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Abstract

We give a complete solution to the problem of minimizing the expected liquidity costs in
presence of a general drift when the underlying market impact model has linear transient price
impact with exponential resilience. It turns out that this problem is well-posed only if the drift
is absolutely continuous. Optimal strategies often do not exist, and when they do, they depend
strongly on the derivative of the drift. Our approach uses elements from singular stochastic
control, even though the problem is essentially non-Markovian due to the transience of price
impact and the lack in Markovian structure of the underlying price process. As a corollary, we
give a complete solution to the minimization of a certain cost-risk criterion in our setting.

1 Introduction

Standard asset pricing models like the Black–Scholes model assume that asset prices are given
exogenously and are unaffected by the trading behavior of economic agents. In reality, however,
many trades are large enough to feed back on asset prices so that price impact and the resulting
liquidity costs cannot be ignored. In such a situation, one aims at minimizing the liquidity costs
from trade execution by constructing suitable trading strategies. The problem of computing
such trading strategies is called the optimal trade execution problem.

To deal with price impact quantitatively, several stochastic market impact models have been
proposed in recent years. In the first model class, which goes back to Bertsimas & Lo (1998)
and Almgren & Chriss (1999, 2000), price impact is modeled by combining convex transaction
costs with a linear permanent price impact term. While these models make computations
feasible and lead to relatively nice and robust trading strategies, they do not adequately model
the empirically observed transience of price impact. Transience means that price impact is
strongest immediately after being triggered and that it subsequently decays in time. This effect
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is well-established empirically, it can be measured, and it is widely believed that the decay
of price impact follows some general laws; see, e.g., Gatheral (2010), Lehalle & Dang (2010),
Moro et al. (2009), and the references therein. Therefore, several models for transient price
impact have been proposed in recent years. To our knowledge, the first models were proposed
by Bouchaud et al. (2004) and Obizhaeva & Wang (2013). The latter is a linear price impact
model with exponential decay of price impact and seems to be the first transient-price impact
model used for computing optimal trade execution strategies. Two different extensions were
given to the case of nonlinear transient price impact. The first was proposed by Alfonsi et al.
(2010) and further developed by Alfonsi & Schied (2010) and Predoiu et al. (2011). The second
extension is due to Gatheral (2010) and, besides nonlinearity, also allows for more general decay
patterns than exponential decay. Let us also mention related research by Bayraktar & Ludkovski
(2011), Bouchard et al. (2011), Kharroubi & Pham (2010), and Guéant et al. (2012).

Since transience of price impact is more realistic than the combination of transaction costs
with linear permanent impact, one might guess that market impact models with transient price
impact perform better in practice than those of Bertsimas & Lo (1998) and Almgren & Chriss
(1999, 2000). But what can be said about their mathematical stability and robustness in
comparison to these older models? This is an important question because of the high degree of
uncertainty in the estimation of market microstructure parameters. Gatheral (2010) addressed
this question by analyzing the possible non-existence of optimal trade execution strategies for
certain parameters. As shown by Alfonsi & Schied (2010) and further discussed in Gatheral
et al. (2011), these results depend strongly on the way in which nonlinearity of price impact
is modeled. Therefore stability investigations with respect to other model features have been
carried out in the case of linear price impact. Moreover, for liquid stocks linear price impact
can also be a very good approximation to reality as shown empirically by Blais & Protter
(2010). Alfonsi et al. (2012) investigate the dependence of optimal trade execution strategies
on the decay kernel that models the temporal decay of price impact. They find that discrete-
time strategies react in a very sensitive manner to the choice of this decay kernel and that
price impact must decay as a convex nonincreasing function of time so as to exclude certain
irregularities of optimal strategies. This observation implies in particular that in practice the
decay of price impact cannot be estimated in a nonparametric way.

An extension of the results in Alfonsi et al. (2012) to continuous time was given by Gatheral
et al. (2012). Finally, assuming exponential decay of price impact, Fruth et al. (2011) analyze
the specific form and regularity of optimal trade execution strategies when liquidity can be time-
dependent or even stochastic. An analysis pertaining specifically to regularity issues arising in
this context has recently been given by Klöck (2012).

When investigating a particular model aspect, it is important to keep the remaining features
of the model simple. For instance, to analyze the existence or nonexistence of price manipulation
strategies as in Gatheral (2010) or Alfonsi et al. (2012), it is necessary to assume that the
underlying price process is a martingale. There are additional reasons why it may be natural
to make this martingale assumption; see, e.g., the discussion in Alfonsi et al. (2012). But there
are also good reasons to allow for a nonvanishing drift in unaffected asset prices. For instance,
an economic agent may be aware of the trading activities of another market participant. These
trading activities will create price impact, which from the point of view of our economic agent
will be perceived as a drift in asset prices. Moreover, for several reasons, the economic agent
may have a rather accurate estimate of this drift. For instance, some trade execution algorithms
create characteristic order patterns and therefore allow for an inference of their future trading
trajectory. We refer to Schöneborn & Schied (2009) for a study of a multi-agent situation in
the Almgren–Chriss framework.
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In this paper, we aim at continuing the investigation of the stability of models for transient
price impact by focusing on the dependence of optimal trade execution strategies on a possible
drift of the underlying unaffected price process. In doing this, we will allow for rather general
dynamics of the drift and in particular allow for jumps and a non-Markovian structure. This is
important because the price impact patterns of optimal trade execution strategies with transient
price impact have precisely these features and, as mentioned above, the price impact of another
market participant is perhaps the most common source for the presence of a drift. On the other
hand, we will keep the remaining features of the model simple. This makes the mathematics
tractable but also helps to isolate the effects of the drift from the effects created by other model
features. We therefore use the linear continuous-time model of Obizhaeva & Wang (2013) (in
the version of Gatheral et al. (2012)) with exponential decay of price impact and the problem
we are looking at is the minimization of the expected costs.

Theorem 1, our main result, shows that this optimal trade execution problem is very sensitive
with respect to the drift. The expected costs will be equal to negative infinity as soon as the drift
is not absolutely continuous, a fact that will have strong impact when market impact is generated
by several market participants. Moreover, even when the drift is absolutely continuous, optimal
strategies will typically not exist if strategies are understood in the sense of Gatheral et al.
(2012). We therefore extend the class of admissible strategies by allowing strategies to be
semimartingales. We show that unique optimal trade execution strategies may exist in this
class of strategies, but the number of shares to be held depends directly on the derivative of the
drift at each time and thus may fluctuate strongly. This sensitivity of strategies is particularly
striking when compared to the relatively robust drift dependence of optimal trade execution
strategies in the Almgren–Chriss framework, which was found by Schied (2011).

Our problem of minimizing the expected costs in the presence of a drift turns out to be also
of interest from a purely mathematical point of view. Our approach uses elements from singular
stochastic control, although the problem is basically non-Markovian due to both the transience
of price impact and the lack in Markovian structure of the underlying price process. We deal
with the first type of non-Markovianity by using an auxiliary ‘impact process’ EXt that, under
the specific assumption of exponential decay of price impact, leads to a Markovian structure for
the dynamics of transient price impact. We then guess a formula for the optimal expected costs
conditional at time t ≥ 0 where an arbitrary impact EXt is given as initial condition. With this
formula at hand, we can then use a verification argument. The control problem is ‘singular’
since our controls are semimartingale strategies, which enter the value function as integrators
of stochastic integrals. A similar technique was recently used in Alfonsi & Schied (2012) to
compute optimal strategies for general, completely monotone decay kernels but without drift
in the unaffected price process. As an application of our results, we also obtain a complete
solution for the minimization of a cost-risk criterion that was recently proposed in Gatheral &
Schied (2011).

