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Abstract

Discretely sampled variance and volatility swaps trade actively in OTC markets.
To price these swaps, the continuously sampled approximation is often used to simplify
the computations. The purpose of this paper is to study the conditions under which
this approximation is valid. Our first set of theorems characterize the conditions
under which the discretely sampled swap values are finite, given the values of the
continuous approximations exist. Surprisingly, for some otherwise reasonable price
processes, the discretely sampled swap prices do not exist, thereby invalidating the
approximation. Examples are provided. Assuming further that both swap values exist,
we study sufficient conditions under which the discretely sampled values converge to
their continuous counterparts. Because of its popularity in the literature, we apply our
theorems to the 3/2 stochastic volatility model. Although we can show finiteness of all
swap values, we can prove convergence of the approximation only for some parameter
values.

KEY WORDS: variance swaps, volatility swaps, NFLVR, semimartingales

1 Introduction

Although variance and volatility swaps only started trading in the mid-1900s, they have
since become a standard financial instrument useful for managing volatility risk (see Carr
and Lee [7] for the history of volatility derivative markets). In the pricing and hedging
of variance and volatility swaps, a distinction is made between payoffs that are discretely
or continuously sampled. Discretely sampled variance and volatility swaps trade in the
over-the counter (OTC) markets. In contrast, continuously sampled variance and volatil-
ity swaps are only an abstract construct, often used to approximate the values of their
discretely sampled counterparts (see Broadie and Jain [4],[5], Chan and Platen [10], and

∗Johnson Graduate School of Management, Cornell University, Ithaca, NY, 14853 and Kamakura Cor-

poration
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Carr and Lee [8]). These approximations depend on an exchange of a limit operator (as
the discrete sampling period goes to zero) with an expectation operator. This operator
exchange is often invoked without adequate justification. The purpose of this paper is to
characterize the conditions under which this operator exchange is valid.

For our investigation we utilize the martingale pricing methodology where we take as given
the asset’s price process assuming markets are arbitrage free (in the sense of No Free Lunch
with Vanishing Risk (NFLVR)). This evolution is taken to be very general. We only assume
that the price process is a strictly positive semimartingale with possibly discontinuous
sample paths. We also assume, as a standing hypothesis, that the continuously sampled
variance and volatility swaps have finite values. Otherwise, before the analysis begins, the
approximation would not make sense.

Our first two Theorems (1 and 2) characterize the additional conditions needed on the
price process such that the discretely sampled variance and volatility swaps have finite
values. Of course, when the discretely sampled variance and volatility swap values do
not exist, the approximation is again nonsensical. Surprisingly, we provide examples of
otherwise reasonable price processes, with stochastic volatility of the volatility, where these
discretely sample variance swap values do not exist.

Next, assuming both the continuous and discretely sampled variance swap values are
finite, we study conditions justifying an exchange of the limit and expectation operators.
In this regard, under no additional hypotheses, Theorem 3 provides an upper bound for the
maximum difference between these two values. Theorem 4 proves, under some additional
moment conditions, that the exchange of the two operators is valid. Furthermore, this
theorem also provides infomation on the rate of convergence (1/n where n is the number
of discretely sampled prices).

Lastly, given the recent interest in the 3/2 stochastic volatility model for pricing volatility
derivatives (see Carr and Sun [9], Chan and Platen [10]), we explore its consistency with
valuing discretely sampled variance swaps with their continuously sampled counterparts.
Here we show that both the discrete and continuously sampled variance swaps have finite
values. Unfortunately, we can only prove convergence of the discrete to the continuously
sampled variance swap values for some parameter ranges, but not all. A complete char-
acterization of this convergence for the 3/2 stochastic volatility model remains an open
question.

An outline for this paper is as follows. Section 2 gives the framework underlying the
model. Section 3 studies the finiteness and convergence of the discretely sampled variance
and volatility swap values. Finally, Section 4 provides examples to illustrate the theorems
proved.

2 Framework

Let a filtered probability space (Ω,F ,F, P ) be given, where the filtration F = (Ft)t∈[0,T ]

satisfies the usual conditions and T is a fixed time horizon. We suppose that there is a
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liquidly traded asset paying no dividends, whose market price process is modeled by a
semimartingale S = (St)t∈[0,T ] such that S > 0 and S− > 0. The value of the money
market account is chosen as numeraire, or, viewed differently, the interest rate is zero.
The price process is assumed to be arbitrage free in the sense of No Free Lunch with
Vanishing Risk (NFLVR), see Delbaen and Schachermayer [13] and [14], which guarantees
the existence of at least one equivalent probability measure under which S is a local
martingale. We assume P is such a measure, and that the modeler prices future payoffs
by taking expectations with respect to P .

2.1 Variance and volatility swaps

A variance swap (with strike zero) and maturity T is a contract which pays the ”realized
variance,” i.e. the square of the logarithm returns up to time T , namely

252

n

n∑

i=1

(
ln

Sti
Sti−1

)2

,

where 0 = t0 < ... < tn = T is a regular sampling of the time interval [0, T ], i.e. ti−ti−1 =
1
n

for i = 1, . . . , n. Finally, 252 is the number of trading days per year. The maturity T is
approximately n

252 .

Rather than considering the quantity

Pn(T ) =

n∑

i=1

(
ln

Sti
Sti−1

)2

,

practitioners1 often use its limit

P (T ) = [lnS, lnS]T

in the pricing of variance swaps (see Carr and Lee [7]). That is, one approximates the
quantity E(Pn(T )) by E(P (T )). The continuous approximation P (T ) to the variance
swap’s true payoff Pn(T ) is justified by the fact that

[lnS, lnS]T = lim
n→∞

n∑

i=1

(
ln

Sti
Sti−1

)2

,

where the limit is in probability and taken over a sequence of subdivisions whose mesh
size tends to zero.

