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Abstract

We derive a forward partial integro-differential equation for prices of
call options in a model where the dynamics of the underlying asset under
the pricing measure is described by a -possibly discontinuous- semimartin-
gale. This result generalizes Dupire’s forward equation to a large class of
non-Markovian models with jumps.
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Since the seminal work of Black, Scholes and Merton [7, [30] partial differen-
tial equations (PDE) have been used as a way of characterizing and efficiently
computing option prices. In the Black-Scholes-Merton model and various exten-
sions of this model which retain the Markov property of the risk factors, option
prices can be characterized in terms of solutions to a backward PDE, whose
variables are time (to maturity) and the value of the underlying asset. The use
of backward PDEs for option pricing has been extended to cover options with
path-dependent and early exercise features, as well as to multifactor models
(see e.g. [I]). When the underlying asset exhibit jumps, option prices can be
computed by solving an analogous partial integro-differential equation (PIDE)
[2, 14].

A second important step was taken by Dupire [15] [16, 18] who showed that
when the underlying asset is assumed to follow a diffusion process

dSt = StU(t, St)th
prices of call options (at a given date tg) solve a forward PDE
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This forward equation allows to price call options with various strikes and ma-
turities on the same underlying asset, by solving a single partial differential
equation. Dupire’s forward equation also provides useful insights into the in-
verse problem of calibrating diffusion models to observed call and put option
prices [6].

Given the theoretical and computational usefulness of the forward equation,
there have been various attempts to extend Dupire’s forward equation to other
types of options and processes, most notably to Markov processes with jumps
[2, 1O, 12 26, O]. Most of these constructions use the Markov property of the
underlying process in a crucial way (see however [27]).

As noted by Dupire [I7], the forward PDE holds in a more general context
than the backward PDE: even if the (risk-neutral) dynamics of the underlying
asset is not necessarily Markovian, but described by a continuous Brownian
martingale

dS; = S¢6:dWy,

then call options still verify a forward PDE where the diffusion coefficient is
given by the local (or effective) volatility function o(¢,.S) given by

o(t,8) = \/ E[62]S; = S].

This method is linked to the “Markovian projection” problem: the construction
of a Markov process which mimicks the marginal distributions of a martingale



[5, 23, [29]. Such “mimicking processes” provide a method to extend the Dupire
equation to non-Markovian settings.

We show in this work that the forward equation for call prices holds in a
more general setting, where the dynamics of the underlying asset is described
by a — possibly discontinuous — semimartingale. Our parametrization of the
price dynamics is general, allows for stochastic volatility and does not assume
jumps to be independent or driven by a Lévy process, although it includes these
cases. Also, our derivation does not require ellipticity or non-degeneracy of the
diffusion coefficient. The result is thus applicable to various stochastic volatility
models with jumps, pure jump models and point process models used in equity
and credit risk modeling.

Our result extends the forward equation from the original diffusion setting
of Dupire [16] to various examples of non-Markovian and/or discontinuous pro-
cesses and implies previous derivations of forward equations [2] [10] [9, 12, 16l 17,
20, 28] as special cases. Section [2 gives examples of forward PIDEs obtained
in various settings: time-changed Lévy processes, local Lévy models and point
processes used in portfolio default risk modeling. In the case where the under-
lying risk factor follows, an It6 process or a Markovian jump-diffusion driven by
a Lévy process, we retrieve previously known forms of the forward equation. In
this case, our approach gives a rigorous derivation of these results under precise
assumptions in a unified framework. In some cases, such as index options (Sec.
2.3) or CDO expected tranche notionals (Sec. [2.6]), our method leads to a new,
more general form of the forward equation valid for a larger class of models than
previously studied [3] [12] 35].

The forward equation for call options is a PIDE in one (spatial) dimension,
regardless of the number of factors driving the underlying asset. It may thus
be used as a method for reducing the dimension of the problem. The case of
index options (Section 28] in a multivariate jump-diffusion model illustrates
how the forward equation projects a high dimensional pricing problem into a
one-dimensional state equation.

1 Forward PIDEs for call options

1.1 General formulation of the forward equation

Consider a (strictly positive) semimartingale S whose dynamics under the pric-
ing measure P is given by

T T T p+oo ~
Sr = So+ / F(£)Sy—dt + / S, 5,dW, + / / S, (¥ — 1)NI(dt dy), (1)
0 0 0 —00

where r(t) > 0 represents a (deterministic) bounded discount rate, d; the (ran-
dom) volatility process and M is an integer-valued random measure with com-
pensator

p(dt dy;w) = m(t, dy, w) dt,



representing jumps in the log-price, and M=M- 1 is the compensated random
measure associated to M (see [13] for further background). Both the volatility
0; and m(t, dy), which represents the intensity of jumps of size y at time ¢, are
allowed to be stochastic. In particular, we do not assume the jumps to be driven
by a Lévy process or a process with independent increments. The specification
(@) thus includes most stochastic volatility models with jumps.

We assume the following conditions:

Assumption 1 (Full support). V¢t > 0, supp(S;) = [0, oco].

