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Abstract

By means of classical Itô�s calculus we decompose option prices as
the sum of the classical Black-Scholes formula with volatility parameter
equal to the root-mean-square future average volatility plus a term due
by correlation and a term due to the volatility of the volatility. This
decomposition allows us to develop �rst and second-order approximation
formulas for option prices and implied volatilities in the Heston volatility
framework, as well as to study their accuracy. Numerical examples are
given.
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1 Introduction

Stochastic volatility models are a natural extension of the classical Black-Scholes
model that have been introduced as a way to manage the skew and smiles
observed in real market data (see for example Hull and White (1987), Scott
(1987), Stein and Stein (1991), Ball and Roma (1994) and Heston (1993)).
The study of these models have introduced new important mathematical and
practical challenges, in particular related with the option pricing problem and
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the callibration of the corresponding parameters. In fact, we do not have closed-
form option pricing formulas for the majority of the stochastic volatility models
and, even in the case when closed-form pricing solutions can be derived (see for
example Heston (1993) or Schöbel and Zhu (1999)), they do not allow in general
for fast callibration of the parameters.
A recent trend in the literature has been the development of approximate

closed-form option pricing formulas. To this end, some authors have presented a
perturbation analysis of the corresponding PDE with respect to a speci�c model
parameter, like the volatility (see Hagan, Kumar, Lesniewski and Woodward
(2008)), the mean reversion (see Fouque, Papanicolau and Sircar (2000) and
Fouque, Papanicolau, Sircar and Solna (2003)) or the correlation (see Antonelli
and Scarletti (2008)). In all these techniques, the region of validity of the results
is restricted to either short or long maturities.The obtained approximations for
option prices allow for fast callibration and give a better understanding of the
role of model parameters. More recently, another approach have been proposed
by Benhamou, Gobet and Miri (2009a, 2009b and 2009c), where the authors
focus directly on the law of the log-stock price at maturity time, given its initial
condition. They expand prices with respect o the volatility of the volatility,
computing the correction terms using Malliavin calculus. This approach allows
the authors to deal with with short and long time maturities, as well as with
time-dependent coe¢ cients. Another point of view has been presented in Alòs
(2006), where by means of Malliavin calculus the author extends the classical
Hull and White formula by decomposing option prices as the sum of the same
derivative price if there where no correlation and a correction due by correlation.
As an application, the author develop a method to construct �rst-order option
pricing approximation formulas that only needs some regularity conditions (in
the Malliavin calculus sense) of the volatility process and that can be applied
for a very general class of volatility models, including the case of long-memory
volatilities.
Even when the conditions required in Alòs (2006) are satis�ed by the major-

ity of stochastic volatility models, they are not trivial in the case of the Heston
model. In Alòs and Ewald (2008) the authors studied the Malliavin di¤erentia-
bility of the Heston volatility to adapt the results in Alòs (2006) to the Heston
case, but unfortunately the accuracy of the approximation could be proved only
in the case when the dimension � of the underlying Bessel process is greather
than 6.
This paper is devoted to obtain a new decomposition formula for option

prices, similar to the one presented in Alòs (2006), but valid even when the
Malliavin regularity conditions needed in this work are not satis�ed. Instead of
expanding option prices around the Hull and White term by means of antici-
pating stochastic calculus (Malliavin calculus), we will use classical Itô formula
to expand prices around the classical Black-Scholes formula with volatility pa-
rameter equal to the root-mean-square future average volatility. This will allow
us to describe option prices as the sum of this last term plus a term due to
the correlation and a term due to the volatility of the volatility. This method
needs only some general integrability conditions that are satis�ed by the Heston
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model and then it allows us to extend the results in Alòs and Ewald (2008) to
the case � > 2 and to prove, in the case � > 3; a new second-order approximation
formula. Even when the paper is focused in the Heston case, the results can be
easily extended to other volatility models with good integrability conditions.
The paper is organized as follows. In Section 2 we introduce the main nota-

tions and hipotheses and we prove our decomposition formula for option prices.
In Section 3 we use the results in Section 2 to obtain a �rst-order and a second-
order option pricing approximation formulas. Some numerical examples are
presented in Section 4. The main conclusions are summarized in Section 5.