Analogous to a variance swap, a volatility swap is a security written on the square root of
the variance swap’s payoff. We will use the notation

V n(T ) =

√√√√
n−1∑

i=0

(
ln

Sti
Sti−1

)2

and V (T ) =
√

〈lnS〉T .

1Confirmed in a private discussion with Peter Carr.
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Again, V n(T ) is the volatility swap payoff up to multiplicative and additive constants.

Our aim is to investigate the validity of these approximations, motivated by the fact that
the convergence of Pn(T ) to P (T ), respectively V n(T ) to V (T ), is only in probability,
which a priori does not guarantee convergence of their expectations. It is the latter
convergence one needs in order to justify the use of this approximation in the context of
pricing.

To simplify the notation later on, we introduce the following convention.

Notation. For a process X = (Xt)t∈[0,T ] we define

δiX = Xti −Xti−1
(i = 1, . . . , n).

In particular, Pn(T ) =
∑n

i=1(δi lnS)
2.

2.2 Mathematical preliminaries

Since S > 0 and S− > 0 there is a semimartingale M such that

S = S0E(M),

where E(·) denotes stochastic exponential; see [18], Theorem II.8.3. In fact, since S is a
local martingale and hence a special semimartingale, it follows that from Theorem II.8.21
in [18] that M is a stochastic integral with respect to the local martingale part of S.
Furthermore, since S > 0, the jumps of M satisfy ∆M > −1, so by the Ansel-Stricker
Theorem (see [2]), M is a local martingale.

The following notation is standard. We direct the reader to [18] for details. The random
measure µM associated with the jumps of M is given by

µM (dt, dx) =
∑

s

1{∆Ms 6=0}ε(s,∆Ms)(dt, dx),

and its predictable compensator is ν(dt, dx). We may then write

S = S0 exp

{
M − 1

2
〈M c,M c〉 − (x− ln(1 + x)) ∗ µM

}
, (1)

and furthermore decompose M as

M =M c +Md =M c + x ∗ (µM − ν), (2)

where M c is the continuous local martingale part of M and Md = x ∗ (µM − ν) is the
jump part. Both these processes are local martingales. The following elementary result
will be useful later, so we state it as a lemma.

Lemma 1 The quadratic variation of M and lnS are given by

(i) [M,M ] = 〈M c,M c〉+ x2 ∗ µM
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(ii) [lnS, lnS] = 〈M c,M c〉+ (ln(1 + x))2 ∗ µM

Proof. Part (i) is a standard fact. For part (ii), write X = (x − ln(1 + x)) ∗ µM and
notice that lnS − lnS0 =M −X − 1

2〈M c,M c〉. Hence

[lnS, lnS] = [M −X,M −X]

= [M,M ] + [X,X] − 2[M,X]

= 〈M c,M c〉+ x2 ∗ µM + (x− ln(1 + x))2 ∗ µM − 2x(x− ln(1 + x)) ∗ µM .

By the Cauchy-Schwartz inequality,

|x(x− ln(1 + x))| ∗ µM =
∑

s≤·
|∆Ms(∆Ms − ln(1 + ∆Ms))|

≤
√∑

s≤·
(∆Ms)2

√∑

s≤·
(∆Ms − ln(1 + ∆Ms))2 <∞,

so x(x− ln(1+x))∗µM also converges absolutely, a.s. Termwise manipulation is therefore
allowed, so since x2 + (x− ln(1 + x))2 − 2x(x− ln(1 + x)) = (ln(1 + x))2, we get

x2 ∗ µM + (x− ln(1 + x))2 ∗ µM − 2x(x− ln(1 + x)) ∗ µM = (ln(1 + x))2 ∗ µM .

The result follows.

We also have the following lemma, which gives the semimartingale decomposition of lnS.

Lemma 2 Assume that lnS is locally integrable. Then

lnS − lnS0 =M c + ln(1 + x) ∗ (µM − ν)− 1

2
〈M c,M c〉 − (x− ln(1 + x)) ∗ ν.

Proof. From (1) and (2) we have

lnS − lnS0 =M c − 1

2
〈M c,M c〉+ x ∗ (µM − ν)− (x− ln(1 + x)) ∗ µM .

Our assumption together with the fact that M c and x ∗ (µM − ν) are local martingales,
hence locally integrable, implies that 〈M c,M c〉 and (x−ln(1+x))∗µM are locally integrable
(notice that both are nonnegative). Hence (x− ln(1+x))∗ν is locally integrable (see [18],
Proposition II.1.8), so we may add and subtract this quantity to the right side of the
previous display to obtain

lnS − lnS0 =M c − 1

2
〈M c,M c〉+ ln(1 + x) ∗ (µM − ν)− (x− ln(1 + x)) ∗ ν.

This is the desired expression.
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3 Approximation using the quadratic variation

3.1 Finiteness of expectations

In order for there to be any hope that E(P (T )) accurately approximates E(Pn(T )), a
minimal requirement is that both these quantities be finite. Perhaps somewhat surpris-
ingly, they need not be finite or infinite simultaneously. This is of course a potentially
serious issue, since the value of E(P (T )), when finite, is nonsensical as an approximation
of E(Pn(T )) if this is infinite.