Assumption 2 (Integrability condition).

exp G /OT 52 dt+/OT dt/R(ey— 1)2m(t,dy)>] < o0. (H)

The value Cy, (T, K) at to of a call option with expiry T > to and strike
K > 0 is given by

v >0, E

oo (T, K) = ¢ o " O BP [max(Sp — K, 0)|F . (2)

As argued in Section [.2] under Assumption (H), the expectation in (@) is finite.
Our main result is the following:

Theorem 1 (Forward PIDE for call options). Let ¢, be the exponential double
tail of the compensator m(t,dy)

B ffoo dz e® ffoo m(t,du), 2z<0;
7/%(2) - { fz-‘roo dr e f;o m(t,du), >0 (3)

and let o : [to, T) x RT — {0} = R, x : [to,T] x RT — {0} — RT be measurable
functions such that for all t € [to, T

o(t.5) — VEBTS "
xt.s,_(2) =E [t (2)]S:-] a.s.

Under assumption [H), the call option price (T, K) — Ci, (T, K), as a function
of maturity and strike, is a solution (in the sense of distributions) of the partial
integro-differential equation
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on [tg, 00[x]0, oo[ with the initial condition:

(T,K)=-r(IhK (T,K) +

VK > 0, Cto(tQ,K) = (Sto — K)+



Remark 1. Recall that f : [tg, 00[%]0, co[— R is a solution of () in the sense of
distributions on [tg, 00[x]0, 0o[ if for any test function ¢ € C§°([to, 0o[Xx]0, o[, R)
and for any T > to,

T > of of  KZ?0(t,K)? 9*f
dt/ dKp(t,K) | — = —r(t) K = + :
/to K )[ ot TR 2 OK?

+oo 82 "
+/0 yaKf2 (t, dy) Xty (1n(;)>} _0,

where C§°([to, 0o[x]0,00[, R) is the set of infinitely differentiable functions with
compact support in [tg,00[x]0,00[. This notion of generalized solution allows
to separate the discussion of existence of solutions from the discussion of their
reqularity (which may be delicate, see [T])).

Remark 2. The discounted asset price
gT — Sl r(tydt Sr,

1s the stochastic exponential of the martingale U defined by

Ur = /OT ¢ AW, + /OT/(ey — 1) M (dt dy).

Under assumption (HI), we have
1
vI' >0, E [exp <§<U, U4+ (U, U>°T)] < o0,
where (U, U)¢ and (U, U)? denote the continuous and purely discontinuous parts
of [U,U]. [32, Theorem 9] implies that (St) is a P-martingale.

The form of the integral term in (B) may seem different from the integral
term appearing in backward PIDEs [14] 25]. The following lemma expresses
XT,y(z) in a more familiar form in terms of call payoffs:

Lemma 1. Let n(t,dz,y,w)dt be a random measure on [0, T] x R x R* verifying

Yt € 0,77, / (e A|z)?)n(t, dz, y,w) < oo a.s.

— 00

Then the exponential double tail xi,(z) of n, defined as

Fodr et [T n(t,du,y), z2<0;
xeul2) = e L nthduny ©)
fz dr e fw n(t,du,y), z>0

verifies

/R[(yez —K)" —e*(y— K)" = K(e" = Dlgysiyln(t, dz,y) = y Xty (111 (%)) '



Proof. Let K, T > 0. Then
e = ) = = K) — K€ = 1)1t dz,m)
= /R[(yez - K)l{z>1n(§)} —e*(y — K)lysxy — K(€* — Dlgysmyn(t, dz,y)
= e = B oy + O =06 e 2,0,

o If K >y, then
/Rl{sz}[(yez = K)o )y + (K = ye?) s iy fn(t, dz, y)

“+oo *
— / y(e — ) n(t, dz, ).
1

n (%)

o If K <y, then

/Rl{K<y}[(yez - K)l{z>ln(%)} + (K — ye’z)l{y>K}]n(t7 dz,y)
+oo In (£)
= /1 (K)[(yez_K)—F(K—yez)]n(t’dzjy)_F/ [K—yez]n(t,dz,y)

K
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Using integration by parts, x;, can be equivalently expressed as

(=] Ll —entduy), =<0;
Xewhe) = [ (et = e n(t, du,y),  z>0.

Hence
/R[(yez —K)" —e*(y—K)" = K(e* =Dy iyIn(t,dz,y) =y xiy (111 (%)) '

O

1.2 Derivation of the forward equation

In this section we present a proof of Theorem [ using the Tanaka-Meyer formula
for semimartingales [24) Theorem 9.43] under assumption ((H).

