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Abstract

In a market with one safe and one risky asset, an investor with a long horizon, constant
investment opportunities, and constant relative risk aversion trades with small proportional
transaction costs. We derive explicit formulas for the optimal investment policy, its implied
welfare, liquidity premium, and trading volume. At the first order, the liquidity premium
equals the spread, times share turnover, times a universal constant. Results are robust to
consumption and finite horizons. We exploit the equivalence of the transaction cost market to
another frictionless market, with a shadow risky asset, in which investment opportunities are
stochastic. The shadow price is also found explicitly.
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1 Introduction

If risk aversion and investment opportunities are constant — and frictions are absent — investors
should hold a constant mix of safe and risky assets (Markowitz, 1952; Merton, 1969, 1971). Transac-
tion costs substantially change this statement, casting some doubt on its far-reaching implications.1

Even the small spreads that are present in the most liquid markets entail wide oscillations in port-
folio weights, which imply variable risk premia.
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1Constantinides (1986) finds that “transaction costs have a first-order effect on the assets’ demand.” Liu and
Loewenstein (2002) note that “even small transaction costs lead to dramatic changes in the optimal behavior for an
investor: from continuous trading to virtually buy-and-hold strategies.” Luttmer (1996) shows how small transaction
costs help resolve asset pricing puzzles.
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This paper studies a tractable benchmark of portfolio choice under transaction costs, with
constant investment opportunities, summarized by a safe rate r, and a risky asset with volatility
σ and expected excess return µ > 0, which trades at a bid (selling) price (1 − ε)St equal to a
constant fraction (1 − ε) of the ask (buying) price St. Our analysis is based on the model of
Dumas and Luciano (1991), which concentrates on long-run asymptotics to gain in tractability. In
their framework, we find explicit solutions for the optimal policy, welfare, liquidity premium2 and
trading volume, in terms of model parameters, and of an additional quantity, the gap, identified
as the solution to a scalar equation. For all these quantities, we derive closed-form asymptotics, in
terms of model parameters only, for small transaction costs.

We uncover novel relations among the liquidity premium, trading volume, and transaction costs.
First, we show that share turnover (ShTu), the liquidity premium (LiPr), and the bid-ask spread ε
satisfy the following asymptotic relation:

LiPr ≈ 3

4
εShTu .

This relation is universal, as it involves neither market nor preference parameters. Also, because
it links the liquidity premium, which is unobservable, with spreads and share turnover, which are
observable, this relation can help estimate the liquidity premium using data on trading volume.

Second, we find that the liquidity premium behaves very differently in the presence of leverage.
In the no-leverage regime, the liquidity premium is an order of magnitude smaller than the spread
(Constantinides, 1986), as unlevered investors respond to transaction costs by trading infrequently.
With leverage, however, the liquidity premium increases quickly, because rebalancing a levered
position entails high transaction costs, even under the optimal trading policy.

Third, we obtain the first continuous-time benchmark for trading volume, with explicit formulas
for share and wealth turnover. Trading volume is an elusive quantity for frictionless models, in
which turnover is typically infinite in any time interval.3 In the absence of leverage, our results
imply low trading volume compared to the levels observed in the market. Of course, our model can
only explain trading generated by portfolio rebalancing, and not by other motives such as market
timing, hedging, and life-cycle investing.

Moreover, welfare, the liquidity premium, and trading volume depend on the market parameters
(µ, σ) only through the mean-variance ratio µ/σ2 if measured in business time, that is, using a clock
that ticks at the speed of the market’s variance σ2. In usual calendar time, all these quantities are
in turn multiplied by the variance σ2.

Our main implication for portfolio choice is that a symmetric, stationary policy is optimal for
a long horizon, and it is robust, at the first order, both to intermediate consumption, and to a
finite horizon. Indeed, we show that the no-trade region is perfectly symmetric with respect to the
Merton proportion π∗ = µ/γσ2, if trading boundaries are expressed with trading prices, that is, if
the buy boundary π− is computed from the ask price, and the sell boundary π+ from the bid price.

Since in a frictionless market the optimal policy is independent both of intermediate consump-
tion and of the horizon (Merton, 1971), our results entail that these two features are robust to
small frictions. However plausible these conclusions may seem, the literature so far has offered

2 That is, the amount of excess return the investor is ready to forgo to trade the risky asset without transaction
costs.

3The empirical literature has long been aware of this theoretical vacuum: Gallant, Rossi and Tauchen (1992) reckon
that “The intrinsic difficulties of specifying plausible, rigorous, and implementable models of volume and prices are
the reasons for the informal modeling approaches commonly used.” Lo and Wang (2000) note that “although most
models of asset markets have focused on the behavior of returns [...] their implications for trading volume have
received far less attention.”
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diverse views on these issues (cf. Davis and Norman (1990); Dumas and Luciano (1991); Liu and
Loewenstein (2002)). More importantly, robustness to the horizon implies that the long-horizon
approximation, made for the sake of tractability, is reasonable and relevant. For typical parameter
values, we see that our optimal strategy is nearly optimal already for horizons as short as two years.

A key idea for our results — and for their proof — is the equivalence between a market with
transaction costs and constant investment opportunities, and another shadow market, without
transaction costs, but with stochastic investment opportunities driven by a state variable. This
state variable is the ratio between the investor’s risky and safe weights, which tracks the location of
the portfolio within the trading boundaries, and affects both the volatility and the expected return
of the shadow risky asset.

In this paper, using a shadow price has two related advantages over alternative methods: first, it
allows us to tackle the issue of verification with duality methods developed for frictionless markets.
These duality methods in turn yield the finite-horizon bounds in Theorem 3.1 below, which measure
the performance of long-run policies over a given horizon – an issue that is especially important
when an asymptotic objective funcion is used. The shadow price method was applied successfully
by Kallsen and Muhle-Karbe (2010); Gerhold, Muhle-Karbe and Schachermayer (2012, 2011) for
logarithmic utility, and this paper brings this approach to power utility, which allows to understand
how optimal policies, welfare, liquidity premia and trading volume depend on risk aversion. The
recent papers of Herczegh and Prokaj (2012); Choi, Sirbu and Žitković (2012) consider power utility
from consumption in an infinite horizon.

The paper is organized as follows: Section 2 introduces the portfolio choice problem and states
the main results. The model’s main implications are discussed in Section 3, and the main results
are derived heuristically in Section 4. Section 5 concludes, and all proofs are in the appendix.

2 Model and Main Result

Consider a market with a safe asset earning an interest rate r, i.e. S0
t = ert, and a risky asset,

trading at ask (buying) price St following geometric Brownian motion,

dSt/St = (µ+ r)dt+ σdWt.

Here, Wt is a standard Brownian motion, µ > 0 is the expected excess return,4 and σ > 0 is the
volatility. The corresponding bid (selling) price is (1− ε)St, where ε ∈ (0, 1) represents the relative
bid-ask spread.

A self-financing trading strategy is a two-dimensional, predictable process (ϕ0
t , ϕt) of finite vari-

ation, such that ϕ0
t and ϕt represent the number of units in the safe and risky asset at time t,

and the initial number of units is (ϕ0
0− , ϕ0−) = (ξ0, ξ) ∈ R2

+\{0, 0}. Writing ϕt = ϕ↑t − ϕ↓t as

the difference between the cumulative number of shares bought (ϕ↑t ) and sold (ϕ↓t ) by time t, the
self-financing condition relates the dynamics of ϕ0 and ϕ via

dϕ0
t = − St

S0
t

dϕ↑t + (1− ε) St
S0
t

dϕ↓t . (2.1)

As in Dumas and Luciano (1991), the investor maximizes the equivalent safe rate of power utility,
an optimization objective that also proved useful with constraints on leverage (Grossman and Vila,
1992) and drawdowns (Grossman and Zhou, 1993).

4A negative excess return leads to a similar treatment, but entails buying as prices rise, rather than fall. For the
sake of clarity, the rest of the paper concentrates on the more relevant case of a positive µ.
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Definition 2.1. A trading strategy (ϕ0
t , ϕt) is admissible if its liquidation value is positive, in that:

Ξϕt = ϕ0
tS

0
t + (1− ε)Stϕ+

t − ϕ
−
t St ≥ 0, a.s. for all t ≥ 0.

An admissible strategy (ϕ0
t , ϕt) is long-run optimal if it maximizes the equivalent safe rate

lim inf
T→∞

1

T
logE

[
(ΞϕT )1−γ] 1

1−γ (2.2)

over all admissible strategies, where 1 6= γ > 0 denotes the investor’s relative risk aversion.5

Our main result is the following:

Theorem 2.2. An investor with constant relative risk aversion γ > 0 trades to maximize (2.2).
Then, for small transaction costs ε > 0:

i) (Equivalent Safe Rate)
For the investor, trading the risky asset with transaction costs is equivalent to leaving all wealth
in a hypothetical safe asset, which pays the higher equivalent safe rate:

ESR = r +
µ2 − λ2

2γσ2
, (2.3)

where the gap λ is defined in iv) below.

ii) (Liquidity Premium)
Trading the risky asset with transaction costs is equivalent to trading a hypothetical asset, at no
transaction costs, with the same volatility σ, but with lower expected excess return

√
µ2 − λ2.

Thus, the liquidity premium is

LiPr = µ−
√
µ2 − λ2. (2.4)

iii) (Trading Policy)
It is optimal to keep the fraction of wealth held in the risky asset within the buy and sell
boundaries

π− =
µ− λ
γσ2

, π+ =
µ+ λ

γσ2
, (2.5)

where the risky weights π− and π+ are computed with ask and bid prices, respectively.6

iv) (Gap)
For µ/γσ2 6= 1, the constant λ ≥ 0 is the unique value for which the solution of the initial
value problem

w′(x) + (1− γ)w(x)2 +

(
2µ

σ2
− 1

)
w(x)− γ

(
µ− λ
γσ2

)(
µ+ λ

γσ2

)
= 0,

w(0) =
µ− λ
γσ2

5The limiting case γ → 1 corresponds to logarithmic utility, studied by Taksar, Klass and Assaf (1988), Akian,
Sulem and Taksar (2001), and Gerhold, Muhle-Karbe and Schachermayer (2011). Theorem 2.2 remains valid for
logarithmic utility setting γ = 1.

6This optimal policy is not necessarily unique, in that its long-run performance is also attained by trading ar-
bitrarily for a finite time, and then switching to the above policy. However, in related frictionless models, as the
horizon increases, the optimal (finite-horizon) policy converges to a stationary policy, such as the one considered here
(see, e.g., Dybvig, Rogers and Back (1999)). Dai and Yi (2009) obtain similar results in a model with proportional
transaction costs, formally passing to a stationary version of their control problem PDE.
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also satisfies the terminal value condition:

w

(
log

(
u(λ)

l(λ)

))
=
µ+ λ

γσ2
, where

u(λ)

l(λ)
=

1

(1− ε)
(µ+ λ)(µ− λ− γσ2)

(µ− λ)(µ+ λ− γσ2)
.

