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Abstract For any positive diffusion with minimal regularity, there exists a semi-
martingale, with uniformly close paths, which is a martingale under an equivalent
probability. As a result, in models of asset prices based on such diffusions, arbi-
trage and bubbles alike disappear under proportional transaction costs, or under small
model misspecifications. Thus, local martingale models of arbitrage and bubbles are
not robust to small trading and monitoring frictions.
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Introduction

Several recent papers use strict local martingales (local martingales that are not mar-
tingales) to model both arbitrage and bubbles in asset prices. Bubbles, this literature
suggests, arise if prices are strict local martingales under risk neutral measures. Ar-
bitrage appears if stochastic discount factors are strict local martingales themselves.
The idea is almost irresistible: a single delicate concept in Mathematics explains two
distinct concepts in Finance, and the link is in the classical duality between payoffs
and pricing measures.
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But do strict local martingales offer reliable models for arbitrage and bubbles?

This paper partially answers this question, by interpreting “reliable” as robust to
small model mis-specifications or, equivalently, to proportional transaction costs. We
show that, once these frictions are acknowledged, bubbles and arbitrage opportunities
disappear from a large class of diffusion models. In this sense, models based on strict
local martingales generate fragile types of bubbles and arbitrage.

This result offers a word of caution for researchers who seek to employ strict local
martingales to design models of financial markets with bubbles and arbitrage oppor-
tunities. We show that these phenomena do not arise from the strict local martingale
property of asset prices alone, but also from the joint assumptions that the market is
free of any trading frictions and that asset prices are continuously observed with infi-
nite precision. Although arbitrage and bubbles are normally seen as deviations from
the perfect market paradigm, in these models they survive only if the market is per-
fect enough, in that monitoring and trading frictions are absent. Thus, future research
in this area will yield more robust results with models based on stochastic processes
that lie outside the scope of our result.

A mathematical interpretation of the main result hinges on the subtle but crucial
difference in which martingales and local martingales have zero drift. Martingales
have zero global drift – its expected conditional increments are null. By contrast, a
diffusion process is a local martingale when its local drift (informally, the coefficient
of the dt term) vanishes. While a zero global drift implies a zero local drift, the
reverse fails precisely with strict local martingales, in which a nonzero global drift is
hidden in the unbounded diffusion term, even with null local drift. We show that a
small perturbation in the process and the probability measure can remove this hidden
global drift as well.

Importantly, the main result is relevant for both complete and incomplete mar-
kets. In a complete market the bubble property boils down to a superreplication price
that is strictly lower than the current asset price, and we show that arbitrary small
perturbations in the price process make the superreplication price equal to the current
asset price. In an incomplete market, we show that for any risk neutral measure a
small perturbation will restore the true martingale property, and therefore the same
issue remains.

Overall, our results bring mixed news. The bad news is that designing models
of arbitrage and bubbles that are robust to small frictions is difficult. Perhaps such
models will involve strict local martingales, but will either depart from common dif-
fusions, or will include trading constraints or other features that place them beyond
the setting of this paper. The good news is that common diffusions with the strict
local martingale property, such as quadratic volatility models (for example, see An-
dersen (2011)) are always free of arbitrage and bubbles, when minimal frictions are
accounted for. Thus, if a diffusion fits the data well, is tractable, or both, it need not be
excluded from applications for being a strict local martingale. Likewise, if arbitrage
or relative arbitrage arises in a model from a stochastic discount factor that is a strict
local martingale, then the model is still arbitrage-free with small frictions.
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1 Literature Review

Although the literature on asset bubbles is vast and decades old, the idea of identi-
fying bubbles with local martingales is relatively recent, and has gained momentum
only in the last few years. Loewenstein and Willard (2000) are the first to link bubbles
to local martingales. In a frictionless, complete market, based on a continuous-time
diffusion, they show that bubbles may occur as a result of wealth constraints. Heston,
Loewenstein and Willard (2007) further investigate the consequences of bubbles on
derivatives prices, and link it to the non-uniqueness of solutions to the standard val-
uation PDE, which may arise even in common stochastic volatility models. Cox and
Hobson (2005) provide diffusion examples of bubbles, and note how standard price
relations such as put-call parity may fail if the underlying assets are local martingales.
Pal and Protter (2010) construct continuous strict local martingales with Doob’s h-
transforms, and study connections with bubbles. Madan and Yor (2006) propose to
remedy the ostensible option mispricing using an alternative definition of price. Jar-
row, Protter and Shimbo (2007) classify bubbles in complete markets into three types.
Under a no dominance assumption, which entails that no asset can be replicated by
trading in the other ones, Jarrow, Protter and Shimbo (2010) argue that bubbles by
local martingales arise only in incomplete markets. Bubbles are also implicit in the
benchmark pricing approach of Platen (2006), if the underlying market has no equiv-
alent martingale measure. Protter (2013) surveys comprehensively the literature on
bubbles by local martingales.