Proof. We first note that, by replacing P by the conditional measure P, 7, 8iven
Fi,, we may replace the conditional expectation in ([2)) by an expectation with
respect to the marginal distribution p3.(dy) of St under Pz, Thus, without



loss of generality, we set typ = 0 in the sequel and consider the case where Fy is
the o-algebra generated by all P-null sets and we denote Co(T, K) = C(T, K)
for simplicity. (@) can be expressed as

C(r.K) = K08 [ (= k)" i (a) (7

By differentiating with respect to K, we obtain

ac — Tr >~ — Tr
o (T K) = —e o roa /K pi(dy) = —e o TOVE [15,5 1]
(8)

0*C T,

sz hdy) =e Jo Tty (dy).
Let LE = LX(S) be the semimartingale local time of S at K under P (see [24]
Chapter 9] or [33, Ch. IV] for definitions). Applying the Tanaka-Meyer formula
to (St — K)™T, we have

T
1
(ST _ K)+ = (SO _ K)"‘ _|_‘/O 1{St7>K}dSt + §(L¥)

+ 30 (S = KT = (S — K)* —1(s,_ >k ASH]
0<t<T

(9)

As noted in Remark 2 the integrability condition (H]) implies that the dis-
counted price Sy = e~ Jor(=)dsg, — E(U); is a martingale under P. So () can
be expressed as

dS, = elo r(e)ds (r(t)St_dt + dS‘t)

and

T T T
/ 1{St7>K}dSt = / 610'7‘(8) ds 1{St,>K}dSt+/ er r(s)ds T(t)St71{5t7>K}dt,
0 0 0

where the first term is a martingale. Taking expectations, we obtain

[ T
ST OUC(T K) — (Sy — K)Y = E / efJT(S)dsr(t)Stl{St>K}dt+%L¥1
0

+ Bl DY (S —K)T = (S - K)T =15, >x}AS:)
_0<t§T

Noting that Sy_1s, >k} = (Si— — K)T + Klg, >k}, we obtain

T . T . o9C
E / ef() r(s)ds 'f'(t)St—l{St,>K}dt — / r(t)efo r(s)ds |:C(t, K) _ KaK (t, K) dt,
0 0



using Fubini’s theorem and (). As for the jump term,

E| Y (8= K)" = (Si- = K)F = Lis,_-i)AS:

0<t<T

s
= K A dt/m(t,dm) (St,ex - K)+ — (Stf — K)+ — 1{St7>K}St7(ez — 1)‘|

/dt/mtdw (Si—e* —K)T — (S — K)™T

~(St- = K)H (e = 1) = Klis,sxy(e” = D))

Applying Lemma [ to the random measure m we obtain that

[t dn)(Se-er =)t —e* (S K) =K (s, roy(e-1) = Si- (1“ (si))

holds true. One observes that for all z in R

A

Yi(z) < 1{z<0}/ ezm(tvdu)+1{z>0}/ e m(t, du)

= 1{z<o}ez/ 1.m(t,du)+1{z>0}/ e* m(t,du).

— 00 — 00

Using Assumption (HI),

E { > (St = K)F = (Sie — K)T = 1(s, >} ASY]

0<t<T

[l (n(3))] <

Hence applying Fubini’s theorem leads to

E |: Z (St - K)+ - (St— - K)+ - 1{St—>K}ASt

0<t<T

/ s [ mtdn) (St = K)* = (81 = K)* = Kgs, e - 1)
) asfscn (n(50)]
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- [ ()]




Let ¢ € C§°([0,T]x]0, 00]) be an infinitely differentiable function with compact
support in [0, 7] x]0, co[. The extended occupation time formula [34] Chap. VI,
Exercise 1.15] yields

+oo T T T
| [ etmyant = [T ewsiasi = [ e sio)st s 10)
0 0 0 0

Since ¢ is bounded and has compact support, in order to apply Fubini’s theorem

to
+oo T
/ dK / o(t, K)dLE
0 0

it is sufficient to show that E [L¥] < oo for ¢ € [0, T]. Rewriting equation (@)
yields

E

3

1 T
§L¥ = (ST—K)+—(SQ—K)+—/ 1{St,>K}dSt_ Z [(St — K)+ — (St_ — K)+ — 1{St,>K}ASt] .
0
0<t<T
Since S is a martingale, E[S7] < co E[(S7 — K)*] < E[S7] and
E [IOT 1{5t7>K}dS’t} < 00. As discussed above,

E Z ((St — K)+ — (St_ — K)+ — 1{St,>K}ASt) < 00,
0<t<T

yielding that E [L¥ ] < 00. Hence, one may take expectations in equation ([I0)
to obtain

+o0 T T T
El/ dK/ o(t, K)dLE| = E / gp(t,St)Sf_étzdt] :/ dtE [p(t, Se—)S; 67
0 0 0 0
T T
:/ dt]El:]E I:w(ta St*)StQ—5t2|St*jH = E / dt(ﬁ(ta St*)StQ—U(ta St)2‘|
0 0
o) T T . [e%s) 620
= [ [ etrorte ki d = [ el [ o R 02 5 (1 dE),
0 0 0 0

where the last line is obtained by using (®]). Using integration by parts,

00 T
/ dK/ dt ot K) 2 [ef$T<S>dS Ot K) — (S — K)*]

- ! O [ firs)d

- /0 dK /0 dt<p(t,K)§{eo O(t,K)}
00 T . 80

= / dK / dt o(t, K) elo 7(s) ds [E(t,K)+r(t)C(t,K)}
0 0

00 T 8<p ”
- _ v Jo r(s) ds
/O dK /0 dt St K) [e C(t,K)},



where derivatives are used in the sense of distributions. Gathering together all
terms,

/ dK/ dt—(t K) [ Jar(®)ds o(¢, K)

/ dt/ ar 22 o tK)/ dsr(s)elo "W [C(s K) — SIC((S K)]

0

/ dt/ 18@ /dLK
/ dt/ ik % K)/d fﬁ(“)d“/ﬂo aQ—C( dy)xey (I (E
o ) ot o o se ) yaKQ S,0Y)Xs,y | 11 Y

’ > JEr(s)ds oc
—/ dt/ dK o(t, K)r(t) elo [C(t,K)—KaK

(s S +OO 820 K
- /dt/ p(t, K)dL{ — /dt/ dK p(t, K) elo )d/o ym(f,dy)Xt,yOn(;)).