In view of the explicit formula for w(x, λ) in Lemma A.1 below, this is a scalar equation for
λ. For µ/γσ2 = 1, the gap λ vanishes.

v) (Trading Volume)

Let µ 6= σ2/2.7 Then share turnover, defined as shares traded d‖ϕ‖t = dϕ↑t + dϕ↓t divided by
shares held |ϕt|, has the long-term average

ShTu = lim
T→∞

1

T

∫ T

0

d‖ϕ‖t
|ϕt|

=
σ2

2

(
2µ

σ2
− 1

)(
1− π−

(u(λ)/l(λ))
2µ

σ2−1 − 1
− 1− π+

(u(λ)/l(λ))1− 2µ

σ2 − 1

)
.

Wealth turnover, defined as wealth traded divided by wealth held, has long term-average8

WeTu = lim
T→∞

1

T

(∫ T

0

(1− ε)Stdϕ↓t
ϕ0
tS

0
t + ϕt(1− ε)St

+

∫ T

0

Stdϕ
↑
t

ϕ0
tS

0
t + ϕtSt

)

=
σ2

2

(
2µ

σ2
− 1

)(
π− (1− π−)

(u(λ)/l(λ))
2µ

σ2−1 − 1
− π+ (1− π+)

(u(λ)/l(λ))1− 2µ

σ2 − 1

)
.

vi) (Asymptotics)
Setting π∗ = µ/γσ2, the following expansions in terms of the bid-ask spread ε hold:9

λ = γσ2

(
3

4γ
π2
∗ (1− π∗)2

)1/3

ε1/3 +O(ε). (2.6)

ESR = r +
µ2

2γσ2
− γσ2

2

(
3

4γ
π2
∗ (1− π∗)2

)2/3

ε2/3 +O(ε4/3). (2.7)

LiPr =
µ

2π2
∗

(
3

4γ
π2
∗ (1− π∗)2

)2/3

ε2/3 +O(ε4/3). (2.8)

π± = π∗ ±
(

3

4γ
π2
∗ (1− π∗)2

)1/3

ε1/3 +O(ε). (2.9)

ShTu =
σ2

2
(1− π∗)2π∗

(
3

4γ
π2
∗ (1− π∗)2

)−1/3

ε−1/3 +O(ε1/3). (2.10)

WeTu =
2γσ2

3

(
3

4γ
π2
∗(1− π∗)2

)2/3

ε−1/3 +O(ε1/3). (2.11)

In summary, our optimal trading policy, and its resulting welfare, liquidity premium, and trading
volume are all simple functions of investment opportunities (r, µ, σ), preferences (γ), and the gap
λ. The gap does not admit an explicit formula in terms of the transaction cost parameter ε, but

7The corresponding formulas for µ = σ2/2 are similar but simpler, compare Corollary C.3 and Lemma C.2.
8The number of shares is written as the difference ϕt = ϕ↑t −ϕ

↓
t of the cumulative shares bought (resp. sold), and

wealth is evaluated at trading prices, i.e., at the bid price (1−ε)St when selling, and at the ask price St when buying.
9Algorithmic calculations can deliver terms of arbitrarily high order.
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is determined through the implicit relation in iv), and has the asymptotic expansion in vi), from
which all other asymptotic expansions follow through the explicit formulas.

The frictionless markets with constant investment opportunities in items i) and ii) of The-
orem 2.2 are equivalent to the market with transaction costs in terms of equivalent safe rates.
Nevertheless, the corresponding optimal policies are very different, requiring no or incessant rebal-
ancing in the frictionless markets of i) and ii), respectively, whereas there is finite positive trading
volume in the market with transaction costs.

By contrast, the shadow price, which is key in the derivation of our results, is a fictitious risky
asset, with price evolving within the bid-ask spread, for which the corresponding frictionless market
is equivalent to the transaction cost market in terms of both welfare and the optimal policy:

Theorem 2.3. The policy in Theorem 2.2 iii) and the equivalent safe rate in Theorem 2.2 i)
are also optimal for a frictionless asset with shadow price S̃, which always lies within the bid-ask
spread, and coincides with the trading price at times of trading for the optimal policy. The shadow
price satisfies

dS̃t/S̃t = (µ̃(Υt) + r)dt+ σ̃(Υt)dWt, (2.12)

for the deterministic functions µ̃(·) and σ̃(·) given explicitly in Lemma B.2. The state variable
Υt = log(ϕtSt/(l(λ)ϕ0

tS
0
t )) represents the logarithm of the ratio of risky and safe positions, which

follows a Brownian motion with drift, reflected to remain in the interval [0, log(u(λ)/l(λ))], i.e.,

dΥt = (µ− σ2/2)dt+ σdWt + dLt − dUt. (2.13)

Here, Lt and Ut are increasing processes, proportional to the cumulative purchases and sales,
respectively (cf. (B.13) below). In the interior of the no-trade region, that is, when Υt lies in
(0, log(u(λ)/l(λ))), the numbers of units of the safe and risky asset are constant, and the state
variable Υt follows Brownian motion with drift. As Υt reaches the boundary of the no-trade
region, buying or selling takes place as to keep it within [0, log(u(λ)/l(λ))].

In view of Theorem 2.3, trading with constant investment opportunities and proportional trans-
action costs is equivalent to trading in a fictitious frictionless market with stochastic investment
opportunities, which vary with the location of the investor’s portfolio in the no-trade region.

3 Implications

3.1 Trading Strategies

Equation (2.5) implies that trading boundaries are symmetric around the frictionless Merton pro-
portion π∗ = µ/γσ2. At first glance, this seems to contradict previous studies (e.g., Liu and
Loewenstein (2002), Shreve and Soner (1994)), which emphasize how these boundaries are asym-
metric, and may even fail to include the Merton proportion. These papers employ a common
reference price (the average of the bid and ask prices) to evaluate both boundaries. By contrast,
we express trading boundaries using trading prices (i.e., the ask price for the buy boundary, and
the bid price for the sell boundary). This simple convention unveils the natural symmetry of the
optimal policy, and explains asymmetries as figments of notation – even in their models. To see
this, denote by π′− and π′+ the buy and sell boundaries in terms of the ask price. These papers prove
the bounds (Shreve and Soner (1994, equations (11.4) and (11.6)) in an infinite-horizon model with
consumption and Liu and Loewenstein (2002, equations (22), (23)) in a finite-horizon model)

π′− <
µ

γσ2
and

µ

γσ2(1− ε) + εµ
< π′+ <

µ
1
2γσ

2(1− ε) + εµ
. (3.1)

6
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Figure 1: Buy (lower) and sell (upper) boundaries (vertical axis, as risky weights) as functions
of the spread ε, in linear scale (left panel) and cubic scale (right panel). The plot compares the
approximate weights from the first term of the expansion (dotted), the exact optimal weights (solid),
and the boundaries found by Davis and Norman (1990) in the presence of consumption (dashed).
Parameters are µ = 8%, σ = 16%, γ = 5, and a zero discount rate for consumption (for the dashed
curve).

With trading prices (i.e., substituting π− = π′− and π+ = 1−ε
1−επ′+

π′+) these bounds become

π− <
µ

γσ2
< π+ < 2

µ

γσ2
, (3.2)

whence the Merton proportion always lies between π− and π+.
To understand the robustness of our optimal policy to intermediate consumption, we compare

our trading boundaries with those obtained by Davis and Norman (1990) and Shreve and Soner
(1994) in the consumption model of Magill and Constantinides (1976). The asymptotic expansions
of Janeček and Shreve (2004) make this comparison straightforward.

With or without consumption, the trading boundaries coincide at the first-order. This fact has
a clear economic interpretation: the separation between consumption and investment, which holds
in a frictionless model with constant investment opportunities, is a robust feature of frictionless
models, because it still holds, at the first order, even with transaction costs. Put differently, if
investment opportunities are constant, consumption has only a second order effect for investment
decisions, in spite of the large no-trade region implied by transaction costs. Figure 1 shows that
our bounds are very close to those obtained in the model of Davis and Norman (1990) for bid-ask
spreads below 1%, but start diverging for larger values.

3.2 Business time and Mean-Variance Ratio

In a frictionless market, the equivalent safe rate and the optimal policy are:

ESR = r +
1

2γ

(µ
σ

)2
and π∗ =

µ

γσ2
.

This rate depends only on the safe rate r and the Sharpe ratio µ/σ. Investors are indifferent
between two markets with identical safe rates and Sharpe ratios, because both markets lead to the
same set of payoffs, even though a payoff is generated by different portfolios in the two markets.
By contrast, the optimal portfolio depends only on the mean-variance ratio µ/σ2.

7
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Figure 2: Left panel: liquidity premium (vertical axis) against the spread ε, for risk aversion γ
equal to 5 (solid), 1 (long dashed), and 0.5 (short dashed). Right panel: liquidity premium (vertical
axis) against risk aversion γ, for spread ε = 0.01% (solid), 0.1% (long dashed), 1% (short dashed),
and 10% (dotted). Parameters are µ = 8% and σ = 16%.

With transaction costs, Equation (2.6) shows that the asymptotic expansion of the gap per unit
of variance λ/σ2 only depends on the mean-variance ratio µ/σ2. Put differently, holding the mean-
variance ratio µ/σ2 constant, the expansion of λ is linear in σ2. In fact, not only the expansion
but also the exact quantity has this property, since λ/σ2 in iv) only depends on µ/σ2.

Consequently, the optimal policy in iii) only depends on the mean-variance ratio µ/σ2, as in
the frictionless case. The equivalent safe rate, however, no longer solely depends on the Sharpe
ratio µ/σ: investors are not indifferent between two markets with the same Sharpe ratio, because
one market is more attractive than the other if it entails lower trading costs. As an extreme case, in
one market it may be optimal lo leave all wealth in the risky asset, eliminating any need to trade.
Instead, the formulas in i), ii), and v) show that, like the gap per variance λ/σ2, the equivalent
safe rate, the liquidity premium, and both share and wealth turnover only depend on µ/σ2, when
measured per unit of variance. The interpretation is that these quantities are proportional to
business time σ2t (Ané and Geman, 2000), and the factor of σ2 arises from measuring them in
calendar time.

In the frictionless limit, the linearity in σ2 and the dependence on µ/σ2 cancel, and the result
depends on the Sharpe ratio alone. For example, the equivalent safe rate becomes10

r +
σ2

2γ

( µ
σ2

)2
= r +

1

2γ

(µ
σ

)2
.

3.3 Liquidity Premium

The liquidity premium (Constantinides, 1986) is the amount of expected excess return the investor
is ready to forgo to trade the risky asset without transaction costs, as to achieve the same equivalent
safe rate. Figure 2 plots the liquidity premium against the spread ε (left panel) and risk aversion
γ (right panel).

