic interest rates before proceeding with
the remaining proofs. The results related to stochastic exponentials being
genuine martingales (Example 3.2 and Lemma 4.7), are provided at the very
end.

A.1 Proof of Theorem 4.1

We let (tn)n∈N ⊆ (0, 1) be an increasing sequence of numbers converging to 1
and define the disjoint partition (An)n∈N of Ω (up to a P-null set) as follows:

A1 := {Bt1 < 0},
A2 := {Bt1 ≥ 0} ∩ {Bt2 −Bt1 < 0},
A3 := {Bt1 ≥ 0} ∩ {Bt2 −Bt1 ≥ 0} ∩ {Bt3 −Bt2 < 0},

and so on. We note that by the independence of Brownian increments we
have P(Ak) = 1/2k for k ∈ N. The sequence of random variables (Yk)k∈N is
defined by

Yk :=

{

ak if (Btk+1
− Btk) ≤ αk

bk if (Btk+1
− Btk) > αk.

The constants are assumed to satisfy ak ∈ (0, 1) and bk > 1 whereas αn is
chosen such that E[Yk] = 1 for k ∈ N. We note that Yk is a positive Ftk+1

-
measurable random variable independent of Ftk for k ∈ N. We can then
define the strictly positive Lévy martingale by

ξt := E

[

∞
∑

k=1

Yk1Ak

∣

∣

∣
Ft

]

, t ∈ [0, T ].

In what follows U denotes a utility function satisfying (4.2). The proof
is finished by showing how we can use ξt to construct a complete financial
market such that

lim
K↑T

u(T )(K, x) = −∞, u(T )(x) ∈ R, x > 0, (A.1)
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for a specific choice of the sequences (ak)k∈N and (bk)k∈N.
By the martingale representation theorem for the Brownian motion B we

can find an adapted measurable process λ ∈ L2 such that

dξt = −ξtλtdBt, t ∈ (0, 1), ξ0 = 1.

By defining the drift process µt := λt, the volatility process σt := 1, and the
interest rate rt := 0 we see that ξ is the density process Zλ defined by (2.3)
and consequently Assumption 2.1 is satisfied.

To construct the two sequences (ak)k∈N and (bk)k∈N we first observe

E[Yk1Ak
|Ftn] =











Yk1Ak
for n > k

1An
for n = k

1Cn

1
2k−n for n < k,

where we have defined the Fn-measurable set Cn by

Cn := (Bt1 ≥ 0) ∩ (Bt2 −Bt1 ≥ 0) ∩ ... ∩ (Btk −Btk−1
≥ 0) = (∪n

k=1Ak)
c .

By Tonelli’s theorem for conditional expectations we have the relation

ξtn =

∞
∑

k=1

E[Yk1Ak
|Ftn] =

n−1
∑

k=1

Yk1Ak
+ 1An

+ 1Cn
.

By using the martingale method for complete Brownian based models,
see [4] and [14], we know that the optimal terminal wealth with time horizon
T := 1 satisfies

X
(1)
1 = I(yξ1) where I(b) := (U ′)−1(b), b > 0.

Here the Lagrange multiplier y > 0 is given by the investor’s budget restric-
tion, i.e., y satisfies x = E[ξ1I(yξ1)] where x > 0 is the investor’s initial
wealth. We will focus on the initial wealth x0 such that y = 1. We know
that X

(1)
t ξt is a martingale on t ∈ [0, 1] and therefore

X
(1)
tn =

E[X
(1)
1 ξ1|Ftn]

ξtn
=

E[I(ξ1)ξ1|Ftn]

ξtn
, n ∈ N.
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Similarly to the above calculations we can compute the nominator to be

E[I(ξ1)ξ1|Ftn ] =

∞
∑

k=1

E[I(Yk)Yk1Ak
|Ftn]

=

n−1
∑

k=1

I(Yk)Yk1Ak
+ E[I(Yn)Yn]1An

+

∞
∑

k=n+1

E[I(Yk)Yk]1Cn

1

2k−n
.

