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MARKET VIABILITY VIA ABSENCE OF ARBITRAGE OF THE FIRST

KIND

CONSTANTINOS KARDARAS

Abstract. In a semimartingale financial market model, it is shown that there is equivalence be-

tween absence of arbitrage of the first kind (a weak viability condition) and the existence of a strictly

positive process that acts as a local martingale deflator on nonnegative wealth processes.

0. Introduction

A ubiquitous market assumption in the literature of Stochastic Finance theory is postulating

the existence of Equivalent Local Martingale Measure (ELMM). The latter refers to a probability

measure Q, equivalent to the “real-world” probability P, with the property that all discounted

nonnegative wealth processes are local Q-martingales. In view of the Fundamental Theorem of

Asset Pricing (FTAP), it is quite clear why such assumption is made from the outset: existence of

an ELMM is intimately connected to market viability; in fact, it is equivalent to the economically-

sound “No Free Lunch with Vanishing Risk” (NFLVR) condition — see for example [4] and [5] for

a complete treatment on the topic.

Stipulating the existence of an ELMM seems unavoidable in order to maintain market viability.

However, in recent publications there has been considerable interest in models where an ELMM

might fail to exist. These have appeared, for instance:

• in the context of stochastic portfolio theory, for which the survey [6] is a good introduction;

• from the financial modeling perspective, an example of which is the benchmark approach

of [20];

• in a financial equilibrium setting, both for infinite-time horizon settings (see [8]), as well as

finite-time horizon models with credit constraints on economic agents (see [18] and [19]).

The common assumption that the previous approaches share is postulating the existence of an

Equivalent Local Martingale Deflator (ELMD), that is, a strictly positive process that makes all
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2 CONSTANTINOS KARDARAS

discounted nonnegative wealth processes, when multiplied by it, local martingales. (An ELMD was

called a strict martingale density in [22]; we opt here to call it ELMD as it immediately connects

with the notion of an ELMM.) An ELMD is a strictly positive local martingale, but not necessarily

a martingale; therefore, it cannot always be used as a density processes to produce an ELMM.

While models where an ELMM might fail to exist are now being extensively studied, a result that

would justify their applicability along the lines the FTAP has not yet appeared in the literature. In

this work, the aforementioned issue is tackled. A precise economical condition of market viability is

given using the concept arbitrage of the first kind, which has first appeared under this appellation

in [10]; see also [13] in the context of large financial markets, as well as [18], where arbitrage of the

first kind is called a cheap thrill. Absence of arbitrage of the first kind in the market, which we shall

abbreviate as condition NA1, is close in spirit, but strictly weaker, than condition NFLVR; in fact,

it is exactly equivalent to condition “No Unbounded Profit with Bounded Risk” (NUPBR) that

appeared in [16]. The main result of the present paper precisely states that in a semimartingale

market model there is equivalence between condition NA1 and the existence of an ELMD.

In the literature concerning discrete-time models, there have appeared two ways of providing

a proof of the FTAP. The first one is the approach of [3] (initiated in [9]), which utilizes convex

separation functional-analytic arguments. The alternative, presented in [21], uses the economic

idea that the marginal utility evaluated at the optimal terminal wealth of an economic agent, when

properly scaled, defines the density of an equivalent martingale measure. The former approach has

been adapted with extreme success to continuous time models in [4] and [5]. The present work

can be seen as a counterpart of the latter approach in continuous-time markets — here, the utility

involved is logarithmic (under a suitable change of probability), and makes the reciprocal of the

log-optimizer an ELMD. Interestingly enough, in continuous-time models the two approaches do

not give rise to the same result; the present approach weakens the equivalent conditions of the

classical FTAP in [4], both from the mathematical and the economic side. Note also that the main

result of this paper can also be seen as an intermediate step in proving the general version of the

FTAP as is presented in [4]. In fact, this task is taken up in [17].

The structure of the paper is simple. In Section 1, the market is introduced, arbitrage of the

first kind is defined and the main result is stated, whose somewhat lengthy and technical proof is

deferred for Section 2.

1. Absence of Arbitrage of the First Kind and Equivalent Local Martingale

Deflators

1.1. Probabilistic remarks. All stochastic processes in the sequel are defined on a filtered prob-

ability space
(
Ω, F , (F(t))t∈R+

, P
)
. Here, P is a probability on (Ω,F), F being a sigma-algebra

that will make all random elements measurable. All relationships between random variables are
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understood in the P-a.s. sense. The filtration (F(t))t∈R+
is right-continuous. We assume the exis-

tence of a finite financial planning horizon T , where T is a finite stopping time. All processes will

be assumed to be constant, and equal to their value they have at T , after time T . Without affecting

the generality of the discussion, it will be assumed throughout that F(0) is trivial modulo P and

that F(T ) = F .

1.2. Investment. Let S be a semimartingale, denoting the discounted, with respect to some base-

line security, price process of a financial security. Starting with capital x ∈ R, and investing

according to some predictable and S-integrable strategy ϑ, an economic agent’s discounted wealth

process is

(1.1) Xx,ϑ := x+

∫ ·

0
ϑ(t)dS(t).

When modeling frictionless trading, credit constraints have to be imposed on investment in order

to avoid doubling strategies. Define then X to be the set of all nonnegative wealth processes, i.e.,

all Xx,ϑ in the notation of (1.1) such that Xx,ϑ ≥ 0.

1.3. Equivalent local martingale deflators. An equivalent local martingale deflator (ELMD)

is a nonnegative process Z with Z(0) = 1 and Z(T ) > 0, such that ZX is a local martingale for all

X ∈ X . Since 1 ≡ X1,0 ∈ X , an ELMD is in particular a strictly positive local martingale.