The literature on arbitrage with local martingales starts with Delbaen and Schacher-
mayer (1995), who show that arbitrage arises in the three-dimensional Bessel process,
even though its reciprocal is a local martingale, highlighting the importance of the nu-
meraire for arbitrage considerations. Fernholz, Karatzas and Kardaras (2005) derive
the existence of arbitrage and relative arbitrage in frictionless markets satisfying a
diversity property, which means that no asset can overtake in size the remaining ones.
Fernholz and Karatzas (2010) study relative arbitrage strategies that are optimal in
the sense of maximal multiplication of wealth, and Ruf (2011) characterizes optimal
hedging strategies in the presence of arbitrage.

2 Arbitrage and Bubbles

Consider a market with one safe and d risky assets. The safe asset is the numeraire,
hence its price is simply one. The prices of the d risky assets are represented by an Rd-
valued semimartingale (St)t∈[0,T ] with positive components, defined on and adapted
to a filtered probability space (Ω ,F ,(Ft)t∈[0,T ],P) satisfying the usual assumptions
of right-continuity and completeness.

Both arbitrage and bubbles depend on the concept of admissible strategy, a strat-
egy that requires a finite credit line.

Definition 2.1 An admissible strategy is a predictable, S-integrable process H, such
that, for some c > 0,

∫ t
0 H(u)dS(u)≥−c for all t ∈ [0,T ]. An asset price S:

i) has arbitrage if some admissible strategy H with payoff X =
∫ T

0 H(u)dS(u) sat-
isfies P(X ≥ 0) = 1 and P(X > 0)> 0.
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ii) has bubbles if some admissible strategy H satisfies x+
∫ T

0 H(u)dS(u) ≥ Si(T )
for some i ∈ {1, . . . ,d} and x < Si(0).

In plain English, an arbitrage is a strategy that delivers a positive nonzero payoff
from zero initial capital. A bubble arises if some strategy H dominates the payoff
Si(T ) starting from less than Si(0). When this is the case, the i-th asset is “overpriced”
at time 0, in that holding it from 0 to T is an inferior plan compared to trading with
the strategy H.

The definition of arbitrage is standard. The above definition of bubble first appears
in Heston et al. (2007), for both complete and incomplete markets. In a complete mar-
ket this definition is equivalent to the one used by Loewenstein and Willard (2000)
and Cox and Hobson (2005), who define an asset price as a bubble if it is a strict local
martingale under the risk-neutral measure1. Again in complete markets, Jarrow, Prot-
ter and Shimbo (2007) classify bubbles into three types. Definition 2.1 corresponds
to bubbles of type three in their setting, while types one and two may arise with an
infinite trading horizon. In all these papers, a bubble simply means that the market
price is higher than its “fundamental” price, defined as superreplication price.

By contrast, Jarrow et al. (2010) define the fundamental price as the expected
value of dividends (including eventual liquidation) under a specific equivalent local
martingale measure Qi, which changes at exogenously specified times τi. This def-
inition boils down to the previous one in a complete market, since the martingale
measure is unique. In an incomplete market Jarrow et al. (2010) depart from the def-
inition of Heston et al. (2007) by requiring that the market price is greater than some
specific risk-neutral expectation (the one corresponding to Qi), not necessarily all of
them. Still, section 5 below shows that the main result is relevant also for this weaker
definition. The statistical applications of Jarrow, Kchia and Protter (2011b,c,a) are fo-
cused on one-dimensional diffusion models with a unique equivalent local martingale
measure, for which the above definition is relevant.

We begin the discussion by recalling that the existence of a martingale measure
excludes both arbitrage and bubbles.

Fact 2.2 If S admits an equivalent (true) martingale measure Q, neither arbitrage nor
bubbles exist.

Proof The absence of arbitrage follows from the “easy” implication of the Funda-
mental Theorem of Asset Pricing (Delbaen and Schachermayer, 1994). The absence
of bubbles follows from a similar argument: let H be an admissible strategy that
superreplicates Si(T ). Then, the wealth process X(t) =

∫ t
0 H(u)dS(u) is a Q-local

martingale (Ansel and Stricker, 1994, Corollary 3.5), hence a supermartingale. Thus,

x≥ EQ

[
x+

∫ t

0
H(u)dS(u)

]
≥ EQ[Si(T )] = Si(0), (2.1)

which contradicts the existence of bubbles.

1 By the dual characterization of superhedging prices (Ansel and Stricker, 1994; Föllmer and Kabanov,
1998), this definition is equivalent to ii) in Definition 2.1.
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Thus, bubbles arise if S has an equivalent local martingale measure but not a
martingale measure, while arbitrage is possible only if no equivalent local martingale
measure exists. The canonical examples of models with arbitrage and bubbles are
respectively the three-dimensional Bessel process, and its inverse.