We can then compute u(1)(tn, x0) for n ∈ N to be

E[U(X
(1)
tn )] = E

[

U

(

E[I(ξ1)ξ1|Ftn ]

ξtn

)]

=

n−1
∑

k=1

E

[

U
(

I(Yk)
)

1Ak

]

+ E

[

U
(

E[I(Yn)Yn]
)

1An

]

+ E

[

U
(

∞
∑

k=n+1

E[I(Yk)Yk]
1

2k−n

)

1Cn

]

=

n−1
∑

k=1

E

[

U
(

I(Yk)
)]

P(Ak) + U
(

E[I(Yn)Yn]
)

P(An)

+ U
(

∞
∑

k=n+1

E[I(Yk)Yk]
1

2k−n

)

P(Cn).

On the other hand u(1)(x0) is given by

E[U(X
(1)
1 )] = E

[

U
(

I(ξ1)
)]

=
∞
∑

k=1

E

[

U
(

I(Yk)
)]

P(Ak).

The goal is therefore to construct (ak)k∈N and (bk)k∈N such that

lim
k→∞

E[YkI(Yk)] = 0 and lim
k→∞

U
(

E[YkI(Yk)]
)

P(Ak) = −∞.

Provided that this can be done, we would also have
∑∞

k=n+1E[I(Yk)Yk]
1

2k−n

converges to zero. All in all this construction would produce the limit

lim
n→∞

u(1)(tn, x0) = −∞,

whereas u(1)(1, x0) ∈ R and thereby conclude the proof. Since U is un-
bounded from below we can find a sequence (xk)k∈N converging to zero such
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that U(xk)P(Ak) = U(xk)/2k → −∞. We then define (ak)k∈N and (bk)k∈N
such that ak ↓ 0 and akI(ak) < xk/2 (here we use (4.2)) and bk ↑ +∞ such
that I(bk) < xk/2. To summarize, we define (αn)n∈N such that

E[Yn] = anpn + bn(1 − pn) = 1, pn := P(Btn+1 − Btn ≤ αn), n ∈ N,

subsequently we define the density (ξt)t∈[0,1] in terms of (Yk)k∈N, and finally
we define the initial wealth by x0 := E[ξ1I(ξ1)] < ∞. Then we have

E[YkI(Yk)] = akI(ak)pk + bkI(bk)(1 − pk) ≤ xk ↓ 0 as k → ∞,

since both pk and bk(1−pk) are less than one. The second requirement follows
from the construction of (xk)k∈N and the increasing property of U

U
(

E[YkI(Yk)]
)

P(Ak) = U
(

akI(ak)pk + bkI(bk)(1 − pk)
)

/2k

≤ U(xk)/2k → −∞ as k → ∞.

♦

A.2 Duality

The dual-based existence result in [19] is derived under the assumption rt := 0
whereas [15] rely on a uniform boundedness condition on r as well as a
smaller class of utility functions (excluding the negative power investors).
This section explains how to adjust the dual approach of [19] to cover the
case of nonnegative interest rates for general utility functions.

A strictly positive progressively measurable process Y , Y0 = 1, is called
a supermartingale deflator if XY is a supermartingale for any admissible
wealth process X . For ν ∈ L2 Itô’s lemma shows that

dY ν
t := −Y ν

t

(

rtdt + λtdBt + νtdWt), Y ν
0 := 1, (A.2)

is a supermartingale deflator. Since r is assumed nonnegative Y ν is a local
supermartigale and to see that Y ν is a genuine supermartingale we let (τn)n∈N
be a reducing sequence of stopping times. Fatou’s lemma shows

Y ν
s = lim inf

n→∞
Y ν
s∧τn ≥ lim inf

n→∞
E[Y ν

t∧τn |Fs] ≥ E[Y ν
t |Fs],

for 0 ≤ s ≤ t ≤ T . This supermartingale property is the key ingredient in
the duality approach developed in [19].

14



Lemma A.1. Under Assumption 2.1: For any supermartingale deflator Y
there exists ν ∈ L2 such that Yt ≤ Y ν

t , t ∈ [0, T ], where Y ν
t is defined by

(A.2).