So finally we have shown that for any test function ¢ € C§°([0,T]x]0, oo[, R),

/ dK/ dt—tK [efﬁr(s)dsc(t,K)}

—/ dK/ dt o(t, K) eld () S[%—f(t,K)—i—r(t)C(t,K)}

+

+

(t, K]

oC
0K

/dt/ dK o(t, K) r(t) elo T 40t K) — K=——(t, K)]

*1 JEr(s)ds 2 2620
— dt ) 560 QD(t,K)K O'(t,K) m(t,dl{)

T (') " “+o0 820 K
- dt dK o(t, K Jo’“<5>d5/ Z Z(t.d n(=)).
[ [ arxe St (S

Therefore, C(.,.) is a solution of (@) in the sense of distributions. O

1.3 Uniqueness of solutions of the forward PIDE

Theorem [I] shows that the call price (T, K) — Ci, (T, K) solves the forward
PIDE (B). Uniqueness of the solution of such PIDEs has been shown using
analytical methods [4] 2T] under various types of conditions on the coefficients.
We give below a direct proof of uniqueness for (&) using a probabilistic method,
under explicit conditions which cover most examples of models used in finance.

10



Define, for u € R, ¢t € [0,T[, z > 0 the measure n(t, du, z) by

0

—u 7

n(t, [u,o0[,2) = —e 5 xt,z(w)], uw>0;

9]
% [Xt,z(u)] 9 u < 0.

n(t,] —oo,ul,z) =e™"

Throughout this section, we make the following assumption:

Assumption 3.
VT >0,VB € B(R) — {0}, (t,z) = o(t,z), (t,z)—=n(t, B, z)

are continuous in z € RY, uniformly in t € [0,T)]; right-continuous in t on [0,T[
uniformly in 2 € RT. and

IKr > 0,Y(t,2) € [0,T] x Rt |o(t, 2)] +/(1 Alz)?)n(t, du, z) < Kp. ()
R

Theorem 2. Under Assumption[3, if
either (i) VR>0Vte[0,T[, inf o(tz) >0,
0<z<R

or (i) o(t,z) =0 and 36 €]0,2[, 3C > 0,VR > 0,V(¢, 2) € [0,T[x][0, R],

vreC®- (R, [ (nledus) - S8 s o

du

c

{lu[<1}
T
and (i4i)  lim sup n (¢, {|u] > R}, z) dt =0,

R=o0 Jo er+
then the call option price (T, K) — Cy (T, K), as a function of maturity and
strike, is the unique solution (in the sense of distributions) of the partial integro-

differential equation @) on [tg,00[X]0,00[ with the initial condition: VK >
0 Cto(t(JvK) = (Sto - K)+

The proof uses the uniqueness of the solution of the forward Kolmogorov
equation associated to a certain integro-differential operator. We start by re-
calling the following result:

Proposition 1. Define, for t € [0,T] and f € C§°(R), the integro-differential
operator

22o(t,x)?

e
n / [F(t,26%) — f(t,2) — 2(e¥ — 1) ()] n(t, dy, ).
R

Lif(x) = r(t)zf'(z) +
(12)

11



Under Assumption [3, if either conditions (i) or (ii) and (iii) of Theorem [2
hold, then for each xo in RT, there exists a unique family (p(zo,dy),t > 0) of
bounded measures such that

50 dp
Vg € CO (]0,00[,R), /g(y)E(CEOudy) = /pt(:EOudy)Ltg(y)? pO(:EOu') = €z,
(13)
where €z, is the point mass at xo. Furthermore, pi(xo,.) is a probability measure

on [0, ool

Proof. Denote by (X¢)icjo,7) the canonical process on D([0,T],R). Under as-
sumptions (i) (or (7)) and (ii7), the martingale problem for ((Ly).cqo, 77, Co°(R™))
on [0,7] is well-posed [3I, Theorem 1]: for any xy € R¥ tq € [0,7], there
exists a unique probability measure Qy, ., on (D([0,7],R"),Br) such that
Qty.20 (X1, = z0) = 1 and for any f € Cg°(R™),

FX0) — (o) — / L.f(X.) ds

is a (Quy, 20, (Bt)i>1, )-martingale on [to, T]. Under Qy, 4., X is a Markov process.
Define the evolution operator (Qy,.¢)teft,, 7] by