2 Statement of results

2.1 Model setup

A market impact model is a model for an economic agent who can move asset prices. As
long as this agent is not active, asset prices are determined by the actions of the other market
participants and are described by the unaffected price process S0. We assume that S0 is a square-
integrable càdlàg semimartingale defined on a given filtered probability space (Ω,F , (Ft),P)
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satisfying the usual conditions. We also assume that F0 is P-trivial, i.e., every F0-measurable
random variable is P-a.s. constant. We will use the linear market impact model with exponential
decay of price impact proposed by Obizhaeva & Wang (2013). More precisely, we will use the
zero-spread version of this model that was suggested in Gatheral et al. (2012); we refer to Alfonsi
& Schied (2010) for a discussion of the possible re-introduction of a bid-ask spread.

The actual asset price will depend on the strategy chosen by the trader. Such a strategy will
be an adapted stochastic process X = (Xt)t≥0− that describes the number of shares held by
the trader at each time. Following Gatheral et al. (2012), we call X admissible if the following
conditions are satisfied:

(a) the function t→ Xt is right-continuous1 and adapted;

(b) the function t→ Xt has finite and P-a.s. bounded total variation;

(c) there exists a liquidation time T ≥ 0 such that Xt = 0 P-a.s. for all t ≥ T .

Such a strategy has the interpretation that the value X0− stands for an initially given amount of
shares that needs to be liquidated by time T . When X is nonincreasing, it is a pure sell strategy.
When it is nondecreasing, it is a pure buy strategy. A general admissible strategy is the sum of
a sell and a buy strategy and therefore is of bounded variation. This shows that condition (b)
is economically meaningful. With XBV(x, T ) we will denote the class of all strategies that are
admissible in this sense for a fixed liquidation time T ≥ 0 and that satisfy X0− = x.

When the admissible strategy X is used, the price SXt will be

SXt = S0
t + η

∫
[0,t)

e−ρ(t−s) dXs, (1)

where ρ > 0, the function e−ρt describes the temporal decay of price impact, and the parameter
η describes its magnitude. Clearly we can set η := 1 without loss of generality. Following
Gatheral et al. (2012), we define the liquidation costs of X ∈ XBV(x, T ) as

C(X) :=

∫
[0,T ]

S0
t dXt +

∫
[0,T ]

∫
[0,t)

e−ρ(t−s) dXs dXt +
1

2

∑
t∈[0,T ]

(∆Xt)
2. (2)

Remark 1 (Economic motivation of the cost functional C(·)). Let us follow Alfonsi et al.
(2012) and Gatheral et al. (2012) in motivating the cost functional (2). For a continuous

strategy X ∈ XBV (x, T ), C(X) equals
∫ T

0 SXt dXt and can thus be easily understood as the
accumulated costs of buying dXt shares at price SXt at each time t. For general X, a nonzero
jump ∆Xt can be interpreted as a large market order which shifts the asset price by eating into
a block-shaped limit order book. Its execution therefore incurs the following costs:∫ SX

t +∆Xt

SX
t

y dy = SXt ∆Xt +
1

2
(∆Xt)

2 = S0
t ∆Xt +

∫
[0,t)

e−ρ(t−s) dXs ∆Xt +
1

2
(∆Xt)

2.

We assume here that the order ∆Xt is executed immediately after a jump of S0
t in case both

jumps nominally occur at the same time, an assumption that is economically natural since it
precludes arbitrage-like exploitation of price jumps. Decomposing a general strategy into its
continuous part and its jumps thus leads to the definition (2). An alternative derivation of (2),
based on a continuous-time limit of discrete-time cost functionals, will be provided by Lemma 1
in the more general framework of semimartingale strategies. ♦

1Although Gatheral et al. (2012) consider the left-continuous modification of X, our definitions of both price process
and costs coincide with the one in Gatheral et al. (2012). See Remark 2 for a detailed discussion of right versus left
continuity.
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The problem of minimizing the expected costs, E[ C(X) ], over X ∈ XBV(x, T ) is called
the optimal trade execution problem. When S0 is a square-integrable martingale, this problem
admits the unique solution

Xt =
x(1 + ρ(T − t))

2 + ρT
, 0 ≤ t < T. (3)

That is, X has an initial jump at t = 0 of size ∆X0 = −x
2+ρT , continuous trading at rate

dXt = −xρ
2+ρT dt in (0, T ), and a terminal jump of size ∆XT = ∆X0. This formula was found by

Obizhaeva & Wang (2013) (see also Example 2.12 in Gatheral et al. (2012) for a short proof).

Remark 2. Gatheral et al. (2012) consider the left-continuous modification of admissible strate-
gies. Since the respective formulas (1) and (2) for the price process and the costs of a strategy
X ∈ XBV(x, T ) depend only on the measure dXt, it is just a matter of notational convention
whether to choose the right- or left-continuous modification of X. In particular, our formulas
for the price process SX and the costs C(X) are the same as those in Gatheral et al. (2012).
Later on, however, we will consider a larger class of semimartingale strategies, and since semi-
martingales are right-continuous by default and for good reason, we must adopt the convention
of right continuity so as to be consistent between our two classes of strategies.

As can be seen from the formula (3), optimal strategies will typically have jumps at times
t = 0 and t = T . For right-continuous strategies, we need to include the possibility of an initial
jump by allowing for an initial value X0− that can be different from X0. Similarly, for the left-
continuous modification of strategies used in Gatheral et al. (2012), the terminal jump must be
accommodated by allowing for a nonzero value of XT and by requiring the modified liquidation
constraint XT+ = 0. So both conventions require us to impose conditions on the limits of
Xt when t approaches a boundary point of the actual trading interval [0, T ] from outside this
interval. ♦

Here, our goal is to study the minimization of the expected costs E[ C(X) ] when S0 has an
additional drift. This topic is of intrinsic mathematical interest, and we refer to the introduction
of this paper for an account of our economic motivation to study this problem. We assume
henceforth that S0 is a càdlàg semimartingale with decomposition

S0
t = S0 +Mt +At, (4)

where S0 is a constant, M is a square-integrable càdlàg martingale with M0 = 0, and A is an
adapted process with A0 = 0 and locally square-integrable total variation, i.e., for every T > 0
we have E[ |A|2[0,T ] ] < ∞ when |A|[0,T ] denotes the total variation of A over the interval [0, T ].

There is in fact no loss of generality in assuming that A is predictable (see Proposition I.4.23
in Jacod & Shiryaev (2003)).

It will turn out that the presence of A increases the complexity of the optimal trade execution
problem significantly. In particular, optimal execution strategies in XBV(x, T ) will exist only
under very restrictive assumptions on A. For instance, they will not exist even in the simple
case in which S0 is a diffusion model,

dS0
t = σ(S0

t ) dWt + b(S0
t ) dt,

with nonconstant drift coefficient b(·). We therefore need to extend our class of admissible
trading strategies.
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Definition 1. An admissible semimartingale strategy is a bounded2 right-continuous semi-
martingale X for which there exists a liquidation time T ≥ 0 such that Xt = 0 P-a.s. for all
t ≥ T . By Xsem(x, T ) we denote the class of all admissible semimartingale strategies X with
X0− = x and liquidation time T .

Note that XBV(x, T ) is a subset of Xsem(x, T ). While semimartingale strategies are standard
in frictionless asset pricing models, their application in a high-frequency market impact model
is economically less natural than strategies of bounded variation, because they can no longer be
written as the superposition of buying and selling strategies.

Given a semimartingale strategy X ∈ Xsem(x, t), we need to extend the definitions (1) and
(2) for the corresponding price process and the resulting liquidation costs. These formulas and
our further analysis will involve stochastic integrals in which X appears both as integrand and
as integrator. Therefore, we first need to clarify how stochastic integrals must be understood
in view of our requirement X0− = x 6= 0.