2 A decomposition formula for option prices

We will consider the Heston model for stock prices in a time interval [0; T ] under
a risk neutral probability P � :

dSt = rStdt+ �tSt

�
�dW �

t +
p
1� �2B�t

�
; t 2 [0; T ]; (1)

where

d�2t = �

�
m�

q
�2t

�
dt+ �

q
�2tdW

�
t

where r is the instantaneous interest rate (supposed to be constant), W �
t and

B�t are independent standard Brownian motions de�ned in a probability space
(
;F ; P ) and �; � and � are constants satisfying the Novikov condition 2�� >
�2. In the following we will denote by FW�

;FB�
the �ltrations generated

respectively by W � and B�. Moreover we de�ne F := FW� _ FB�
: It will

be convenient in the following sections to make the change of variable Xt =
log (St) ; t 2 [0; T ]: It is well-known that the price of a contingent claim of the
form h (XT ) at time t is given by

Vt = e
�r(T�t)E� [h (XT )j Ft] ; (2)

where E� denotes the expectation with respect to P �.
We will make use of the following notation

� v2t = 1
T�t

R T
t
E�
�
�2s
��Ft� ds: That is, v2t denotes the root-mean square time

future average volatility

� Mt =
R T
0
E�
�
�2s
��Ft� ds: Notice that v2t = 1

T�t

�
Mt �

R t
0
�2sds

�
:Moreover,

we recall that dMt = �
p
�2t

�R T
t
e��(s�t)ds

�
dWt

� For any � > 0, p(x; �) will denote the centered Gaussian kernel with
variance �2: If � = 1 we will write p(x):
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� BS(t; x; �) will denote the price of an european call option under the clas-
sical Black-Scholes model with constant volatility �, current log stock price
x, time to maturity T � t; strike price K and interest rate r: Remember
that in this case

BS(t; x; �) = exN(d+)�Ke�r(T�t)N(d�);

where N denotes the cumulative probability function of the standard nor-
mal law and

d� :=
x� x�t
�
p
T � t

� �
2

p
T � t;

with x�t := lnK � r(T � t):

� LBS (�) will denote the Black-Scholes di¤erential operator (in the log vari-
able) with volatility � :

LBS (�) =
@

@t
+
1

2
�2
@2

@x2
+

�
r � 1

2
�2
�
@

@x
� r�

It is well known that LBS (�)BS (�; �;�) = 0:

� G(t; x; �) := (@2xx � @x)BS(t; x; �):

The next result is similar to Lemma 4.1 in Alòs, León and Vives (2007):

Lemma 1 Let 0 � t � s � T and Gt := Ft _FW
�

T : Then for every n � 0; there
exists C = C(n; �) such that

jE� (@nxG (s;Xs; vs)j Gt)j � C
 Z T

s

E
�
�2�
��Fs� d�!�

1
2 (n+1)

:

Proof. A simple calculation gives us that

G(s;Xs; vs) = Ke
�r((T�t)p

�
Xs � �; vs

p
T � s

�
;

where � = lnK �
�
r � v2s=2

�
(T � s):This allows us to write

E(@nxG(s;Xs; vs)
��Gt) = (�1)nKe�r(T�s)@n�E(p(Xs � �; vspT � s)��Gt): (3)

Being Xs conditioned by Gt a normal random variable with mean equal to

� = Xt +

Z s

t

�
r � �2�=2

�
d� + �

Z s

t

��dW�

4



and variance equal to
�
1� �2

� R s
t
�2�d�; and using the semigroup property of the

Gaussian density function it follows that

E
�
p
�
Xs � �; vs

p
T � s

����Gt�
=

Z
R

p
�
y � �; vs

p
T � s

�
p

 
y � �;

s
(1� �2)

Z s

t

�2�d��
!
dy

= p

0@�� �;
sZ T

s

E (�2rj Fs) dr + (1� �2)
Z s

t

�2�d�

1A
Putting this result in (3), we have

E(@nxG(s;Xs; vs)
��Gt)

= (�1)nKe�r(T�s)@n�p

0@�� �;
sZ T

s

E (�2�j Fs) d� + (1� �2)
Z s

t

�2�d�

1A
A simple calculation and the fact that, for every positive constants c; d the
function xce�dx is bounded, give us that

j@n�p

0@�� �;
s
(1� �2)

Z T

t

�2sds+ �
2

Z T

s

�2sds

1A j
� C

 Z T

s

E
�
�2�
��Fs� d� + �1� �2� Z s

t

�2�d�

!� 1
2 (n+1)

� C

 Z T

s

E
�
�2�
��Fs� d�!�

1
2 (n+1)

;

as we wanted to prove.
Now we are in a position to prove the main result of this section.

Theorem 2 (Decomposition formula) Assume the model (1), where the volatil-
ity process � = f�s;s 2 [0; T ]g satis�es the Novikov condition 2�� > �2: Then,
for all t 2 [0; T ]

Vt = BS (t;Xt; vt)

+
1

2
E�

 Z T

t

e�r(s�t)H (s;Xs; vs)�sd hM;W �is

�����Ft
!