1.4. Arbitrage of the first kind. An F(T )-measurable random variable ξ will be called an

arbitrage of the first kind if P[ξ ≥ 0] = 1, P[ξ > 0] > 0, and for all x > 0 there exists Xx,ϑ ∈ X (for

some ϑ which may depend on x), such that Xx,ϑ(T ) ≥ ξ. If there exists no arbitrage of the first

kind in the market, we shall say that condition NA1 holds.

It is straightforward to see that condition NA1 is weaker than condition NFLVR of [4]. Actually,

using a combination of Lemma A.1 in [4] and Lemma 2.3 in [2], it is shown in [17, Proposition 1.2]

that condition NA1 is equivalent to the requirement that the set {X(T ) |X ∈ X with X0 = 1} is

bounded in probability. The latter condition has been coined BK in [12] and NUPBR in [16].

1.5. The main result. The next result can be seen as a weak version of the FTAP. Though simple

to state, its proof is quite technical and is given in Section 2.

Theorem 1.1. Condition NA1 is equivalent to the existence of at least one ELMD.

Remark 1.2. In [17], which is in a certain sense a sequel to this paper, it is argued that although

an ELMD does not generate a probability measure, its local martingale structure allows one to

define a finitely additive probability that is locally countably additive and weakly equivalent to P,

and further makes discounted asset-price processes behave like “local martingales”. More precisely,

Theorem 1.1 can be reformulated to state that condition NA1 is valid if and only if there exists

Q : F 7→ [0, 1] and a a sequence (τn)n∈N of stopping times with limn→∞ P [τn = T ] = 1 such that:
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• Q[∅] = 0, Q[Ω] = 1, and Q is (finitely) additive: Q[A ∪B] = Q[A] + Q[B] whenever A ∈ F
and B ∈ F satisfy A ∩B = ∅;

• for A ∈ F , P[A] = 0 implies Q[A] = 0;

• when restricted on Fτn , Q is countably additive and equivalent to P, for all n ∈ N.

•
∫
ΩXτn∧τdQ = X0 holds for all X ∈ X , n ∈ N and all stopping times τ .

Using this reformulation, Theorem 1.1 bears more resemblance to the FTAP of [4]. In fact, as

already mentioned in the Introduction, in [17] Theorem 1.1 is used as an intermediate step in

proving the FTAP in [4].

Remark 1.3. Theorem 1.1 is stated for one-dimensional semimartingales S, as even for this “simple”

case the proof is quite technical and requires taking care of many different issues, as the reader

will appreciate in Section 2 below. There is no doubt that the result is still valid for the multi-

dimensional semimartingale case, albeit its proof is expected to be significantly more involved.

2. The Proof of Theorem 1.1

2.1. Proving Theorem 1.1 with the help of an auxiliary result. The proof of one implication

of Theorem 1.1 is easy and somewhat classic, but will be presented anyhow here for completeness.

Start by assuming the existence of an ELMD Z and pick any sequence (Xk)k∈N of wealth processes

in X such that limk→∞Xk(0) = 0 as well as Xk(T ) ≥ ξ for some nonnegative random variable ξ.

Since ZXk is a nonnegative local martingale, thus a P-supermartingale,

E[Z(T )ξ] ≤ E[Z(T )Xk(T )] ≤ Z(0)Xk(0) = Xk(0)

holds for all k ∈ N. Therefore, E[Z(T )ξ] ≤ 0. Since P[Z(T ) > 0, ξ ≥ 0] = 1, E[Z(T )ξ] ≤ 0 holds

only if P[ξ = 0] = 1. Therefore, ξ cannot be an arbitrage of the first kind, and condition NA1 holds.

It remains to prove the other implication, which is considerably harder. Define

X++ := {X ∈ X | X > 0 and X− > 0} .

Since condition NA1 is equivalent to condition NUPBR of [16], the general results of the latter

paper imply that condition NA1 is equivalent to the existence of X̂ ∈ X++ with X̂(0) = 1 such

that, with Z := 1/X̂ , ZX is a supermartingale for all X ∈ X++. (Note that the results of [16] have

been established when S ∈ X++; however, this condition is unnecessary. At any rate, in the present

paper we give a full treatment instead of depending on results from [16].) Unfortunately, when

jumps are present in S, these last supermartingales might fail to be local martingales. In order

to achieve our goal, we shall have to slightly alter the original probability using the predictable

characteristics of S. (The idea of how to perform such a change of probability is already present in

[12] and [7].) In §2.2 below we shall establish the following result, certainly interesting in its own

right. Before stating it, recall that for a signed measure µ on (Ω,F), its total variation norm is

defined as
∣∣µ
∣∣
TV

:= supA∈F |µ[A]|.
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Theorem 2.1. Assume that condition NA1 holds. Then, for any ǫ > 0, there exists a probability

P̃ = P̃(ǫ) with the following properties:

(1) P̃ is equivalent to P on F(T ).

(2)
∣∣P̃− P

∣∣
TV

≤ ǫ.

(3) There exists X̃ ∈ X++ with X̃(0) = 1 such that X/X̃ is a local P̃-martingale for all X ∈ X .

To see how Theorem 2.1 completes the proof of Theorem 1.1, assume that condition NA1 holds,

as well as the statement of Theorem 2.1. Define the process Z via Zt := (1/X̃(t))(dP̃/dP)|F(t) for

t ∈ R+, where (dP̃/dP)|F(t) denotes the Radon-Nikodým derivative of P̃ with respect to P when

the two probabilities are restricted on the sigma-algebra F(t). Then, Theorem 2.1(1) implies that

Z(0) = 1 and Z(T ) > 0, and the fact that ZX is a local martingale for all X ∈ X follows by

Theorem 2.1(3).