The following result gives necessary and sufficient conditions for E(Pn(T )) to be finite,
given that the approximation P (T ) is known to have finite expectation.

Theorem 1 Assume that P (T ) ∈ L1. The following statements are equivalent.

(i) Pn(T ) ∈ L1 for at least one n ≥ 1

(ii)





〈M c,M c〉T ∈ L2

(x− ln(1 + x)) ∗ νT ∈ L2

Proof. First of all, note that since Pn(T ) =
∑n

i=1(δi lnS)
2, we have Pn(T ) ∈ L1 if and

only if δi lnS ∈ L2 for each i, which is equivalent to having lnSti − lnS0 ∈ L2 for each i.
We thus need to show that this is equivalent to condition (ii) in the statement of the
theorem.

By Lemma 1, our basic assumption P (T ) = [lnS, lnS]T ∈ L1 implies that 〈M c,M c〉T ∈ L1

and (ln(1 + x))2 ∗ µMT ∈ L1. Hence both M c
t and ln(1 + x) ∗ (µM − ν)t are in L2 for every

t ≤ T . Therefore, using the representation from Lemma 2, namely

lnS − lnS0 =M c − 1

2
〈M c,M c〉+ ln(1 + x) ∗ (µM − ν)− (x− ln(1 + x)) ∗ ν,

we deduce that lnSti − lnS0 ∈ L2 for each i holds if and only if

1

2
〈M c,M c〉ti + (x− ln(1 + x)) ∗ νti ∈ L2

for each i. Since both 〈M c,M c〉 and (x− ln(1+x))∗ν are nonnegative and nondecreasing,
this is equivalent to condition (ii). The proof is finished.

We note that the above theorem implies that if Pn(T ) ∈ L1 for some n then Pn(T ) ∈ L1

for all n ≥ 1. An analogous result holds for volatility swaps.

Theorem 2 Assume that V (T ) ∈ L1. The following statements are equivalent.

(i) V n(T ) ∈ L1 for some n ≥ 1

(ii)





〈M c,M c〉T ∈ L1

(x− ln(1 + x)) ∗ νT ∈ L1
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Proof. Using for instance the fact that all norms on R
n are equivalent, there are constants

0 < c ≤ C <∞ such that

cV n(T ) ≤
n∑

i=1

∣∣δi lnS
∣∣ ≤ CV n(T ) a.s.

Thus V n(T ) ∈ L1 is equivalent to δi lnS ∈ L1 for each i, which is equivalent to lnSti −
lnS0 ∈ L1 for each i.

Now the proof is similar to that of Theorem 1. By Lemma 1, V (T ) =
√

[lnS, lnS]T ∈ L1

implies that
√
〈M c,M c〉T and

√
(ln(1 + x))2 ∗ µMT are in L1, which via the Burkholder-

Davis-Gundy inequalities implies that M c
t and ln(1 + x) ∗ (µM − ν)t are in L1 for each

t ≤ T . By Lemma 2, therefore, lnSti − lnS0 ∈ L1 for each i if and only if

1

2
〈M c,M c〉ti + (x− ln(1 + x)) ∗ νti ∈ L1

for each i. This is equivalent to condition (ii) of the theorem.

Again, we note that Theorem 2 implies that if V n(T ) ∈ L1 for some n then V n(T ) ∈ L1

for all n ≥ 1.

When S is continuous we have the following variation of Theorem 1, which indicates that
in many cases, E(Pn(T )) <∞ is a stronger requirement than E(P (T )) <∞. This will be
used in Section 4, where we discuss specific examples. Notice that when S is continuous,
P (T ) = [lnS, lnS] = 〈M c,M c〉 = 〈M,M〉.
Proposition 1 Assume that S is continuous. Then the following are equivalent.

(i) Mt ∈ L1 and Pn(T ) ∈ L1

(ii) P (T ) ∈ L2

Proof. In the continuous case, lnS − lnS0 = M − 1
2 〈M,M〉. First assume (ii), i.e. that

P (T ) = 〈M,M〉T ∈ L2. Then certainly Mt ∈ L2 for every t ≤ T , hence lnSt ∈ L2 for
every t ≤ T . Therefore δi lnS ∈ L2 for every i, and as in the beginning of the proof of
Theorem 1, this implies that Pn(T ) ∈ L1. Hence (i) holds. Conversely, if (i) is satisfied,
then δi lnS ∈ L2 for every i, so lnST ∈ L2. We also have MT ∈ L1 by assumption, so
〈M,M〉T = 2(MT − lnST + lnS0) is in L

1, implying that MT is in fact in L2. This lets us
strengthen the previous conclusion to 〈M,M〉T ∈ L2, which is (ii).

Notice that the implication (ii) ⇒ (i) also follows from Theorem 1. We can prove an
analogous result for volatility swaps.

Proposition 2 Assume that S is continuous. Then the following are equivalent.

(i) Mt ∈ L1 and V n(T ) ∈ L1

(ii) V (T ) ∈ L2, i.e. 〈M,M〉T ∈ L1.

7



Proof. As in the proof of Theorem 2, V n(T ) ∈ L1 is equivalent to δi lnS ∈ L1 for each i.
The rest of the proof is similar to that of Proposition 1.

In the case of continuous price processes, Proposition 1 makes it clear how one can proceed
to construct examples where the approximation P (T ) has finite expectation, but the true
payoff Pn(T ) does not. Indeed, any process S of the form S = S0E(M) will do, where M
is a continuous local martingale that satisfies





〈M,M〉T ∈ L1

〈M,M〉T /∈ L2.
(3)

It is clear that such processes exist; what is less clear is to what extent examples can
be found among models that appear in applications. In Section 4 we provide examples
demonstrating that the condition (3) can appear in models that may appear innocuous at
first sight.