Remark 3 (On the definition of stochastic integrals). It is a common assumption in the lit-
erature on stochastic integration that semimartingales X may jump at t = 0, but a typical
convention is to assume X0− = 0. With this convention, a stochastic integral X− ·Y , as defined,
e.g., in Protter (2004), will not depend on the initial jump of the integrator Y at time t = 0,
and so there is no ambiguity in writing (X− ·Y )t =

∫ t
0 Xs− dYs. When the value X0− is nonzero,

as it is the case for the semimartingale strategies defined above, one must carefully distinguish
whether an initial jump of the integrator is or is not part of a stochastic integral. This has been
done, e.g., by Meyer (1976), from where we adopt the convention of writing

∫
[0,t]Xs− dYs or∫

(0,t]Xs− dYs, respectively, when the initial jump is or is not part of the stochastic integral. We
then have ∫

[0,t]
Xs− dYs = X0−∆Y0 +

∫
(0,t]

Xs− dYs and [X,Y ]0 = ∆X0∆Y0. (5)

The integration by parts formula for stochastic integrals becomes

XtYt = X0−Y0− +

∫
[0,t]

Xs− dYs +

∫
[0,t]

Ys− dXs + [X,Y ]t (6)

see (Meyer 1976, p. 303). When Zt :=
∫

[0,t]Xs− dYs is a stochastic integral, we set Z0− := 0 by
default. ♦

Given a semimartingale strategy X ∈ Xsem(x, T ), the price SXt at time t can be defined just
as in (1) when

∫
[0,t) e

−ρ(t−s) dXs denotes the left-hand limit, EXt−, of the generalized Ornstein-
Uhlenbeck process

EXt := e−ρt
∫

[0,t]
eρs dXs, t ≥ 0. (7)

We now turn to the definition of the liquidation costs of the semimartingale strategy X. We
will motivate our definition by an approximation from the discrete-time case. To this end, we

2The requirement that X is bounded is natural from an economic point of view, because the total number of
available shares is finite for every stock.
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take N ∈ N, let tNk := kT/N for k = 0, . . . , N and define the following sequence of discrete
trades:

ξN0 := X0 −X0− and, for k = 1, . . . , N , ξNk := XtNk
−XtNk−1

.

Then, ξN := (ξNk ) is an admissible trading strategy in the sense of Alfonsi et al. (2012). In
Proposition 1 of Alfonsi et al. (2012) and its proof, the costs incurred by the discrete-time
strategy ξN were derived as

CN (ξN ) =
N∑
k=0

(
S0
tNk
ξNk +

k−1∑
i=0

e−ρ(tNk −t
N
i )ξNi ξ

N
k +

1

2
(ξNk )2

)
.

The economic motivation of this formula is analogous to the one given in Remark 1. In fact
CN (ξN ) coincides with C(XN ), when XN ∈ XBV(x, T ) denotes the step function with jumps
described by ξN . We have the following asymptotics of these costs when our time grid becomes
finer.

Lemma 1 (Liquidation costs of a semimartingale strategy). As N ↑ ∞, we have

CN (ξN ) −→
∫

[0,T ]
S0
t− dXt + [S0, X]T +

∫
[0,T ]

EXt− dXt +
1

2
[X]T =: C(X)

in probability, where C(X) is independent of the (arbitrary) choice of the value S0
0−, and EX is

the generalized Ornstein-Uhlenbeck process from (7).

We therefore define C(X) as the liquidation costs incurred by X ∈ Xsem(x, T ). Note that
C(X) reduces to the liquidation costs defined in (2) when X ∈ XBV(x, T ). Moreover, it follows
from (5) that C(X) is indeed independent of the particular choice of S0

0−.

2.2 Minimizing the expected costs

The optimization problem we are interested in is the minimization of the expected costs,

E[ C(X) ] = E

[∫
[0,T ]

S0
t− dXt + [S0, X]T +

∫
[0,T ]

EXt− dXt +
1

2
[X]T

]
, (8)

over all strategies X that belong to Xsem(x, T ) or to XBV(x, T ). To state its solution, let
Z = (Zt) be a càdlàg version of the martingale

−E
[
AT + ρ

∫ T

0
As ds

∣∣∣Ft ],
which exists due to our assumption that (Ω,F , (Ft),P) satisfies the usual conditions. We also
define the semimartingale Y as

Yt := Zt + ρ

∫ t

0
As ds+

(
1 + ρ(T − t)

)
At.
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Theorem 1. When A is P-a.s. absolutely continuous on [0, T ) with square-integrable derivative

A′t = dAt/dt, i.e., when At =
∫ t

0 A
′
s ds for 0 ≤ t < T and E[

∫ T
0 (A′t)

2 dt ] <∞, then

inf
X∈XBV(x,T )

E [ C(X) ] = inf
X∈Xsem(x,T )

E [ C(X) ] (9)

= −xS0 +
x2

2 + ρT
+

xY0

2 + ρT
− ρ

4
E

[∫ T

0

(
Ys

2 + ρ(T − s)
− 1

ρ
A′s

)2

ds

]
,

and
inf

X∈XBV(x,T )
E [ C(X) ] = inf

X∈Xsem(x,T )
E [ C(X) ] = −∞ (10)

otherwise.
When in addition A′ is bounded, the second infimum in (9) can be attained only if A′ is a

(right-continuous) semimartingale, and the unique optimal strategy is then given by

Xt =
x(1 + ρ(T − t))− 1

2(1 + ρt)Y0

2 + ρT
− 1

2

∫
(0,t]

ϕ(s) dZs +
1

2ρ
A′t

− ρ
∫ t

0

(
1

2

∫
(0,s]

ϕ(r) dZr +
1

2
As

)
ds,

(11)

where ϕ(t) := (2 + ρ(T − t))−1. In particular the first infimum in (9) can only be attained when
1
ρA
′
t −
∫

(0,t] ϕ(s) dZs is P-a.s. right-continuous and of finite variation on [0, T ].

Remark 4. From an economic point of view, the fact that it is possible to generate arbitrarily
negative expected costs for drift processes that are not absolutely continuous might indicate a
market inefficiency that arises when trading takes place on a much shorter time scale than the
resilience of price impact. The market then becomes inefficient, because its resilient reaction to
a price shock is delayed in comparison to the trading activities of the economic agent; see also
Remarks 2 and 3 in Alfonsi et al. (2012). This becomes particularly apparent when the drift
is generated by the trading behavior of a large fundamental seller, who is subject to predatory
trading by a high-frequency trader; see Remark 6 below.

We refer to Lemma 6 in Section 3 for the details of constructing a strategy with arbitrarily
negative expected costs when A is not absolutely continuous. ♦

The situation in Theorem 1 simplifies significantly when A′ is a martingale:

Corollary 1. Suppose that A is of the form At =
∫ t

0 A
′
s ds for a bounded càdlàg martingale A′.

Then the optimal strategy (11) becomes

Xt =
x(1 + ρ(T − t))

2 + ρT
+

1

4ρ
(2 + ρ(T − t))A′t +

1

4
(1 + ρ(T − t))At. (12)

Note that the strategy (12) can be computed in a pathwise manner without reference to
the particular distribution of A; see Figure 1. This special case highlights the ambiguous and
seemingly contradictory nature of the robustness of the optimal strategy: this strategy reacts
very sensitively to structural features of the price process, i.e., to the martingale property of A′,
but once this structural requirement is satisfied, the strategy is completely independent of the
law of A′. When A vanishes, this strategy reduces to the Obizhaeva–Wang solution (3).
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Figure 1: Optimal strategy (12) when ρ = 2 and A′ is a compensated Poisson process with intensity
λ = 20.

Remark 5 (Comparison with Almgren–Chriss model). It is interesting to compare the optimal
strategy (9) with the one for the corresponding Almgren–Chriss model. In the latter model,
strategies must be absolutely continuous. Given such a strategy X, the price process takes the
form

S̃Xt = S0
t + ηẊt + γ(Xt −X0),

where η and γ are two nonnegative constants. When X0 = x and XT = 0, the corresponding
liquidation costs are

C̃(X) =

∫ T

0
S0
t Ẋt dt+ η

∫ T

0
Ẋ2
t dt+

γ

2
x2.