2.2. The proof of Theorem 2.1. In the course of the proof, results regarding the general theory

of stochastic processes from [11] are used. There are ideas from [16] that are utilized throughout the

proof; as the latter paper is long and technical, and in an effort to be as self-contained as possible,

we are providing full arguments whenever possible. In fact, there is only one result from [16] whose

statement will just be assumed; this happens at the end of §2.2.4.

2.2.1. Predictable characteristics. In order to prove Theorem 2.1, we can assume without loss of

generality that S is a special semimartingale under P. Indeed, if this is not the case, we can change

the original probability P into another equivalent P using the Radon-Nikodým density

dP

dP
:=

1

E
[(
1 + γ supt∈R+

|S(t)|
)−1
]
(
1 + γ sup

t∈R+

|S(t)|
)−1

,

where γ > 0 is small enough so that
∣∣P − P

∣∣
TV

≤ ǫ/2. Then, E
[
supt∈R+

|S(t)|
]
< ∞, where “E”

denotes expectation under P; in particular, S is a special semimartingale under P. Then, the validity

of Theorem 2.1 can be shown for P and with ǫ/2 replacing ǫ.

Now, assuming that S is a special semimartingale under P, write its canonical decomposition

S = S0 + A + Sc +
∫
(0,·]×R

x (µ[dt,dx]− ν[dt,dx]). Here, A is predictable and of finite varia-

tion, Sc is a local martingale with continuous paths and
∫
(0,·]×R

x (µ[dt,dx]− ν[dt,dx]) is a purely

discontinuous local martingale. As usual, µ is the jump measure of S defined via µ(D) :=
∑

t∈R+
ID(t,∆S(t))IR\{0}(t), for D ⊆ R+×R, and ν is the predictable compensator of the measure

µ. Since S is a special semimartingale, we have
∫
R+×R

(
|x| ∧ |x|2

)
ν[dt,dx] < ∞. We introduce the

quadratic covariation process C := [Sc, Sc] of Sc, and define the predictable nondecreasing scalar

process

G := C +

∫

(0,·]
|dA(t)|+

∫

(0,·]×R

(
|x| ∧ |x|2

)
ν[dt,dx].
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All three processes A, C, and ν are absolutely continuous with respect to G. Therefore, we can

write

A =

∫

(0, ·]
a(t)dG(t), C =

∫

(0, ·]
c(t)dG(t), and ν[(0, ·] × E] =

∫

(0, ·]
κ(t)[E]dG(t),

where a, c and κ are predictable, a is a scalar process, c a nonnegative scalar process, κ a process

with values in the set of measures on (R,B(R)), where B(R) is the Borel sigma-algebra on R, that

do not charge {0} and integrate the function R ∋ x 7→ |x| ∧ |x|2, and E ∈ B(R).
Condition NA1 enforces some restrictions on the triplet of predictable characteristics of S. The

next result is a consequence of [16, Theorem 3.15(2)], but we provide the quick argument for

completeness.

Lemma 2.2. Assume condition NA1 in the market. Then, with Λ := Λ+ ∪ Λ−, where

Λ+ :=

{
κ[(−∞, 0)] = 0, c = 0, a >

∫

(0,∞)
xκ[dx]

}
and

Λ− :=

{
κ[(0,∞)] = 0, c = 0, a <

∫

(−∞,0)
xκ[dx]

}
,

the predictable set Λ is (P ⊗G)-null. (In particular, {κ[R] = 0, c = 0, a 6= 0} is (P⊗G)-null.)

Proof. Define ϑ := IΛ+
− IΛ

−

. Then, it is straightforward to see that

X0,ϑ =

∫

(0,·]
IΛ(t)

∣∣∣∣a(t)−
∫

R

xκ(t)[dx]

∣∣∣∣ dG(t) +
∑

t∈(0,·]

IΛ(t)|∆S(t)|,

where observe that the integral
∫
R
xκ[dx] is always well defined on Λ. It is clear that X0,ϑ is non-

decreasing, i.e., X0,ϑ ∈ X . Furthermore, if Λ fails to be (P⊗G)-null, then P[X0,ϑ(T ) > 0] > 0. Let

ξ := X0,ϑ(T ), since Xx,ϑ(T ) = x+ ξ ≥ ξ for all x > 0, ξ is an arbitrage of the first kind. Therefore,

under condition NA1, Λ has to be (P⊗G)-null. �

2.2.2. Changes of probability. In what follows, a strictly positive predictable random field will refer

to a function Y : Ω × R+ × R 7→ (0,∞) that is measurable with respect to the product of the

predictable sigma-algebra on Ω × R+ with the Borel sigma-algebra on R. For any strictly positive

predictable random field Y , let νY be the predictable random measure that has density Y with

respect to ν; in other words,

(2.1) νY [(0, ·] × E] =

∫

(0, ·]
κY (t)[E]dG(t) =

∫

(0, ·]

(∫

E
Y (t, x)κ(t)[dx]

)
dG(t)

holds for all E ∈ B(R). For all t ∈ R+, Y (t, ·) is the density of κY (t) with respect to κ(t).

Define the (0,∞)-valued predictable process

η :=
ǫ

2 |1 +G|2
,
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where we shall be assuming without loss of generality that 0 < ǫ < 1. In the sequel, we shall

only consider strictly positive predictable random fields Y such that the following properties are

additionally identically satisfied:

(Y1)
∫
R

(
|x| ∧ |x|2

)
κY [dx] < ∞.