Proof. We define the discounted price system

S̃
(0)
t := 1, S̃t := St/S

(0)
t , t ∈ [0, T ], (A.3)

and we denote by X̃ the corresponding discounted wealth process. Since
Y is a supermartingale deflator we also have S(0)Y X̃ is a supermartingale
for any X̃ . Proposition 3.2 in [21] produces the representation S(0)Y =
DZλE(−ν · W ) where Zλ is the minimal density (2.3), ν ∈ L2, and D is a
predictable, nonincreasing process with D0 = 1 and DT > 0. Therefore,

Yt = DtZ
λ
t E(−ν ·W )t/S

(0)
t ≤ Zλ

t E(−ν ·W )t/S
(0)
t = Y ν

t , t ∈ [0, T ].

♦
We define the two sets of FT -measurable random variables

C := {g ∈  L0
+(P) : g ≤ XT , X0 = 1}, D := {h ∈  L0

+(P) : g ≤ Y ν
T }, (A.4)

where X denotes some admissible wealth process and Y ν
t is given by (A.2).

These sets generalize [19], equations (3.1) and (3.2) on p.912, to the case
of nonnegative interest rates. The supermartingale property of Y ν produces
E[Y ν

T ] ≤ 1, i.e., D defined by (A.4) is a bounded set of  L1
+(P).

Lemma A.2. Under Assumption 2.1: The sets C and D are solid, convex
and closed in probability. Furthermore, the sets are in bipolar relation, i.e.,
D◦ = C and C◦ = D.

Proof. This result is basically Proposition 3.1 from [19] and here we only
mention the few adjustments needed. The solidity and convexity of D are
clear (for the latter we can use Lemma A.1). D’s closeness in probability fol-
lows as in [19], Lemma 4.1, since r ≥ 0 ensures that Y ν is a supermartingale.
Hence, the Bipolar Theorem for  L0

+(P) shows that D = D◦◦. The inclusion
C ⊆ D◦ is an immediate consequence of XY ν ’s supermartingale property.

The set of equivalent martingale measure Q for the discounted market
(A.3) is nonempty (because the minimal density Zλ is assumed to be a gen-
uine martingale). Furthermore, the Radon-Nikodym derivative on FT of such
a measure Q can be written as

dQ

dP
= exp(

∫ T

0

rudu)Y ν
T ,
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for some process ν = νQ ∈ L2. For any X ∈  L0
+(P) we define X̃ := X/S

(0)
T

so we have the identity E[Y ν
T X ] = EQ[X̃ ]. Therefore, if E[Y ν

T X ] ≤ 1 for all
ν ∈ L2 we can super-replicate X̃ in (S̃(0), S̃) by standard arguments, hence,
we can super-replicate X in (S(0), S). This shows that D◦ ⊆ C implying
D◦ = C. Therefore, the set C is solid, convex, and closed in probability. By
taking polars we see C◦ = D◦◦ = D which finishes the proof.

♦
Based on [15], the dual value function corresponding to the primal prob-

lem (2.5) is defined by

v(T )(y) := inf
ν∈L2

E[V (yY ν
T )], y > 0, (A.5)

where V is the convex conjugate of the utility function U defined by

V (b) := sup
a>0

(

U(a) − ab
)

, b > 0. (A.6)

Since U(·) is nondecreasing and V (·) is nonincreasing it is clear that the
primal value function (2.5) and the dual value function (A.5) can also be
written as

u(T )(x) = sup
g∈C

E[U(xg)], v(T )(y) = inf
h∈D

E[V (yh)],

for x, y > 0. Furthermore, Lemma A.1 shows that including all supermartin-
gale deflators Y in the minimizing (A.5) produces the same infimum. From
(A.6) we see for any ν ∈ L2 and any terminal wealth XT we have

V (yY ν
T ) ≥ U(XT ) + yXTY

ν
T , P-almost surely.

From this inequality we get the standard weak-duality inequality

v(T )(y) ≥ sup
x>0

(

u(T )(x) − xy
)

, y > 0. (A.7)

We note that (A.7) holds irrespectively of whether or not the primal and
dual value functions are finite-valued. The following result extends the main
result of [19] to the case of nonnegative stochastic interest rates.