In our setting, there is always a unique strategy that minimizes the expected liquidation costs
E[ C̃(X) ] and it is given by

Xt =
T − t
T

(
x− 1

2η

∫ t

0

T

(T − s)2
E
[ ∫ T

s
(T − u) dAu

∣∣∣Fs ] ds);

see Corollary 2 in Schied (2011). Here the drift A enters the optimal strategy basically in
integrated form, and so one can expect that possible misspecifications of the drift may average
out to some extent. This relatively stable behavior should be compared to the direct dependence
of the strategy (9) on the derivative of the drift. ♦

Remark 6 (A two-player situation). As discussed in the Introduction, an important source for
a drift in the asset price process S0 can be the trading activity of another large market partic-
ipant (“the seller”). There are various reasons why another economic agent (“the predator”)
may get good estimates for the resulting drift. For instance, some trade execution algorithms
create characteristic order patterns and therefore allow for an inference of their future trading
trajectory. But there are also other possibilities as discussed in Schöneborn & Schied (2009).

Suppose that the seller aims at liquidating a position of x 6= 0 shares by time T > 0. Suppose
moreover, for simplicity, that the unaffected asset price S0 is a square-integrable martingale so
that the seller will use the liquidation strategy X∗ from (3). The predator will then perceive the
unaffected price process S̃0 = S0 +EX

∗
, which is no longer a martingale but has the drift EX

∗
.

9



Since X∗ has a terminal jump, also the resulting ‘drift’ EX
∗

will jump by the same amount
at time T . So if the predator faces a more relaxed time constraint than the seller, which is a
natural assumption, the predator will perceive a drift that is not absolutely continuous and, by
Theorem 1, will have the possibility of making arbitrary large expected profits. Similar results
will also hold when S0 has a nonvanishing drift. ♦

2.3 Minimization of a cost-risk criterion

As a corollary to Theorem 1, we can also find optimal strategies for the linear risk criterion
that was proposed in Gatheral & Schied (2011) for the Almgren–Chriss framework with a risk-
neutral geometric Brownian motion as unaffected price process. When in our model S0 is a
risk-neutral geometric Brownian motion, i.e.,

S0
t = S0e

σWt− 1
2
σ2 t for some σ > 0 and a Brownian motion W , (13)

the same reasoning as in Gatheral & Schied (2011) motivates the minimization of a cost-risk
functional of the form

E
[
C(X) + λ

∫ T

0
SXt Xt dt

]
, (14)

where λ has the same sign as X0− = x. The parameter λ is typically derived from the Value at
Risk of a unit asset position under the assumption of log-normal future returns. As argued in
Remark 2.2 of Gatheral & Schied (2011), one could obtain the same cost-risk functional (but
perhaps with a different value for λ) if Value at Risk is replaced by a coherent risk measure or
by any other positively homogeneous risk measure.

Optimal strategies for the cost-risk functional (14) in the Almgren–Chriss framework have
the advantages of being sensitive to changes in the asset price, easily computable in closed form,
and possess completely transparent reactions to parameter changes. In addition, they have a
striking robustness property: they are independent of the actual law of S0 as long as S0 is a
martingale. Thus they may be optimal even when the law of S0 is not of the particular form
(13). A disadvantage is that optimal strategies can switch sign, in which case the interpretation
of the cost-risk functional (14) breaks down. But, as discussed in Section 4 of Gatheral & Schied
(2011), the probability that strategies become negative will be small with reasonable parameter
choices.

Corollary 2. The minimization of the cost-risk functional (14) is equivalent to the minimization
of the expected costs for the new price process

S̃0
t =

ρ

ρ+ λ

(
S0
t − λ

∫ t

0
S0
s ds

)
.

In particular, the statements of Theorem 1 carry over to the minimization of the cost-risk
functional (14) when A is replaced by

Ãt =
ρ

ρ+ λ

(
At − λ

∫ t

0
S0
s ds

)
.

When S0 is a bounded martingale, then Ã′t = − ρλ
ρ+λS

0
t is also a martingale. Thus, by

Corollary 1 the optimal strategy that minimizes the cost-risk criterion (13) simply becomes

X∗t =
x(1 + ρ(T − t))

2 + ρT
− ρλ

ρ+ λ

(
1

4ρ
(2− ρ(T − t))S0

t +
1

4
(1 + ρ(T − t))

∫ t

0
S0
s ds

)
.

10



This strategy can be computed in a pathwise manner and is completely independent of the
particular law of the martingale S0. It thus minimizes the cost-risk criterion (13) whenever P is
a martingale measure for S0. When S0 is not bounded but just a square-integrable martingale,
then X∗ will not be an admissible semimartingale strategy in the sense of Definition 1. Never-
theless, in this special case, one can show that X∗ attains the optimum of the cost-risk criterion
and thus can still be regarded as an optimal strategy. We leave the details to the reader.

3 Proofs

To simplify the notation, we will drop the superscript X in EX throughout the proofs when
there is no ambiguity about the strategy X used in the definition of E = EX .

Proof of Lemma 1. We first note that

N∑
k=0

S0
tNk
ξNk = S0

0∆X0 +
N∑
k=1

S0
tNk−1

(XtNk
−XtNk−1

) +
N∑
k=1

(S0
tNk
− S0

tNk−1
)(XtNk

−XtNk−1
).

By Theorems II.5.21 and II.5.23 in Protter (2004), this expression converges in probability to

S0
0∆X0 +

∫
(0,T ]

S0
t− dXt + [S0, X]T −∆S0

0∆X0 =

∫
[0,T ]

S0
t− dXt + [S0, X]T .

Similarly,

N∑
k=0

(ξNk )2 = (∆X0)2 +
N∑
k=1

(XtNk
−XtNk−1

)2 −→ [X]T ,

in probability.
When defining

ẼNt :=
N−1∑
i=0

eρt
N
i (XtNi+1∧t

−XtNi ∧t
)

then ẼNt is the Riemann approximation of a stochastic integral with a deterministic and con-
tinuous integrand, and hence ẼN →

∫
(0,·] e

ρs dXs uniformly on compacts in probability (ucp)

(Jacod & Shiryaev 2003, Proposition I.4.44). It follows that

ENt := e−ρt
(
e−ρT/N∆X0 + ẼNt

)
−→ Et ucp as N ↑ ∞.

Moreover,

k−1∑
i=0

e−ρ(tNk −t
N
i )ξNi = e−ρt

N
k

(
∆X0 +

k−1∑
i=1

eρt
N
i (XtNi

−XtNi−1
)
)

= e−ρt
N
k−1

(
e−ρT/N∆X0 +

k−2∑
i=0

eρt
N
i (XtNi+1

−XtNi
)
)

= EN
tNk−1

.

Therefore,

N∑
k=0

k−1∑
i=0

e−ρ(tNk −t
N
i )ξNi ξ

N
k =

N∑
k=1

k−1∑
i=0

e−ρ(tNk −t
N
i )ξNi ξ

N
k =

N∑
k=1

EN
tNk−1

(XtNk
−XtNk−1

)

=

∫
(0,T ]

(EN )σNt dXt,

11



where, using the notation from Section II.5 of Protter (2004), for a process Y we let

Y σN := Y01l{0} +

N−1∑
k=0

YtNk
1l(tNk ,t

N
k+1] and

∫
(0,T ]

Y σN
t dXt =

N−1∑
k=0

YtNk
(XtNk+1

−XtNk
).

Now ∫
(0,T ]

(EN )σNt dXt =

∫
(0,T ]

EσNt dXt +

∫
(0,T ]

(
(EN )σNt − E

σN
t

)
dXt. (15)

The first integral on the right converges to
∫

(0,T ]Et− dXt in probability by Theorem II.5.21 of

Protter (2004). To deal with the second integral on the right, we note that sup0≤t≤T |ENt −Et| ≤
ε implies that also sup0≤t≤T |(EN )σNt −E

σN
t | ≤ ε. Thus, (EN )σN−EσN → 0 ucp. The continuity

of the stochastic integral with respect to ucp convergence (Protter 2004, p. 59) therefore implies
that the rightmost integral in (15) tends to zero in probability for N ↑ ∞. We thus obtain that

N∑
k=0

k−1∑
i=0

e−ρ(tNk −t
N
i )ξNi ξ

N
k −→

∫
(0,T ]

Et− dXt =

∫
[0,T ]

Et− dXt

in probability (here we have used the fact that E0− = 0 by our convention on stochastic integrals
made at the end of Remark 3). Putting everything together yields the assertion.