The liquidity premium is exactly zero when the Merton proportion π∗ is either zero or one. In
these two limit cases, it is optimal not to trade at all, hence no compensation is required for the
costs of trading. The liquidity premium is relatively low in the regime of no leverage (0 < π∗ < 1),

10The other quantities are trivial: the gap and the liquidity premium become zero, while share and wealth turnover
explode to infinity.
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Figure 3: Trading volume (vertical axis, annual fractions traded), as share turnover (left panel)
and wealth turnover (right panel), against risk aversion (horizontal axis), for spread ε = 0.01%
(solid), 0.1% (long dashed), 1% (short dashed), and 10% (dotted). Parameters are µ = 8% and
σ = 16%.

corresponding to γ > µ/σ2, confirming the results of Constantinides (1986), who reports liquidity
premia one order of magnitude smaller than trading costs.

The leverage regime (γ < µ/σ2), however, shows a very different picture. As risk aversion
decreases below the full-investment level γ = µ/σ2, the liquidity premium increases rapidly towards
the expected excess return µ, as lower levels of risk aversion prescribe increasingly high leverage.
The costs of rebalancing a levered position are high, and so are the corresponding liquidity premia.

The liquidity premium increases in spite of the increasing width of the no-trade region for larger
leverage ratios. In other words, even as a less risk averse investor tolerates wider oscillations in the
risky weight, this increased flexibility is not enough to compensate for the higher costs required to
rebalance a more volatile portfolio.

3.4 Trading Volume

In the empirical literature (cf. Lo and Wang (2000) and the references therein), the most common
measure of trading volume is share turnover, defined as number of shares traded divided by shares
held or, equivalently, as the value of shares traded divided by value of shares held. In our model,
turnover is positive only at the trading boundaries, while it is null inside the no-trade region. Since
turnover, on average, grows linearly over time, we consider the long-term average of share turnover
per unit of time, plotted in Figure 3 against risk aversion. Turnover is null at the full-investment
level γ = µ/σ2, as no trading takes place in this case. Lower levels of risk aversion generate leverage,
and trading volume increases rapidly, like the liquidity premium.

Share turnover does not decrease to zero as the risky weight decreases to zero for increasing risk
aversion γ. On the contrary, the first term in the asymptotic formula converges to a finite level.
This phenomenon arises because more risk averse investors hold less risky assets (reducing volume),
but also rebalance more frequently (increasing volume). As risk aversion increases, neither of these
effects prevails, and turnover converges to a finite limit.

To better understand these properties, consider wealth turnover, defined as the value of shares
traded, divided by total wealth (not by the value of shares held).11 Share and wealth turnover are
qualitatively similar for low risk aversion, as the risky weight of wealth is larger, but they diverge

11Technically, wealth is valued at the ask price at the buying boundary, and at the bid price at the selling boundary.
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Liquidity Share Relative
Period Premium Turnover Spread

1992-1995 0.066% 7% 1.20%
1996-2000 0.083% 11% 0.97%
2001-2005 0.038% 13% 0.37%
2006-2010 0.022% 21% 0.12%

Figure 4: Left panel: share turnover (top), spread (center), and implied liquidity premium (bot-
tom) in logarithmic scale, from 1992 to 2010. Right panel: monthly averages for share turnover,
spread, and implied liquidity premium over subperiods. Spread and turnover are capitalization-
weighted averages across securities in the monthly CRSP database with share codes 10, 11 that
have nonzero bid, ask, volume and shares outstanding.

as risk aversion increases and the risky weight declines to zero. Then, wealth turnover decreases to
zero, whereas share turnover does not.

The levels of trading volume observed empirically imply very low values of risk aversion in our
model. For example, Lo and Wang (2000) report in the NYSE-AMEX an average weekly turnover
of 0.78% between 1962-1996, which corresponds to an approximate annual turnover above 40%.
As Figure 3 shows, such a high level of turnover requires a risk aversion below 2, even for a very
small spread of ε = 0.01%. Such a value cannot be interpreted as risk aversion of a representative
investor, because it would imply a leveraged position in the stock market, which is inconsistent with
equilibrium. This phenomenon intensifies in the last two decades. As shown by Figure 4 turnover
increases substantially from 1993 to 2010, with monthly averages of 20% typical from 2007 on,
corresponding to an annual turnover of over 240%.

The overall implication is that portfolio rebalancing can generate substantial trading volume,
but the model explains the trading volume observed empirically only with low risk aversion and
high leverage. In a numerical study with risk aversion of six and spreads of 2%, Lynch and Tan
(2011) also find that the resulting trading volume is too low, even allowing for labor income and
predictable returns, and obtain a condition on the wealth-income ratio, under which the trading
volume is the same order of magnitude reported by empirical studies. Our analytical results are
consistent with their findings, but indicate that substantially higher volume can be explained with
lower risk aversion, even in the absence of labor income.

3.5 Volume, Spreads and the Liquidity Premium

The analogies between the comparative statics of the liquidity premium and trading volume suggest
a close connection between these quantities. An inspection of the asymptotic formulas unveils the
following relations:

LiPr =
3

4
εShTu +O(ε4/3) and

(
r +

µ2

2γσ2

)
− ESR =

3

4
εWeTu +O(ε4/3). (3.3)
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These two relations have the same meaning: the welfare effect of small transaction costs is propor-
tional to trading volume times the spread. The constant of proportionality 3/4 is universal, that
is, independent of both investment opportunities (r, µ, σ) and preferences (γ).

In the first formula, the welfare effect is measured by the liquidity premium, that is in terms of
the risky asset. Likewise, trading volume is expressed as share turnover, which also focuses on the
risky asset alone. By contrast, the second formula considers the decrease in the equivalent safe rate
and wealth turnover, two quantities that treat both assets equally. In summary, if both welfare and
volume are measured consistently with each other, the welfare effect approximately equals volume
times the spread, up to the universal factor 3/4.

Figure 4 plots the spread, share turnover, and the liquidity premium implied by the first equation
in (3.3). As in Lo and Wang (2000), the spread and share turnover are capitalization-weighted
averages of all securities in the Center for Research on Security Prices (CRSP) monthly stocks
database with share codes 10 and 11, and with nonzero bid, ask, volume and share outstanding.
While turnover figures are available before 1992, separate bid and ask prices were not recorded
until then, thereby preventing a reliable estimation of spreads for earlier periods.

Spreads steadily decline in the observation period, dropping by almost an order of magnitude
after stock market decimalization of 2001. At the same time, trading volume substantially increases
from a typical monthly turnover of 6% in the early 1990s to over 20% in the late 2000s. The
implied liquidity premium also declines with spreads after decimalization, but less than the spread,
in view of the increase in turnover. During the months of the financial crisis in late 2008, the
implied liquidity premium rises sharply, not because of higher volumes, but because spreads widen
substantially. Thus, although this implied liquidity premium is only a coarse estimate, it has
advantages over other proxies, because it combines information on both prices and quantities, and
is supported by a model.

3.6 Finite Horizons

The trading boundaries in this paper are optimal for a long investment horizon, but are also
approximately optimal for finite horizons. The following theorem, which complements the main
result, makes this point precise:

Theorem 3.1. Fix a time horizon T > 0. Then the finite-horizon equivalent safe rate of any
strategy (φ0, φ) satisfies the upper bound

1

T
logE

[
(ΞφT )1−γ

] 1
1−γ ≤ r +

µ2 − λ2

2γσ2
+

1

T
log(φ0

0− + φ0−S0) + π∗
ε

T
+O(ε4/3), (3.4)

and the finite-horizon equivalent safe rate of our long-run optimal strategy (ϕ0, ϕ) satisfies the lower
bound

1

T
logE

[
(ΞϕT )1−γ] 1

1−γ ≥ r +
µ2 − λ2

2γσ2
+

1

T
log(ϕ0

0− + ϕ0−S0)−
(

2π∗ +
ϕ0−S0

ϕ0
0− + ϕ0−S0

)
ε

T
+O(ε4/3).

(3.5)

In particular, for the same unlevered initial position (φ0− = ϕ0− ≥ 0, φ0
0− = ϕ0

0− ≥ 0), the equivalent
safe rates of (φ0, φ) and of the optimal policy (ϕ0, ϕ) for horizon T differ by at most

1

T

(
logE

[
(ΞφT )1−γ

] 1
1−γ − logE

[
(ΞϕT )1−γ] 1

1−γ

)
≤ (3π∗ + 1)

ε

T
+O(ε4/3). (3.6)
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Figure 5: Upper bound on the difference between the long-run and finite-horizon equivalent safe
rates (vertical axis), against the horizon (horizontal axis), for spread ε = 0.01% (solid), 0.1% (long
dashed), 1% (short dashed), and 10% (dotted). Parameters are µ = 8%, σ = 16%, γ = 5.

This result implies that the horizon, like consumption, only has a second order effect on portfolio
choice with transaction costs, because the finite-horizon equivalent safe rate matches, at the order
ε2/3, the equivalent safe rate of the stationary long-run optimal policy. This result recovers, in
particular, the first-order asymptotics for the finite-horizon value function obtained by Bichuch
(2011, Theorem 4.1). In addition, Theorem 3.1 provides explicit estimates for the correction terms

of order ε arising from liquidation costs. Indeed, r+ µ2−λ2

2γσ2 is the maximum rate achieved by trading
optimally. The remaining terms arise due to the transient influence of the initial endowment, as well
as the costs of the initial transaction, which takes place if the initial position lies outside the no-trade
region, and of the final portfolio liquidation. These costs are of order ε/T because they are incurred
only once, and hence defrayed by a longer trading period. By contrast, portfolio rebalancing
generates recurring costs, proportional to the horizon, and their impact on the equivalent safe rate
does not decline as the horizon increases.

Even after accounting for all such costs in the worst-case scenario, the bound in (3.6) shows that
their combined effect on the equivalent safe rate is lower than the spread ε, as soon as the horizon
exceeds 3π∗ + 1, that is four years in the absence of leverage. Yet, this bound holds only up to a
term of order ε4/3, so it is worth comparing it with the exact bounds in equations (B.20)-(B.21),
from which (3.4) and (3.5) are obtained.

The exact bounds in Figure 5 show that, for typical parameter values, the loss in equivalent
safe rate of the long-run optimal strategy is lower than the spread ε even for horizons as short as
18 months, and quickly declines to become ten times smaller, for horizons close to ten years. In
summary, the long-run approximation is a useful modeling device that makes the model tractable,
and the resulting optimal policies are also nearly optimal even for horizons of a few years.

4 Heuristic Solution

This section contains an informal derivation of the main results. Here, formal arguments of stochas-
tic control are used to obtain the optimal policy, its welfare, and their asymptotic expansions.
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4.1 Transaction Costs Market

For a trading strategy (ϕ0
t , ϕt), again write the number of risky shares ϕt = ϕ↑t −ϕ

↓
t as the difference

of the cumulated units purchased and sold, and denote by

Xt = ϕ0
tS

0
t , Yt = ϕtSt,

the values of the safe and risky positions in terms of the ask price St. Then, the self-financing
condition (2.1), and the dynamics of S0

t and St imply

dXt =rXtdt− Stdϕ↑t + (1− ε)Stdϕ↓t ,

dYt =(µ+ r)Ytdt+ σYtdWt + Stdϕ
↑
t − Stdϕ↓.