Example 2.3 (Arbitrage) The three-dimensional Bessel process is defined as the (unique
strong) solution S of the SDE:

dS(t) =
dt

S(t)
+dW (t), S(0) = 1, (2.2)

where W is a Brownian motion and the filtration is (the augmentation of the one)
generated by W , see Chung and Williams (1990, p. 252). The existence of arbitrage
in this model was first observed by Delbaen and Schachermayer (1995). Intuitively,
the Sharpe ratio 1/S(t) explodes as S(t) approaches zero, and arbitrage is obtained
increasing positions as S(t) decreases, in the spirit of contrarian strategies. Karatzas
and Kardaras (2007) and Ruf (2011) show explicit examples of such strategies.

Example 2.4 (Bubble) The archetypical example of a bubble is the inverse three-
dimensional Bessel process, defined as Z(t) = 1/S(t), where S(t) is as in Example
2.3. This process is a supermartingale, but not a martingale, and satisfies the equation:

dZ(t) = Z2(t)dW (t), Z(0) = 1. (2.3)

Ruf (2011, Example 6.3) constructs explicitly a strategy H such that x+
∫ T

0 H(t)dZ(t)>
Z(T ) and x < Z(0).

3 The Robustness Question

However precise they might be, models are approximations, and a crucial problem is
understanding the robustness of their implications with respect to small perturbations.

Are arbitrage and bubbles robust with respect to small frictions or model pertur-
bations?

Since the answer depends on the class of perturbations, it is important to make a
choice with a sound economic interpretation. We consider (multiplicative) pathwise
uniform perturbations, which have the dual meaning of small model misspecifications
or proportional transaction costs.

Definition 3.1 For ε > 0, two strictly positive processes S, S̃ are ε-close if:

1
1+ ε

≤ S̃(t)
S(t)
≤ 1+ ε a.s. for all t ∈ [0,T ] (3.1)

Two Rd
++-valued processes are ε-close if Si and S̃i are ε-close for each 1≤ i≤ d.
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This definition embodies model uncertainty, if prices are measured up to a propor-
tional error ε . It also admits an interpretation based on proportional transaction costs.
Let us assume in the rest of this section that S, S̃ are R-valued, continuous processes.2

Indeed, for any predictable, finite-variation strategy θ with θ(0) = θ(T ) = 0, inte-
gration by parts yields:

∫ T

0
θ(t)dS̃(t)≥

∫ T

0
θ(t)dS(t)− ε

1+ ε

∫ T

0
S(t)d‖θ‖(t). (3.2)

Since the right-hand side is the payoff of the strategy θ when the price is S, but
transaction costs are present, it follows that the frictionless payoff for S̃ in the left-
hand side is an optimistic estimate of the impact of transaction costs.

In the light of this definition, we now show that the robustness issue for bubbles
based on strict local martingales boils down to the following mathematical question:

Question 3.2 Given a strictly positive, continuous process S, is there an ε-close pro-
cess S̃, which is a martingale under an equivalent probability, for any ε > 0?

The main result of this paper is that the answer to this question is yes for a large class
of diffusion processes, in one or more dimensions, which includes most commonly
used models in the literature. (In section 6 we will also show an example in which
the answer is no.) Before stating the result in the next section, we now explain why
a positive answer has important implications both for pricing, hence for bubbles, and
for investment, hence for arbitrage.

3.1 Pricing and Bubbles

If the answer to Question 3.2 is yes, any bubble in S is fragile, in two ways. First,
since prices are always observed with some small measurement error, due either to
asynchronous trading, price granularity, or frictions, the model is observationally in-
distinguishable from S̃, which has an equivalent martingale measure, hence has no
bubbles. Second, any strategy that dominates S(T ) starting from S(0) will not survive
ε transaction costs, in the following sense:

Proposition 3.3 If S and S̃ are continuous and ε-close as in Definition 3.1, and S̃
is a martingale under some probability Q equivalent to P, then the superreplication
price of S(T ) with ε-transaction costs is greater or equal than S(0).3 Thus, the mar-
ket does not have bubbles with transaction costs, in the sense of Definition 2.1 with∫ T

0 H(u)dS(u) replaced by
∫ T

0 H(t)dS(t)− ε

1+ε

∫ T
0 S(t)d‖H‖(t)

2 In fact, quasi-left continuity is sufficient, since in this case θ almost surely has no common jumps
with either S or S̃, hence the Stieltjes integrals in (3.2) exist.

3 To be precise, with a bid price less than or equal to S/(1+ ε), and an ask price greater than or equal
to S(1+ ε).
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Proof Suppose that some predictable, finite variation strategy θ , such that the value
process V (t) :=

∫ t
0 θ(u)dS(u)− ε

1+ε

∫ t
0 S(u)d‖θ‖(u), t ∈ [0,T ] is bounded below by a

constant, satisfies4

∫ T

0
θ(t)dS(t)− ε

1+ ε

∫ T

0
S(t)d‖θ‖(t)≥ S(T )(1+ ε)−S(0)/(1+ ε) (3.3)

and that the strict inequality holds on a set of positive probability. Then, using (3.2),
and passing to the expectation under Q (the martingale measure for S̃), it would follow
that

0≥ EQ

[∫ T

0
θ(t)dS̃(t)

]
> EQ[S(T )(1+ ε)−S(0)/(1+ ε)]≥ EQ[S̃(T )− S̃(0)] = 0 ,

(3.4)
which is absurd.