VfEeCRY), Quif(wo) = E%0-=0 [f(X,)]. (14)

t
Then Qto,tf(xO) = f(xO) + EQ%’IO |:/ Lsf(Xs) dS] :
to

Given AssumptionB] ¢ € [0,T] — fti L f(Xs)ds is uniformly bounded on [0, T7].
Given Assumption [B] since X is right continuous s € [0, T[— Lsf(Xs) is right-
continuous up to a Q, ,-null set and

¢
lim [ Lsf(Xs)ds=0 as.

tlto to

Applying the dominated convergence theorem yields

t
hmEQto,IO |:/ Lsf(XS) d8:| = 07 50 El,rtn Qto,tf(xo) = f(xo)u
to 0

tlto

implying that ¢ € [0,T[— Q.+ f(zo) is right-continuous at to for each zy €
R*. Hence the evolution operator (Qy,,¢):e[t,,] Vverifies the following continuity

property:
Vf e C)(RT),Vr € R, grgl@to,tf(x) = f(x). (15)

In particular, denoting ¢ (dy) the marginal distribution of X;, the map

tel0,T— o a(dy) f(y) (16)

12



is right-continuous, for any f € CJ(RT),z9 € RT. The martingale property
implies that ¢:(xo, dy) satisfies

Vg € C°(RY), /qt(wo,dy) g(z0) // qs (o, dy) Lsg(y) ds. (17)
R+ R+

Given Assumption 3] ¢; is a solution of (3] with initial condition go(dy) = €4,.
In particular, the measure g, has mass 1. To show uniqueness of solutions of
([@3), we will rewrite (I3)) as the forward Kolmogorov equation associated with a
homogeneous operator on space-time domain and use uniqueness results for the
corresponding homogeneous equation. Let C1([0,7]) ® C5°(RT) be the tensor
product of C([0,7]) and C§°(R*). L; can be extended to a (homogeneous)
linear operator A on C*([0,7]) ® C§°(R™) defined via

Ve G (RY), Wy el ([0,T]), A(fy)(tx) =~(t)Lef(2) + fa)y/(t). (18)

[19, Theorem 7.1, Chapter 4] implies that for any xo € RT, if (X, Q¢ »,) is a
solution of the martingale problem for L, then the law of n; = (¢, X;) under
Qty,z, is a solution of the martingale problem for A: in particular for any

f€Ce(RT) and v € C([0,T7),

/qt(Io,dy)f(y)”Y(t) = f(Io)7(0)+/O /qs(xo,dy)A(fW)(S,y) ds. (19)

[19, Theorem 7.1, Chapter 4] implies also that if the law of n, = (¢, X;) is a
solution of the martingale problem for A then the law of X is also a solution
of the martingale problem for L, namely: uniqueness holds for the martingale
problem associated to the operator L on C{°(R™) if and only if uniqueness
holds for the martingale problem associated to the martingale problem for A on
C([0,T]) ® C§°(RT). Define, for t € [0,T] and h € C2([0,T] x RT),

V(s,z) € [0,T] x RT, Qih(s,z) = /R+ qi(x, dy)h(t,y). (20)

which extends Qo+ to a ’homogeneous’ operator on C2([0,7] x R*"). Using (7)),
we have, for € > 0,

v(/f, [0,T]) x C°(R™),  Qe(f¥)(s,20) — Qe(f)(s,%0) =

([0
// qu (o, dy)A(fv)(u,y) du-/ Qu(A(fy))(s,x0) du. (21)

By linearity, for any h € C1([0,T]) ® C°(R*) we have

t t

Quh(s, 20) — Qch (s, 20) / / gu(z0, dy) Ah(u, y) du = / Q. Ah(s, z0) du.
€ R+ €

(22)
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Consider now a family p;(xg, dy) of positive measures solution of (I3)) such that
po(xo,dy) = €4,(dy). Then p; is also a solution of (I7)). An integration by parts
implies that, for (f,v) € C1([0,T7]) x C§°(R™),

/R P, dy) F () (1) = / / pe(0, dy) A(f7)(s,y) ds.  (23)

Define, for ¢ in [0,T],h € C2([0,T] x RT),
Wsim0) € OT) < RE, Ph(sa) = [ pilan.dp)h(t,v)
R+

(Pi)i>0 is then a homogeneous semigroup. Using ([23), for (f,~) € C([0,T]) x
C3°(RY),

Ve >0, Pu(fv)—Pe(fv) = // pu(dy)A(f) uydu—/P (fv)) du.
24)

which is identical to (ZI)). Multiplying by e~* and integrating with respect to
t we obtain

A [T Pt = fanO -+ [T [ Puai) e m) dud
— Fao)(0) + A / h ( In e”dt) Pou(A())(s. 20) du
= Jeop)+ [ NP, (A(f1)) (s, o) d
0

for any A > 0. Similarly, from (2I]) we obtain for any A > 0,

ATt = fan©)+ [ e QU s 0) du
0

0
Hence for (f,7) € C1([0,T]) x C°(RT) we have

/0 TN Q0 — A)(f)(sx0) dt = F(z0)1(0) = / T MNP - A)(f) dt.