Consider the maximization of expected power utility U(x) = x1−γ/(1− γ) from terminal wealth at
time T ,12 and denote by V (t, x, y) its value function, which depends on time and the value of the
safe and risky positions. Itô’s formula yields:

dV (t,Xt, Yt) =Vtdt+ VxdXt + VydYt +
1

2
Vyyd〈Y, Y 〉t

=

(
Vt + rXtVx + (µ+ r)YtVy +

σ2

2
Y 2
t Vyy

)
dt

+ St(Vy − Vx)dϕ↑t + St((1− ε)Vx − Vy)dϕ↓t + σYtVydWt,

where the arguments of the functions are omitted for brevity. By the martingale optimality prin-
ciple of stochastic control (cf. Fleming and Soner (2006)), the value function V (t,Xt, Yt) must be

a supermartingale for any choice of the cumulative purchases and sales ϕ↑t , ϕ
↓
t . Since these are

increasing processes, it follows that Vy − Vx ≤ 0 and (1− ε)Vx − Vy ≤ 0, that is

1 ≤ Vx
Vy
≤ 1

1− ε
.

In the interior of this “no-trade region”, where the number of risky shares remains constant, the
drift of V (t,Xt, Yt) cannot be positive, and must become zero for the optimal policy:13

Vt + rXtVx + (µ+ r)YtVy +
σ2

2
Y 2
t Vyy = 0 if 1 <

Vx
Vy

<
1

1− ε
. (4.1)

To simplify further, note that the value function must be homogeneous with respect to wealth, and
that — in the long run — it should grow exponentially with the horizon at a constant rate. These
arguments lead to guess14 that V (t,Xt, Yt) = (Xt)

1−γv(Yt/Xt)e
−(1−γ)(r+β)t for some β to be found.

Setting z = y/x, the above equation reduces to

σ2

2
z2v′′(z) + µzv′(z)− (1− γ)βv(z) = 0 if 1 + z <

(1− γ)v(z)

v′(z)
<

1

1− ε
+ z. (4.2)

12For a fixed horizon T , one would need to specify whether terminal wealth is valued at bid, ask, or at liquidation
prices, as in Definition 2.1. In fact, since these prices are within a constant positive multiple of each other, which
price is used is inconsequential for a long-run objective. For the same reason, the terminal condition for the finite
horizon value function does not have to be satisfied by the stationary value function, because its effect is negligible.

13Alternatively, this equation can be obtained from standard arguments of singular control, cf. Fleming and Soner
(2006, Chapter VIII).

14This guess assumes that the cash position is strictly positive, Xt > 0, which excludes leverage. With leverage,
factoring out (−Xt)1−γ leads to analogous calculations. In either case, under the optimal policy, the ratio Yt/Xt
always remains either strictly positive, or strictly negative, never to pass through zero.
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Assuming that the no-trade region {z : 1 + z ≤ (1−γ)v(z)
v′(z) ≤ 1

1−ε + z} coincides with some interval

l ≤ z ≤ u to be determined, and noting that at l the left inequality in (4.2) holds as equality, while
at u the right inequality holds as equality, the following free boundary problem arises:

σ2

2
z2v′′(z) + µzv′(z)− (1− γ)βv(z) = 0 if l < z < u, (4.3)

(1 + l)v′(l)− (1− γ)v(l) = 0, (4.4)

(1/(1− ε) + u)v′(u)− (1− γ)v(u) = 0. (4.5)

These conditions are not enough to identify the solution, because they can be matched for any
choice of the trading boundaries l, u. The optimal boundaries are the ones that also satisfy the
smooth-pasting conditions (cf. Beneš, Shepp and Witsenhausen (1980); Dumas (1991)), formally
obtained by differentiating (4.4) and (4.5) with respect to l and u, respectively:

(1 + l)v′′(l) + γv′(l) = 0, (4.6)

(1/(1− ε) + u)v′′(u) + γv′(u) = 0. (4.7)

In addition to the reduced value function v, this system requires to solve for the excess equivalent
safe rate β and the trading boundaries l and u. Substituting (4.6) and (4.4) into (4.3) yields (cf.
Dumas and Luciano (1991))

−σ
2

2
(1− γ)γ

l2

(1 + l)2
v + µ(1− γ)

l

1 + l
v − (1− γ)βv = 0.

Setting π− = l/(1 + l), and factoring out (1− γ)v, it follows that

−γσ
2

2
π2
− + µπ− − β = 0.

Note that π− is the risky weight when it is time to buy, and hence the risky position is valued at
the ask price. The same argument for u shows that the other solution of the quadratic equation is
π+ = u(1− ε)/(1 + u(1− ε)), which is the risky weight when it is time to sell, and hence the risky
position is valued at the bid price. Thus, the optimal policy is to buy when the “ask” fraction falls
below π−, sell when the “bid” fraction rises above π+, and do nothing in between. Since π− and
π+ solve the same quadratic equation, they are related to β via

π± =
µ

γσ2
±
√
µ2 − 2βγσ2

γσ2
.

It is convenient to set β = (µ2 − λ2)/2γσ2, because β = µ2/2γσ2 without transaction costs. We
call λ the gap, since λ = 0 in a frictionless market, and, as λ increases, all variables diverge from
their frictionless values. Put differently, to compensate for transaction costs, the investor would
require another asset, with expected return λ and volatility σ, which trades without frictions and
is uncorrelated with the risky asset.15 With this notation, the buy and sell boundaries are just

π± =
µ± λ
γσ2

.

15Recall that in a frictionless market with two uncorrelated assets with returns µ1 and µ2, both with volatility σ,
the maximum Sharpe ratio is (µ2

1 + µ2
2)/σ2. That is, squared Sharpe ratios add across orthogonal shocks.
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In other words, the buy and sell boundaries are symmetric around the classical frictionless solution
µ/γσ2. Since l(λ), u(λ) are identified by π± in terms of λ, it now remains to find λ. After deriving
l(λ) and u(λ), the boundaries in the problem (4.3)-(4.5) are no longer free, but fixed. With the
substitution

v(z) = e(1−γ)
∫ log(z/l(λ))
0 w(y)dy, i.e., w(y) =

l(λ)eyv′(l(λ)ey)

(1− γ)v(l(λ)ey)
,

the boundary problem (4.3)-(4.5) reduces to a Riccati ODE

w′(y) + (1− γ)w(y)2 +

(
2µ

σ2
− 1

)
w(y)− γ

(
µ− λ
γσ2

)(
µ+ λ

γσ2

)
= 0, y ∈ [0, log u(λ)/l(λ)], (4.8)

w(0) =
µ− λ
γσ2

, (4.9)

w(log(u(λ)/l(λ))) =
µ+ λ

γσ2
, (4.10)

where
u(λ)

l(λ)
=

1

(1− ε)
π+(1− π−)

π−(1− π+)
=

1

(1− ε)
(µ+ λ)(µ− λ− γσ2)

(µ− λ)(µ+ λ− γσ2)
. (4.11)

For each λ, the initial value problem (4.8)-(4.9) has a solution w(λ, ·), and the correct value of λ is
identified by the second boundary condition (4.10).

4.2 Asymptotics

The equation (4.10) does not have an explicit solution, but it is possible to obtain an asymptotic
expansion for small transaction costs (ε ∼ 0) using the implicit function theorem. To this end,
write the boundary condition (4.10) as f(λ, ε) = 0, where:

f(λ, ε) = w(λ, log(u(λ)/l(λ)))− µ+ λ

γσ2
.

Of course, f(0, 0) = 0 corresponds to the frictionless case. The implicit function theorem then
suggests that around zero λ(ε) follows the asymptotics λ(ε) ∼ −εfε/fλ, but the difficulty is that
fλ = 0, because λ is not of order ε. Heuristic arguments (Shreve and Soner, 1994; Rogers, 2004)
suggest that λ is of order ε1/3.16 Thus, setting λ = δ1/3 and f̂(δ, ε) = f(δ1/3, ε), and computing the
derivatives of the explicit formula for w(λ, x) (cf. Lemma A.1) shows that:

f̂ε(0, 0) = −
µ
(
µ− γσ2

)
γ2σ4

, f̂δ(0, 0) =
4

3µ2σ2 − 3γµσ4
.

As a result:

δ(ε) ∼ −fε
fδ
ε =

3µ2
(
µ− γσ2

)2
4γ2σ2

ε whence λ(ε) ∼

(
3µ2

(
µ− γσ2

)2
4γ2σ2

)1/3

ε1/3.

The asymptotic expansions of all other quantities then follow by Taylor expansion.

16Since λ is proportional to the width of the no-trade region δ, the question is why the latter is of order ε1/3. The
intuition is that a no-trade region of width δ around the frictionless optimum leads to transaction costs of order ε/δ
(because the time spent near the boundaries is approximately inversely proportional to the length of the interval),
and to a welfare cost of the order δ2 (because the region is centered around the frictionless optimum, hence the linear
welfare cost is zero). Hence, the total cost is of the order ε/δ + δ2, and attains its minimum for δ = O(ε1/3).
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5 Conclusion

In a tractable model of transaction costs with one safe and one risky asset and constant investment
opportunities, we have computed explicitly the optimal trading policy, its welfare, liquidity pre-
mium, and trading volume, for an investor with constant relative risk aversion and a long horizon.

The trading boundaries are symmetric around the Merton proportion, if each boundary is
computed with the corresponding trading price. Both the liquidity premium and trading volume
are small in the unlevered regime, but become substantial in the presence of leverage. For a small
bid-ask spread, the liquidity premium is approximately equal to share turnover times the spread,
times the universal constant 3/4.

Trading boundaries depend on investment opportunities only through the mean variance ratio.
The equivalent safe rate, the liquidity premium, and trading volume also depend only on the mean
variance ratio if measured in business time.

Appendix

A Explicit Formulas and their Properties

We now show that the candidate w for the reduced value function and the quantity λ are indeed
well-defined for sufficiently small spreads. The first step is to determine, for a given small λ > 0, an
explicit expression for the solution w of the ODE (4.8), complemented by the initial condition (4.9).