Now we start preparing for the proof of Theorem 1, which will rely on a series of lemmas.
The basic idea underlying the proof is the verification argument appearing in the next lemma.
The nature of the verification argument becomes apparent when taking αt := A′t in Lemma 2.
The key to the argument is the following formula for the remaining costs of optimally liquidating
the asset position Xt over (t, T ], taking into account a given volume impact Et. This volume
impact Et can be thought of as the volume impact generated by using a strategy X throughout
[0, t] that leads to the asset position Xt at time t. The formula is

− 1

2
E2
t + ϕ(t)(Xt − Et)2 + ϕ(t)(Xt − Et)Yt − ρE

[ ∫ T

t

(1

2
ϕ(s)Ys −

1

2ρ
A′s

)2
ds
∣∣∣Ft ]. (16)

This formula needs to be guessed; we are not aware of a method by which it can be derived
analytically. Once this formula has been guessed, we can proceed by the following standard
verification argument, which is also used, e.g., in Section 6.6.1 of Pham (2009): We show that
the costs (16) plus the costs generated by using X over [0, t] is submartingale for any strategy
X and a true martingale if X is an optimal strategy.

Let us recall the definition

ϕ(t) =
1

2 + ρ(T − t)
.

Lemma 2. Fix X ∈ Xsem(x, T ), and let αt be any progressively measurable process with

E[
∫ T

0 α2
t dt ] <∞. We furthermore let Zα = (Zαt ) be a càdlàg version of the martingale

−E
[ ∫ T

0
αs ds+ ρ

∫ T

0

∫ s

0
αr dr ds

∣∣∣Ft ],
12



and we define

Y α
t := Zαt + ρ

∫ t

0

∫ s

0
αr dr ds+

(
1 + ρ(T − t)

) ∫ t

0
αs ds.

Then

E [ C(X) ] = −xS0 + ϕ(0)x2 + ϕ(0)xZα0 − ρE

[∫ T

0

(
1

2
ϕ(s)Y α

s −
1

2ρ
αs

)2

ds

]

+ E
[ ∫ T

0
Xtαt dt−

∫
(0,T ]

Xt− dAt

]
+ ρE

[ ∫ T

0

{
ϕ(t)Xt + (1− ϕ(t))Et +

1

2
ϕ(t)Y α

t −
1

2ρ
αt

}2

dt

]
.

(17)

Proof. We note first that Jensen’s inequality implies (
∫ T

0 αt dt)
2 ≤ T

∫ T
0 α2

t dt. Hence,

E[ (ZαT )2 ] = E
[(∫ T

0
αt dt+ρ

∫ T

0

∫ t

0
αs ds dt

)2 ]
≤ E

[(
(1+ρT )

√
T

∫ T

0
α2
s ds

)2 ]
<∞, (18)

and in turn E[
∫ T

0 (Y α
t )2 dt] <∞. So all expressions in (17) are well-defined. We now define for

X ∈ Xsem(x, T )

C̃Xt :=

∫
[0,t]

S0
t− dXt + [S0, X]t +

∫
[0,t]

Es− dXs +
1

2
[X]t.

Then C̃Xt describes the costs incurred by using the strategy X throughout the time interval
[0, t]. Next, we use our guess (16) for the costs of optimally liquidating the amount x = Xt by
trading over (t, T ] when an initial volume impact of size ε = Et is given at time t. It leads to
defining the function

V α(t, x, ε) := −1

2
ε2 + ϕ(t)(x− ε)2 + ϕ(t)(x− ε)Y α

t ,

which describes these optimal costs less the integral term in (16), which does not depend on
x = Xt or ε = Et. By adding C̃Xt we get the process

CXt := C̃Xt + V α(t,Xt, Et). (19)

We will now compute the Itô differential dCXt . Our computation will mainly rely on Itô’s
product rule in the form (6). For the computation, it will be helpful to collect a few auxiliary
formulas in advance. For instance, it follows from the definition of Y α that

dY α
t = dZαt + (1 + ρ(T − t))αt dt = dZαt +

1− ϕ(t)

ϕ(t)
αt dt. (20)

Using Et = e−ρt
∫

[0,t] e
ρs dXs from (7), the fact that E0− = 0 (which follows from our corre-

sponding convention for stochastic integrals), and integration by parts yields

Et = Xt − x− ρ
∫ t

0
Es ds, 0 ≤ t ≤ T. (21)
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It follows in particular that the process Et −Xt does not jump throughout [0, T ] and that on
this interval d(Et −Xt) = −ρEt dt. We also note that dϕ(t) = ρϕ(t)2 dt.

Recalling the fact that M0 = A0 = 0, we now choose values S0
0−, M0−, and A0− in R that

satisfy

S0 − S0
0− = ∆S0

0 = ∆M0 + ∆A0 = −M0− −A0− (22)

but can otherwise be arbitrary. We also choose an arbitrary value Zα0− ∈ R. We then have on
[0, T ]

dC̃Xt = S0
t− dXt + d[S0, X]t + Et− dXt +

1

2
d[X]t

= d(S0
tXt)−Xt− dMt −Xt− dAt + Et− dXt +

1

2
d[X]t.

(23)

Hence, a lengthy but straightforward calculation gives

dCXt = d(S0
tXt)−Xt− dMt −Xt− dAt + ϕ(t)(Xt− − Et−) dZαt

+ρ

{
E2
t + ϕ(t)2(Xt − Et)2 + 2ϕ(t)(Xt − Et)Et

+
1

ρ
(1− ϕ(t))(Xt − Et)αt + ϕ(t)EtY

α
t + ϕ(t)2(Xt − Et)Y α

t

}
dt

= d(S0
tXt)−Xt− dMt + ϕ(t)(Xt− − Et−) dZαt (24)

+ρ

{
ϕ(t)Xt + (1− ϕ(t))Et +

1

2
ϕ(t)Y α

t −
1

2ρ
αt

}2

dt

+Xt−(αt dt− dAt)− ρ
(1

2
ϕ(t)Y α

t −
1

2ρ
αt

)2
dt.

Due to the regularity of their sample paths, all stochastic processes involved have P-a.s. at most
countably many discontinuities. The set of jump times therefore has Lebesgue measure zero.
Hence we can replace left-hand limits in terms such as αt− dt by their regular values, i.e., we
can write αt dt. Moreover, by (22) and the fact that XT = 0,∫

[0,T ]
d(S0

tXt)−
∫

[0,T ]
Xt− dMt = S0

TXT − S0
0−X0− −X0−∆M0 −

∫
(0,T ]

Xt− dMt

= −xS0 +X0−∆A0 −
∫

(0,T ]
Xt− dMt.

(25)

Building the integral
∫

[0,T ] dC
X
t thus yields

CXT − CX0− = −xS0 −
∫

(0,T ]
Xt− dMt +

∫
[0,T ]

ϕ(t)(Xt− − Et−) dZαt +

∫ T

0
Xtαt dt−

∫
(0,T ]

Xt− dAt

+ρ

∫ T

0

{
ϕ(t)Xt + (1− ϕ(t))Et +

1

2
ϕ(t)Y α

t −
1

2ρ
αt

}2

dt (26)

−ρ
∫ T

0

(1

2
ϕ(t)Y α

t −
1

2ρ
αt

)2
dt.

The stochastic integral Lu :=
∫

(0,u]Xt− dMt satisfies E[ [L]T ] = E[
∫

(0,T ]X
2
t− d[M ]t ] < ∞

since M is a square-integrable martingale and X is bounded by definition. Hence L is a true
martingale and satisfies E[LT ] = L0 = 0.