The above proposition shows that, if an ε-close process with an equivalent mar-
tingale measure exists for any ε , the bubble property (a superreplication price for
S(T ) strictly less than S(0)) disappears with arbitrarily small transaction costs. Thus,
no frictionless strategy starting with less than S(0) can superreplicate with transac-
tion costs, no matter how small. The implication is that the superreplication price is
discountinuous at ε = 0, because it is greater than S(0) for any ε > 0, and strictly less
than S(0) for ε = 0.

Note the analogy between this phenomenon and the well-known result of Soner,
Shreve and Cvitanić (1995), whereby in the Black-Scholes model the minimal su-
perreplication strategy of a call option with arbitrarily small transaction costs is to
buy the underlying asset, and hence the superreplication price jumps from the fric-
tionless Black-Scholes price to the current price of the underlying. In both cases, the
frictionless superreplication policies generate too much trading costs to be feasible.
An interpretation of this result is that, as superreplication does not offer a reliable
hedging objective in practice, it also does not offer a reliable definition of bubble.

3.2 Investment and Arbitrage

A positive answer to Question 3.2 implies that any arbitrage by trading in S is fragile,
in the twofold sense of model uncertainty or transaction costs.

Proposition 3.4 If S and S̃ are continuous and ε-close as in Definition 3.1, and S̃
is a martingale under some probability Q equivalent to P, then S is arbitrage-free
with ε transaction costs for all strategies θ such that the value process V (t) :=∫ t

0 θ(u)dS(u)− ε

1+ε

∫ t
0 S(u)d‖θ‖(u), t ∈ [0,T ] is bounded below by a constant.

4 Equation (3.3) considers the buying price S(T )(1+ ε) at time T and the selling price S(0)/(1+ ε) at
time zero, to ensure that the superreplication is robust to the initial cash/stock allocation and to settlement
either in cash or in stock. To wit, in the worst case the strategy ends in cash (i.e. θ(T ) = 0), and delivering
one share requires S(T )(1+ ε). Likewise, in the worst case the strategy begins in cash (θ(0) = 0) but the
initial capital is all in stock, and its cash value is S(0)/(1+ ε).
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Proof Take any θ as in the statement of this proposition, and initial capital x = 0.
The process

∫ t
0 θ(u)dS̃(u), t ∈ [0,T ] is clearly a Q-local martingale and also a Q-

supermartingale by (3.2). It also follows from (3.2) that EQ[V (T )] ≤ 0 which shows
that V (T ) = 0 Q-a.s. and hence also P-a.s.

This proposition leads to a discontinuity of arbitrage profits similar to the one
above for superreplication prices. To wit, suppose that S allows a strong form of
arbitrage, as in Example 1. In this case, the arbitrage profit has a discontinuity at
ε = 0, because it is null for ε > 0, and strictly positive with positive probability for
ε = 0.

4 The Fragility of Diffusions

Theorem 4.2 below shows that fragility is the norm for a large class of Markov diffu-
sions. This result hinges on one assumption: the process must be uniquely identified
in law by its drift and diffusion coefficients.

Assumption 4.1 Let b : [0,T ]×Rd → Rd be measurable and locally bounded, and
σ : [0,T ]×Rd→Rd×d continuous, and such that σ(t,x) is nonsingular for all (t,x)∈
[0,T ]×Rd . Assume that, for all (s,y) ∈ [0,T )×Rd , the stochastic differential equa-
tion

dX̄(t) = b(t, X̄(t))dt +σ(t, X̄(t))dW (t), X̄(s) = y, (4.1)
has a solution, unique in law, in some probability space, on which W (t) is a standard
d-dimensional Brownian motion.

Theorem 4.2 Let W (t) be a d-dimensional Brownian motion on some filtered proba-
bility space (Ω ,F ,(Ft)t∈[0,T ],P) satisfying the usual hypotheses, under Assumption
4.1, let X(t) be a solution to (4.1) with X(0) = x0 for some fixed x0 ∈ R. Let F X

t
denote its augmented natural filtration (completed and made right-continuous).

Define Si(t) := exp(X i(t)) for t ∈ [0,T ] and 1 ≤ i ≤ d. Then for all ε > 0 there
exists a probability Q ∼ P and an Rd-valued (Q,F X

t ) martingale (S̃(t))t∈[0,T ] such
that S and S̃ are ε-close. Furthermore, if F X

t coincides with the (completed) natural
filtration of a Brownian motion, then S̃(t) has a.s. continuous paths.

Proof See the Appendix.

In plain English, this theorem states that for any positive Markov diffusion S(t)
that has some basic regularity, there is another process S̃(t), arbitrarily close with
respect to small multiplicative perturbations, which becomes a true martingale under
an equivalent probability. In the jargon of the transaction costs literature, (S̃,Q) is an
ε-consistent price system, see e.g. Guasoni, Rásonyi and Schachermayer (2008).