Lemma A.1. Let 0 < µ/γσ2 6= 1. Then for sufficiently small λ > 0, the function

w(λ, y) =


a(λ) tanh[tanh−1(b(λ)/a(λ))−a(λ)y]+( µ

σ2−
1
2

)

γ−1 , if γ ∈ (0, 1) and µ
γσ2 < 1 or γ > 1 and µ

γσ2 > 1,
a(λ) tan[tan−1(b(λ)/a(λ))+a(λ)y]+( µ

σ2−
1
2

)

γ−1 , if γ > 1 and µ
γσ2 ∈

(
1
2 −

1
2

√
1− 1

γ ,
1
2 + 1

2

√
1− 1

γ

)
,

a(λ) coth[coth−1(b(λ)/a(λ))−a(λ)y]+( µ
σ2−

1
2

)

γ−1 , otherwise,

with

a(λ) =

√∣∣∣(γ − 1)
µ2 − λ2

γσ4
−
(1

2
− µ

σ2

)2∣∣∣ and b(λ) =
1

2
− µ

σ2
+ (γ − 1)

µ− λ
γσ2

,

is a local solution of

w′(y) + (1− γ)w2(y) +

(
2µ

σ2
− 1

)
w(y)− µ2 − λ2

γσ4
= 0, w(0) =

µ− λ
γσ2

. (A.1)

Moreover, y 7→ w(λ, x) is increasing (resp. decreasing) for µ/γσ2 ∈ (0, 1) (resp. µ/γσ2 > 1).

Proof. The first part of the assertion is easily verified by taking derivatives, noticing that the case
distinctions distinguish between the different signs of the discriminant

(γ − 1)
µ2 − λ2

γσ4
−
(

1

2
− µ

σ2

)2

of the Riccati equation (A.1) for sufficiently small λ. Indeed, in the second case the discriminant
is positive for sufficiently small λ. The first and third case correspond to a negative discriminant,
as well as b(λ)/a(λ) < 1 and b(λ)/a(λ) > 1, respectively, for sufficiently small λ > 0, so that the
function w is well-defined in each case.

The second part of the assertion follows by inspection of the explicit formulas.
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Next, establish that the crucial constant λ, which determines both the no-trade region and the
equivalent safe rate, is well-defined.

Lemma A.2. Let 0 < µ/γσ2 6= 1 and w(λ, ·) be defined as in Lemma A.1, and set

l(λ) =
µ− λ

γσ2 − (µ− λ)
, u(λ) =

1

(1− ε)
µ+ λ

γσ2 − (µ+ λ)
.

Then, for sufficiently small ε > 0, there exists a unique solution λ of

w

(
λ, log

(
u(λ)

l(λ)

))
− µ+ λ

γσ2
= 0. (A.2)

As ε ↓ 0, it has the asymptotics

λ = γσ2

(
3

4γ

(
µ

γσ2

)2(
1− µ

γσ2

)2
)1/3

ε1/3 + σ2

(
(5− 2γ)

10

µ

γσ2

(
1− µ

γσ2

)
− 3

20

)
ε+O(ε4/3).

Proof. The explicit expression for w in Lemma A.1 implies that w(λ, x) in Lemma A.1 is analytic
in both variables at (0, 0). By the initial condition in (A.1), its power series has the form

w(λ, x) =
µ− λ
γσ2

+
∞∑
i=1

∞∑
j=0

Wijx
iλj ,

where expressions for the coefficients Wij are computed by expanding the explicit expression for w.
(The leading terms are provided after this proof.) Hence, the left-hand side of the boundary
condition (A.2) is an analytic function of ε and λ. Its power series expansion shows that the
coefficients of ε0λj vanish for j = 0, 1, 2, so that the condition (A.2) reduces to

λ3
∑
i≥0

Aiλ
i = ε

∑
i,j≥0

Bijε
iλj (A.3)

with (computable) coefficients Ai and Bij . This equation has to be solved for λ. Since

A0 =
4

3µσ2(γσ2 − µ)
and B00 =

µ(γσ2 − µ)

γ2σ4

are non-zero, divide the equation (A.3) by
∑

i≥0Aiλ
i, and take the third root, obtaining that, for

some Cij ,

λ = ε1/3
∑
i,j≥0

Cijε
iλj = ε1/3

∑
i,j≥0

Cij(ε
1/3)3iλj .

The right-hand side is an analytic function of λ and ε1/3, so that the implicit function theorem (Gun-
ning and Rossi, 2009, Theorem I.B.4) yields a unique solution λ (for ε sufficiently small), which is
an analytic function of ε1/3. Its power series coefficients can be computed at any order.

In the preceding proof we needed the first coefficients of the series expansion of the analytic
function on the left-hand side of (A.2). Calculating them is elementary, but rather cumbersome,
and can be quickly performed with symbolic computation software. Following a referee’s suggestion,
we present some expressions to aid readers who wish to check the calculations by hand, namely the
derivatives of w at (λ, x) = (0, 0) that are needed to calculate the Taylor coefficients of (A.2) used
in the proof. Note that they are the same in all three cases of Lemma A.1:
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wx(0, 0) = − µ2

γ2σ4
+

µ

γσ2
, wλ(0, 0) = − 1

γσ2
,

wxx(0, 0) =
2µ3

γ3σ6
− 3µ2

γ2σ4
+

µ

γσ2
, wxλ(0, 0) =

2µ

γ2σ4
− 1

γσ2
, wλλ(0, 0) = 0,

wxxx(0, 0) = − 6µ4

γ4σ8
+

2µ4

γ3σ8
+

12µ3

γ3σ6
− 4µ3

γ2σ6
− 7µ2

γ2σ4
+

2µ2

γσ4
+

µ

γσ2
,

wxxλ(0, 0) = − 6µ2

γ3σ6
+

2µ2

γ2σ6
+

6µ

γ2σ4
− 2µ

γσ4
− 1

γσ2
, wxλλ(0, 0) = − 2

γ2σ4
, wλλλ(0, 0) = 0.

Henceforth, consider small transaction costs ε > 0, and let λ denote the constant in Lemma A.2.
Moreover, set w(y) = w(λ, y), a = a(λ), b = b(λ), and u = u(λ), l = l(λ). In all cases, the function w
can be extended smoothly to an open neighborhood of [0, log(u/l)] (resp. [log(u/l), 0] if µ/γσ2 > 1).
By continuity, the ODE (A.1) then also holds at 0 and log(u/l); inserting the boundary conditions
for w in turn readily yields the following counterparts for the derivative w′:

Lemma A.3. Let 0 < µ/γσ2 6= 1. Then, in all three cases,

w′(0) =
µ− λ
γσ2

−
(
µ− λ
γσ2

)2

, w′
(

log
(u
l

))
=
µ+ λ

γσ2
−
(
µ+ λ

γσ2

)2

.

B Shadow Prices and Verification

The key to justify the heuristic arguments of Section 4 is to reduce the portfolio choice problem
with transaction costs to another portfolio choice problem, without transaction costs. Here, the
bid and ask prices are replaced by a single shadow price S̃t, evolving within the bid-ask spread,
which coincides with either price at times of trading, and yields the same optimal policy and
utility. Evidently, any frictionless market extension with values in the bid-ask spread leads to more
favorable terms of trade than the original market with transaction costs. To achieve equality, the
particularly unfavorable shadow price must match the trading prices whenever its optimal policy
transacts.

Definition B.1. A shadow price is a frictionless price process S̃t, evolving within the bid-ask spread
((1− ε)St ≤ S̃t ≤ St a.s.), such that there is an optimal strategy for S̃t which is of finite variation,
and entails buying only when the shadow price S̃t equals the ask price St, and selling only when S̃t
equals the bid price (1− ε)St.

Once a candidate for such a shadow price is identified, long-run verification results for frictionless
models (cf. Guasoni and Robertson (2012)) deliver the optimality of the guessed policy. Further,
this method provides explicit upper and lower bounds on finite-horizon performance (cf. Lemma B.3
below), thereby allowing to check whether the long-run optimal strategy is approximately optimal
for an horizon T . Put differently, it shows which horizons are long enough.

B.1 Derivation of a Candidate Shadow Price

With a smooth candidate value function at hand, a candidate shadow price can be identified as
follows. By definition, trading the shadow price should not allow the investor to outperform the
original market with transaction costs. In particular, if S̃t is the value of the shadow price at time
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t, then allowing the investor to carry out at single trade at time t at this frictionless price should
not lead to an increase in utility. A trade of ν risky shares at the frictionless price S̃t moves the
investor’s safe position Xt to Xt − νS̃t and her risky position (valued at the ask price St) from Yt
to Yt + νSt. Then – recalling that the second and third arguments of the candidate value function
V from the Section 4 were precisely the investor’s safe and risky positions – the requirement that
such a trade does not increase the investor’s utility is tantamount to:

V (t,Xt − νS̃t, Yt + νSt) ≤ V (t,Xt, Yt), ∀ν ∈ R.

A Taylor expansion of the left-hand side for small ν then implies that −νS̃tVx + νStVy ≤ 0. Since
this inequality has to hold both for positive and negative values of ν, it yields

S̃t =
Vy
Vx
St. (B.1)

That is, the multiplicative deviation of the shadow price from the ask price should be the marginal
rate of substitution of risky for safe assets. In particular, this argument immediately yields a
candidate shadow price, once a smooth candidate value function has been identified. For the
long-run problem, we derived the following candidate value function in the previous section:

V (t,Xt, Yt) = e−(1−γ)(r+β)t(Xt)
1−γe(1−γ)

∫ log(Yt/lXt)
0 w(y)dy.

Using this equality to calculate the partial derivatives in (B.1), the candidate shadow price becomes:

S̃t =
w(Υt)

leΥt(1− w(Υt))
St, (B.2)

where Υt = log(Yt/lXt) denotes the logarithm of the risky-safe ratio, centered at its value at the
lower buying boundary l. If this candidate is indeed the right one, then its optimal strategy and
value function should coincide with their frictional counterparts derived heuristically above. In
particular, the optimal risky fraction π̃t should correspond to the same numbers ϕ0

t and ϕt of safe
and risky shares, if measured in terms of S̃t instead of the ask price St. As a consequence:

π̃t =
ϕtS̃t

ϕ0
tS

0
t + ϕtS̃t

=
ϕtSt

w(Υt)
leΥt (1−w(Υt))

ϕ0
tS

0
t + ϕtSt

w(Υt)
leΥt (1−w(Υt))

=

w(Υt)
1−w(Υt)

1 + w(Υt)
1−w(Υt)

= w(Υt), (B.3)

where, for the third equality, we have used that the risky-safe ratio ϕtSt/ϕ
0
tS

0
t can be written

as leΥt by the definition of Υt. We now turn to the corresponding frictionless value function Ṽ .
By the definition of a shadow price, it should coincide with its frictional counterpart V . In the
frictionless case, it is more convenient to factor out the total wealth X̃t = ϕ0

tS
0
t +ϕtS̃t (in terms of

the frictionless risky price S̃t) instead of the safe position Xt = ϕ0
tS

0
t , giving

Ṽ (t, X̃t,Υt) = V (t,Xt, Yt) = e−(1−γ)(r+β)tX̃1−γ
t

(
Xt

X̃t

)1−γ
e(1−γ)

∫ Υt
0 w(y)dy.