(Y2)
∫
R
|Y (x)− 1| κ[dx] ≤ η.

(Y3) κ[R] = κY [R].

(The dependence of processes on (ω, t) ∈ Ω × R+ is usually suppressed from notation to ease the

reading. Whenever appropriate from the context, and for clarification purposes, we shall sometimes

write Y (x) or Y (t, x) for Y .)

Property (Y2) of Y implies the estimate
∫

R+×R

|Y (t, x)− 1| ν[dt,dx] =

∫

R+

(∫

R

|Y (t, x)− 1| κ(t)[dx]
)
dG(t)

≤
∫

R+

η(t)dG(t) =
ǫ

2

∫

R+

dG(t)

|1 +G(t)|2 ≤ ǫ

2
.(2.2)

It follows that the process M :=
∫
(0,·]×R

(Y (t, x)− 1) (µ[dt,dx]− ν[dt,dx]) is a well defined local

martingale. Observe that for all t ∈ R+, we have

∆M(t) = Y (t,∆S(t))− 1−
(∫

R

(Y (t, x)− 1) κ[dx]

)
∆G(t) = Y (t,∆S(t)) − 1 > −1,

holding in view of the fact that Y is strictly positive and
∫
R
(Y (t, x)− 1) κ[dx] = κY [R]− κ[R] = 0,

which follows from (Y3). With “E” denoting the stochastic exponential operator, define

L := E(M) = E
(∫

(0,·]×R

(Y (t, x)− 1) (µ[dt,dx]− ν[dt,dx])

)
.

Combining (2.2) with ∆M > −1, a use of [14, Theorem 12] gives that L is a uniformly integrable

martingale with P[L(T ) > 0] = 1. However, because the last paper may be hard to obtain,

we provide a quick argument in the present special case. At the same time, we show that the

probability defined by L satisfies requirement (2) of Theorem 2.1.

Lemma 2.3. Let Y be a strictly positive random field such that (Y1), (Y2) and (Y3) hold. With the

above notation, we have P[L(T ) > 0] = 1 and E
[
supt∈R+

|L(t)− 1|
]
≤ ǫ. In particular, the recipe

dPY /dP = L(T ) defines a probability PY that is equivalent to P on F(T ) such that
∣∣PY −P

∣∣
TV

≤ ǫ.

Proof. Since ∆M > −1 and M is a local martingale, P[L(T ) > 0] = 1 follows.

Let H :=
∫
(0·] |Y (t, x) − 1|µ[dt,dx] and F :=

∫
(0·] |Y (t, x) − 1|ν[dt,dx]. The process F is the

predictable compensator of H and we have P [F (∞) ≤ ǫ/2] = 1 in view of (2.2). In particular, M

is a local martingale of finite variation. Using the fact that L = 1 +
∫
(0,·] L(t−)dM(t), we obtain

E

[
sup
t∈R+

|L(t)− 1|
]
≤ E

[∫

(0,∞)
L(t−)dH(t) +

∫

(0,∞)
L(t−)dF (t)

]
= 2E

[∫

(0,∞)
L(t−)dF (t)

]
.
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Furthermore, with (τn)n∈N being a localizing sequence for L, we have

E

[∫

(0,τn]
L(t−)dF (t)

]
= E [L(τn)F (τn)]− E

[∫

(0,τn]
F (t)dL(t)

]
≤ ǫ

2
E [L(τn)] ≤

ǫ

2
.

As the previous is valid for all n ∈ N, E
[
supt∈R+

|L(t)− 1|
]
≤ ǫ follows from a straightforward

application of the monotone convergence theorem. In particular, E
[
supt∈R+

|L(t)|
]
< ∞ which

implies that L is a uniformly integrable martingale and, therefore, PY is well defined and equivalent

to P on F(T ). Furthermore,
∣∣PY − P

∣∣
TV

= E [|L(T )− 1|] ≤ ǫ, which completes the proof. �

Consider the probability PY of Lemma 2.3. According to Girsanov’s Theorem (Theorem III.3.24,

page 172 of [11]), under assumptions (Y1), (Y2) and (Y3) on Y , S is still a special semimartingale

under PY with canonical decomposition S = S0 + AY + Sc,Y +
∫
(0,·]×R

x(µ[dt,dx] − νY [dt,dx]),

where the predictable compensator νY of µ under PY was defined previously in (2.1), and where

AY =
∫
(0, ·] a

Y (t)dG(t), with aY := a+
∫
R
x(Y (x)−1)κ[dx]. For the continuous local PY -martingale

part Sc,Y we have CY := [Sc,Y , Sc,Y ] = [Sc, Sc] = C, i.e., CY =
∫
(0, ·] c

Y (t)dG(t) with cY = c.

2.2.3. Relative rate of return. Remember that Y always denotes a strictly positive predictable

random field satisfying (Y1), (Y2), and (Y3) of §2.2.2. We aim at understanding what extra

condition must Y satisfy in order for P̃ ≡ PY to satisfy all the requirements of Theorem 2.1.

Define a pair of processes (ℓ, r) via

ℓ := inf {p ∈ R |κ[{x ∈ R | 1 + px < 0}] = 0} and r := sup {p ∈ R |κ[{x ∈ R | 1 + px < 0}] = 0} .