Theorem A.3 (Kramkov-Schachermayer). Under Assumption 2.1: If u(T )(x) <
∞ then for y > 0 the dual minimizer ν(T ) = ν(T )(y) ∈ L2 exists, i.e.,

v(T )(y) = E[V (yY ν(T )

T )].
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The primal and dual value functions are continuously differentiable as well
as mutual conjugates, i.e.,

v(T )(y) = sup
x>0

(

u(T )(x) − xy
)

, y > 0, (A.8)

u(T )(x) = inf
y>0

(

v(T )(y) + xy
)

, x > 0. (A.9)

The unique optimal terminal wealth X(T ) exists and satisfies U ′(X
(T )
T ) =

yY ν(T )

T where y > 0 is the Lagrange multiplier corresponding to the investor’s

budget constraint, i.e., ∂
∂x
u(T )(x) = y. Furthermore, X(T )Y ν(T )

is a uniformly
integrable martingale.

Proof. The result follows from the “abstract version” in Section 3 of [19].
Properties (i) and (ii) in Proposition 3.1 in [19] are ensured by Lemma A.2.
The last required property (iii) follows from r ≥ 0, hence, 1 ∈ C, whereas
Markov’s inequality and D 6= ∅ produce the boundedness in probability of C.

♦

A.3 Remaining proofs

We remark that no finiteness of the dual value function v(K)(y) for K = T
is assumed in the following lemma.

Lemma A.4. Under Assumption 2.1: If v(K)(y) < ∞ for all K ∈ [0, T ),
T ≤ T , then we have

lim inf
K↑T, y→y0

v(K)(y) ≥ v(T )(y0), y0 > 0.

Proof. By means of the closeness of D established in Lemma A.2, the proof
only requires minor modifications to the proof of Lemma 3.7 in [21].

♦
Lemma A.5. Under Assumption 2.1: u(T )(x) = +∞ for all x > 0 if and
only if v(T )(y) = +∞ for all y > 0.

Proof. If u(T )(x) = +∞ the weak duality inequality (A.7) gives us v(T )(y) =
∞ for y > 0. On the other hand, if u(T )(x) < +∞ for some x > 0 -
equivalently for all x > 0 by U ’s concavity - we have by (A.9) that there
exists some y0 > 0 such that v(T )(y0) < ∞.

♦
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Proof of Theorem 3.1. For x > 0 we have u(K)(x) is increasing in K and as
a consequence v(K)(y) is increasing in K too. Therefore, Lemma A.4 shows

lim
K↑T,y→y0

v(K)(y) = v(T )(y0).

The proof of the first claim then follows by the conjugate relationship (A.8)-
(A.9) between the primal value function and dual value function, see Propo-
sition 3.9 in [21].

For the second claim we define the concave function

u(x) := lim
K↑T

u(K)(x), x > 0.

If u(x) is finite for some - equivalently all x > 0 - we get for y > 0

v(K)(y) = sup
x>0

(

u(K)(x) − xy
)

≤ sup
x>0

(

u(x) − xy
)

,

which is finite for some y0 > 0. This provides a uniform upper bound in
K ∈ [0, T ). By Lemma A.4 we therefore also have v(T )(y0) < ∞, however,
this contradicts the conclusion of Lemma A.5.

♦
Proof of Theorem 3.5. Since u(K)(x) is increasing K we have that u(K)(x) is
finite-valued implying that also v(K)(y) is finite-valued for all K ∈ [0, T + ǫ].
We fix y > 0 and define the function

f(ν,K) := E[V (yY ν
K)], ν ∈ L2, K ∈ [0, T + ǫ].

By the above observation f ’s effective domain is non-empty. Furthermore,
since Y ν

t is a nonnegative supermartingale and since V is a convex nonin-
creasing function we have for 0 ≤ s ≤ t ≤ T the relation

V (yY ν
s ) ≤ V

(

E[yY ν
t |Fs]

)

≤ E[V (yY ν
t )|Fs],

by Jensen’s inequality. Since the right-hand-side is integrable for ν in f ’s
effective domain, V (yY ν

t ) is a continuous submartingale. By Theorem 1.3.13
in [13] we therefore know that K → f(K, ν) is right-continuous (and non-
decreasing) on its effective domain. Consequently, we find the relation

inf
K>T

f(ν,K) = lim
K↓T

f(ν,K) = f(ν, T ),
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on f ’s effective domain. Since v(K)(y) is also nondecreasing in K we have

lim
K↓T

v(K)(y) = inf
K>T

v(K)(y)

= inf
K>T

inf
ν∈L2

f(ν,K)

= inf
ν∈L2

inf
K>T

f(ν,K)

= inf
ν∈L2

f(ν, T ) = v(T )(y).