Example 4.3 Take S(t) as in Example 2.3. Itô’s formula implies that X(t) = ln(S(t))
is the unique strong solution of

dX(t) =
1
2

e−2X(t)dt + e−X(t)dW (t), X(0) = 0.

Theorem 4.2 applies and, for any ε,T > 0, there is an arbitrage-free price process S̃
that is ε-close to S(t).
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Example 4.4 Let Z(t) be as in Example 2.4. Theorem 4.2 applies again and provides
a uniformly ε-close model admitting no bubbles.

Example 4.5 Consider the stochastic volatility model (see for example, Cox and
Hobson (2005)):

dP(t) = P(t)V (t)dB(t), dV (t) =V (t)ρdB(t)+V (t)
√

1−ρ2dW (t),

where (B(t),W (t)) is a 2-dimensional standard Brownian motion, and 0< ρ < 1. P(t)
represents the price of an asset while V (t) its volatility (the dynamics is given under
the risk-neutral measure). Fix P(0),V (0)> 0. Taking v(t) := lnV (t), s(t) := lnP(t),
they satisfy

ds(t) = ev(t)dB(t)− (1/2)e2v(t)dt, dv(t) = ρdB(t)+
√

1−ρ2dW (t)− 1
2

dt,

which, in fact, give explicit formulas for P(t),V (t). Clearly, S(t) = (P(t),V (t)), t ∈
[0,T ] satisfies the conditions of Theorem 4.2, in particular, there is Q ∼ P and a Q-
martingale Ŝ(t) := S̃1(t), t ∈ [0,T ] such that

1
1+ ε

≤ Ŝ(t)
P(t)

≤ 1+ ε

holds a.s. for t ∈ [0,T ]. Thus, P(t) is a strict local martingale (see Cox and Hobson
(2005)) which admits an arbitrarily close Ŝ(t) with bubble-free dynamics. This ex-
ample shows that Theorem 4.2 can also be applied to certain incomplete markets, see
the next section for a general result.

5 Incomplete markets

As the dimension of the driving Wiener process equals the number of risky assets, the
scope of Theorem 4.2 may appear to be mainly complete markets. In this section we
show that in an incomplete setting one may still draw conclusions about strict local
martingales (see Example 4.5 above) that are similar in spirit to the complete case.

For an Rd-valued stochastic process S(t), t ∈ [0,T ] let M (S) denote the set of
Q ∼ P such that S is a Q-local martingale with respect to its natural filtration (made
right-continuous). Let M (S) 6= /0. Recall (e.g. Föllmer and Kabanov (1998)), that
for a nonnegative random variable G there exists a predictable integrand H such that
x+

∫ T
0 H(u)dS(u)≥ G a.s. iff

x≥ sup
Q∈M (S)

EQ[G].

It is then immediate that a bubble in the sense of Definition 2.1 exists iff

sup
Q∈M (S)

EQ[Si(T )]< Si(0)

for some i. Thus, if in an incomplete market EQ[Si(T )] < Si(0) holds only for one,
but not all, martingale measure Q ∈M (S), it is not clear if there is a bubble in the
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sense of Definition 2.1. Indeed, in an incomplete market Jarrow, Protter and Shimbo
(2010) do not adopt the definition of bubble Definition 2.1, which corresponds to the
one in Heston et al. (2007). Instead, they select a risk-neutral probability (Qi)i≥1,
which changes at a sequence of stopping times (τi)i≥1, and denote by a bubble the
difference between the market price St and the risk-neutral expectation S∗t = EQi [ST ]
on the event {τi ≤ t < τi+1} (in the absence of dividends, which otherwise need to be
included in this expectation). Effectively, the sequences (Qi)i≥1 and (τi)i≥1 define a
particular market completion, and the question is whether a bubble can arise in such
a completion.

We now show that the fragility result extends to this definition, in that, for any
martingale measure Q, there is another one Q′, arbitrarily close to Q in the total
variation norm, under which the ε-close process S̃ is a true martingale, and hence
there are no bubbles.

Assumption 5.1 Let N > d. Let b : [0,T ]×Rd → Rd be measurable and locally
bounded, σ : [0,T ]×Rd → Rd×N continuous such that for each (t,x) ∈ [0,T ]×Rd ,
σ(t,x) has maximal rank. Assume that, for all (s,y) ∈ [0,T )×Rd , the stochastic
differential equation

dX(t) = b(t,X(t))dt +σ(t,X(t))dW (t), X(s) = y, (5.1)

has a solution, unique in law, in some probability space, on which W (t) is a standard
N-dimensional Brownian motion.

Theorem 5.2 Let W (t) be N-dimensional Brownian motion on some filtered prob-
ability space (Ω ,F ,(Ft)t∈[0,T ],P) satisfying the usual hypotheses and, under As-
sumption 5.1, let X(t) be a solution to (5.1) for X(0) = x0 for some fixed x0 ∈ Rd .