(ℓ and r are mnemonics for “left” and “right” respectively.) It is straightforward that ℓ ≤ 0 ≤ r, as

well as that both ℓ and r are predictable: for example, {ℓ ≤ p} = Ω× R+ if p ∈ R+, while

{ℓ ≤ p} =
⋂

n∈N

{
κ[{x ∈ R | 1 + (p + 1/n)x < 0}] = 0

}
if p ∈ R \ R+;

in both cases, {ℓ ≤ p} is predictable. Of course, nothing changes in the definition of ℓ and r if

we replace κ with κY . Define I := [ℓ, r] ∩ R. Note that conv.supp(κ) = [−1/r,−1/ℓ] ∩ R, where

“conv.supp” denotes the convex hull of the support of a measure.

For two I-valued predictable processes p and p′, define a predictable process

(2.3) relY (p | p′) := (p− p′)

(
aY − p′cY −

∫

R

p′|x|2
1 + p′x

κY [dx]

)
.

The last expression is closely related to the relative rate of return of wealth processes in X++, as

the proof of the following result reveals.

Lemma 2.4. Suppose that Y is a strictly positive predictable random field satisfying (Y1), (Y2), and

(Y3). Further, suppose that p̃ is an I-valued predictable, S-integrable process such that relY (p | p̃) = 0

holds for all other I-valued predictable processes p. Define X̃ := E(
∫ ·
0 p̃(t)dS(t)). Then, X̃0 = 1,

X̃ ∈ X++, and X/X̃ is a local PY -martingale for all X ∈ X .
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Proof. Since p̃ is S-integrable, X̃ is well defined. In view of (2.3), the fact that rel(0 | p̃) = 0 implies

that κY [{x ∈ R | p̃x = −1}] = 0. Therefore, p̃∆S > −1, i.e., X̃ > 0 and X̃− > 0 hold. With

ϑ̃ := p̃X̃−, we have X̃ = X1,ϑ̃ in the notation of §1.1. Therefore, X̃ ∈ X++.

Pick any X = Xx,ϑ ∈ X++. Let p := ϑ/X−; then, X = xE(
∫ ·
0 p(t)dS(t)). We shall show that

X

X̃
= x

E(
∫ ·
0 p(t)dS(t))

E(
∫ ·
0 p̃(t)dS(t))

is a local PY -martingale. Since X > 0, X− > 0, X̃ > 0, and X̃− > 0 hold, it follows that we can

write X/X̃ = xE(Rp | p̃) for some semimartingale Rp | p̃ with ∆Rp | p̃ > −1. In fact,

Rp | p̃ =

∫ ·

0
(p(t)− p̃(t)) dS(t)−

∫ ·

0
(p(t)− p̃(t)) p̃(t)d[Sc, Sc](t)−

∑

t≤·

(p(t)− p̃(t)) p̃(t)|∆S(t)|2
1 + p̃(t)∆S(t)

;

indeed, using Yor’s formula it can be easily checked that

E
(∫ ·

0
p̃(t)dS(t)

)
E
(
Rp | p̃

)
= E

(∫ ·

0
p̃(t)dS(t) +Rp | p̃ +

[∫ ·

0
p̃(t)dS(t), Rp | p̃

])

= . . . = E
(∫ ·

0
p(t)dS(t)

)
.

By a comparison of (2.3) with the formula for Rp | p̃ above, relY (p | p̃) = 0 implies that Rp | p̃ is a

sigma PY -martingale. (For information and properties of sigma-martingales, the reader is referred

to [15].) Since X/X̃ = xE(Rp | p̃), it follows that X/X̃ is a sigma PY -martingale. For nonnegative

processes, the sigma martingale property is equivalent to the local martingale property; therefore,

we conclude that X/X̃ is a local PY -martingale.

Now, let X ∈ X . Since (1 + X) ∈ X++, the discussion of the previous paragraph implies that

(1 +X)/X̃ is a local PY -martingale. Again, by the discussion of the previous paragraph, 1/X̃ is a

local PY -martingale. It follows that X/X̃ is a local PY -martingale. �

In view of Lemma 2.4, Theorem 2.1 will be proved if we can find a strictly positive predictable

random field Y satisfying (Y1), (Y2) and (Y3), as well as an I-valued predictable, S-integrable

process p̃Y such that relY (p | p̃Y ) = 0 holds for any other I-valued predictable process p. In §2.2.4,
we shall see how p̃Y should be picked, given a strictly positive predictable random field Y satisfying

(Y1), (Y2) and (Y3); then, in §2.2.5, we shall construct the appropriate strictly positive predictable

random field.

2.2.4. Growth rates. In order to understand how Y has to be picked, we shall use the fact that the

relative rate of return is essentially the directional derivative of the growth rate. In more detail,

define a predictable random field gY via gY (p) := paY −(1/2)cY |p|2−
∫
R
(px− log(1 + px)) κY [dx]

for p ∈ I, and set gY (p) = −∞ when p /∈ I. The assumption
∫
R

(
|x| ∧ |x|2

)
κY [dx] < ∞ ensures

that g is well-defined and finite in the interior of I, thought it might be the case that gY (ℓ) = −∞
or gY (r) = −∞. It is obvious that for fixed (ω, t) ∈ Ω×R+, g

Y (ω, t, ·) : R 7→ R∪{−∞} is a concave

function. With all set-inclusions involving subsets of Ω×R+ from now on to be understood in a (P⊗
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G)-a.e. sense, an application of Lemma (2.2) (with aY and κY replacing a and κ there respectively)

gives {r = ∞} =
{
κY [(−∞, 0)] = 0

}
⊆
{
limp→∞ gY (p) ≤ 0

}
. Indeed,

{
κY [(−∞, 0)] = 0, c > 0

}
⊆

{
limp→∞ gY (p) = −∞

}
, while

{
κY [(−∞, 0)] = 0, c = 0

}
⊆
{
limp→∞ gY (p) = a−

∫
(0,∞) xκ[dx]

}
.