3.2 Bounds on the approximation error

In this section we assume that bothE(P (T )) and E(Pn(T )) are finite, and study conditions
under which they are close for large n; as already mentioned, although Pn(T ) → P (T ) in
probability, the expectations need not converge. We start by showing that under general
conditions, the two expectations at least cannot be too far apart. We then impose addi-
tional structure on the model and give conditions that guarantee convergence. The focus
of this section is on variance swaps. The analysis of volatility swaps is more complicated
and is omitted.

Theorem 3 Assume that Pn(T ) and P (T ) both are in L1. Then there is a constant
C > 0, independent of n, such that

|E(P (T )) − E(Pn(T ))| ≤ C for all n.

The proof of Theorem 3 is straightforward once the following lemma has been estab-
lished.

Lemma 3 Assume that Pn(T ) and P (T ) both are in L1 and define

N = ln(1 + x) ∗ (µM − ν)

A =
1

2
〈M c,M c〉+ (x− ln(1 + x)) ∗ ν.

Then 〈M c,M c〉T and [N,N ]T are in L1. Moreover,

∣∣E
(
P (T )

)
− E

(
Pn(T )

)∣∣ ≤ E
( n∑

i=1

(δiA)
2
)
+ 2E

( n∑

i=1

|δiM c|δiA
)
+ 2E

( n∑

i=1

|δiN |δiA
)
,

8



and we have

E
( n∑

i=1

|δiM c|δiA
)
≤
√
E
(
〈M c,M c〉T

)
√√√√E

( n∑

i=1

(δiA)2
)

and

E
( n∑

i=1

|δiN |δiA
)
≤
√
E
(
[N,N ]T

)
√√√√E

( n∑

i=1

(δiA)2
)
.

Proof. Observe that N is a purely discontinuous local martingale with [N,N ] = (ln(1 +
x))2∗µM , andA is a nondecreasing process. Since by assumption P (T ) = [lnS, lnS]T ∈ L1,
Lemma 1 implies that both M c and N are L2 martingales, which is the first assertion.
Since also Pn(T ) ∈ L1, Theorem 1 shows that AT ∈ L2. Again by Lemma 1,

E
(
[lnS, lnS]T

)
=

n∑

i=1

E
(
δi〈M c,M c〉

)
+

n∑

i=1

E
(
δi[N,N ]

)

=

n∑

i=1

E
(
(δiM

c)2 + (δiN)2
)
.

Lemma 2 shows that with N and A as above, we have lnS − lnS0 =M c +N −A. Hence
δi lnS = δiM

c + δiN − δiA, and therefore

E
(
Pn(T )

)
− E

(
P (T )

)
=

n∑

i=1

E
(
(δiA)

2 + 2(δiM
c)(δiN)− 2(δiM

c)(δiA)− 2(δiN)(δiA)
)

=

n∑

i=1

E
(
(δiA)

2 − 2(δiM
c)(δiA)− 2(δiN)(δiA)

)
,

where the second equality holds because M c and N are orthogonal L2 martingales. The
triangle inequality and Jensen’s inequality yield

∣∣E
(
P (T )

)
− E

(
Pn(T )

)∣∣ ≤ E
( n∑

i=1

(δiA)
2
)
+ 2E

( n∑

i=1

|δiM c|δiA
)
+ 2E

( n∑

i=1

|δiN |δiA
)

= (I) + (II) + (III).

This settles the first inequality in the statement of the lemma. For (II), applying the
Cauchy-Schwartz inequality twice, first for the sum and then the expectation, yields

(II) ≤ 2E

(√√√√
n∑

i=1

(δiM c)2

√√√√
n∑

i=1

(δiA)2

)
≤ 2

√√√√E
( n∑

i=1

(δiM c)2
)
√√√√E

( n∑

i=1

(δiA)2
)
.

It only remains to notice that E
(∑n

i=1(δiM
c)2
)
=
∑n

i=1E
(
δi〈M c,M c〉

)
= E

(
〈M c,M c〉T

)
.

An analogous calculation yields

(III) ≤ 2
√
E
(
[N,N ]T

)
√√√√E

( n∑

i=1

(δiA)2
)
,
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thus proving the lemma.

Proof of Theorem 3. By Lemma 3 it suffices to bound E
(∑n

i=1(δiA)
2
)
. Since δiA ≥ 0

for each i, we get

E
( n∑

i=1

(δiA)
2
)
≤ E

({ n∑

i=1

δiA
}2)

= E(A2
T ) <∞.

The proof is complete.

Notice that constant C can be taken to be

C = E(A2
T ) + 2

√
E
(
〈M c,M c〉T

)√
E(A2

T ) + 2
√
E
(
[N,N ]T

)√
E(A2

T ),

where N and A are as in Lemma 3. It is worth pointing out that since C is independent
of n, it is in particular valid for n = 1. It can therefore not be expected to provide a tight
bound for large n. Such results can be obtained under additional structure on the model,
which we now introduce.

For the remainder of this section we assume that our probability space supports an m-
dimensional Brownian motion W = (W 1, . . . ,W n) and a Poisson random measure µ =
µ(dt, dz) on R+ × R with intensity measure dt ⊗ F (dz), where

∫
(z2 ∧ 1)F (dz) < ∞.