(25)
By linearity, for any h € C1([0,T]) ® C°(R*) we have

/Oo e Qu(A — A)h(s, mo) dt = h(0, ) = /Oo e M Py(A = Ahdt.  (26)
0 0

From [19, Proposition 2.1, Chapter 1], for all A > 0
Im(\—A) =C([0,T] x R")

where Im(\ — A) denotes the image of C*([0,7]) ® C5°(RT) by the mapping
(A — A). Hence, since (26]) holds

YhinCP([0,T] x R™), / e*”ch(s,xo)dt:/ e M Pih(s,x0) dt, (27)
0 0

14



so the Laplace transform of ¢t — Q:h (s, o) is uniquely determined. Using (24)),
Ve > 0,Vh € C*([0,T]) ® C°(RT),

Peh — Peh = /: /]R+ pu(dy) Ah(u,y) du = /: Pu(AR) du (28)

by linearity, which allows to show that, for any h € C*([0,T]) ® C°(RT), t —
Pih(s,x0) is right-continuous:

Vh € CH([0,T]) ® C°(RT), E]ﬁpﬂh(s,xo) = P;h(s, z0).
An identical argument using (24) shows that ¢t — Q:h(s, xo) is right-continuous.

These two right-continuous functions have the same Laplace transform by (21)),
so they are equal. Thus we have shown that

vh € C1((0,T]) ® C3°(R™), / h(t, )t (o, dy) = / Wt y)pi(zo.dy). (29)

[19, Proposition 4.4, Chapter 3] implies that C1([0, T]) ® C§°(R™) is separating,
so ([29) allows to conclude that p;(xo, dy) = g:(xo, dy). O

We can now study the uniqueness of the forward PIDE (&) and prove The-
orem

Proof. of Theorem[2l We start by decomposing L; as L; = A; + B; where

Aif(y) = rt)yf (y) + %f”(y), and

Buf(y) = / Fwe?) — ) — y(e* — D @)nlt.dzy).

Then using the fact that ya%(y —2)" = 2lpysey + (Y — 2)3 = yl{ysay and

2 . . .
88—y2(y —x)% = €,(y) where €, is a unit mass at x, we obtain

y2o(t,y)?

) € (y) and

At(y - I)+ = T(t)y 1{y>m} +

Br(y—x)t = /R[(yez —a)t = (y—a)" = (" = 1) (zlysay + (y — 2)7)]n(t, dz,y)

- /R[(yez —o)t —efly—a)" —x(e® — D)1ysayn(t, dz,y).

Using Lemma [ for the random measure n(t,dz,y) and v, its exponential

double tail,
x
)

15



Hence, the following identity holds

Ly =) = 1(0) (1o + 0= 2)2) + L5  ) gy (1 (2)).

(30)
Let f : [to, 00[x]0, co[— R be a solution in the sense of distributions of (&) with
the initial condition : f(0,z) = (Sp — z)T. Integration by parts yields

O gty 2
[ L) (1061 o + =000+ 2 )+ iy (1 (2)))

2 2
oo [ A +r0) [ S -0

220 (t,z)% 0% f < 9% f x

— ot a2t dy)y‘/’“< <§)>

B of 220(t,x)? 0% f © 92 f x

= —r0egl +rseo + =TI [Ty, (n(2).

Hence given (@), the following equality holds

Feo ==+ [ htaLe-ot G

+

or, equivalently, after integration with respect to time ¢

s, - 00 = [T -0t @

0

Integration by parts shows that

oo 92
flta) = [ G- o). (33)

Hence (BIl) may be rewritten as

[eS) . 2
/ elor S)dsgxf (t, dy)(y—2)" —(So—z)* —/ / eJo r(w) du f(s dy)Ls(y—z)* ds.
0
(34)
Define g (dy) = efo 7() ds %(t, dy), we have qo(dy) = €s,(dy) = po(So, dy). For
g € C§°(]0, 00[, R), integration by parts yields

oy) = / T @) - o) e (35)
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Replacing the above expression in fR 9(y)q:(dy) and using ([B4) we obtain
e ] [e’e} . 82
/ 9(y)a:(dy) :/ gly) elo () ds a—];(t,dy)
0 0 x
* 1 > ’r S S 8
| o) [ el S - o)t s
0 0
_ / //( )(SO—Z)+dZ+/ / / eforu)du f(s dy)L ( —z)+dz
8 "
s+ [ [T etirond L [ g -2 d

— (S0 + / / 0s(dy) Lag(y) ds.

This is none other than equation ([I3]). By uniqueness of the solution p;(So, dy)
of (I3) in Proposition [I),

efotr(s) s a f

=5 (¢, dy) = p(So, dy).

One may rewrite equation ([32)) as

Fty2) = e v (f<o,w> S RCR x>+) ,

showing that the solution of (B with initial condition f(0,z) = (So — z)7 is
unique. O

2 Examples

We now give various examples of pricing models for which Theorem [ allows to
retrieve or generalize previously known forms of forward pricing equations.