Similarly, one can show that {ℓ = −∞} ⊆
{
limp→−∞ gY (p) ≥ 0

}
. Since gY (0) = 0, it follows that

gY always achieves its supremum at some point in I.

Define now the “derivative” predictable random field ∇gY : Ω× R+ × R 7→ R ∪ {−∞,∞} via

(2.4) ∇gY (p) := aY − pcY −
∫

R

p|x|2
1 + px

κY [dx] = ∇g(p) +

∫

R

x

1 + px
(Y (x)− 1) κ[dx],

for p ∈ I (where ∇g ≡ ∇g1), ∇gY (p) = ∇gY (ℓ) for p < ℓ, and similarly ∇gY (p) = ∇gY (r)

for p > r. The concavity of gY and straightforward applications of the dominated convergence

theorem imply that, for fixed (ω, t) ∈ Ω × R+, ∇g is nonincreasing and continuous on I. Note

that on {ℓ = 0 = r} = {supp(κ) = R} it is impossible to define ∇g. In this case, we simply force

∇gY (p) = 0 for all p ∈ R; we shall see later how such convention is useful.

Define a process p̃Y := inf
{
p ∈ I |∇gY (p) ≤ 0

}
, where we set p̃Y = r in case the last set is empty

and p̃Y = 0 on
{
∇gY (ℓ) = 0 = ∇gY (r)

}
. It is clear that p̃Y is a predictable process. Furthermore,

on {∇gY (ℓ) ≥ 0, ∇gY (r) ≤ 0}, which is a predictable set, we have ∇gY (p̃Y ) = 0, and, therefore,

relY (p | p̃Y ) = (p− p̃Y )∇gY (p̃Y ) = 0 for all I-valued predictable processes p.

The point of the above discussion is the following: Suppose that for some strictly positive pre-

dictable random field Y satisfying (Y1), (Y2) and (Y3), both ∇gY (ℓ) ≥ 0 and ∇gY (r) ≤ 0 hold for

all (ω, t) ∈ Ω × R+, which as usual will be suppressed from notation in the sequel. Then, we can

construct a predictable I-valued process p̃Y such that relY (p | p̃Y ) = (p − p̃Y )∇gY (p̃Y ) = 0 for all

I-valued predictable processes p. (Observe how relY (p | p̃Y ) = (p − p̃Y )∇gY (p̃Y ) = 0 trivially also

holds on {ℓ = 0 = r} = {supp(κ) = R} in view of our convention, as I = {0}.) In view of Lemma 2.4,

Theorem 2.1 will follow as soon as we know that p̃Y is S-integrable. Luckily, this is always the case

under condition NA1. The proof of this fact is quite technical, and basically follows the treatment

in [16, Section 8], where Proposition 4.16 of the latter paper is proved. We shall, however, provide

some details for completeness. In view of [1, Corollary 3.6.10, page 128], failure of S-integrability of

p̃Y implies that there exist a sequence of [0, 1]-valued predictable processes (hn)n∈N, such that each

hnp̃
Y , n ∈ N, is S-integrable and the sequence of terminal values

(∫ T
0

(
hn(t)p̃

Y (t)
)
dS(t)

)
n∈N

fails

to be bounded in probability. (Note that, a priori, the previous sequence can fail to be bounded in

probability either from above or below, or even from both sides.) For each n ∈ N, define Xn ∈ X++

with Xn(0) = 1 via

Xn := E
(∫ ·

0

(
hn(t)p̃

Y (t)
)
dS(t)

)
.

Since hn is [0, 1]-valued, the definition of p̃Y implies that relY (0 |hnp̃Y ) ≤ 0. (This follows because

the predictable function [0, 1] ∋ u 7→ g(up̃Y ) is nondecreasing.) Therefore, 1/Xn is a nonnegative

P-supermartingale for all n ∈ N. Then, it follows from [16, Lemma 8.1] that failure of boundedness
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in probability of
(∫ T

0

(
hn(t)p̃

Y (t)
)
dS(t)

)
n∈N

also implies failure of boundedness in probability of

the sequence (Xn(T ))n∈N. (Although intuitively plausible, passing from failure of boundedness in

probability of processes to failure of boundedness in probability of their stochastic exponentials

is not always possible, because the stochastic exponential is not a monotone operator. The fact

that this can be done in the present case is due to the fact that each process 1/Xn is a nonneg-

ative P-supermartingale — see also [16, Remark 8.2].) However, condition NA1 is equivalent to

the requirement that the set {X(T ) |X ∈ X with X(0) = 1} is bounded in probability, making it

impossible for (Xn(T ))n∈N to fail to be bounded in probability. We conclude that p̃Y is S-integrable

under the validity of condition NA1.

2.2.5. Construction of the appropriate predictable random field. We now move to the most technical

part of the proof of Theorem 2.1, by constructing a strictly positive predictable random field Y

satisfying (Y1), (Y2), and (Y3), as well as the following condition:

(Y4) ∇gY (ℓ) ≥ 0 and ∇gY (r) ≤ 0.

(Note that the last condition is always trivially satisfied on {ℓ = 0 = r} = {supp(κ) = R}.) From

the discussion of §2.2.3 and §2.2.4, existence of such a strictly positive predictable random field Y

will complete the proof of Theorem 2.1.