Define Si(t) := exp(X i(t)) for t ∈ [0,T ] and 1 ≤ i ≤ d. Then for all ε > 0 there
exists an (0,∞)d-valued (S̃(t))t∈[0,T ] such that S and S̃ are ε-close and S̃ satisfies the
following property:

For each Q ∈M (S̃) 6= /0 there is Q′ ∼ Q such that S̃(t), t ∈ [0,T ] is a true Q′-
martingale and ||Q−Q′||tv (distance in the total variation norm) is arbitrarily small.

Proof See the Appendix.

In summary, this result shows that the original incomplete market S has no arbi-
trage or bubbles (in the sense of Definition 2.1) that are robust to transaction costs and
model uncertainty. It also shows that any arbitrary completion of this market satisfies
this property, up to a small variation in the pricing measure Q.

6 A Robust Bubble

We now show a local martingale, for which the answer to Question 3.2 is no, and
hence Theorem 4.2 does not apply. A variation of this local martingale appears as
a counterexample to several plausible statements in Mathematical Finance (Delbaen
and Schachermayer, 1998). In the context of equivalent measures changes, it was
communicated to Prokaj and Rásonyi (2010) by Christophe Stricker.



Fragility of local martingale diffusion models of arbitrage and bubbles? 11

The next example is in fact a caricature, in that it shows how distant from a real
martingale a local martingale can be. Over the fixed interval [0,π/2], this local mar-
tingale drops from 1 to 1/2. Almost surely.

Example 6.1 (Local Martingale Bridge)
Let

X(t) := exp(W (t)− t/2), t ≥ 0,

where W (t) is Brownian motion and (Ft)t≥0 is its (completed) natural filtration.
Define the (a.s. finite) stopping time

τ := inf{t : X(t) = 1/2},

and set

S(t) := X(τ ∧ tan t), 0≤ t < π/2, S(t) = 1/2, t ≥ π/2.

Define also Gt := Ftan t , 0≤ t < π/2 and Gπ/2 := F∞. The process S(t) is a Gt -local
martingale (see Prokaj and Rásonyi (2010)). If S̃(t) were ε-close to S(t) for some
ε > 0 then we would necessarily have

1
2

1
1+ ε

≤ S̃(t) = EQ[S̃(T )|Ft ]≤
1+ ε

2
,

a.s. for 0≤ t ≤ π/2, and hence also

1
2

1
(1+ ε)2 ≤ S(t)≤ (1+ ε)2

2
a.s.

which is absurd, because S(t) is not bounded from above for 0 < t < π/2. Note that
S(t) does not satisfy Assumption 4.1, whence Theorem 4.2 does not apply, because
the volatility vanishes (and has a discontinuity) at the value of 1/2.

Technically, this is an example of a “robust bubble”: if 0 < ε <
√

2−1, then any
S̃(t) which is ε-close to S(t) satisfies S̃(0) > esssup S̃(T ). Of course, S(T ) = 1/2 is
trivially replicated by a position of 1/2 in the safe asset, with no need to trade S(t).
Needless to say, the example is artificial at best, and we do not endorse it as a model
of financial bubbles.

7 Conclusion

Frictionless market models based on strict local martingales may lead to arbitrage or
bubbles, but these features disappear in a large class of diffusions, under the presence
of minimal transaction costs or model misspecifications.
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A Proofs

In the sequel we denote by C∞
0 ([s,T ]×Rd) the space of smooth functions with com-

pact support on [s,T ]×Rd equipped with the topology of uniform convergence. The
following Lemma is essentially (part of) Theorem 10.1.1 of Stroock and Varadhan
(2006). That result is stated on the canonical space and we could not find a conve-
nient reference for the present setting.

Lemma A.1 Let Rs
ω be a regular version of the conditional law of X(t), t ∈ [s,T ] (on

C[s,T ]) with respect to F X
s . Then, for almost every ω ∈Ω , Rs

ω solves the martingale
problem on [s,T ] related to (4.1) with initial condition X(s)(ω).

Proof Recalling the definition of martingale problems from Chapters 6 and 10 of
Stroock and Varadhan (2006), we need to prove that, for almost every ω ∈Ω and for
each f ∈C∞

0 ([s,T ]×Rd),

f (t,π(t, ·))− f (s,X(s))−
∫ t

s
(Lu f )(u,π(u, ·))du, t ∈ [s,T ]

is an (Rs
ω ,(Gu)u∈[s,T ])-martingale, where π(u, ·),u∈ [s,T ] denote the coordinate map-

pings on the canonical space C[s,T ], Gu := σ(π(r, ·),s ≤ r ≤ u), and the operator L
acts as

(Lu f )(u, p) :=
∂

∂u
f (u, p)+

1
2

d

∑
i, j=1

(σσ
T )i j(u, p)

∂ 2

∂ pi∂ p j
f (u, p)+

d

∑
i=1

bi(u, p)
∂

∂ pi
f (u, p).