This shows right-continuity of the dual value function which combined with
Theorem 3.1 (first part) gives us the continuity property of v(K)(y). Having
established the continuity of the dual value function v(K)(y) we can prove that
the primal value function shares the same continuity property, see Proposi-
tion 3.9 in [21]. The procedure used in Lemma 3.6 in [19] and Lemma 3.10
in [21] subsequently shows the continuity (in probability) of the optimal ter-

minal wealths X
(K)
K , K ∈ [0, T + ǫ].

♦
Proof of Theorem 4.2. Since u(T )(x) < ∞, Theorem A.3 produces the primal

optimizer X(T ), the dual optimizer Y ν(T )
, and their relation

X
(T )
t =

E[Y ν(T )

T I(yY ν(T )

T )|Ft]

Y ν(T )

t

, t ∈ [0, T ].

In this expression y > 0 denotes the Lagrange multiplier corresponding to
the budget restriction related to the investor’s initial wealth x > 0, i.e., y is
implicitly given by x = E[Y ν(T )

T I(yY ν(T )

T )]. From the first part of (4.3) - or
equivalently the first part of (4.4) - we can find ǫ > 0 such that bI(b) ≥ ǫ for
all b > 0. This implies that we have the lower bound

X
(T )
t ≥ ǫ

yY ν(T )

t

, t ∈ [0, T ].

By the second part of (4.3) and U(0) = −∞ we can use the below Lemma
A.6 to get

lim sup
a↓0

U(a)

log(a)
< +∞.

This means that we can find a0 ∈ (0, 1) and M < ∞ such that U(a)/ log(a) <
M for all a ≤ a0. As a consequence we have

U−(X
(T )
t ) ≤ U−

(

ǫ/yY ν(T )

t

)

≤ M log−
(

ǫ/yY ν(T )

t

)

+ D, (A.10)
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where D > 0 is some constant. To see that the right-hand-side of (A.10) is
uniformly integrable we define the uniform integrability test function φ(a) :=
ǫea/y for a ∈ R. Then we have

E

[

φ
(

log−
(

ǫ/yY ν(T )

t

))]

≤ E

[

φ
(

− log
(

ǫ/yY ν(T )

t

))]

+ φ(0)

= E[Y ν(T )

t ] + 1,

which is uniformly bounded for t ∈ [0, T ]. The uniform integrability then
follows from the de la Vallée-Poussin’s criterion. This feature combined with
Fatou’s lemma applied to the positive parts U+(X

(T )
t ) gives us

lim inf
t↑T

u(T )(t, x) = lim inf
t↑T

E[U(X
(T )
t )] ≥ E[U(X

(T )
T )] = u(T )(x),

by path continuity of (S(0), S). The opposite inequality follows from (4.1).
♦

Lemma A.6. Let f, g : (0,∞) → R be two strictly increasing and continu-
ously differentiable functions satisfying

lim
a↓0

f(a) = lim
a↓0

g(a) = −∞, lim sup
a↓0

f ′(a)

g′(a)
< +∞.

Then we have

lim sup
a↓0

f(a)

g(a)
< +∞.

Proof. By assumption we can find a0 ∈ (0,∞) such that f ′(a)/g′(a) is uni-
formly bounded for a ∈ (0, a0). Therefore,

(

f(a0) − f(a)
)

/
(

g(a0) − g(a)
)

is
bounded for a sufficiently small. The formula

f(a)

g(a)
=

f(a0) − f(a)

g(a0) − g(a)

f(a)

f(a) − f(a0)

g(a) − g(a0)

g(a)
,

together with L’Hopital’s rule applied to the last two terms on the right-
hand-side produces the claim.

♦
Lemma A.7. Under Assumption 2.1 and u(T )(x) < ∞, T ∈ [0, T ]: The
process

1

E(−ν(T ) ·W )t
E

[

Y ν(T )

T I
(

yY ν(T )

T

)
∣

∣

∣
Ft

]

, t ∈ [0, T ],
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is a supermartingale where ν(T ) denotes the optimal dual element and y
denotes the Lagrange multiplier corresponding to the investor’s budget con-
straint.