The strictly positive predictable random field Y will actually depend on the predictable processes

(a, κ, η) and will have to be defined differently on each of nine predictable sets (Pi)i=1,...,9 that

constitute a partition of Ω× R+. (By construction, it will be immediately clear that Y is actually

a predictable random field.) On each of these predictable sets we shall show that (Y1) to (Y4) are

valid. The reader will notice how the one-dimensional structure of the asset-price process is used

in a non-trivial way when defining Y . The method certainly does not generalize for the case of

multiple assets — it appears a big challenge to provide a proof in a multi-dimensional setting.

Before we delve into the technicalities of the proof, recall that under condition NA1, any strictly

positive predictable random field Y satisfying (Y1), (Y2) and (Y3) is such that {ℓ = −∞} ⊆{
∇gY (ℓ) ≥ 0

}
and {r = ∞} ⊆

{
∇gY (r) ≤ 0

}
. This is true in view of Lemma 2.2 — see also the

discussion in §2.2.4.

• We start with the set P1 := {ℓ = 0, r = ∞}. (All the predictable-set inclusions below are under-

stood to hold on P1, until we move to the next case where they will be understood to hold on P2,

and so forth.) Here, ∇g(ℓ) = ∇g(0) = a. Since, as explained above, {r = ∞} ⊆
{
∇gY (r) ≤ 0

}
, we

only have to carefully define Y on {a < 0}. Notice that {ℓ = 0, r = ∞} = {conv.supp(κ) = [0,∞)},
and define Y1 := y1(a, κ, η), where, with

δ := 1 +
4

κ[R]
+ inf

{
x ∈ R

∣∣∣ κ[(0, x]] ≥ κ[R]

2

}
and b :=

∣∣∣∣δ − a+
2

η

∣∣∣∣
2

,
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we set

y1(a, κ, η; x) := 1 +

(
1√

b κ [(b,∞)]
I(b,∞)(x)−

1√
b κ [(0, δ]]

I(0,δ](x)

)
I{a<0} for x ∈ R,

(In the definition of y1(a, κ, η), the term 1/(
√
b κ [(0, δ]]) is understood to be zero on {κ[R] = ∞}.)

We shall show below that Y1 satisfies (Y1) through (Y5). On {a ≥ 0} this is trivial, since Y1 = 1.

Therefore, focus will be given only on {a < 0} below. First of all, it is easy to see that Y1 ≥ 1/2.

Indeed, on {κ[R] = ∞} we have Y1 ≥ 1; also, on {κ[R] < ∞},
√
b κ [(0, δ]] > δκ [(0, δ]] >

4

κ[R]

κ[R]

2
= 2

holds from the definition of δ. Proceeding, the fact that Y1 is bounded from above coupled with∫
R

(
|x| ∧ |x|2

)
κ[dx] < ∞ implies

∫
R

(
|x| ∧ |x|2

)
Y1(x)κ[dx] < ∞. For the estimate of the distance

between κ and κY1 observe that
∫

R

|Y1(x)− 1|κ[dx] ≤ 2√
b
≤ 2

2/η
= η.

Now, on {κ[R] = ∞} we have Y1 ≥ 1 and obviously κY1 [R] = ∞; on the other hand, on {κ[R] < ∞}
the equality κY1 [R] = κ[R] follows in a straightforward way from the definition of Y1. Finally, since

∇g(0) = a, use (2.4) to estimate

∇gY1(0) = a+

∫

(b,∞)

x√
b κ [(b,∞)]

κ[dx]−
∫

(0,δ]

x√
b κ [(0, δ]]

κ[dx]

≥ a+
√
b− δ√

b
= a− a+ 2/η + δ − δ

δ − a+ 2/η
≥ 0.

(The last inequality follows from η > 0 and δ > 1, which imply also δ − a+ 2/η > 1, since a < 0.)

• The situation on P2 := {ℓ = −∞, r = 0} is symmetric to the previous one. With

δ := 1 +
4

κ[R]
− sup

{
x ∈ R

∣∣∣ κ[[x, 0)] ≥ κ[R]

2

}
and b :=

∣∣∣∣δ + a+
2

η

∣∣∣∣
2

,

define Y2 := y2(a, κ, η), where

y2(a, κ, η; x) := 1 +

(
1√

b κ [(−∞, −b)]
I(−∞,−b)(x)−

1√
b κ [[−δ, 0)]

I[−δ,0)(x)

)
I{a>0} for x ∈ R.

One can then follow the exact same steps that we carried out on P1.

• We now move to the set P3 := {ℓ = −∞, 0 < r < ∞}, on which conv.supp(κ) = [−1/r, 0]. Since

ℓ = −∞, we have ∇g(ℓ) ≥ 0. Also, on {κ[{−1/r}] > 0} we have g(r) = −∞, and ∇g(r) = −∞
follows easily. Then, define Y3 := y3(a, κ, η), where, with

β :=
1

r
min

{
1

2
, exp

(
− 2r

κ[R]

)
, exp

(
−2r

η

)}
,
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y3(a, κ, η; x) is for all x ∈ R equal to

1 +

(
r

κ[R] log(rβ)
+ I(− 1

r
, β− 1

r
](x)

∫ β− 1

r

x

|r|2
(1 + rw) | log(1 + rw)|2 κ

[
(−1

r , w]
]dw

)
I{κ[{− 1

r
}]=0]}

Since log(rβ) ≤ −2r/κ[R], we easily get Y3 ≥ 1/2 > 0. On {κ[R] = ∞}, Y3 ≥ 1 and κY3 [R] = ∞
trivially follows; on the other hand, on {κ[R] < ∞}, κY3 [R] = κ[R] follows as long as one notices

that the double integral
∫

(−1/r, β−1/r]

(∫ β−1/r

x

|r|2
(1 + rw) | log(1 + rw)|2 κ [(−1/r, w]]

dw

)
κ[dx]

is, in view of Fubini’s theorem, equal to

(2.5)

∫ β−1/r

−1/r

|r|2
(1 + rw) | log(1 + rw)|2dw = r

∫ rβ

0

1

w | logw|2dw = − r

log(rβ)
.