Since Xt/X̃t = 1− w(Υt) by definition of S̃t and Υt, one can rewrite the last two factors as(
Xt

X̃t

)1−γ
e(1−γ)

∫ Υt
0 w(y)dy = exp

(
(1− γ)

[
log(1− w(Υt)) +

∫ Υt

0
w(y)dy

])
= (1− w(0))γ−1 exp

(
(1− γ)

∫ Υt

0

(
w(y)− w′(y)

1− w(y)

)
dy

)
.
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Then, setting w̃ = w − w′

1−w , the candidate long-run value function for S̃ becomes

Ṽ (t, X̃t,Υt) = e−(1−γ)(r+β)tX̃1−γ
t e(1−γ)

∫ Υt
0 w̃(y)dy(1− w(0))γ−1.

Starting from the candidate value function and optimal policy for S̃, we can now proceed to verify
that they are indeed optimal for S̃t, by adapting the argument from Guasoni and Robertson (2012).
But before we do that, we have to construct the respective processes.

B.2 Construction of the Shadow Price

The above heuristic arguments suggest that the optimal ratio Yt/Xt = ϕtSt/ϕ
0
tS

0
t should take values

in the interval [l, u]. Hence, Υt = log(Yt/lXt) should be [0, log(u/l)]-valued if the lower trading
boundary l for the ratio Yt/Xt is positive. If the investor shorts the safe asset to leverage her risky
position, the ratio becomes negative. In the frictionless case, and also for small transaction costs,
this happens if risky weight µ/γσ2 is bigger than 1. Then, the trading boundaries l ≤ u are both
negative, so that the centered log-ratio Υt should take values in [log(u/l), 0]. In both cases, trading
should only take place when the risky-safe ratio reaches the boundaries of this region. Hence, the
numbers of safe and risky units ϕ0

t and ϕt should remain constant and Υt = log(ϕt/lϕ
0
t )+log(St/S

0
t )

should follow a Brownian motion with drift as long as Υt moves in (0, log(u/l)) (resp. in (log(u/l), 0)
if µ/γσ2 > 1). This argument motivates the definition of the process Υt as reflected Brownian
motion:

dΥt = (µ− σ2/2)dt+ σdWt + dLt − dUt, Υ0 ∈ [0, log(u/l)], (B.4)

for continuous, adapted local time processes L and U which are nondecreasing (resp. nonincreasing
if µ/γσ2 > 1) and increase (resp. decrease if µ/γσ2 > 1) only on the sets {Υt = 0} and {Υt =
log(u/l)}, respectively. Starting from this process, the existence of which is a classical result of
Skorokhod (1961), the process S̃ is defined in accordance with (B.2):

Lemma B.2. Define

Υ0 =


0, if lξ0S0

0 ≥ ξS0,

log(u/l), if uξ0S0
0 ≤ ξS0,

log[(ξS0/ξ
0S0

0)/l], otherwise,

(B.5)

and let Υ be defined as in (B.4), starting at Υ0. Then, S̃ = S w(Υ)
leΥ(1−w(Υ))

, with w as in Lemma A.1,

has the dynamics
dS̃t/S̃t = (µ̃(Υt) + r) dt+ σ̃(Υt)dWt,

where µ̃(·) and σ̃(·) are defined as

µ̃(y) =
σ2w′(y)

w(y)(1− w(y))

(
w′(y)

1− w(y)
− (1− γ)w(y)

)
, σ̃(y) =

σw′ (y)

w(y)(1− w(y))
.

Moreover, the process S̃ takes values within the bid-ask spread [(1− ε)S, S].

Note that the first two cases in (B.5) arise if the initial risky-safe ratio ξS0/(ξ
0S0

0) lies outside
of the interval [l, u]. Then, a jump from the initial position (ϕ0

0− , ϕ0−) = (ξ0, ξ) to the nearest
boundary value of [l, u] is required. This transfer requires the purchase resp. sale of the risky asset
and hence the initial price S̃0 is defined to match the buying resp. selling price of the risky asset.
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Proof. The dynamics of S̃t result from Itô’s formula, the dynamics of Υt, and the identity

w′′(y) = 2(γ − 1)w′(y)w(y)− (2µ/σ2 − 1)w′(y), (B.6)

obtained by differentiating the ODE (A.1) for w with respect to y. Therefore it remains to show
that S̃t indeed takes values in the bid-ask spread [(1− ε)St, St]. To this end, notice that – in view
of the ODE (A.1) for w – the derivative of the function g(y) := w(y)/ley(1− w(y)) is given by

g′(y) =
w′(y)− w(y) + w2(y)

ley(1− w(y))2
=
γ(w2 − 2 µ

γσ2w) + (µ2 − λ2)/γσ4

ley(1− w(y))2
.

Due to the boundary conditions for w, the function g′ vanishes at 0 and log(u/l). Differentiating
its numerator gives 2γw′(y)(w(y) − µ

γσ2 ). For µ
γσ2 ∈ (0, 1) (resp. µ

γσ2 > 1), w is increasing from
µ−λ
γσ2 < µ

γσ2 to µ+λ
γσ2 > µ

γσ2 on [0, log(u/l)] (resp. decreasing from µ+λ
γσ2 to µ−λ

γσ2 on [log(u/l), 0]); hence,

w′ is nonnegative (resp. nonpositive). Moreover, g′ starts at zero for y = 0 (resp. log(u/l)), then
decreases (resp. increases), and eventually starts increasing (resp. decreasing) again, until it reaches
level zero again for y = log(u/l) (resp. y = 0). In particular, g′ is nonpositive (resp. nonnegative),
so that g is decreasing on [0, log(u/l)] (resp. increasing on [log(u/l), 0] for µ

γσ2 > 1). Taking into

account that g(0) = 1 and g(log(u/l)) = 1− ε, by the boundary conditions for w and the definition
of u and l in Lemma A.2, the proof is now complete.

B.3 Verification

The long-run optimal portfolio in the frictionless “shadow market” with price process S̃t can now
be determined by adapting the argument in Guasoni and Robertson (2012). The first step is to
determine finite-horizon bounds, which provide upper and lower estimates for the maximal expected
utility on any finite horizon T :

Lemma B.3. For a fixed time horizon T > 0, let β = µ2−λ2

2γσ2 and let the function w be defined as in

Lemma A.1. Then, for the the shadow payoff X̃T corresponding to the risky fraction π̃(Υt) = w(Υt)
and the shadow discount factor M̃T = e−rTE(−

∫ ·
0
µ̃
σ̃dWt)T , the following bounds hold true:

E[X̃1−γ
T ] = X̃1−γ

0 e(1−γ)(r+β)T Ê[e(1−γ)(q̃(Υ0)−q̃(ΥT ))], (B.7)

E

[
M̃

1− 1
γ

T

]γ
= e(1−γ)(r+β)T Ê

[
e

( 1
γ
−1)(q̃(Υ0)−q̃(ΥT ))

]γ
, (B.8)

where q̃(y) :=
∫ y

0 (w(z) − w′(z)
1−w(z))dz and Ê [·] denotes the expectation with respect to the myopic

probability P̂ , defined by

dP̂

dP
= exp

(∫ T

0

(
− µ̃(Υt)

σ̃(Υt)
+ σ̃(Υt)π̃(Υt)

)
dWt −

1

2

∫ T

0

(
− µ̃(Υt)

σ̃(Υt)
+ σ̃(Υt)π̃(Υt)

)2

dt

)
.

Proof. First note that µ̃, σ̃, and w are functions of Υt, but the argument is omitted throughout
to ease notation. Now, to prove (B.7), notice that the frictionless shadow wealth process X̃t with

dynamics dX̃t
X̃t

= w dS̃t
S̃t

+ (1− w)
dS0
t

S0
t

satisfies:

X̃1−γ
T = X̃1−γ

0 e(1−γ)
∫ T
0 (r+µ̃w− σ̃

2

2
w2)dt+(1−γ)

∫ T
0 σ̃wdWt .
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Hence:

X̃1−γ
T =X̃1−γ

0

dP̂

dP
e
∫ T
0 ((1−γ)(r+µ̃w− σ̃

2

2
w2)+ 1

2
(− µ̃

σ̃
+σ̃w)2)dt+

∫ T
0 ((1−γ)σ̃w−(− µ̃

σ̃
+σ̃w))dWt .

Inserting the definitions of µ̃ and σ̃, the second integrand simplifies to (1−γ)σ( w′

1−w −w). Similarly,

the first integrand reduces to (1− γ)(r + σ2

2 ( w′

1−w )2 − (1− γ)σ2 w′w
1−w + (1− γ)σ

2

2 w
2). In summary:

X̃1−γ
T = X̃1−γ

0

dP̂

dP
e(1−γ)

∫ T
0 (r+σ2

2
( w′

1−w )2−(1−γ)σ2 w′w
1−w+(1−γ)σ

2

2
w2)dt+(1−γ)

∫ T
0 σ( w′

1−w−w)dWt . (B.9)

The boundary conditions for w and w′ imply w(0)− w′(0)
1−w(0) = w(log(u/l))− w′(log(u/l))

1−w(log(u/l)) = 0; hence,

Itô’s formula yields that the local time terms vanish in the dynamics of q̃(Υt):

q̃(ΥT )− q̃(Υ0) =

∫ T

0

(
µ− σ2

2

)(
w − w′

1−w

)
+ σ2

2

(
w′ − w′′(1−w)+w′2

(1−w)2

)
dt+

∫ T

0
σ
(
w − w′

1−w

)
dWt.

(B.10)
Substituting the second derivative w′′ according to the ODE (B.6) and using the resulting identity
to replace the stochastic integral in (B.9) yields

X̃1−γ
T =X̃1−γ

0

dP̂

dP
e(1−γ)

∫ T
0 (r+σ2

2
w′+(1−γ)σ

2

2
w2+(µ−σ

2

2
)w)dte(1−γ)(q̃(Υ0)−q̃(ΥT )).

After inserting the ODE (A.1) for w, the first bound thus follows by taking the expectation.
The argument for the second bound is similar. Plugging in the definitions of µ̃ and σ̃, the

shadow discount factor M̃T = e−rTE(−
∫ ·

0
µ̃
σ̃dW )T and the myopic probability P̂ satisfy:

M̃
1− 1

γ

T = e
1−γ
γ

∫ T
0

µ̃
σ̃
dWt+

1−γ
γ

∫ T
0 (r+ µ̃2

2σ̃2 )dt

=
dP̂

dP
e

1−γ
γ

∫ T
0 ( µ̃

σ̃
− γ

1−γ (− µ̃
σ̃

+σ̃w))dWt+
1−γ
γ

∫ T
0 (r+ µ̃2

2σ̃2 + γ
2(1−γ)

(− µ̃
σ̃

+σ̃w)2)dt

=
dP̂

dP
e

1−γ
γ

∫ T
0 σ( w′

1−w−w)dWt+
1−γ
γ

∫ T
0 (r+σ2

2
( w′

1−w )2−(1−γ)σ2 w′w
1−w+(1−γ)σ

2

2
w2)dt

.