+
1

2
E�

 Z T

t

e�r(s�t)K (s;Xs; vs) d hM;Mis

�����Ft
!
; (4)
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where

H (s;Xs; vs) :=

�
@3

@x3
� @2

@x2

�
BS (s;Xs; vs)

and

K (s;Xs; vs) :=

�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
BS (s;Xs; vs) :

Proof. Notice that BS (T;XT ; vT ) = VT : As e�rtVt is a P ��martingale we can
then write

e�rtVt = E
� �e�rTVT ��Ft� = E� �e�rTBS (T;XT ; vT )��Ft� : (5)

Now our idea is to apply Itô�s formula to the process e�rtBS (t;Xt; vt). As the
derivatives of BS (t; x; y) are not bounded we will make use of an approximating
argument. Take � > 0 and consider the process

e�rtBS
�
t;Xt; v

�
t

�
;

where v�t :=

r
1

T�t

�
� +

R T
t
E� (�2sj Ft) ds

�
: Notice that

v�t =

s
1

T � t

�
� +Mt �

Z t

0

�2sds

�
:

Applying classical Itô�s formula and the relationship between the Gamma, the
Vega and the Delta we deduce that

e�rTCBS
�
T;XT ; v

�
T

�
= e�rtCBS

�
t;Xt; v

�
t

�
+

Z T

t

e�rs
�
LBS (vs) +

1

2

�
�2s �

�
v�s
�2�� @2

@x2
� @

@x

��
BS

�
s;Xs; v

�
s

�
ds

+

Z T

t

e�rs
�
@BS

@x

��
s;Xs; v

�
s

�
�s

�
�dW �

t +
p
1� �2Z�t

�
+
1

2

Z T

t

e�rs
�
@2

@x2
� @

@x

�
BS

�
s;Xs; v

�
s

�
dMs

+
1

2

Z T

t

e�rs
�
@3

@x3
� @2

@x2

�
BS (s;Xs; vs)�sd hM;W �is

+
1

2

Z T

t

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
BS (s;Xs; vs) d hM;Mis

�1
2

Z T

t

e�rs
@BS

@�

�
s;Xs; v

�
s

� ��2s � �v�s�2�
v�s (T � s)

ds;
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that is,

e�rTBS
�
T;XT ; v

�
T

�
= e�rtBS

�
t;Xt; v

�
t

�
+

Z T

t

e�rs
�
@BS

@x

��
s;Xs; v

�
s

�
�s

�
�dW �

t +
p
1� �2Z�t

�
+
1

2

Z T

t

e�rs
�
@2

@x2
� @

@x

�
BS

�
s;Xs; v

�
s

�
dMs

+
1

2

Z T

t

e�rs
�
@3

@x3
� @2

@x2

�
BS (s;Xs; vs)�sd hM;W �is

+
1

2

Z T

t

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
BS (s;Xs; vs) d hM;Mis

Taking now conditional expectations and multiplying by ert we obtain that

E�
�
BS

�
T;XT ; v

�
T

���Ft�
= BS

�
t;Xt; v

�
t

�
+
1

2
E�

 Z T

t

e�r(s�t)H
�
s;Xs; v

�
s

�
�sd hM;W �is

�����Ft
!

+
1

2
E�

 Z T

t

e�r(s�t)K
�
s;Xs; v

�
s

�
d hM;Mis

�����Ft
!

Letting now � ! 0, using the facts that d hM;W �is = ���s
�R T

s
e��(r�s)dr

�
ds,

d hM;Mis = �2�2s

�R T
s
e��(r�s)dr

�2
ds; Lemma 1 and the dominated conver-

gence theorem the result follows.

Remark 3 The proof of the above Theorem only uses some integrability and
regularity conditions on the volatility process and then it can be extended to
other volatility models, even non-Markovian or non-continuous volatilities.

Remark 4 Formula (4) gives us a tool to describe the impact of the correlacion
and he volatility of the volatility on option prices. Notice that the second term
in the right-hand side of (4) becomes zero in the uncorrelated case � = 0:

3 Approximate option pricing formulas

This section is devoted to present a �rst-order and a second-order approximation
for option prices in the Heston volatility framework and to study their accuracy.
For the sake of simplicity we will assume the maturity time T � t < 1; which is
a reasonable assumption from the �nancial point of view, as market parameters
are usually denoted on a year scale and maturity times are mostly less than one
year.
The following Lemma is proved in Bossy (2004).