14



Now we show that

E
[ ∫

[0,T ]
ϕ(t)(Xt− − Et−) dZαt

]
= ϕ(0)x(Zα0 − Zα0−). (27)

Taking expectations in (26) will then yield the assertion, because, on the one hand, C̃X0− = 0,
Y α

0− = Zα0−, and so CX0− = V (t−, X0−, E0−) = ϕ(0)x2 + ϕ(0)xZα0−. On the other hand,

Y α
T = 0 P-a.s. (28)

and so CXT = C̃XT + V α(T, 0, ET ) = C(X) P-a.s.
To show (27), we use (18) and Doob’s quadratic maximal inequality to conclude that Zα

is a square-integrable martingale. Moreover, the boundedness of X, the identity (21), and
Gronwall’s lemma yield that E is bounded as well. Thus, the stochastic integral Nu :=∫

[0,u] ϕ(t)(Xt− − Et−) dZαt is a true martingale. Together with N0 = ϕ(0)x∆Zα0 this shows

(27) and thus concludes the proof.

Remark 7. In the preceding proof, we have only used the facts that Y α satisfies (20) for
some square-integrable martingale Zα and the identity (28). But these two identities already
determine Y α and Zα.

In the next lemma, we derive an explicit formula for a strategy for which the last term in
(17) vanishes. When we can take αt = A′t, this strategy will be the optimal strategy.

Lemma 3. Suppose that α is a bounded semimartingale and that Y α and Zα are as in Lemma 2.
Then for all x ∈ R and T > 0 there exists a unique strategy X ∈ Xsem(x, T ) such that

ϕ(t)Xt + (1− ϕ(t))Et +
1

2
ϕ(t)Y α

t −
1

2ρ
αt = 0 for a.e. t ∈ [0, T ). (29)

Moreover, for 0 ≤ t < T , X is given by

Xt =
x(1 + ρ(T − t))− 1

2(1 + ρt)Y α
0

2 + ρT
− 1

2

∫
(0,t]

ϕ(s) dZαs +
1

2ρ
αt

+ ρ

∫ t

0

(
− 1

2

∫
(0,s]

ϕ(r) dZαr −
1

2

∫ s

0
αr dr

)
ds.

(30)

Furthermore, X has the initial jump

∆X0 =
1

2ρ
α0 −

x+ 1
2Y

α
0

2 + ρT
(31)

and the terminal jump

∆XT = −
x+ 1

2Y
α

0

2 + ρT
− 1

2

∫
(0,T )

ϕ(s) dZαs −
1

2

∫ T

0
αs ds+

1

2
Y α
T− −

1

2ρ
αT−. (32)

In particular, X belongs to XBV(x, T ) when both Z and α are of finite variation.
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Proof. When (29) is not already satisfied at t = 0−, then an initial jump is needed so that
(29) is satisfied immediately after the jump, because all processes in (29) are right-continuous.
Taking the limit t ↓ 0 in (29) and using the identities X0 = x+ ∆X0 and E0 = ∆X0 yields

∆X0 = −1

2
ϕ(0)Y α

0 +
1

2ρ
α0 − ϕ(0)x =

1

2ρ
α0 −

x+ 1
2Y

α
0

2 + ρT
. (33)

We now solve for the dynamics of X on (0, T ). Dividing (29) by ϕ and taking differentials
yields

0 = dXt − ρEt dt+ (1 + ρ(T − t)) dEt +
1

2
dY α

t +
1

2
αt dt−

1

2ρϕ(t)
dαt

=
1

ϕ(t)
dEt +

1

2
dY α

t +
1

2
αt dt−

1

2ρϕ(t)
dαt, (34)

where we have used the identity dEt = dXt− ρEt dt in the second step. We can now informally
solve (34) for dEt and then obtain that for t ∈ [0, T )

Et = ∆X0 +

∫
(0,t]

dEs = −
x+ 1

2Y
α

0

2 + ρT
− 1

2

∫
(0,t]

ϕ(s) dZαs −
1

2

∫ t

0
αs ds+

1

2ρ
αt, (35)

where we have used the fact that E0 = ∆X0, (33), and (20). To make this argument rigorous,
we define Λt so that (34) becomes 0 =

∫
(0,t]

1
ϕ(s) dEs + Λt after integration. Then we use the

associativity of the stochastic integral (Protter 2004, Theorem II.5.19) to get

0 =

∫
(0,t]

ϕ(s)
1

ϕ(s)
dEs +

∫
(0,t]

ϕ(s) dΛs = Et − E0 +

∫
(0,t]

ϕ(s) dΛs.

When taking differentials again, we arrive at (35).
Now (21) and (35) yield that for t ∈ [0, T )

Xt = x+ Et + ρ

∫ t

0
Es ds

=
x(1 + ρ(T − t))− 1

2(1 + ρt)Y α
0

2 + ρT
− 1

2

∫
(0,t]

ϕ(s) dZαs +
1

2ρ
αt

+ρ

∫ t

0

(
− 1

2

∫
(0,s]

ϕ(r) dZαr −
1

2

∫ s

0
αr dr

)
ds

and this proves (30). It is moreover clear from the proof that any strategy in Xsem(x, T )
satisfying (29) must be of this form, which gives uniqueness.

Now we turn to proving our formula for the terminal jump. Taking left-hand limits t ↑ T in
(29) and using that ϕ(T−) = ϕ(T ) = 1/2 yields

0 = XT− + ET− +
1

2
Y α
T− −

1

ρ
αT−

= XT− −
x+ 1

2Y
α

0

2 + ρT
− 1

2

∫
(0,T )

ϕ(s) dZαs −
1

2

∫ T

0
αs ds+

1

2
Y α
T− −

1

2ρ
αT−,

where we have used (35) in the second step. Since XT = 0 we have ∆XT = −XT−, and our
formula follows.
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Now we show that X is admissible, i.e., we must show that X is bounded. To this end,
integration by parts yields that∫

(0, u ]
ϕ(t) dZαt = ϕ(t)Zαt − ϕ(0)Zα0 −

∫ u

0
Zαt ϕ

′(t) dt. (36)

Since α is bounded, so is Zα. Moreover, ϕ and ϕ′ are bounded as well. It hence follows that∫
(0, · ] ϕ(t) dZαt is bounded. But all other terms in (30) are bounded by assumption. Therefore
X is an admissible strategy.

Lemma 4. Suppose that M is a given constant, α is a semimartingale satisfying E[
∫ T

0 α2
t dt ] ≤

M , and Y α, Zα, and X are as in Lemma 2. Then there exists a constant C that depends only
on M , x, ρ, and T such that

E
[

sup
0≤t<T

(
Xt −

1

2ρ
αt

)2
]
≤ C.

Moreover, |Y α
0 | ≤ (1 + ρT )

√
MT .

Proof. We get from (18) that E[ (ZαT )2 ] ≤MT (1+ρT )2. Doob’s quadratic maximal inequality
therefore yields that Z∗ := sup0≤t≤T |Zαt | satisfies E[ (Z∗)2 ] ≤ 4MT (1 + ρT )2. We furthermore
have

Y α
0 = Zα0 ≤

√
E[ (ZαT )2 ] ≤ (1 + ρT )

√
MT

and

sup
0≤t≤T

|Y α
t | ≤ Z∗ + (1 + 2ρT )

√
T

∫ T

0
α2
t dt,

and so
E
[

sup
0≤t≤T

(Y α
t )2

]
≤ 8MT (1 + ρT )2 + 2(1 + 2ρT )2MT.

Next, we get from (36) that

sup
0≤t≤T

∣∣∣ ∫
(0,t]

ϕ(s) dZαs

∣∣∣ ≤ 2Z∗.

Whence,

E
[

sup
0≤t≤T

(∫
(0,t]

ϕ(s) dZαs

)2 ]
≤ 16MT (1 + ρT )2.

Since (30) holds for 0 ≤ t < T , we now easily get the assertion.