Moreover, we assume that M c is a stochastic integral with respect to W , and that Md is
a stochastic integral with respect to µ − dt ⊗ F (dz). That is, we assume that there are
predictable processes a1, . . . , am and a predictable function ψ > −1 such that

M c
t =

m∑

k=1

∫ t

0
aksdW

k
s and Md

t = ψ ∗ (µ − dt⊗ F (dz))t.

In this case the compensator ν of µM satisfies

∫ T

0

∫

(−1,∞)
G(s, x)ν(ds, dx) =

∫ T

0

∫

R

G(s, ψ(s, z))F (dz)ds

for every nonnegative predictable function G. Moreover, it is a classical result that there
exists a one-dimensional Brownian motion B and a nonnegative predictable process σ such
that

M c
t =

∫ t

0
σsdBs.

Under this structure we can formulate conditions on σ and ψ under which the expectation
of Pn(T ) converges to the expectation of P (T ) as n→ ∞.

Theorem 4 With the notation and assumptions just described above, assume that the
following conditions hold:





E
{∫ T

0 σ4sds
}
<∞

E
{∫ T

0

∫
R
(1 ∨ |z|−p)

{
ψ(s, z)2 + (ln(1 + ψ(s, z)))2

}
F (dz)ds

}
<∞,
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for some p ≥ 0 such that
∫
R
(1 ∧ |z|p)F (dz) <∞. Then

lim
n→∞

|E(P (T )) − E(Pn(T ))| = 0.

More specifically, there are constants C and D such that

|E(P (T )) − E(Pn(T ))| ≤ Cn−1 +Dn−1/2.

Notice that p ≤ 2 always works, in the sense that
∫
R
(1 ∧ z2)F (dz) < ∞. However,

depending on F (dx), smaller values of p may also work, imposing less stringent restrictions
on ψ. In particular, if the Poisson random measure only has finitely many jumps, so that∫
R
F (dx) <∞, we may take p = 0, and the condition on ψ reduces to

E
{∫ T

0

∫

R

{
ψ(s, z)2 + (ln(1 + ψ(s, z)))2

}
F (dz)ds

}
<∞.

We remark that Theorem 4 generalizes results in [4], where the authors study the Black-
Scholes model, the Heston stochastic volatility model, the Merton jump-diffusion model,
and the stochastic volatility with jumps model by Bates and Scott.

The proof of Theorem 4 requires two lemmas.

Lemma 4 For 0 ≤ s < t ≤ T we have, a.s.,

{∫ t

s

∫

(−1,∞)
(x− ln(1 + x))ν(du, dx)

}2

≤ (t− s)C

∫ T

0

∫

R

(1 ∨ |z|−p)
{
ψ(s, z)2 + (ln(1 + ψ(s, z)))2

}
F (dz)ds

for any p ≥ 0 such that
∫
R
(1 ∧ |z|p)F (dz) < ∞, and a finite constant C that does not

depend on s, t or p.

Proof. Jensen’s inequality yields

{∫ t

s

∫

(−1,∞)
(x− ln(1 + x))ν(du, dx)

}2

=
{∫ t

s

∫

R

(ψ(s, z) − ln(1 + ψ(s, z)))F (dz)ds
}2

≤ (t− s)

∫ t

s

{∫

R

G(s, z)F (dz)
}2
ds,

where we have defined G(s, z) = ψ(s, z)− ln(1 +ψ(s, z)). Splitting up the integral over R
as the sum of the integrals over {|z| ≤ 1} and {|z| > 1}, and applying the inequality
(a+ b)2 ≤ 2a2 + 2b2, we obtain

{∫

R

G(s, z)F (dz)
}2

≤ 2
{∫

{|z|≤1}
G(s, z)F (dz)

}2
+ 2
{∫

{|z|>1}
G(s, z)F (dz)

}2
.
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Since C1 = F ({|z| > 1}) <∞, Jensen’s inequality applied to the second term yields

{∫

{|z|>1}
G(s, z)F (dz)

}2
≤ C1

∫

{|z|>1}
G(s, z)2F (dz).

For the first term, let F̃ (dz) = |z|pF (dz). Then C2 = F̃ ({|z| ≤ 1}) < ∞ by assumption,
and using once again Jensen’s inequality we get

{∫

{|z|≤1}
G(s, z)F (dz)

}2
=
{∫

{|z|≤1}
|z|−pG(s, z)F̃ (dz)

}2

≤ C2

∫

{|z|≤1}
|z|−2pG(s, z)2F̃ (dz)

= C2

∫

{|z|≤1}
|z|−pG(s, z)2F (dz).

Assembling the different terms and noting that

G(s, z)2 ≤ 2
{
ψ(s, z)2 + (ln(1 + ψ(s, z)))2

}

yields the result with C = 4(C1 ∨C2).

Lemma 5 Under the assumptions of Theorem 4, we have P (T ) ∈ L1, 〈M c,M c〉T ∈ L2,
and (x− ln(1 + x)) ∗ νT ∈ L2.

Proof. By Jensen’s inequality, E{(
∫ T
0 σ2sds)

2} ≤ TE{
∫ T
0 σ4sds}, which is finite by hy-

pothesis. So 〈M c,M c〉T ∈ L2. To prove that P (T ) ∈ L1 it therefore suffices to note
that

E
{
(ln(1 + x))2 ∗ µMT

}
= E

{
(ln(1 + ψ))2 ∗ µT

}
= E

{
(ln(1 + ψ))2 ∗ (ds ⊗ F (dz))

}
,

which is finite by assumption, since 1∨|z|−p ≥ 1. Finally, an application of Lemma 4 with
s = 0 and t = T gives a bound on E{((x− ln(1 + x)) ∗ νT )2} that is finite by assumption.
The lemma is proved.