7



Lemma 5 (Bossy, Lemma A.1) Let � := 4��
�2 � 4: Take n � � � 2. Then, for

all (s; t) 2 [0; T ] with s < t

E

�
1

�ns

����Ft� � Cn(T; �t);
where Cn(T; �t) is a positive constant non-decreasing as a function of T:

We will need a similar result in the case � < 4:

Lemma 6 Assume the Novikov condition 2�� > �2: Assume � := 4��
�2 < 4:

Then, for all (s; t) 2 [0; T ] with s < t and for all p < 2
4��

E

�
1

�2s

����Ft� � C(T; �t)h
(s� t)2 �2 [p (�=2� 2) + 1]

i 1
p

;

where C(T; �t) is a positive constant non-decreasing as a function of T:

Proof. For the sake of simplicity we can take t = 0: From he proof of Lemma
A.1 in Bossy (2004) we know that

E

�
1

�2s

�
� C

L(s)

Z 1

0

(1� u)2��=�
2�2 exp

�
��0e

��su

2L(s)

�
du

: .where L(s) := �2

4� (1� e
��s):Now, by Hölder inequality we know that, for all

1
p +

1
q = 1 such that

1
p > 2� 2��=�

2 = 2� �=2

E

�
1

�2s

�
� C

L(s)

�Z 1

0

(1� u)p(�=2�2)du
� 1

2
�Z 1

0

exp

�
��0e

��su

L(s)

�
du

� 1
2

� C

L(s) [p (�=2� 2) + 1]
1
p

�
q�0e

��s

L(s)

�� 1
q

� C(T; �0)

L(s)1�1=q [p (�=2� 2) + 1]
1
p

� C(T; �0)

�2(1�1=q)(1� e��s)1�1=q [p (�=2� 2) + 1]
1
p

:

Now, using that (1� e��s) � ske��s it follows that

E

�
1

�2s

�
� C(T; �0)

s1�1=q�2(1�1=q) [p (�=2� 2) + 1]
1
p

;

and now the proof is complete.
Now we are in a position to prove our �rst approximation result.
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Theorem 7 (First-order approximation formula). Assume the model (1), where
the volatility process � = f�s;s 2 [0; T ]g satis�es the Novikov condition 2�� >
�2: Then, if � � 4; for all t 2 [0; T ] such that T � t < 1�����Vt �BS (t;Xt; vt)� 12H (t;Xt; vt)E�

 Z T

t

�sd hM;W �is

�����Ft
!�����

� C(T; �t)�
2(T � t) 32 (6)

Moreover, if � < 4�����Vt �BS (t;Xt; vt)� 12H (t;Xt; vt)E�
 Z T

t

�sd hM;W �is

�����Ft
!�����

� C(T; �t)�
2�2
p
2��=2

 
1

1�
p
2� �=2

!1+p2��=2
�
�
(T � t)

1
2

�
3�
p
2��=2

�
+ (T � t)2

�
1�
p
2��=2

��
; (7)

where C(T; �t) is a positive constant non-decreasing as a function of T:

Proof. Consider the process e�rtH (t;Xt; vt)Ut; where

Ut := E
�

 Z T

t

�sd hM;W �is

�����Ft
!
:

It is easy to check that

e�rTH (T;XT ; vT )UT = 0:

Then, the same arguments as in the proof of Theorem 1 allow us to write

0 = H (t;Xt; vt)Ut

� 1
2
E�

 Z T

t

e�r(s�t)H (s;Xs; vs)�sd hM;W �is

�����Ft
!

+
1

2
E�

 Z T

t

e�r(s�t)
�
@3

@x3
� @2

@x2

�
H
�
s;Xs; v

�
s

�
Us�sd hM;W �is

�����Ft
!

+
1

2
E�

 Z T

t

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
H
�
s;Xs; v

�
s

�
Usd hM;Mis

�����Ft
!
:
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This, together with (4), gives us that

Vt = BS (t;Xt; vt) +H (t;Xt; vt)Ut

+
1

2
E�

 Z T

t

e�r(s�t)
�
@3

@x3
� @2

@x2

�
H
�
s;Xs; v

�
s

�
Us�sd hM;W �is

�����Ft
!

+
1

2
E�

 Z T

t

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
H
�
s;Xs; v

�
s

�
Usd hM;Mis

�����Ft
!

+
1

2
E�

 Z T

t

e�r(s�t)K (s;Xs; vs) d hM;Mis

�����Ft
!

= BS (t;Xt; vt) +H (t;Xt; vt)Ut + T1 + T2 + T3:

Notice that

jUsj � ��E�

 Z T

s

�2r

 Z T

r

e��(u�r)du

!
dr

�����Ft
!

= ��

Z T

s

E�
�
�2r
��Fs� Z T

r

e��(u�r)du

!
dr

Then, Lemma 1 gives us that

T1 � �2�2

2
E�

0@Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�

5
2

�
 Z T

s

E�
�
�2r
��Fs� Z T

r

e��(u�r)du

!
dr

!
�2s

 Z T

s

e��(u�s)du

!
ds

�����Ft
!