We will say that α is a bounded elementary process if it is of the form

αt = α01l{0}(t) +

N∑
i=1

αi1l[τi,τi+1)(t),

where N ∈ N, the (τi) are stopping times with 0 ≤ τ1 ≤ · · · ≤ τN+1 < ∞, and the coefficients
αi are bounded Fτi-measurable random variables.
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Lemma 5. Let α be a bounded elementary process, x ∈ R, T > 0, and consider the corresponding
strategy X ∈ Xsem(x, T ) constructed in Lemma 3. Then for each ε > 0 there exists a strategy
X̃ ∈ XBV(x, T ) such that |E[ C(X) ]− E[ C(X̃) ]| < ε.

Proof. First, we recall from (36) that Nu :=
∫

(0,u] ϕ(t) dZαt is a bounded càdlàg martingale
with N0 = 0. We set Nt = 0 for t < 0 and define

Nn
t := n

∫ t

t− 1
n

Ns ds, n ∈ N

Then Nn
t is continuous, bounded uniformly in n and t, and of bounded variation in t. Fur-

thermore, Nn
t → Nt− for all t ≥ 0 as n ↑ ∞. Thus, when defining Xn

0− := x and Xn
t :=

Xt + 1
2

(
Nt−Nn

t

)
we have Xn

t− → Xt− for all t boundedly. Moreover, we get from (30) that, for
0 ≤ t < T ,

Xn
t =

x(1 + ρ(T − t))− 1
2(1 + ρt)Y α

0

2 + ρT
− 1

2
Nn
t +

1

2ρ
αt − ρ

∫ t

0

(
Ns +

1

2

∫ s

0
αr dr

)
ds,

and so Xn is of bounded variation.
Now we set Ent :=

∫
[0,t] e

−ρ(t−s) dXn
s . Integrating by parts as in (21) yields Ent = Xn

t − x−
ρ
∫ t

0 E
n
s ds. Therefore,

|Ent− − Et−| ≤ |Xn
t− −Xt−|+ ρ

∫ t

0
|Ens− − Es−| ds,

and so Gronwall’s inequality (in the extended form of, e.g., Lemma 2.7 in Teschl (2012)) implies
that

|Ent− − Et−| ≤ |Xn
t− −Xt−|+ ρ

∫ t

0
eρs|Xn

s− −Xs−| ds.

Thus, also Ent− → Et− boundedly.
With |A|[0,t] denoting the total variation of A over [0, t], we get from (17) that∣∣E[ C(Xn) ]− E[ C(X) ]

∣∣
≤ E

[ ∫ T

0
|Xn

t −Xt||αt| dt+

∫
[0,T ]
|Xn

t− −Xt−| d|A|[0,t]
]

+ρ

∣∣∣∣∣E
[ ∫ T

0

{
ϕ(t)Xn

t + (1− ϕ(t))Ent +
1

2
ϕ(t)Y α

t −
1

2ρ
αt

}2

dt

]
(37)

−E
[ ∫ T

0

{
ϕ(t)Xt + (1− ϕ(t))Et +

1

2
ϕ(t)Y α

t −
1

2ρ
αt

}2

dt

]∣∣∣∣∣.
Dominated convergence implies that the right-hand side converges to zero when n ↑ ∞.

Lemma 6. Fix T > 0 and suppose that A is not P-a.s. absolutely continuous on [0, T ). That
is, A is not P-a.s. of the form At =

∫ t
0 A
′
s ds for some progressively measurable process A′ and

0 ≤ t < T . Then, for any x ∈ R,

inf
XBV(x,T )

E[ C(X) ] = −∞.
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Proof. Let us define two finite measures Q and QA on ([0, T )× Ω,B[0, T )⊗F) by∫
f dQ =

∫ ∫ T

0
f(t, ω) dtP(dω),

∫
f dQA =

∫ ∫
[0,T )

f(t, ω) dAt(ω)P(dω),

where f is a bounded measurable function on ([0, T )×Ω,B[0, T )⊗F). Since A is not absolutely
continuous, there exists a bounded measurable function ψ ≥ 0 on [0, T )×Ω such that

∫
ψ dQ = 0

and
∫
ψ dQA = 1. By the predictability of A and Theorem 57 in Chapter VI of Dellacherie &

Meyer (1982), we may replace ψ by its predictable projection, ψ, and still have
∫
ψ dQ = 0 and∫

ψ dQA = 1.
It follows from Theorem II.4.10 in Protter (2004) and a monotone class argument that

the left-hand limits of bounded elementary processes are dense with respect to (Q + QA)-a.e.
convergence in the class of predictable processes. Moreover, bounded elementary processes are
clearly of finite total variation. By approximating (K + 1)ψ for some K ∈ N, we hence get that
there exists a bounded elementary process α ≥ 0 such that

1 ≥
∫
α2
− dQ = E

[ ∫ T

0
α2
t− dt

]
= E

[ ∫ T

0
α2
t dt

]
(38)

and

K ≤
∫
α− dQ

A = E
[ ∫

[0,T ]
αt− dAt

]
.

Now let X ∈ Xsem(x, T ) be the corresponding strategy constructed in Lemma 3. We denote
by Ξ the random variable

Ξ := sup
0≤t<T

∣∣∣Xt −
1

2ρ
αt

∣∣∣ = sup
0<t≤T

∣∣∣Xt− −
1

2ρ
αt−

∣∣∣. (39)

By Lemma 4, E[ Ξ2 ] is bounded by a constant C that depends only on x, ρ, and T . By Lemma 2,
(29), and (4), the expected costs of the strategy X can be estimated as follows:

E [ C(X) ] = −xS0 + ϕ(0)x2 + ϕ(0)xY α
0 − ρE

[∫ T

0

(
1

2
ϕ(s)Y α

s −
1

2ρ
αs

)2

ds

]

+E
[ ∫ T

0
Xtαt dt−

∫
(0,T ]

Xt− dAt

]
≤ −xS0 + x2 + x(1 + ρT )

√
MT + E

[ 1

2ρ

∫ T

0
α2
t dt+ Ξ

∫ T

0
|αt| dt

]
(40)

−E
[ 1

2ρ

∫
[0,T )

αt− dAt − Ξ|A|[0,T ]

]
≤ C̃ − K

2ρ
,

where |A|[0,T ] denotes again the total variation of A on [0, T ] and C̃ is a constant depending
only on x, ρ, T , and E[ |A|2[0,T ] ]. Here we have also used (38). Since K was arbitrary, it follows

that inf E[ C(X) ] = −∞ when the infimum is taken over X ∈ Xsem(x, T ). An application of
Lemma 5 shows that Xsem(x, T ) can be replaced by XBV(x, T ).
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Lemma 7. Fix T > 0 and suppose that A is P-a.s. of the form At =
∫ t

0 A
′
s ds for some

progressively measurable process A′ but that E[
∫ T

0 (A′t)
2 dt ] =∞. Then, for any x ∈ R,

inf
XBV(x,T )

E[ C(X) ] = −∞.

Proof. We have

∞ =

√
E
[ ∫ T

0
(A′t)

2 dt
]

= sup
ψ

E
[ ∫ T

0
ψtA

′
t dt
]
,

where the supremum is taken over all progressively measurable ψ with E[
∫ T

0 ψ2
t dt ] ≤ 1. By a

monotone class argument, the supremum over these ψ can be replaced by a supremum over all
bounded elementary processes α with E[

∫ T
0 α2

t dt ] ≤ 1. For every K > 0 there hence exists a
bounded elementary process α such that

E
[ ∫ T

0
α2
t dt

]
≤ 1 and E

[ ∫ T

0
αtA

′
t dt
]
≥ K (41)

Let X ∈ Xsem(x, T ) be the corresponding strategy constructed in Lemma 3 and define Ξ as in
(39). Then, due to (41),

E [ C(X) ] = −xS0 + ϕ(0)x2 + ϕ(0)xY α
0 − ρE

[∫ T

0

(
1

2
ϕ(s)Y α

s −
1

2ρ
αs

)2

ds

]

+E
[ ∫ T

0
Xt(αt −A′t) dt

]
≤ −xS0 + x2 + x

√
MT (1 + ρT )2 + E

[ 1

2ρ

∫ T

0
α2
t dt+ Ξ

∫ T

0
|αt| dt

]
−E
[ 1

2ρ

∫
[0,T ]

αtA
′
t dt− Ξ|A|[0,T ]

]
≤ C̃ − K

2ρ
,

where C̃ is a constant depending only on x, ρ, T , and E[ |A|2[0,T ] ]. Since K was arbitrary, it

follows that inf E[C(X) ] = −∞ when the infimum is taken over X ∈ Xsem(x, T ). An application
of Lemma 5 shows that Xsem(x, T ) can be replaced by XBV(x, T ).