Proof of Theorem 4. By Lemma 5, the hypotheses of Lemma 3 are satisfied, so we
have the bound

∣∣E
(
P (T )

)
− E

(
Pn(T )

)∣∣ ≤ E
( n∑

i=1

(δiA)
2
)
+ 2E

( n∑

i=1

|δiM c|δiA
)
+ 2E

( n∑

i=1

|δiN |δiA
)

= (I) + (II) + (III),

where N = ln(1 + x) ∗ (µM − ν) and A = 1
2 〈M c,M c〉+ (x − ln(1 + x)) ∗ ν. We first deal

with (I). Using the inequality (x+ y)2 ≤ 2x2 + 2y2 we obtain

n∑

i=1

E
(
(δiA)

2
)
≤

n∑

i=1

{
1

2
E
(
(δi〈M c,M c〉)2

)
+ 2E

(
(δi(x− ln(1 + x)) ∗ ν)2

)}
.
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Now, Jensen’s inequality yields

E
{
(δi〈M c,M c〉)2

}
= E

{(∫ ti

ti−1

σ2sds
)2}

≤ T

n
E
{∫ ti

ti−1

σ4sds
}
.

Furthermore, Lemma 4 with s = ti−1 and t = ti yields

E
{
(δi(x− ln(1 + x)) ∗ ν)2

}

≤ C1

n

∫ ti

ti−1

∫

R

(1 ∨ |z|−p)
{
ψ(s, z)2 + (ln(1 + ψ(s, z)))2

}
F (dz)ds

for some constant C1 independent of i. Summing over i shows that

(I) ≤ T

2n
E
{∫ T

0
σ4sds

}

+
2C1

n
E
{∫ T

0

∫

R

(1 ∨ |z|−p)
{
ψ(s, z)2 + (ln(1 + ψ(s, z)))2

}
F (dz)ds

}
,

which is equal to n−1 times a constant C that is finite by assumption.

Concerning the two remaining terms (II) and (III), Lemma 3 gives

(II) ≤ 2
√
E
(
〈M c,M c〉T

)
√√√√E

( n∑

i=1

(δiA)2
)

and

(III) ≤ 2
√
E
(
[N,N ]T

)
√√√√E

( n∑

i=1

(δiA)2
)
,

so that (II) + (III) ≤ C2

√
(I) ≤ C2

√
Cn−1/2 for some constant C2. The claim now follows

with C as above and D = C2

√
C.

4 Examples

4.1 Strict local martingales

The literature on asset price bubbles centers around the phenomenon that S can be a
strict local martingale under the risk neutral measure P , see [12], [19], [20]. Moreover,
in [16] this issue has been noted to cause complications for pricing using PDE techniques.
On the other hand, alternative criteria of no arbitrage type have been proposed by various
authors to guarantee the existence of a true martingale measure, for instance [22], [6], [17].
It is therefore natural to ask about the relationship between our previous results and the
true martingale (or strict local martingale) property of S. We give two examples, in the
continuous case, showing that the two are not connected in general. More specifically, the
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examples show that the martingale property of S has little to do with the integrability of
〈M,M〉T .
Our first example uses the following criterion, which is well-known [6]. As in Section 3.2,
B is standard Brownian motion.

Lemma 6 Assume S > 0 satisfies the stochastic differential equation dSt = σ(St)dBt. It
is then a true martingale if and only if for some a > 0,

∫ ∞

a

x

σ2(x)
dx = ∞. (4)

Example 1 (S a strict local martingale and 〈M,M〉T ∈ L2) Consider the Constant
Elasticity of Variance (CEV) models dSt = Sα

t dBt. By Lemma 6, S is a strict local
martingale if and only if α > 1. We would like to choose α > 1 such that Mt =

∫ t
0 S

α−1
s dBs

is a martingale with an integrable quadratic variation, i.e. E{(
∫ t
0 S

2(α−1)
s )2} < ∞. This

can be achieved with ε ∈ (0, 1) and α = 1 + ε
4 > 1. Indeed,

E

{(∫ T

0
S2(α−1)
s ds

)2}
≤ TE

(∫ T

0
S4(α−1)
s ds

)
= TE

(∫ T

0
Sε
sds

)
= T

∫ T

0
E(Sε

s)ds.

Since ε ∈ (0, 1), x 7→ xε is concave. Jensen’s inequality thus implies that the right side

above is dominated by T
∫ T
0 E(Ss)

εds ≤ T 2Sε
0 < ∞, where E(Ss) ≤ S0 because S is a

positive local martingale, hence a supermartingale. This shows that S can be a strict local
martingale, even if the quadratic variation 〈M,M〉T = 〈lnS, lnS〉T is in L2.

For completeness, we also give a simple example showing that the reverse situation is also
possible: that S can be well-behaved (a bounded martingale), while M is not.

Example 2 (S a bounded martingale and M a strict local martingale) Let X be
the reciprocal of a Bessel(3) process. It is well-known that X is a strict local martingale,
see e.g. [11, p. 20-21]. Set Mt = −Xt, so that M is a strict local martingale with Mt ∈ L1

and Mt < 0 a.s. for all t ≥ 0. Now, P (T ) = 〈M,M〉T is not in L1 (otherwise M would be
a true martingale), and also Pn(T ) fails to be in L1 by Proposition 1.