� �2�2

2
E�

0@Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�

3
2

�2s

 Z T

s

e��(u�s)du

!2
ds

������Ft
1A

Taking into account that
R T
s
E
�
�2�
��Fs� d� � �2s R Ts e��(r�s)dr it follows that

T1 � �2�2

2
E�

0@Z T

t

e�r(s�t)

 
�2s

Z T

s

e��(r�s)dr

!� 3
2

� �2s

 Z T

s

e��(u�s)du

!2
ds

������Ft
1A

� �2�2

2

Z T

t

e�r(s�t)E�
�
��1s

��Ft� Z T

s

e��(u�s)du

! 1
2

ds

� �2�2

2

Z T

t

e�r(s�t)
q
E�
�
��2s

��Ft� Z T

s

e��(u�s)du

! 1
2

ds:
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Now, Lemma 5 gives us that, if � � 4;

T1 � C(T; �t)�
2�2
Z T

t

e�r(s�t)

 Z T

s

e��(u�s)du

! 1
2

ds

� C(�t)�
2�2(T � t) 32 :

And, if � < 4;by Lemma 6

T1 � C(T; �t)�
2�2

�1=p [p (�=2� 2) + 1]
1
2p

Z T

t

e�r(s�t)

(s� t)1=2p

 Z T

s

e��(u�s)du

! 1
2

ds

� C(�t)�
2�1=p�2

[p (�=2� 2) + 1]
1
2p

(T � t) 32�1=2p:

Then, taking p = 1p
2��=2

we obtain

T1 �
C(T; �t)�

2�2�
p
2��=2hp

2� �=2 + 1
ip2��=2

2

(T � t)
1
2

�
3�
p
2��=2

�

On the other hand, the same arguments gives us that

T2 � �2�2

2
E�

0@Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�3

�
 Z T

s

E�
�
�2r
��Fs� Z T

r

e��(u�r)du

!
dr

!
�2s

 Z T

s

e��(u�s)du

!2
ds

������Ft
1A

� �2�2

2
E�

0@Z T

t

e�r(s�t)

 
�2s

Z T

s

e��(r�s)dr

!�2
�2s

 Z T

s

e��(u�s)du

!3
ds

������Ft
1A

� �2�2

2

Z T

t

e�r(s�t)E�
�
��2s

��Ft� Z T

s

e��(r�s)dr

!
ds:

Then, if � � 4
T2 � C(T; �t)�2�2(T � t)2;

and assuming that T � t < 1;

T2 � C(T; �t)�2�2(T � t)
3
2 :

11



If � < 4

T2 � C(T; �t)�
2�2
Z T

t

e�r(s�t)E�
�
��2s

��Ft� Z T

s

e��(r�s)dr

!
ds

� C(T; �t)�
2�2

�2=p [p (�=2� 2) + 1]
1
p

Z T

t

e�r(s�t)

(s� t)1=p

 Z T

s

e��(u�s)du

!
ds

� C(T; �t)p�
2�2

(p� 1)�2=p [p (�=2� 2) + 1]
1
p

(T � t)2�1=p

= C(T; �t)�
2�2(T � t)2

�
p

p� 1

��
1

�2(T � t) [p (�=2� 2) + 1]

� 1
p

;

and then, taking p = 1p
2��=2

it follows that

T2 � C(T; �t)�2 [�(T � t)]2�2
p
2��=2

 
1

1�
p
2� �=2

!1+p2��=2
Finally,

T3 � �2

2
E�

0@Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�

3
2

� �2s

 Z T

s

e��(u�s)du

!2
ds

������Ft
1A

� C�2E�

0@Z T

t

e�r(s�t)

 
�2s

Z T

s

e��(r�s)dr

!� 3
2

� �2s

 Z T

s

e��(u�s)du

!2
ds

������Ft
1A

� C�2
Z T

t

E�
�
��1s

��Ft� Z T

s

e��(r�s)dr

! 1
2

ds

Then, using the same arguments as for T1 it follows that, if � � 4

T3 � C(T; �t)�2(T � t)
3
2 ;

and, if � < 4

T3 � C(T; �t)
�2�

p
2��=2hp

2� �=2 + 1
ip2��=2

2

(T � t)
1
2

�
3�
p
2��=2

�
;

and this allows us to complete the proof.
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Remark 8 Notice that, when � = 4; formula (6) coincides with (7). On the
other hand, the accuracy of the approximation given in (7) becomes worse as �
tends to 2:

Remark 9 Formulas (6) and (7) show us that, �xed �; the accuracy of this
�rst-order approximation becomes good when the volatility of the volatility or
the time to maturity are small enough.