Again replace the stochastic integral using (B.10) and the ODE (B.6), obtaining

M̃
1− 1

γ

T =
dP̂

dP
e

1−γ
γ

∫ T
0 (r+σ2

2
w′+(1−γ)σ

2

2
w2+(µ−σ

2

2
)w)dt

e
1−γ
γ

(q̃(Υ0)−q̃(ΥT ))
.

Inserting the ODE (A.1) for w, taking the expectation, and raising it to power γ, the second bound
follows.

With the finite horizon bounds at hand, it is now straightforward to establish that the policy
π̃(Υt) is indeed long-run optimal in the frictionless market with price S̃t.

Lemma B.4. Let 0 < µ/γσ2 6= 1 and let w be defined as in Lemma A.1. Then, the risky weight
π̃(Υt) = w(Υt) is long-run optimal with equivalent safe rate r + β in the frictionless market with
price process S̃t. The corresponding wealth process (in terms of S̃t), and the numbers of safe and
risky units are given by

X̃t = (ξ0S0
0 + ξS̃0)E

(∫ ·
0

(r + w(Υs)µ̃(Υs))ds+

∫ ·
0
w(Υs)σ̃(Υs)dWs

)
t

,

ϕ0− = ξ, ϕt = w(Υt)X̃t/S̃t for t ≥ 0,

ϕ0
0− = ξ0, ϕ0

t = (1− w(Υt))X̃t/S
0
t for t ≥ 0.
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Proof. The formulas for the wealth process and the corresponding numbers of safe and risky units
follow directly from the standard frictionless definitions. Now let M̃t be the shadow discount factor
from Lemma B.3. Then, standard duality arguments for power utility (cf. Lemma 5 in Guasoni

and Robertson (2012)) imply that the shadow payoff X̃φ
t corresponding to any admissible strategy

φt satisfies the inequality

E
[
(X̃φ

T )1−γ
] 1

1−γ ≤ E
[
M̃

γ−1
γ

T

] γ
1−γ

. (B.11)

This inequality in turn yields the following upper bound, valid for any admissible strategy φt in
the frictionless market with shadow price S̃t:

lim inf
T→∞

1

(1− γ)T
logE

[
(X̃φ

T )1−γ
]
≤ lim inf

T→∞

γ

(1− γ)T
logE

[
M̃

γ−1
γ

T

]
. (B.12)

Since the function q̃ is bounded on the compact support of Υt, the second bound in Lemma B.3
implies that the right-hand side equals r+ β. Likewise, the first bound in the same lemma implies
that the shadow payoff X̃t (corresponding to the policy ϕt) attains this upper bound, concluding
the proof.

The next Lemma establishes that the candidate S̃t is indeed a shadow price.

Lemma B.5. Let 0 < µ/γσ2 6= 1. Then, the number of shares ϕt = w(Υt)X̃t/S̃t in the portfo-
lio π̃(Υt) in Lemma B.4 has the dynamics

dϕt
ϕt

=

(
1− µ− λ

γσ2

)
dLt −

(
1− µ+ λ

γσ2

)
dUt. (B.13)

Thus, ϕt increases only when Υt = 0, that is, when S̃t equals the ask price, and decreases only when
Υt = log(u/l), that is, when S̃t equals the bid price.

Proof. Itô’s formula and the ODE (B.6) yield

dw(Υt) = −(1− γ)σ2w′(Υt)w(Υt)dt+ σw′(Υt)dWt + w′(Υt)(dLt − dUt).

Integrating ϕt = w(Υt)X̃t/S̃t by parts twice, inserting the dynamics of w(Υt), X̃t, S̃t, and simpli-
fying yields:

dϕt
ϕt

=
w′(Υt)

w(Υt)
d(Lt − Ut).

Since Lt and Ut only increase (resp. decrease when µ/γσ2 > 1) on {Υt = 0} and {Υt = log(u/l)},
respectively, the assertion now follows from the boundary conditions for w and w′.

The optimal growth rate for any frictionless price within the bid-ask spread must be greater or
equal than in the original market with bid-ask process ((1 − ε)St, St), because the investor trades
at more favorable prices. For a shadow price, there is an optimal strategy that only entails buying
(resp. selling) stocks when S̃ coincides with the ask- resp. bid price. Hence, this strategy yields
the same payoff when executed at bid-ask prices, and thus is also optimal in the original model
with transaction costs. The corresponding equivalent safe rate must also be the same, since the
difference due to the liquidation costs vanishes as the horizon grows in (2.2):

Proposition B.6. For a sufficiently small spread ε, the strategy (ϕ0
t , ϕt) from Lemma B.4 is also

long-run optimal in the original market with transaction costs, with the same equivalent safe rate.
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Proof. As ϕt only increases (resp. decreases) when S̃t = St (resp. S̃t = (1 − ε)St), the strategy
(ϕ0

t , ϕt) is also self-financing for the bid-ask process ((1− ε)St, St). Since St ≥ S̃t ≥ (1− ε)St and
the number ϕt of risky shares is always positive, it follows that

ϕ0
tS

0
t + ϕtS̃t ≥ ϕ0

tS
0
t + ϕ+

t (1− ε)St − ϕ−t St ≥ (1− ε
1−ε π̃(Yt))(ϕ

0
tS

0
t + ϕtS̃t). (B.14)

The shadow risky fraction π̃(Υt) = w(Υt) is bounded from above by (µ+λ)/γσ2 = µ/γσ2+O(ε1/3).
For a sufficiently small spread ε, the strategy (ϕ0

t , ϕt) is therefore also admissible for ((1−ε)St, St).
Moreover, (B.14) then also yields

lim inf
T→∞

1

(1− γ)T
logE

[
(ϕ0

TS
0
T + ϕ+

T (1− ε)ST − ϕ−T ST )1−γ]
= lim inf

T→∞

1

(1− γ)T
logE

[
(ϕ0

TS
0
T + ϕT S̃T )1−γ

]
,

(B.15)

that is, (ϕ0
t , ϕt) has the same growth rate, either with S̃t or with [(1− ε)St, St].

For any admissible strategy (ψ0
t , ψt) for the bid-ask spread [(1 − ε)St, St], set ψ̃0

t = ψ0
0− −∫ t

0 S̃s/S
0
sdψs. Then, (ψ̃0

t , ψt) is a self-financing trading strategy for S̃t with ψ̃0
t ≥ ψ0

t . Together with

S̃t ∈ [(1− ε)St, St], the long-run optimality of (ϕ0
t , ϕt) for S̃t, and (B.15), it follows that:

lim inf
T→∞

1

T

1

(1− γ)
logE

[
(ψ0

TS
0
T + ψ+

T (1− ε)ST − ψ−T ST )1−γ]
≤ lim inf

T→∞

1

T

1

(1− γ)
logE

[
(ψ̃0

TS
0
T + ψT S̃T )1−γ

]
≤ lim inf

T→∞

1

T

1

(1− γ)
logE

[
(ϕ0

TS
0
T + ϕT S̃T )1−γ

]
= lim inf

T→∞

1

T

1

(1− γ)
logE

[
(ϕ0

TS
0
T + ϕ+

T (1− ε)ST − ϕ−T ST )1−γ] .
Hence (ϕ0

t , ϕt) is also long-run optimal for ((1− ε)St, St).

The main result now follows by putting together the above statements.

Theorem B.7. For ε > 0 small, and 0 < µ/γσ2 6= 1, the process S̃t in Lemma B.2 is a shadow
price. A long-run optimal policy — both for the frictionless market with price S̃t and in the market
with bid-ask prices (1 − ε)St, St — is to keep the risky weight π̃t (in terms of S̃t) in the no-trade
region

[π−, π+] =

[
µ− λ
γσ2

,
µ+ λ

γσ2

]
.

As ε ↓ 0, its boundaries have the asymptotics

π± =
µ

γσ2
±

(
3

4γ

(
µ

γσ2

)2(
1− µ

γσ2

)2
)1/3

ε1/3 ±

(
(5− 2γ)

10γ

µ

γσ2

(
1− µ

γσ2

)2

− 3

20γ

)
ε+O(ε4/3).

The corresponding equivalent safe rate is:

r + β = r +
µ2 − λ2

γσ2
= r +

µ2

2γσ2
− γσ2

2

(
3

4γ

(
µ

γσ2

)2(
1− µ

γσ2

)2
)2/3

ε2/3 +O(ε4/3).

If µ/γσ2 = 1, then S̃t = St is a shadow price, and it is optimal to invest all wealth in the risky
asset at time t = 0, never to trade afterwards. In this case, the equivalent safe rate is given by the
frictionless value r + β = r + µ2/2γσ2.
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Proof. First let 0 < µ/γσ2 6= 1. Optimality with equivalent safe rate r + β of the strategy (ϕ0
t , ϕt)

associated to π̃(Υt) for S̃t has been shown in Lemma B.4. The asymptotic expansions are an
immediate consequence of the fractional power series for λ (cf. Lemma A.2) and Taylor expansion.

Next, Lemma B.5 shows that S̃t is a shadow price process in the sense of Definition B.1. In
view of the asymptotic expansions for π±, Proposition B.6 shows that, for small transaction costs
ε, the same policy is also optimal, with the same equivalent safe rate, in the original market with
bid-ask prices (1− ε)St, St.

Consider now the degenerate case µ/γσ2 = 1. Then the optimal strategy in the frictionless
model S̃t = St transfers all wealth to the risky asset at time t = 0, never to trade afterwards
(ϕ0

t = 0 and ϕt = ξ + ξ0S0
0/S0 for all t ≥ 0). Hence it is of finite variation and the number of

shares never decreases, and increases only at time t = 0, where the shadow price coincides with the
ask price. Thus, S̃t = St is a shadow price. For small ε, the remaining assertions then follow as in
Proposition B.6 above.

Next, the proof of Theorem 3.1, which establishes asymptotic finite-horizons bounds. In fact,
the proof yields exact bounds in terms of λ, from which the expansions in the theorem are obtained.

Proof of Theorem 3.1. Let (φ0, φ) be any admissible strategy starting from the initial position

(ϕ0
0−, ϕ0−). Then as in the proof of Proposition B.6, we have ΞφT ≤ X̃φ

T for the corresponding

shadow payoff, that is, the terminal value of the wealth process X̃φ
t = φ0

0 + φ0S̃0 +
∫ t

0 φsdS̃s
corresponding to trading φ in the frictionless market with price process S̃t. Hence, Lemma 5 in
Guasoni and Robertson (2012) and the second bound in Lemma B.3 imply that

1

(1− γ)T
logE

[
(ΞφT )1−γ

]
≤ r + β +

1

T
log(ϕ0

0− + ϕ0−S0) +
γ

(1− γ)T
log Ê

[
e

( 1
γ
−1)(q̃(Υ0)−q̃(ΥT ))

]
.