2.1 Ito processes

When (S;) is an It6 process i.e. when the jump part is absent, the forward
equation (&) reduces to the Dupire equation [I6]. In this case our result reduces
to the following:

Proposition 2 (Dupire equation). Consider the price process (Si) whose dy-
namics under the pricing measure P is given by

T T
ST = SO +/ T(t)Stdt +/ St5tth-
0 0
Assume there ezists a measurable function o : [tog,T] x RT — {0} — R such
that
Vt et € [to, T1, o(t,Si—) = \/E[62]5;:-]. (36)
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If
E

T
exp (%/0 o7 dt)} < 00 a.s. (37)

the call option price @) is a solution (in the sense of distributions) of the partial
differential equation

aCy,
aT

aCy,
oK

K?0(T,K)? 02Cy,
2 0K?

(T,K)=-r(TK (T,K) + (T, K) (38)

on [to, 00[x]0, o[ with the initial condition:
VK > 0, Cto(tQ,K): (Sto —K)+.

Notice in particular that this result does not require a non-degeneracy con-
dition on the diffusion term.

Proof. 1t is sufficient to take = 0 in () then equivalently in (B). We leave the
end of the proof to the reader. O

2.2 Markovian jump-diffusion models

Another important particular case in the literature is the case of a Markov
jump-diffusion driven by a Poisson random measure. Andersen and Andreasen
[2] derived a forward PIDE in the situation where the jumps are driven by a
compound Poisson process with time-homogeneous Gaussian jumps. We will
now show here that Theorem [Il implies the PIDE derived in [2], given here in
a more general context allowing for a time- and state-dependent Lévy measure,
as well as infinite number of jumps per unit time (“infinite jump activity”).

Proposition 3 (Forward PIDE for jump diffusion model). Consider the price
process S whose dynamics under the pricing measure P is given by

T T T +oo ~
St = S() + / T(t)St,dt + / Stfa(t, St,)dBt + / / Stf (ey — 1)N(dtdy>
0 0 0 —o0
(39)

where By is a Brownian motion and N a Poisson random measure on [0,T] x
R with compensator v(dz)dt, N the associated compensated random measure.
Assume that

o(.,.) is bounded and / ey (dy) < . (40)
{ly|>1}

Then the call option price

Coo (T, K) = ¢ Jo ™4 B2 [nax(Sp — K, 0)[F]

18



is a solution (in the sense of distributions) of the PIDE

80,50 o 8C't0 KQO'(T, K)2 820150
4 / U(dz) e* [cto (T, Ke=%) — Cy, (T, K) — K (e=* —1)2Ct
R oK
(41)

on [tg, 00[x]0, oo[ with the initial condition:
VK>07 Cto(t()vK): (Sto_K)Jr'

Proof. As in the proof of Theorem [Tl by replacing P by the conditional measure
Pr,, given Fy,, we may replace the conditional expectation in @) by an expecta-
tion with respect to the marginal distribution p%(dy) of St under PP Fuy- Thus,
without loss of generality, we put tg = 0 in the sequel, consider the case where Fy
is the o-algebra generated by all P-null sets and we denote Co(T, K) = C(T, K)
for simplicity.

Differentiating (2] in the sense of distributions with respect to K, we obtain:

2

C (T dy) = e I O 8 (ay).

oC e
_ fo r(t) dt S
ST K) =~ | 5

0K

In this particular case, m(t,dz) dt = v(dz) dt and 1, are simply given by:

1/1(2):{ [C o dver [F_v(du) z<0

Vilz) = erooda: e’ [Fu(du) 2>0

Then ) yields
Xt,5,- (2) = E [t (2) |[Se-] = 9(2).

Let us now focus on the term

[ v ((5))

in (B). Applying Lemma [ yields

I, v an (=)

/oo e Jo rt)at S(dy)/[(yez —K)T—ef(y - K)T = K(e* = 1)1y i3]v(dz)

= [ [T it - Ke ) - - K - KO- gl
? ) — —K(e™* - 8_0 v(dz
= /Re [C(T,Ke )—-C(T,K) — K( UBK} (dz). (42)
This ends the proof. O
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2.3 Pure jump processes

For price processes with no Brownian component, Assumption (H]) reduces to

vI'>0, E lexp </T dt/(ey —1)%*mift, dy))] < 0.
0

Assume there exists a measurable function x : [to, 7] x RT — {0} — RT such
that for all ¢ € [to,T] and for all z € R:

xt.s. (2) = E [t (2) [S:-], (43)

with

or(2) f_zoo dz e* ffoo m(T,du), z<0;
Z) =
’ f;oo dr e* f;o m(T,du), z>0,

then, the forward equation for call option becomes
0C w28 [T e (0 (K (44)
aT ok ), Yoxz\ O XTw v))

It is convenient to use the change of variable: v = Iny,k = In K. Define
c(k,T) = C(e*,T). Then one can write this PIDE as

dc dc oo, d%c  dc
e ZT (k) ( Z = _ =% _

In the case, considered in [9], where the Lévy density my has a deterministic

separable form
my (t,dz,y) dt = a(y,t) k(z) dz dt, (46)

Equation (3] allows us to recoverfl] equation (14) in [9]

Oc Oc C° 9 9%c  dc
el ur _ (v—k) v g5 _ Y
+r(T) v _/ k(k —v)e ale’,T) ( 2 k:) (T, dv)

— 00

where & is defined as the exponential double tail of k(u) du, i.e.

) [oodre” [F k(u)du z<0;
k(z) =
f;oo dz e® [ k(u)du z> 0.