Denote by w a generic element of C[s,T ]. Then it is clearly sufficient to prove
that, for almost all ω ,∫

C[s,T ]

[
f (t,π(t,w))− f (r,π(r,w))−

∫ t

r
(Lu f )(u,π(u,w))du

]
g(u1, . . . ,un)Rs

ω(dw)= 0

(A.1)
for suitable, countable collections of f ∈C∞

0 ([s,T ]×Rd) and bounded measurable g
and for all rationals s < r < t ≤ T and ui ∈ (s,r), i = 1, . . . ,n. Equality (A.1) follows
from

E
[

g(X(u1), . . . ,X(un))

[
f (t,X(t))− f (r,X(r))−

∫ t

r
(Lu f )(u,X(u))du

]
|F X

s

]
= 0

a.s. The above formula holds true by Itô’s formula, the tower law and

E
[∫ t

r

∂

∂ p
f (u,X(u))σ(u,X(u))dW (u)|Fr

]
= 0,

which is an elementary property of stochastic integrals.

Proof (Proof of Theorem 4.2) To ease notation, consider d = 1. The same argument
carries over to the general case. Recall the concept of conditional full support. A
strictly positive adapted process S defined on (Ω ,F ,(Ft)t∈[0,T ],P) with continuous
paths has conditional full support (CFS) if:

suppP(S|[t,T ] ∈ ·|Ft) =C+
St
[t,T ] a.s. for all t ∈ [0,T ],
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where supp µ denotes the support of a measure µ and Cv[c,d] (resp. C+
v [c,d]) is the

set of continuous functions f on [c,d] with f (c) = v (resp. strictly positive continuous
functions).

Theorem 1.2 of Guasoni, Rásonyi and Schachermayer (2008) states that, for a
process satisfying (CFS) there exists Q∼ P and a Q-martingale S̃ (w.r.t. F X

t ) which
is ε-close to S. Thus, M(t) := S̃(t)E[ dQ

dP |F
X
t ] is a P-martingale (w.r.t. F X

t ), and if F X
t

is the natural filtration of some Brownian motion, then M(t) as well as the (positive)
P-martingale E[ dQ

dP |F
X
t ] must have continuous paths, and so must S̃(t).

It remains to prove the (CFS) property for S(t) with respect to F X
t . Let Ps,y denote

the law of a solution of (4.1) starting from X̄(s) = y on C[s,T ]. Replacing F X
t , t ≥ s

by F X̄
t , t ≥ s in Lemma A.1 above the same argument gives that Ps,y solves the

martingale problem related to (4.1) with initial condition X̄(s) = y (we do not even
need to work with conditional expectations in this case, F X̄

s being trivial). We can
now take a regular version of Ps,y as provided by Theorem 10.1.1 of Stroock and
Varadhan (2006). Let us now notice that uniqueness in law (see Assumption 4.1) and
Lemma A.1 necessarily entail Ps,X(s)(ω) = Rs

ω a.s.
Thus it suffices to show that suppRs

· = suppPs,X(s) =CX(s)[s,T ] a.s. for each 0≤
s < T . To achieve this, we will prove that for all y∈R and η ∈ (0,1) and g∈Cy[s,T ],

Ps,y({ f ∈Cy[s,T ] : ‖ f −g‖∞ < η})> 0.

Set K := ‖g‖∞ + 1, b̃(t,x) := b(t,x)1{|x|≤K} and σ̃(t,x) := σ(t,x) for (t,x) ∈
[0,T ]× [−K,K]. Note that, by continuity, there exists h > 0 such that

|σ̃(t,x)|> h for all (t,x) ∈ [0,T ]× [−K,K]. (A.2)

Extend σ̃ to [0,T ]×R so that |σ̃(t,x)| ≥ h holds for all (t,x) and σ̃ remains continu-
ous.

Since b̃, σ̃ are bounded, σ̃ is bounded away from 0 and continuous, the martingale
problem

dX̃(t) = b̃(t, X̃(t))dt + σ̃(t, X̃(t))dW (t), X̃(s) = y

admits unique solution measures P̃s,y on the space Cy[s,T ] for all 0 ≤ s < T , see
Stroock and Varadhan (1969) and Chapter 7 of Stroock and Varadhan (2006).

Take τ(w) := inf{t > s : |w(t)| ≥ K}∧T where w is the generic element of the
canonical space Cy[s,T ]. Let us denote by π(t, ·) the coordinate mapping on Cy[s,T ]
corresponding to s≤ t ≤ T .