Proof. Since u(T )(x) < ∞ the dual optimizer ν(T ) exists by Theorem A.3 and
we have the martingale representation

X
(T )
t Zλ

t E(−ν(T ) ·W )t/S
(0)
t = Y ν(T )

t X
(T )
t = E

[

Y ν(T )

T I
(

yY ν(T )

T

)
∣

∣

∣
Ft

]

.

Itô’s lemma ensures X
(T )
t Zλ

t /S
(0)
t is a local martingale which by nonnegativity

is also a supermartingale. Dividing through produces the result.
♦

Proof of Theorem 4.3. Since U is negative the dual minimizer ν(T ) exists by
Theorem A.3. The proof is finished by showing that (4.5) ensures uniform

integrability of the family {(X
(T )
t )p}t∈[T−ǫ,T ]. The inverse of U ′ is given by

I(b) = b1/(p−1), b > 0. Let y > 0 be the Lagrange multiplier corresponding to

the investor’s budget constraint. The optimal wealth process X
(T )
t satisfies

for t ∈ [0, T ]

X
(T )
t =

1

Y ν(T )

t

E

[

Y ν(T )

T I
(

yY ν(T )

T

)
∣

∣

∣
Ft

]

≥ S
(0)
t

Zλ
t

E

[

Zλ
T I
(

yY ν(T )

T

)

/S
(0)
T

∣

∣

∣
Ft

]

where the inequality follows by the supermartingale property proven in the
previous Lemma A.7. We define the negative constant

p′ :=
1

1/γ + 1/(p− 1)
∈ (p− 1, p).

By de la Vallée-Poussin’s criterion it therefore suffices to show that the family
{(X

(T )
t )p

′}t∈[T−ǫ,T ] is uniformly bounded in  L1(P). Since p′ < 0 the above
inequality gives us P-a.s. for t ∈ [T − ǫ, T ] the estimate

(X
(T )
t )p

′ ≤ yp
′/(p−1)

(

Zλ
t /S

(0)
t

)p′
E

[

Zλ
T/S

(0)
T

(

Y ν(T )

T

)1/(p−1)∣
∣

∣
Ft

]p′

≤ yp
′/(p−1)

(

Zλ
t /S

(0)
t

)p′
E

[

(

Zλ
T/S

(0)
T

)p′ (

Y ν(T )

T

)p′/(p−1)∣
∣

∣
Ft

]

= yp
′/(p−1)E





(

Zλ
TS

(0)
t

Zλ
t S

(0)
T

)p′
(

Y ν(T )

T

)p′/(p−1)∣
∣

∣
Ft



 ,
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where the second inequality follows from Jensen’s inequality. We define con-
jugate exponents

q :=
p− 1

p′
> 1, q′ :=

q

q − 1
=

p− 1

p− 1 − p′
=

γ

p′
,

by the definition of p′. These exponents together with Hölder’s inequality
give us

E[(X
(T )
t )p

′

] ≤ yp
′/(p−1)E





(

Zλ
TS

(0)
t

Zλ
t S

(0)
T

)p′
(

Y ν(T )

T

)p′/(p−1)





≤ yp
′/(p−1)E

[(

Zλ
TS

(0)
t

Zλ
t S

(0)
T

)γ]1/q′

E

[

Y ν(T )

T

]1/q

≤ yp
′/(p−1)E

[(

Zλ
TS

(0)
t

Zλ
t S

(0)
T

)γ]1/q′

.

The supermartingale property of Y ν(T )
yields E[Y ν(T )

] ≤ 1 ensuring the va-
lidity of the last inequality. The right-hand-side is uniformly bounded by
(4.5).