However, since St = E(M)t = exp{−Xt− 1
2〈X,X〉t} ≤ 1, it is a bounded local martingale,

hence a true martingale. In this example, the “bad” behavior of M is caused by its ability
to take on very large negative values. This does not carry over to S, since it is obtained
through exponentiation.

4.2 Stochastic volatility of volatility

We now proceed to give an example of a class of continuous stock price models that
look innocuous, but where the conditions (3) at the end of Section 3.1 are satisfied for
certain parameter values. In those cases, Proposition 1 implies that E(P (T )) < ∞ but
E(Pn(T )) = ∞.

We use stochastic volatility models with stochastic volatility of volatility. Let B, W
and Z be three Brownian motions, and let ρ denote the correlation between W and Z,

14



i.e. d〈W,Z〉t = ρdt. No restrictions will be imposed on the correlation structure of
(B,W,Z), other than through the parameter ρ. We consider the following model for
the stock price S, its volatility v and the volatility of volatility w:

dSt = St
√
vtdBt (5)

dvt = vt
√
wtdWt (6)

dwt = κ(θ − wt)dt+ η
√
wtdZt, (7)

where κ, θ, η are positive constants. Maintaining our previous notation, where M is the
stochastic logarithm of S, we have that Mt =

∫ t
0

√
vsdBs, so 〈M,M〉t =

∫ t
0 vsds. Recall

condition (3) from Section 3.1:





〈M,M〉T ∈ L1

〈M,M〉T /∈ L2.

Note that v is a nonnegative local martingale and hence a supermartingale. Together with
Fubini’s theorem, this yields

E(〈M,M〉T ) = E
{∫ T

0
vsds

}
=

∫ T

0
E(vs)ds ≤ Tv0,

so 〈M,M〉T ∈ L1. Now we wish to find conditions such that 〈M,M〉T =
∫ T
0 vsds /∈ L2.

To this end, define
T ∗ = sup{t : E(v2t ) <∞},

and let χ = 2ρη − κ and ∆ = χ2 − 2η2. It is proven in [1] that

T ∗ =





1√
∆
ln(χ+

√
∆

χ−
√
∆
) if ∆ ≥ 0 and χ > 0,

2√
−∆

(
arctan(

√
−∆
χ ) + π1{χ<0}

)
if ∆ < 0,

+∞ otherwise.

The next step is to establish that v is in fact a martingale.

Lemma 7 The process v defined above is a true martingale.

Proof. Using Feller’s test of explosion (see e.g. [21]), a straightforward calculation shows
that w does not explode under P . Therefore, using the same techniques as in [1], it suffices
to establish that the auxiliary process ŵ, defined as the solution to

dŵt =
(
κ(θ − ŵt) + ρηŵt

)
dt+ η

√
ŵtdZt, ŵ0 = w0,

is non-explosive. This can again be verified using Feller’s criterion.
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We may now conclude our construction by choosing the parameters ρ, η and κ such that
T ∗ <∞, and then choose T > T ∗. In this case, Fubini’s theorem implies that

E
{(∫ T

0
vsds

)2}
= E

{∫ T

0

∫ T

0
vsvtdsdt

}
=

∫ T

0

∫ T

0
E(vsvt)dsdt.

Moreover, E(vsvt) = E(vsE(vt | Fs)) = E(v2s ), so we get

E
{(∫ T

0
vsds

)2}
=

∫ T

0

∫ T

0
E(v2s )dsdt ≥

∫ T

T ∗

∫ T

T ∗

E(v2s)dsdt = ∞.

We conclude that 〈M,M〉T /∈ L2, and can summarize our findings as follows.

Example 3 Suppose in the stock price model with stochastic volatility of volatility de-
scribed above, the parameters are such that T > T ∗. Then the preceding discussion shows
that

E(P (T )) <∞ but E(Pn(T )) = ∞.

That is, the approximation to the variance swap payoff has finite expectation, whereas the
true payoff does not.

It is interesting to note that it is sometimes possible to change to an equivalent measure
Q ∼ P , under which the price process is still a local martingale, and such that both P (T )
and Pn(T ) become integrable. The authors would like to thank Kerry Back [3] for posing
the question of whether or not this can happen. To carry out the construction, let us
continue to consider the stochastic volatility of volatility model described above.

Proposition 3 Assume that we are in the framework of a doubly stochastic volatility
model as described in (5), (6), and (7). Suppose that ∆ ≥ 0 and χ > 0, so that T ∗ < ∞,
and assume also that B is independent of (W,Z). Then there is an equivalent measure Q
such that S is a local martingale under Q, and T̃ ∗ = sup{t : EQ(v

2
t ) < ∞} = ∞. As a

consequence,
EQ(P (T )) <∞ and EQ(P

n(T )) <∞,

and we have limn→∞ Pn(T ) = P (T ).

Proof. We can find a Brownian motion W ′, independent of W and B, such that

Zt = ρWt +
√

1− ρ2W ′
t .