(B.16)
For the strategy (ϕ0, ϕ) from Lemma B.5, we have ΞϕT ≥ (1− ε

1−ε
µ+λ
γσ2 )X̃ϕ

T by the proof of Proposi-
tion B.6. Hence the first bound in Lemma B.3 yields

1

(1− γ)T
logE

[
(ΞϕT )1−γ] ≥ r + β +

1

T
log(ϕ0

0− + ϕ0−S̃0) +
1

(1− γ)T
log Ê

[
e(1−γ)(q̃(Υ0)−q̃(ΥT ))

]
+

1

T
log

(
1− ε

1− ε
µ+ λ

γσ2

)
. (B.17)

To determine explicit estimates for these bounds, we first analyze the sign of w̃(y) = w − w′

1−w and

hence the monotonicity of q̃(y) =
∫ y

0 w̃(z)dz. Whenever w̃ = 0, i.e., w′ = w(1− w), the derivative
of w̃ is

w̃′ = w′ − w′′(1− w) + w′2

(1− w)2
=

(1− 2γ)w′w + 2µ
σ2w

′

1− w
−
(

w′

1− w

)2

= 2γw

(
µ

γσ2
− w

)
,

where we have used the ODE (B.6) for the second equality. Since w̃ vanishes at 0 and log(u/l) by
the boundary conditions for w and w′, this shows that the behaviour of w̃ depends on whether the
investor’s position is leveraged or not. In the absence of leverage, µ/γσ2 ∈ (0, 1), w̃ is defined on
[0, log(u/l)]. It vanishes at the left boundary 0 and then increases since its derivative is initially
positive by the initial condition for w. Once the function w has increased to level µ/γσ2, the
derivative of w̃ starts to become negative; as a result, w̃ begins to decrease until it reaches level
zero again at log(u/l). In particular, w̃ is nonnegative for µ/γσ2 ∈ (0, 1).

In the leverage case µ/γσ2 > 1, the situation is reversed. Then, w̃ is defined on [log(u/l), 0]
and, by the boundary condition for w at log(u/l), therefore starts to decrease after starting from
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zero at log(u/l). Once w has decreased to level µ/γσ2, w̃ starts increasing until it reaches level
zero again at 0. Hence, w̃ is nonpositive for µ/γσ2 > 1.

Now, consider Case 2 of Lemma A.1; the calculations for the other cases follow along the same
lines with minor modifications. Then µ/γσ2 ∈ (0, 1) and q̃ is positive and increasing. Hence,

γ

(1− γ)T
log Ê

[
e

( 1
γ
−1)(q̃(Υ0)−q̃(ΥT ))

]
≤ 1

T

∫ log(u/l)

0
w̃(y)dy (B.18)

and likewise
1

(1− γ)T
log Ê

[
e(1−γ)(q̃(Υ0)−q̃(ΥT ))

]
≥ − 1

T

∫ log(u/l)

0
w̃(y)dy. (B.19)

Since w̃(y) = w(y)− w′/(1− w), the boundary condions for w imply∫ log(u/l)

0
w̃(y)dy =

∫ log(u/l)

0
w(y)dy − log

(
µ− λ− γσ2

µ+ λ− γσ2

)
. (B.20)

By elementary integration of the explicit formula in Lemma A.1 and using the boundary conditions
from Lemma A.3 for the evaluation of the result at 0 resp. log(u/l), the integral of w can also be
computed in closed form:∫ log(u/l)

0
w(y)dy =

µ

σ2−
1
2

γ−1 log
(

1
1−ε

(µ+λ)(µ−λ−γσ2)
(µ−λ)(µ+λ−γσ2)

)
+ 1

2(γ−1) log
(

(µ+λ)(µ+λ−γσ2)
(µ−λ)(µ−λ−γσ2)

)
. (B.21)

As ε ↓ 0, a Taylor expansion and the power series for λ then yield∫ log(u/l)

0
w̃(y)dy =

µ

γσ2
ε+O(ε4/3).

Likewise,

log

(
1− ε

1− ε
µ− λ
γσ2

)
= − µ

γσ2
ε+O(ε4/3),

as well as

log(ϕ0
0− + ϕ0−S̃0) ≥ log(ϕ0

0− + ϕ0−S0)− ϕ0−S0

ϕ0
0− + ϕ0−S0

ε+O(ε2).

The claimed bounds then follow from (B.16) and (B.18) resp. (B.17) and (B.19).

C Trading Volume

As above, let ϕt = ϕ↑t − ϕ
↓
t denote the number of risky units at time t, written as the difference of

the cumulated numbers of shares bought resp. sold until t. Relative share turnover, defined as the
measure d‖ϕ‖t/|ϕt| = dϕ↑t /|ϕt|+ dϕ↓t /|ϕt|, is a scale-invariant indicator of trading volume (Lo and
Wang, 2000). The long-term average share turnover is defined as

lim
T→∞

1

T

∫ T

0

d‖ϕ‖t
|ϕt|

.

Similarly, relative wealth turnover (1 − ε)Stdϕ
↓
t /(ϕ

0
tS

0
t + ϕt(1 − ε)St) + Stdϕ

↑
t /(ϕ

0
tS

0
t + ϕtSt) is

defined as the amount of wealth transacted divided by current wealth, where both quantities are
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evaluated in terms of the bid price (1− ε)St when selling shares resp. in terms of the ask price St
when purchasing them. As above, the long-term average wealth turnover is then defined as

lim
T→∞

1

T

(∫ T

0

(1− ε)Stdϕ↓t
ϕ0
tS

0
t + ϕt(1− ε)St

+

∫ T

0

Stdϕ
↑
t

ϕ0
tS

0
t + ϕtSt

)
.

Both of these limits admit explicit formulas in terms of the gap, which yield asymptotic ex-
pansions for ε ↓ 0. The analysis starts with a preparatory result (cf. Janeček and Shreve (2004,
Remark 4) for the case of driftless Brownian motion).

Lemma C.1. Let Υt be a diffusion on an interval [l, u], 0 < l < u, reflected at the boundaries, i.e.

dΥt = b(Υt)dt+ a(Υt)
1/2dWt + dLt − dUt, (C.1)

where the mappings a(y) > 0 and b(y) are both continuous, and the continuous, nondecreasing
local time processes Lt and Ut satisfy L0 = U0 = 0 and only increase on {Lt = l} and {Ut = u},
respectively. Denoting by ν(y) the invariant density of Υt, the following almost sure limits hold:

lim
T→∞

LT
T

=
a(l)ν(l)

2
, lim

T→∞

UT
T

=
a(u)ν(u)

2
. (C.2)

Proof. For f ∈ C2([l, u]), write Lf(y) := b(y)f ′(y) + a(y)f ′′(y)/2. Then, by Itô’s formula:

f(ΥT )− f(Υ0)

T
=

1

T

∫ T

0
Lf(Υt)dt+

1

T

∫ T

0
f ′(Υt)a(Υt)

1/2dWt + f ′(l)
LT
T
− f ′(u)

UT
T
.

Now, take f such that f ′(l) = 1 and f ′(u) = 0, and pass to the limit T → ∞. The left-hand side
vanishes because f is bounded; the stochastic integral also vanishes by the Dambis-Dubins-Schwarz
theorem, the law of the iterated logarithm, and the boundedness of f ′. Thus, the ergodic theorem
(Borodin and Salminen, 2002, II.35 and II.36) implies that

lim
T→∞

LT
T

= −
∫ u

l
Lf(y)ν(y)dy.

Now, the self-adjoint representation (Revuz and Yor, 1999, VII.3.12) Lf = (af ′ν)′/2ν yields:

lim
T→∞

LT
T

= −1

2

∫ u

l
(af ′ν)′(y)dy =

a(l)ν(l)f ′(l)

2
− a(u)ν(u)f ′(u)

2
=
a(l)ν(l)

2
.

The other limit follows from the same argument, using f such that f ′(l) = 0 and f ′(u) = 1.

Lemma C.2. Let 0 < µ/γσ2 6= 1 and, as in (B.4), let

Υt =

(
µ− σ2

2

)
t+ σWt + Lt − Ut

be Brownian motion with drift, reflected at 0 and log(u/l). Then if µ 6= σ2/2, the following almost
sure limits hold:

lim
T→∞

LT
T

=
σ2

2

(
2µ
σ2 − 1

(u/l)
2µ

σ2−1 − 1

)
and lim

T→∞

UT
T

=
σ2

2

(
1− 2µ

σ2

(u/l)1− 2µ

σ2 − 1

)
.

If µ = σ2/2, then limT→∞ LT /T = limT→∞ UT /T = σ2/(2 log(u/l)) a.s.
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Proof. First let µ 6= σ2/2. Moreover, suppose that µ/γσ2 ∈ (0, 1). Then the scale function and the
speed measure of the diffusion Υt are

s(y) =

∫ y

0
exp

(
− 2

∫ ξ

0

µ− σ2

2

σ2
dζ
)
dξ =

1

1− 2µ
σ2

e(1− 2µ

σ2 )y,

m(dy) =1[0,log(u/l)](y)
2dy

s′(y)σ2
= 1[0,log(u/l)](y)

2

σ2
e( 2µ

σ2−1)ydy.

The invariant distribution of Υt is the normalized speed measure

ν(dy) =
m(dy)

m([0, log(u/l)])
= 1[0,log(u/l)](y)

2µ
σ2 − 1

(u/l)
2µ

σ2−1 − 1
e( 2µ

σ2−1)ydy.

For µ/γσ2 > 1, the endpoints 0 and log(u/l) exchange their roles, and the result is the same, up to
replacing [0, log(u/l)] with [log(u/l), 0] and multiplying the formula by −1. Then, the claim follows
from Lemma C.1. In the case µ = σ2/2 of driftless Brownian motion, Υt has uniform stationary
distribution on [0, log(u/l)] (resp. on [log(u/l), 0] if µ/γσ2 > 1), and the claim again follows by
Lemma C.1.

Lemma C.2 and the formula for ϕt from Lemma B.5 yield the long-term average trading volumes.
The asymptotic expansions then follow from the power series for λ (cf. Lemma A.2).

Corollary C.3. If µ/γσ2 6= 1, the long-term average share turnover is

lim
T→∞

1

T

∫ T

0

d‖ϕ‖t
|ϕt|

=

(
1− µ− λ

γσ2

)
lim
T→∞

LT
T

+

(
1− µ+ λ

γσ2

)
lim
T→∞

UT
T
,

and the long-term average wealth turnover is

lim
T→∞

1

T

(∫ T

0

(1− ε)Stdϕ↓t
ϕ0
tS

0
t + ϕt(1− ε)St

+

∫ T

0

Stdϕ
↑
t

ϕ0
tS

0
t + ϕtSt

)

=
µ− λ
γσ2

(
1− µ− λ

γσ2

)
lim
T→∞

LT
T

+
µ+ λ

γσ2

(
1− µ+ λ

γσ2

)
lim
T→∞

UT
T
,

If µ/γσ2 = 1, the long-term average share and wealth turnover both vanish.
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