♦

Proof of Corollary 4.4. We use the same notation as in the previous proof.
We will first show that (4.5) ensures uniform integrability of the negative

parts {U−(X
(T )
t )}t∈[T−ǫ,T ]. Condition (4.6) ensures that we can find x > 0

and 0 < M ≤ M < ∞ such that

Map−1 ≤ U ′(a) ≤ Map−1 for all a ∈ (0, x]. (A.11)

By integrating we therefore see that U(a) is bounded from below by an
affine function of ap for small values of a. In particular, we can find positive
constants C1 and C2 such that U−(a) ≤ C1a

p + C2 for all a > 0. By de
la Vallee-Poussin’s criterion the uniform integrability follows if we can find
δ > 0 such that the family {U−(X

(T )
t )}t∈[T−ǫ,T ] is uniformly bounded in

 L1+δ(P). We proceed as in the previous proof: The supermartingale property
established in Lemma A.7 and Jensen’s inequality (p < 0) give us for t ∈
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[T − ǫ, T ]

E[
(

U−(X
(T )
t )
)1+δ

] ≤ C3E[(X
(T )
t )p(1+δ)] + C4

≤ C3E





(

Zλ
TS

(0)
t

Zλ
t S

(0)
T

I
(

yY ν(T )

T

)

)p(1+δ)


+ C4,

where C3, C4 are constants. The lower bound in (A.11) gives us

I(b) ≥
(

b

M

)1/(p−1)

for all b ≥ Mxp−1.

Since p is negative we have the following upper bound P-a.s.

(

I
(

yY ν(T )

T

))p(1+δ)

≤
(

I(Mxp−1)
)p(1+δ)

+ M p(1+δ)/(1−p)
(

yY ν(T )

T

)p(1+δ)/(p−1)

.

By combining these two estimates we see that E[(U−(X
(T )
t ))1+δ] is bounded

from above by

C5E





(

Zλ
TS

(0)
t

Zλ
t S

(0)
T

)p(1+δ)


+ C6E





(

Zλ
TS

(0)
t

Zλ
t S

(0)
T

)p(1+δ)
(

Y ν(T )

T

)p(1+δ)/(p−1)



+ C4,

where C5, C6 are constants. The terms on the right-hand-side are uniformly
bounded in t, t ∈ [T − ǫ, T ], by the same reasoning as in the previous proof.
To conclude the proof we apply Fatou’s Lemma on the positive parts to see

lim inf
t↑T

u(T )(t, x) = lim inf
t↑T

(

E[U+(X
(T )
t )] − E[U−(X

(T )
t )]

)

≥ E[U+(X
(T )
T )] − E[U−(X

(T )
T )] = u(T )(x),

whereas the opposite inequality follows from (4.1).
♦
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Proof of Lemma 4.5. Let t ∈ [T − m, T ] for some m > 0. We have the
following chain of inequalities

E

[(

Zλ
TS

(0)
t

Zλ
t S

(0)
T

)γ]

= E

[

exp

(

−γ

∫ T

t

λudBu −
1

2
γ

∫ T

t

(λ2
u + 2ru)du

)]

≤ E

[

exp

(

−2γ

∫ T

t

λudBu − 2γ2

∫ T

t

λ2
udu

)]1/2

×

E

[

exp

(
∫ T

T−m

(

(2γ2 − γ)λ2
u − 2γru

)

du

)]1/2

≤ E

[

exp

(
∫ T

T−m

(

(2γ2 − γ)λ2
u − 2γru

)

du

)]1/2

≤
[

1

m

∫ T

T−m

E

[

exp
(

m
(

(2γ2 − γ)λ2
u − 2γru

))]

du

]1/2

.

The first inequality follows from Cauchy-Schwartz’s inequality, the second
follows by the supermartingale property of the stochastic exponential whereas
Jensen’s inequality gives us the final estimate. To finish the proof we choose
m so small that m(2γ2 − γ) ≤ δ, −m2γ ≤ δ, and m ≤ ǫ (recall γ < 0).
Then the result follows since a continuous function on a compact interval is
uniformly bounded.

♦

A.4 On Example 3.2 and Lemma 4.7

The following proofs are based on iterative technique presented in [23], Sec-
tion 6.2.

Proof of Lemma 3.3. Since µ is an OU-process we have µt ∼ N
(

mean(t), var(t)
)

for mean and variance functions

mean(t) := e−κtµ0 + θ(1 − e−κt), var(t) := β2(1 − e−2κt)/2κ, t ≥ 0.