Proof of Theorem 1. By Lemmas 6 and 7 we may concentrate on the case in which A
is absolutely continuous on [0, T ) with square-integrable derivative A′. Taking αt := A′t in
Lemma 2 yields that for any strategy X,

E [ C(X) ] = −xS0 + ϕ(0)x2 + ϕ(0)xY0 − ρE

[∫ T

0

(
1

2
ϕ(s)Ys −

1

2ρ
A′s

)2

ds

]

+ ρE
[ ∫ T

0

{
ϕ(t)Xt + (1− ϕ(t))Et +

1

2
ϕ(t)Yt −

1

2ρ
A′t

}2

dt

]
≥ −xS0 + ϕ(0)x2 + ϕ(0)xY0 − ρE

[∫ T

0

(
1

2
ϕ(s)Ys −

1

2ρ
A′s

)2

ds

] (42)

with equality if and only if (29) holds with α = A′. Since X was arbitrary, we have

inf
X∈Xsem(x,T )

E[C(X)] ≥ ϕ(0)x2 + ϕ(0)xY0 − ρE

[∫ T

0

(
1

2
ϕ(s)Ys −

1

2ρ
A′s

)2

ds

]
.
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To show the converse inequality, take bounded elementary processes αn such that

δn := E
[ ∫ T

0
(αnt −A′t)2 dt

]
−→ 0.

In particular there exists a constant M such that for all n we have E[
∫ T

0 (αnt )2 dt ] ≤ M . Let
Xn be the strategy constructed for αn in Lemma 3. By Lemma 2 we have

E [ C(Xn) ] = −xS0 + ϕ(0)x2 + ϕ(0)xY αn

0 − ρE

[∫ T

0

(
1

2
ϕ(s)Y αn

s − 1

2ρ
αns

)2

ds

]

+ E
[ ∫ T

0
Xn
t (αnt −A′t) dt

]
.

(43)

By Jensen’s inequality, we have

E
[(

sup
t≤T

∣∣∣ ∫ t

0
αns ds−

∫ t

0
A′s ds

∣∣∣)2 ]
≤ Tδn,

E
[(

sup
t≤T

∣∣∣ ∫ t

0

∫ s

0
αnr dr ds−

∫ t

0

∫ s

0
A′r dr ds

∣∣∣)2 ]
≤ T 3δn.

In particular, we have E[ (Zα
n

T −ZT )2 ]→ 0. It therefore follows from Doob’s quadratic maximal
inequality that supt≤T |Zα

n

t −Zt| → 0 in L2(P) and hence moreover that supt≤T |Y αn

t −Yt| → 0
in L2(P). Consequently, the right-hand side of the first line in (43) converges to

−xS0 + ϕ(0)x2 + ϕ(0)xY0 − ρE

[∫ T

0

(
1

2
ϕ(s)Ys −

1

2ρ
A′s

)2

ds

]
.

Furthermore, by the Cauchy–Schwarz inequality,

∣∣∣E[ ∫ T

0
Xn
t (αnt −A′t) dt

]∣∣∣ ≤
√
δn · E

[ ∫ T

0
(Xn

t )2 dt
]
.

It is a consequence of Lemma 4 that E[
∫ T

0 (Xn
t )2 dt ] is bounded uniformly in n, and so it follows

that E[
∫ T

0 Xn
t (αnt −A′t) dt ]→ 0. We thus have proved that

E [ C(Xn) ] −→ −xS0 + ϕ(0)x2 + ϕ(0)xY0 − ρE

[∫ T

0

(
1

2
ϕ(s)Ys −

1

2ρ
A′s

)2

ds

]
.

This completes the proof of our formula for the optimal expected costs.
As for optimal strategies, we have already remarked above that equality in (42) can hold

only when

0 = ϕ(t)Xt + (1− ϕ(t))Et +
1

2
ϕ(t)Yt −

1

2ρ
A′t P-a.s. for all t ∈ [0, T ). (44)

By Lemma 3, there exists a unique strategy in Xsem(x, T ) satisfying this condition when A′ is
a bounded semimartingale. This strategy is given by (11). When A′ is not a semimartingale, it
is clear that (44) cannot be satisfied by a semimartingale X. Also, X will be of finite variation
if and only if ϕ(t)Yt − 1

2ρA
′
t is of finite variation. This concludes the proof of Theorem 1.
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Proof of Corollary 1: A computation shows that

−Zt = (1 + ρ(T − t))At +
1

2
(2 + ρ(T − t))(T − t)A′t + ρ

∫ t

0
As ds,

and so in particular Y0 = Z0 = −1
2(2 + ρT )TA′0. From the integration-by-parts formula, dZt

must satisfy

−dZt =
1

2
(2 + ρ(T − t))(T − t) dA′t + Λt dt,

for a suitable process Λt. But both Zt and A′t are martingales, and so we must have Λt = 0
(alternatively, the fact Λt = 0 can also be verified by a direct computation). Consequently,

−
∫

(0,s]
ϕ(u) dZu =

1

2

∫
(0,s]

(T − u) dA′u =
1

2

(
(T − s)A′s − TA′0 +As

)
.

This identity yields that

−
∫ t

0

∫
(0,s]

ϕ(u) dZu ds =
1

2

(
(T − t)At − TA′0t+ 2

∫ t

0
As ds

)
.

Plugging these formulas into (11) yields the assertion after a short computation.

Proof of Corollary 2. We start by simplifying the cost-risk functional (14). First, we can
assume S0

0− = 0 without loss of generality and therefore write∫
[0,T ]

S0
t− dXt + [S0, X]T = −

∫
[0,T ]

Xt− dS
0
t

as in (23). Then we can write SXt = S0
t + Et−. When defining

Ŝt := S0
t − λ

∫ t

0
S0
s ds,

we can thus write

E
[
C(X) + λ

∫ T

0
SXt Xt dt

]
= E

[
−
∫

[0,T ]
Xt− dŜt +

∫
[0,T ]

Et− dXt +
1

2
[X]T + λ

∫ T

0
EtXt dt

]
.

(45)

To simplify (45) further, we let

Et :=

∫ t

0
Es ds =

1

ρ

(
Xt − x− Et

)
,

where we have used (21) in the second step, and set E0− = 0. Then∫ T

0
EtXt dt =

∫
[0,T ]

Xt dEt = XTET −X0−E0− −
∫

[0,T ]
Et− dXt

=
1

ρ

∫
[0,T ]

Et− dXt −
1

ρ

∫
[0,T ]

Xt− dXt −
x2

ρ

=
1

ρ

(∫
[0,T ]

Et− dXt +
1

2
[X]T −

1

2
x2

)
.
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It follows that

E
[
C(X) + λ

∫ T

0
SXt Xt dt

]
= − λ

2ρ
x2 +

(
1 +

λ

ρ

)
E

[∫
[0,T ]

S̃0
t− dXt + [S̃0, X]T +

∫
[0,T ]

Et− dXt +
1

2
[X]T

]
,

where

S̃0
t =

Ŝt

1 + λ
ρ

=
ρ

ρ+ λ

(
S0
t − λ

∫ t

0
S0
s ds

)
.

This concludes the proof.
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