Obviously, τ is a (Gt)t∈[s,T ]-stopping time (recall that G is the filtration generated
by coordinate mappings). The last part of Theorem 6.1.2 of Stroock and Varadhan
(2006) implies that both measure-concatenations P̃s,y⊗τ(·) Pτ(·),π(τ(·),·) and Ps,y⊗τ(·)
Pτ(·),π(τ(·),·) solve the martingale problem (4.1) on [s,T ] (see Theorem 6.1.2 of Stroock
and Varadhan (2006) for unexplained notation) and hence these measures are equal
on GT . A fortiori, Ps,y|Gτ = P̃s,y|Gτ . The event { f ∈Cy[s,T ] : ‖ f −g‖∞ < η} is in Gτ ,
consequently,

Ps,y({ f ∈Cy[s,T ] : ‖ f −g‖∞ < η}) = P̃s,y({ f ∈Cy[s,T ] : ‖ f −g‖∞ < η}).
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The functions σ̃ and b̃ satisfy the conditions of section 3 in Stroock and Varad-
han (1972) hence Lemma 3.1 of Stroock and Varadhan (1972) (or Exercise 6.7.5 of
Stroock and Varadhan (2006)) implies that P̃s,y({ f ∈Cy[s,T ] : ‖ f −g‖∞ < η}) > 0,
concluding the proof.

Proof (Proof of Theorem 5.2) Let us define the multifunction

D(t,x) := {u ∈ R(N−d)×N : det
([

σ(t,x)
u

])
> 0},

for (t,x)∈ [0,T ]×Rd . Clearly, this multifunction takes convex, nonempty values in a
finite-dimensional space and its graph is B([0,T ]×Rd)⊗B(R(N−d)×N)-measurable.
It is also lower semicontinuous. Indeed, by Proposition 2.1 of Michael (1956) it suf-
fices to prove that if u ∈ D(t,x) and ε > 0 then there is δ > 0 such that for each t ′,x′

with |t− t ′|+ |x− x′|< δ there is u′ ∈ D(t ′,x′) with |u−u′|< ε . But this is obvious
by the continuity of σ and the determinant function.

Now we may apply Theorem 3.2’’’ of Michael (1956) which gives us a continu-
ous ν : [0,T ]×Rd → R(N−d)×N such that, for all (t,x), ν(t,x) ∈ D(t,x) holds.5 Let
us define σ̂ : [0,T ]×Rd → RN×N such that its first d rows equal σ and the remain-
ing rows equal ν . Let us also consider b̂ : (t,x)→ (b(x),0)T (where 0 denotes an
N−d dimensional row vector of zeros). By abuse of notation from now on we write
b̂(t,y) := b̂(t, ȳd) for all y ∈ RN where ȳd denotes the vector formed by the first d
coordinates of y. We define σ̂ similarly and hence extend b̂, σ̂ over [0,T ]×RN (note
that the last N−d coordinates are dummy variables only).

Define X̄ i(t) := X i(t) for i = 1, . . . ,d and set

X̄ i(t) :=
∫ t

0
σ̂i(s,X(s))dW (s)

for i = d+1, . . . ,N, where σ̂i denotes the ith row of σ̂ . By construction, X̄(t) satisfies

dX̄(t) = b̂(t, X̄(t))dt + σ̂(t, X̄(t))dW (t), X̄(0) = x̂0, (A.3)

where the first d components of x̂0 coincide with those of x0 and the remaining com-
ponents are zero. By Assumption 5.1, b̂, σ̂ clearly satisfy the conditions of Theorem
4.2, hence for S̄i(t) = exp(X̄ i(t)), i = 1, . . . ,N we get an N-dimensional process Š(t)
that is ε-close to S̄(t). Notice that the first d coordinates of S̄(t) are precisely S(t).
Denoting by S̃(t) the d-dimensional process consisting of the first d coordinates of
Š(t) we clearly have that S̃(t) is ε-close to S(t).

From Theorem 4.2 we have the existence of a probability R ∼ P such that Š(t)
is a (true) R-martingale (w.r.t. F X̄

t ), in particular, R ∈M (S̃). Note that the construc-
tion in Guasoni, Rásonyi and Schachermayer (2008) assures that Š(T ) ∈ L2(R). A
fortiori, S̃(t) is an L2(R)-martingale, hence supt∈[0,T ] |S̃t | ∈ L2(R). Now recall that
the set of Q′ ∈M (S̃) such that dQ′/dR is bounded is dense in M (S̃) with respect

5 Regrettably, in (c) of the statement of Theorem 3.2’’’ there is a misprint: there should be D(Y ) instead
of K (Y ), this is clear from the ensuing remarks. See p. 372 of Michael (1956) for the definition of D(Y ).
This family contains finite dimensional convex sets hence we may indeed apply Theorem 3.2’’’ in the
current setting.



Fragility of local martingale diffusion models of arbitrage and bubbles? 15

to the total variation norm (see Kabanov and Stricker (2001)). Clearly, S̃(t) satis-
fies supt∈[0,T ] |S̃t | ∈ L2(Q′) as well so it is a true Q′-martingale, for all such Q′. This
finishes the proof.

Remark A.2 If, in the statements of Theorems 4.2 and 5.2, the solutions X are strong
and F = FW then the proof of Lemma A.1 works with the filtration FW in lieu of
F X hence the proofs of Theorems 4.2 and 5.2 yield S̃ which are FW -martingales, in
particular, continuous.
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