Let us first verify that the exponential local martingale Zλ = Zµ defined
by (2.3) indeed is a genuine martingale, see Assumption 2.1. We consider
a finite partition ∆ = ∆n := T/n for some n ∈ N and some T > 0. By
Tonelli’s Theorem and Jensen’s inequality we have

E

[

e
1
2

∫ (i+1)∆
i∆ µ2

t
dt
]

≤ 1

∆

∫ (i+1)∆

i∆

E

[

e
1
2
∆µ2

t

]

dt.
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The inner expectation is finite whenever n is so large that v(t) < n/T . This
is ensured by choosing n ≥ Tβ2/2κ. Consequently, Novikov’s condition is
valid on each subinterval which combined with iterative expectations gives
us

E[Zµ

T
] = E

[

E[Zµ

T
|FT−∆]

]

= E[Zµ

T−∆
] = ... = 1.

Since this holds for any T > 0 the genuine martingale property of Zµ on
[0,∞) follows.

We then consider the coupled system of ODEs

c′(s) :=
p

(p− 1)2
− 2c(s)

(

κ +
βp

p− 1

)

+ β2c(s)2, c(0) := 0, (A.12)

b′(s) := κθc(s) + b(s)

(

β2c(s) − κ− βp

p− 1

)

, b(0) := 0,

a′(s) := κθb(s) +
1

2
β2
(

b(s)2 + c(s)
)

, a(0) := 0.

For κ > 0 sufficiently small the Riccati equation (A.12) has a well-defined
(finite) solution up to some finite explosion time T ∈ (0,∞). Specifically,
since p ∈ (0, 1), we can choose κ > 0 so small that the discriminant

4

(

κ +
βp

p− 1

)2

− 4
β2p

(p− 1)2
,

is negative. We then obtain the Tangent-solution presented in Appendix in
[16] which explodes continuously at some positive finite time T ∈ (0,∞).
Consequently, the entire ODE-system for (a, b, c) has well-defined finite so-
lutions up to this explosion time T . For 0 ≤ t ≤ K < T we can then define
the process

Mt := Z
p/(p−1)
t exp

(

a(K − t) + b(K − t)µt + c(K − t)µ2
t/2
)

.

Itô’s lemma produces the following local martingale dynamics

dMt = Mt

(

b(K − t)β + µt

(

c(K − t)β − p/(p− 1)
)

)

dBt.

Since both b(·) and c(·) are uniformly bounded on [0, K], K < T , the above
localization argument also produces the genuine martingale property of Mt,
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t ∈ [0, K]. Consequently, we obtain via the initial conditions for (a, b, c) the
representation

E(K) := E

[

Z
p/(p−1)
K

]

= exp
(

a(K) + b(K)µ0 + c(K)µ2
0/2
)

, K < T.

Since the Riccati equation (A.12) explodes continuously to +∞, as K ↑ T ,
this representation shows that limK↑T E(K) = +∞.

♦

Proof of Lemma 3.4. The following duality argument is standard. For U(a) :=
ap/p we have V (b) = 1−p

p
bp/(p−1). Let XK be the terminal value of any ad-

missible strategy. Then (A.6) gives us for K ∈ [0, T )

E[U(XK)] ≤ E[V (yZµ
K) + yXKZ

µ
K ]

≤ E[V (yZµ
K)] + yx

= E[V (yZµ
K)] + yE[Zµ

K(yZµ
K)1/(p−1)] = E[U(X

(K)
K )],

where the last equality follows from X
(K)
K := I(yZµ

K) and

V (b) := inf
a≥0

{

U(a) − ab
}

= U(I(b)) − bI(b), b > 0.

Finally, we note that all expectations appearing in this proof are finite by
Lemma 3.3 ensured by κ > 0 being small enough.

♦

Proof of Lemma 4.7. We first verify that Zλ satisfies Assumption 2.1. Since
C1 > 0 and vt is non-central χ2-distributed, Novikov’s condition is satisfied
locally in the sense that we can find ∆ > 0 such that for n ∈ N we have

E

[

exp

(

1

2

∫ (n+1)∆

n∆

λ2
udu

)]

≤ CE

[

exp

(

∫ (n+1)∆

n∆

C2(C3 + vu)du

)]

< ∞,

where C > 0 is some constant. Minor modifications of the iterative argument
in the proof of Lemma 3.3 shows the global martingale property of Zλ. This
also verifies the condition of Lemma 4.5.

♦
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