The above estimate also implies
∫
R

(
|x| ∧ |x|2

)
Y3(x)κ[dx] < ∞. Indeed, note that

Y3(x) ≤ 1 + r/(κ[R] log(rβ))

for x ∈ I \ (−1/r, β − 1/r], while, using the fact that β ≤ 1/(2r), we obtain
∫

(−1/r, β−1/r]

(
|x| ∧ |x|2

)
Y3(x)κ[dx] ≤

1

rmin {1, r}

∫

(−1/r, β−1/r]
Y3(x)κ[dx] < ∞.

For estimating the distance between κ and κY3 , note that
∫

R

|Y3(x)− 1|κ[dx] ≤ −2r/ log(rβ) ≤ η,

which follows from the definition of β and the calculations that lead to (2.5). We shall now show

that gY3(r) = −∞, therefore establishing that ∇gY3(r) ≤ 0. Start with the observation that, for

x ∈ (−1/r, β − 1/r], integration by parts gives

log(1 + rx)Y3(x) = log(rβ) +
r

κ[R]
−
∫ β−1/r

x

r

1 + rw
Y3(w)dw +

∫ β−1/r

x

|r|2
(1 + rw) log(1 + rw)κ [(−1/r, w]]

dw

≤ r

κ[R]
+

∫ β−1/r

x

|r|2
(1 + rw) log(1 + rw)κ [(−1/r, w]]

dw.

The above estimate and Fubini’s theorem imply that
∫
(−1/r, β−1/r] log(1+rx)Y3(x)κ[dx] is bounded

from above by the quantity

rκ[(−1/r, β − 1/r]]

κ[R]
+ |r|2

∫ β−1/r

−1/r
(1 + rw)−1 log−1(1 + rw)dw = −∞.

This last fact, together with (2.4) and
∫
R

(
|x| ∧ |x|2

)
κ[dx] < ∞ gives gY3(r) = −∞. Of course,

∇gY3(ℓ) ≥ 0 follows because ℓ = −∞.
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• The situation on P4 := {−∞ < ℓ < 0, r = ∞} is symmetric to P3 and, therefore, details will be

omitted. Just define Y4 := y4(a, κ, η), where, with

β :=
1

ℓ
min

{
1

2
, exp

(
2ℓ

κ[R]

)
, exp

(
2ℓ

η

)}
,

y4(a, κ, η; x) is for all x ∈ R equal to

1 +

(
ℓ

κ[R] log(ℓβ)
+ I(β− 1

ℓ
,− 1

ℓ
](x)

∫ x

β− 1

ℓ

|ℓ|2
(1 + ℓw) | log(1 + ℓw)|2 κ

[
[w,−1

ℓ )
]dw

)
I{κ[{− 1

ℓ
}]=0]}.

• We now move to P5 := {ℓ = 0, 0 < r < ∞}. Here, we shall use a combination of the work we

carried out for P1 and P3. Remembering the definitions of the deterministic functionals y1 and y3,

define

Y5 := y1

(
ay3(a,κ,η/2), κy3(a,κ,η/2), η/2

)
y3(a, κ, η/2).

The definition of Y5 is essentially realized in two steps. First there is a change according to y3.

This forces gy3(a,κ,η/2)(r) = −∞ as on P3. Also, (Y1), (Y2) and (Y3) hold, with η/2 replacing η

in (Y2). In the second step there is a change using y1. Since y1(a
y3(a,κ,η/2), κy3(a,κ,η/2), η/2;x) = 1

for all x ∈ (−∞, 0), gY5(r) = −∞ (and, therefore, ∇gY5(r) ≤ 0) still holds, while now it is also the

case that ∇gY5(ℓ) ≥ 0, as was the case on P1. It is clear that Y5 > 0 (since both of the predictable

random fields appearing in the definition of Y5 are strictly positive), and that (Y1) to (Y4) all hold.

• On P6 := {−∞ < ℓ < 0, r = 0}, define

Y6 := y2

(
ay4(a,κ,η/2), κy4(a,κ,η/2), η/2

)
y4(a, κ, η/2).

The situation is symmetric to the one on P5 — just follow the exact same reasoning.

• Moving to P7 := {−∞ < ℓ < 0 < r < ∞}, we shall use a combination of the treatment on P3

and P4. Define

Y7 := y3

(
ay4(a,κ,η/2), κy4(a,κ,η/2), η/2

)
y3(a, κ, η/2).

The validity of (Y1), (Y2), (Y3) and (Y4) follow by the same reasoning carried out on the set P5.

• On P8 := {ℓ = 0, r = 0} ⊆ {∇g(0) = 0} there is no need to do anything: simply set Y8 := 1.

• Finally, on P9 := {ℓ = −∞, r = ∞} = {conv.supp(κ) = ∅} there is also no need to do anything;

set Y9 := 1. Indeed, we either have c = 0, which implies that a = 0 and, therefore, ∇g(−∞) =

∇g(+∞) = 0, or c > 0, in which case ∇g(−∞) = ∞ and ∇g(+∞) = −∞.

References

[1] K. Bichteler, Stochastic integration with jumps, vol. 89 of Encyclopedia of Mathematics and its Applications,

Cambridge University Press, Cambridge, 2002.

[2] W. Brannath and W. Schachermayer, A bipolar theorem for L0
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