The decomposition formula (4) suggests us we can obtain a second-order
approximation formula by approximating its last term. To this end, we will
need the following lemma.

Lemma 10 Assume � := 4��
�2 2 (3; 4) : Then, for all t 2 [0; T ] and for all

p < 2
5��

E

�
1

�3s

����Ft� � C(T; �t)

�2(1�1=q)s1�1=q
�
p
2 (� � 5) + 1

� 1
p

;

where C(T; �t) is a positive constant non-decreasing as a function of T:

Proof. For the sake of simplicity we can take t = 0: From he proof of Lemma
A.1 of Bossy (2004) we know that

E

�
1

�3s

�
� C

L(s)

Z 1

0

(1� u)2��=�
2� 5

2 exp

�
��0e

��su

2L(s)

�
du

where L(s) := �2

4� (1 � e
��s):Now, by Hölder inequality we know that, for all

1
p +

1
q = 1 such that p <

2
5��

E

�
1

�3s

�
� C

L(s)

�Z 1

0

(1� u)
p
2 (��5)du

� 1
2
�Z 1

0

exp

�
��0e

��su

L(s)

�
du

� 1
2

� C

L(s)
�
p
2 (� � 5) + 1

� 1
p

�
q�0e

��s

L(s)

�� 1
q

� C(T; �0)

L(s)1�1=q
�
p
2 (� � 5) + 1

� 1
p

� C(T; �0)

�2(1�1=q)(1� e��s)1�1=q
�
p
2 (� � 5) + 1

� 1
p

:

Now, using that (1� e��s) � ske��s it follows that

E

�
1

�3s

�
� C(T; �0)

�2(1�1=q)s1�1=q
�
p
2 (� � 5) + 1

� 1
p

;

as we wanted to prove.
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Theorem 11 (Second-order approximation formula) Assume the model (1),
where the volatility process � = f�s;s 2 [0; T ]g satis�es the Novikov condition
2�� > �2: Then, if � � 5; for all t 2 [0; T ] such that T � t < 1�����Vt �BS (t;Xt; vt)� 12H (t;Xt; vt)E�

 Z T

t

�sd hM;W �is

�����Ft
!

�1
2
K (t;Xt; vt)E

�

 Z T

t

d hM;Mis

�����Ft
!�����

� C(T; �t)
�
�2�2(T � t) 32 + �3�(T � t)2 + �4(T � t)5=2

�
(8)

Moreover, if � 2 [4; 5)�����Vt �BS (t;Xt; vt)� 12H (t;Xt; vt)E�
 Z T

t

�sd hM;W �is

�����Ft
!

�1
2
K (t;Xt; vt)E

�

 Z T

t

d hM;Mis

�����Ft
!�����

� C(T; �t)
n
�2�2(T � t) 32 + �3�(T � t)2 (9)

+�4�2
p
5=2��=2(T � t)5=2�2

p
5=2��=2

 
1

1�
p
5=2� �=2

!1+p5=2��=29>=>; :
Finally, if � 2 [3; 4)�����Vt �BS (t;Xt; vt)� 12H (t;Xt; vt)E�

 Z T

t

�sd hM;W �is

�����Ft
!

�1
2
K (t;Xt; vt)E

�

 Z T

t

d hM;Mis

�����Ft
!�����

� C(T; �t)

8><>:�2�2
p
2��=2

 
1

1�
p
2� �=2

!1+p2��=2�������
�
�
(T � t)

1
2

�
3�
p
2��=2

�
+ (T � t)2

�
1�
p
2��=2

��
(10)

+ �4�2
p
5=2��=2(T � t)5=2�2

p
5=2��=2

 
1

1�
p
5=2� �=2

!1+p5=2��=29>=>; ;
where C(T; �t) is a positive constant non-decreasing as a function of T

Proof. Consider the process e�rtK (t;Xt; vt)Rt; whereRt := E�
�R T

t
d hM;Mis

���Ft� :It
is easy to check that

e�rTH (T;XT ; vT )RT = 0:
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Again, the same arguments as in the proof of Theorem 1 give us that

0 = H (t;Xt; vt)Rt

�1
2
E�

 Z T

t

e�r(s�t)K (s;Xs; vs) d hM;Mis

�����Ft
!

+
1

2
E�

 Z T

t

e�r(s�t)
�
@3

@x3
� @2

@x2

�
K
�
s;Xs; v

�
s

�
Rs�sd hM;W �is

�����Ft
!