Let Q be the measure whose density process Yt = EP

(dQ
dP | Ft

)
is given by dYt =

−Ytγ
√
wtdW

′
t , where γ > 0 is a constant to be determined. To show that Y is indeed a

martingale on [0, T ], it suffices to verify, as in Lemma 7, that the auxiliary process

dŵt =
(
κ(θ − ŵt)− γρηŵt

)
dt+ η

√
ŵtdZt, ŵ0 = w0,

is non-explosive. This can again be done using Feller’s criteria. Next, it follows from
Girsanov’s theorem that the dynamics of w under Q is given by

dwt = κ̃(θ̃ − wt)dt+ η
√
wtdZ̃t,
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where

κ̃ = κ+ γη
√

1− ρ2, θ̃ =
κθ

κ+ γη
√

1− ρ2
,

and dZ̃t = dZt + γ
√

1− ρ2
√
wtdt is Brownian motion under Q. Hence, if we define

χ̃ = 2ρη − κ̃ and ∆̃ = χ̃2 − 2η2,

we have that T̃ ∗ = ∞ if χ̃ ≤ 0 and ∆̃ ≥ 0. But

χ̃ = χ− γη
√

1− ρ2

and
∆̃ = ∆+ γη

√
1− ρ2

(
γη
√

1− ρ2 − 2χ
)
,

so it suffices to choose γ ≥ 2χ

η
√

1−ρ2
.

The verification of the last assertion is straightforward: EQ(P (T )) < ∞ is proved in the
same way as under the measure P . To show that EQ(P

n(T )) < ∞ and limn→∞ Pn(T ) =

P (T ), note that
∫ T
0 EQ(v

2
t )dt < ∞ due to the continuity and finiteness of EQ(v

2
t ) on the

compact interval [0, T ]. An application of Theorem 4 concludes the proof.

4.3 The 3/2-stochastic volatility model

A model that has received considerable attention both in the theoretical and empirical
literature is the 3/2-stochastic volatility process. See for example [9] and the references
therein. Let B and W be two correlated Brownian motions. The model prescribes the
following dynamics for the stock price and its volatility

dSt = St
√
vtdBt

dvt = vt(p+ qvt)dt+ ǫv
3

2

t dWt

where p, q and ǫ are constants such that q < ǫ2

2 and ǫ > 0. The reason for the upper bound
on q is to avoid explosion of v in finite time. To see this, consider the process Rt =

1
vt
, the

reciprocal of v, which satisfies the SDE

dRt = (ǫ2 − q − pRt)dt− ǫ
√
RtdWt.

The process R is a square-root process, and it is well-known that this process avoids zero
when ǫ2 − q > ǫ2

q , which is exactly the condition q < ǫ2

2 . Let again M be the stochastic

logarithm of S, i.e. Mt =
∫ t
0

√
vsdBs, so that 〈M,M〉t =

∫ t
0 vsds. Carr and Sun [9] provide

the Laplace transform of the integrated variance
∫ T
0 vsds in closed form.

Proposition 4 In the 3/2-model, the Laplace transform of the realized variance
∫ T
0 vsds

is given by

E(e−λ
∫ T

0
vsds) =

Γ(γ − α)

Γ(γ)

( 2

ǫ2y0

)α
M(α, γ,

−2

ǫ2y0
)
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where y0 = v0
epT−1

p , α = −(12−
q
ǫ2 )+

√
(12 − q

ǫ2 )
2 + 2 λ

ǫ2 , γ = 2(α+1− q
ǫ2 ), Γ is the Gamma

function, and M is the confluent hypergeometric function

M(α, γ, z) =

∞∑

n=0

(α)n
(γ)n

zn

n!

with the notation (x)n =
∏n−1

i=0 (x+ i).

Proof. We refer the reader to Carr and Sun [9].

Since the Laplace transform of the realized variance exists in a neighborhood of zero,
all moments of

∫ T
0 vsds are finite. This implies in particular that E(〈M,M〉T ) ∈ L2.

From Proposition 1, both the true variance swap payoff and its approximation have finite
expectation.

Recall now the following result proved by Dufresne [15] on the finiteness of moments of
the square-root process.

Proposition 5 Let v = 2(ǫ2−q)
ǫ2

. Then

∀ p < v, E(R−p
t ) <∞

∀ p ≥ v, E(R−p
t ) = ∞

and for all p ≥ −v,
E(Rp

t ) = µpt e
−λt

Γ(v + p)

Γ(v)
M(v + p, p, λt)

where µt =
ǫ2

2
1−e−pt

p , λt =
2pv0

ǫ2(e−pt−1)
, Γ is the Gamma function, and M is the congruent

hypergeometric function defined in Proposition 4.

If q < 0, define κ = −q > 0 and θ = p
κ . Then the SDE satisfied by v can be re-written

as

dvt = κvt(θ − vt)dt+ ǫv
3

2

t dWt

So under the condition q < 0, the process v is mean-reverting with a rate of mean-reversion
proportional to v. Also v > 2 when q < 0, so using Proposition 5, it can be seen that
E(v2t ) = E(R−2

t ) is finite and integrable on [0, T ] as a continous function on this compact
time interval. Hence the condition of Theorem 4 is satisfied and the expectation of Pn(T )
converges to the expectation of P (T ) as n→ ∞.

Under the condition 0 ≤ q < ǫ2

2 , it follows that 1 < v ≤ 2 and Proposition 5 implies that

E(v2t ) = ∞. By Fubini’s theorem, E(
∫ T
0 v2sds) = ∞ so that the condition of Theorem 4

fails and the convergence of the E(Pn(T )) to E(P (T )) is not guaranteed anymore.

We now summarize the above findings.

Example 4 Suppose the stock price follows the 3/2-stochastic volatility model. The above
discussion shows that

(i) Both the true payoff Pn(T ) and the approximation P (T ) have finite expectation.
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(ii) If q < 0, i.e. when the squared volatility process is mean reverting, Pn(T ) converges
to P (T ) as n→ ∞.

(iii) If q ≥ 0, our sufficient condition fails and we can no longer guarantee that Pn(T )
converges to P (T ). It is an open problem to establish whether or not this convergence
actually takes place.
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