+
1

2
E�

 Z T

t

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
K
�
s;Xs; v

�
s

�
Rsd hM;Mis

�����Ft
!
:

This, together with (4), allows us to write

Vt = BS (t;Xt; vt) +H (t;Xt; vt)Ut +K (t;Xt; vt)Rt

+
1

2
E�

 Z T

t

e�r(s�t)
�
@3

@x3
� @2

@x2

�
H
�
s;Xs; v

�
s

�
Us�sd hM;W �is

�����Ft
!

+
1

2
E�

 Z T

t

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
H
�
s;Xs; v

�
s

�
Usd hM;Mis

�����Ft
!

+
1

2
E�

 Z T

t

e�r(s�t)
�
@3

@x3
� @2

@x2

�
K
�
s;Xs; v

�
s

�
Rs�sd hM;W �is

�����Ft
!

+
1

2
E�

 Z T

t

e�rs
�
@4

@x4
� 2 @

3

@x3
+
@2

@x2

�
K
�
s;Xs; v

�
s

�
Rsd hM;Mis

�����Ft
!

= BS (t;Xt; vt) +H (t;Xt; vt)Ut +K (t;Xt; vt)Rt + T1 + T2 + T3 + T4:

Then, by the proof of Theorem 1 we know that, if � � 4;

T1 + T2 � C(T; �t)�2�2(T � t)
3
2 ;

and, if � < 4

T1 + T2 � C(T; �t)�
2�2�

p
2��=2

�
�
(T � t)

1
2

�
3�
p
2��=2

�
+ (T � t)2�2

p
2��=2

�
On the other hand,

jRsj � �2E�

0@Z T

s

�2r

 Z T

r

e��(u�r)du

!2
dr

������Ft
1A

= �2
Z T

s

E�
�
�2r
��Fs� Z T

r

e��(u�r)du

!2
dr
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Then, using Lemma 1 as in the proof of Theorem 1 we obtain

T3 � �3�

2
E�

0@0@Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�3

�

0@Z T

s

E�
�
�2r
��Fs� Z T

r

e��(u�r)du

!2
dr

1A
� �2s

 Z T

s

e��(u�s)du

!
ds

�����Ft
!

� C(T; �t)�
3�

Z T

t

e�r(s�t)E�
�
��2s

��Ft� Z T

s

e��(r�s)dr

!
ds

Now, by Lemma 5, if � � 4

T3 � C(T; �t)�3�(T � t)2

and, if � < 4, by Lemma 6

T3 � C(T; �t)�� [�(T � t)]2�2
p
2��=2

 
1

1�
p
2� �=2

!1+p2��=2
Finally, by Lemma 1 and using the same arguments as before we can write

T4 � �4

2
E�

0@Z T

t

e�r(s�t)

 Z T

s

E
�
�2�
��Fs� d�!�

7
2

�

0@Z T

s

E�
�
�2r
��Fs� Z T

r

e��(u�r)du

!2
dr

1A
� �2s

 Z T

s

e��(u�s)du

!2
ds

������Ft
1A

� �4

2
E�

0@Z T

t

e�r(s�t)��3s

 Z T

s

e��(r�s)dr

! 3
2

ds

������Ft
1A

� �4

2

Z T

t

e�r(s�t)E�
�
��3s

��Ft� Z T

s

e��(r�s)dr

! 3
2

ds:

Then, Lemma 5 gives us that, if � � 5

T4 � C(T; �t)�4(T � t)5=2;
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and applying Lemma 10 we obtain that, if � 2 (3; 5)

T4 � C(T; �t)�
4

Z T

t

e�r(s�t)E�
�
��3s

��Ft� Z T

s

e��(r�s)dr

! 3
2

ds

� C(T; �t)
�4

�2=p [p (�=2� 5=2) + 1]
1
p

Z T

t

e�r(s�t)

(s� t)1=p

 Z T

s

e��(u�s)du

! 3
2

ds

� C(T; �t)
p�4

(p� 1)�2=p [p (�=2� 5=2) + 1]
1
p

(T � t)5=2�1=p

= C(T; �t)�
4(T � t)5=2

�
p

p� 1

��
1

�2(T � t) [p (�=2� 5=2) + 1]

� 1
p

:

Now, taking p =
q

2
5�� it follows that

T4 � C(T; �t)�4�2
p
5=2��=2(T�t)5=2�2

p
5=2��=2

 
1

1�
p
5=2� �=2

!1+p5=2��=2
;

and this allows us to complete the proof.

Remark 12 For an european call option, it is easy to check that

H (t; x; �) :=
ex

�
p
2� (T � t)

exp

�
�
d2+
2

��
1� d+

�
p
T � t

�
and

K (t; x; �) =
ex

�
p
2� (T � t)

exp

�
�
d2+
2

���
� d+

�
p
T � t

+
d2+

�2 (T � t)

�
� 1

�2 (T � t)

�
:

Moreover, in the case of the Heston volatility we can easily see that

E�

 Z T

t

�2sds

�����Ft
!
= � (T � t) +

�
�2t � �

�
�

�
1� e��(T�t)

�
;

E�

 Z T

t

�sd hM;W �is

�����Ft
!

=
��

�2

�
�� (T � t)� 2� + �2t + e��(T�t)

�
2� � �2t

�
� � (T � t) e��(T�t)

�
�2t � �

��
;
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and

E�

 Z T

t

d hM;Mis

�����Ft
!

=
�2

�2

(
� (T � t) +

�
�2t � �

�
�

�
1� e�k(T�t)

�
�2�
�

�
1� e�k(T�t)

�
� 2

�
�2t � �

�
(T � t) e�k(T�t)

+
�

2�

�
1� e�2k(T�t)

�
+

�
�2t � �

�
�

�
e�k(T�t) � e�2k(T�t)

�)
:

Then we can easily obtain explicit �rst-order and second-order approximations
formulas by substituting the above quantities in the approximation expressions
proposed in Theorems 7 and 11.

Remark 13 (Approximations for the implied volatility). It is easy to deduce
from the expressions in Theorems 7 and 11, by using Taylor expansions as in
Fouque, Papanicolau and Sircar (2000), the following �rst-order and second-
order approximations for the implied volatility

Î1 := vt +
�

2vt (T � t)

�
1� d+

vt
p
T � t

�
E�

 Z T

t

�sd hM;W �is

!

Î2 : = vt +
�

2vt (T � t)

�
1� d+

vt
p
T � t

�
E�

 Z T

0

�sd hM;W �is

!

+
1

2vtT

" 
� d+

vt
p
(T � t)

+
d2+

v2t (T � t)

!
� 1

v2t (T � t)

#
E�

 Z T

t

d hM;Mis

!

Notice that, as

d+ =
x� x�t
vt
p
T � t

the �rst expression is linear in the initial log-stock price x; and the second one
is quadratic in x. Then we deduce that the �rst-order approximation formula
will help us to describe the skew e¤ect, while the second one will be necesary if
we try to describe a smile.

4 Numerical examples

This section is devoted to exemplify the results in the previous section. For the
sake of simplicity we will take t = 0:
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Example 14 In Fig. 1 we can see the corresponding error of approximation
(%) relative to the option price evaluated analytically, for the parameters T =
0:5;K = 100, � = 2; � = 0:04; �0 = 0:15; � = 0:1 and � = �0:5: We can
observe the error in the second approximation is smaller than the error in the
�rst approximation.
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Figure 1: Error of approximation as a function of
the log-stock price when T = 0:5;K = 100,

� = 2; � = 0:04; �0 = 0:15; � = 0:1 and � = �0:5:

Example 15 In Fig. 2 we can see the percentage errors changing the above
parameters to � = 4; � = 0:3 and � = �0:1: Then, the last term in (4) becomes
more signi�cative and we can observe a bigger di¤erence in the corresponding
percentage errors.
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Figure 2: Error of approximation as a function
of the log-stock price when T = 0:5;K = 100,
� = 4; � = 0:04; �0 = 0:15; � = 0:3 and � = �0:1:
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Example 16 Finally, we have considered the same parameters as in Fig. 2,
but keeping Xt = 100 and taking � 2 (1:7; 5) ; in such a way that � = 4��=�2 2
(3; 8:8) :Fig. 3 shows the percentage errors as a function of �:As expected from
Theorems 7 and 11, the accuracy of the approximation depends strongly on
�: Moreover, the di¤erence between the accuracy of the �rst and the second
approximation becomes not signi�cative when � tends to 3:
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Figure 3: Error of approximation as a function
of � = 4��=�2 when T = 0:5;K = 100, X = 100;

� = 0:04; �0 = 0:15 and � = 0:1.

5 Conclusions

By means of classical Itô�s calculus we have decomposed option prices in the
Heston volatility framework as the sum of the classical Black-Scholes formula
with volatility parameter equal to the root-mean-square future average volatility
plus a term due to the correlation and a term due to the volatility of the volatil-
ity. This decomposition formula allows us to construct �rst and second-order
option pricing approximation formulas that are extremely easy to compute,
as well as to study their accuracy. Moreover we have seen the corresponding
approximations for the implied volatility are linear (�rst-order approximation)
and quadratic (second-order approximation) in the log-stock price variable. The
presented methods need only some general integrability conditions and extend
some recent results in Alòs and Ewald (2008).
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