The right hand side can be written as a convolution of distributions:

dc dc d%c  dc
a7+ T(T)% = [ar(.) (W — %>] xg  where (47)
g(u) = e 2k (u) ar(u) = a(e",T). (48)

1Note however that the equation given in [J] does not seem to be correct: it involves the
double tail of k(z) dz instead of the exponential double tail.
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Therefore, knowing ¢(.,.) and given x(.) we can recover ar hence af.,.). As
noted by Carr et al. [9], this equation is analogous to the Dupire formula for
diffusions: it enables to “invert” the structure of the jumps-represented by a—
from the cross-section of option prices. Note that, like the Dupire formula, this
inversion involves a double deconvolution/differentiation of ¢ which illustrates
the ill-posedness of the inverse problem.

2.4 Time changed Lévy processes

Time changed Lévy processes were proposed in [§] in the context of option
pricing. Consider the price process S whose dynamics under the pricing measure
P is given by

t
Sy=ebrduy, X, —exp(Lo,) ©;= / 0sds (49)
0

where L; is a Lévy process with characteristic triplet (b, 02, v), N its jump mea-
sure and (6;) is a locally bounded positive semimartingale. X is a P-martingale
if

1 z
b+ 502 + /R(e —1—=z1y<1y)v(dy) = 0. (50)
Define the value Ct, (T, K) at to of the call option with expiry T' > o and strike

K >0 as .
Cy (T, K) = e~ Jo "X EP[max(Sp — K, 0)|F, . (51)

Proposition 4. Assume there exists a measurable function o : [0,T] X R — R
such that
a(t, Xi—) = Elf| X:—], (52)

and let x be the exponential double tail of v, defined as

B [oodre® [F v(du), z<0;
x(z) = { [ de e [T u(du), 2> 0. (53)

If B= 302 + [;(e¥ —1)?v(dy) < 0o and
E [exp (8O7)] < oo, (54)

then the call option price Cy, : (T, K) — Cy, (T, K) at date to, as a function of
maturity and strike, is a solution (in the sense of distributions) of the partial
integro-differential equation

aC oC K?a(T,K)o? 9°C

%(T,K):—TO[(T,K)K%(T,K)‘F 2 (9K2

+ /Omy%(ﬂ dy) a(T,y) x (ln (%))

n [t, 00[x]0, 00| with the initial condition: YK >0 Cy,(to, K) = (St, — K)+.

(T, K)
(55)

21



Proof. Using Lemma [5, Lemma 2], (Lg,) writes

t t
Lo, = L0+/ U\/@sdBS—i—/ bOyds
0 0

¢ ¢
/ 0 / 2N (dsdz) + / / zN(ds dz)
0 lz]<1 0 J{lz|>1}

where N is an integer-valued random measure with compensator 0;v(dz) dt, N
its compensated random measure. Applying the Ito formula yields

X, = X0+/X _dLp, + = /X _00,ds+ (X, — Xoo — X,_ALr,)

s<t

t
1
X0+/ X, {b95+ —0295] ds+/ X,_o+\/0sdB;
0

/X 9/{| o N(ds dz) /X 9/{ e N(ds dz)
//X ¢* —1— 2)N(ds dz)

Under our assumptions, [(e* —1 — z1y,<1})v(dz) < oo, hence:

+

t t
1
X, = X0+/ X, {b05+ 5a295+/(ez —1—21{2S1})05V(dz)] ds+/ X, oV0dB,
0 R 0

t
+ //XS,HS(eZ—l)N(dsdz)
0 JR
t t ~
X0+/ Xs_o\/H—sst—i—/ /XS_(eZ — 1)N(ds dz)
0 0 JR
and (S;) may be expressed as
t
St:50+/s ()ds—i—/S _o\/b,dB, +// (e* — 1)N(ds dz).
0

Assumption ([B4) implies that S fulfills Assumption (H) of Theorem [l and (S;)
is now in the suitable form () to apply Theorem [, which yields the result. O

2.5 Index options in a multivariate jump-diffusion model

Consider a multivariate model with d assets
Sk =8} +/ r(t)S;-dt +/ Sy 0y dW +/ S;— (e —1)N(dtdy)
0 0 0o JRrd

where 6° is an adapted process taking values in R representing the volatility of
asset 7, W is a d-dimensional Wiener process, N is a Poisson random measure
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on [0,T] x R? with compensator v(dy)dt, N denotes its compensated random
measure. The Wiener processes W* are correlated

V1l < (17.7) < du <Wi7Wj>t = pi;jt7

with p;; > 0 and p;; = 1. An index is defined as a weighted sum of asset prices

d d
It:ZwiSz w; >0 Zwi:L
=1 1

The value Cy, (T, K) at time tg of an index call option with expiry T' > o and
strike K > 0 is given by

Coo (T, K) = ¢ S0 " ¥ EP o (T — K, 0)|F . (56)

The following result is a generalization of the forward PIDE studied by Avel-
laneda et al. [3] for the diffusion case:

Theorem 3. Forward PIDE for index options. Assume

V>0 E [exp (% I ||6t||2dt>} < 00

Jea 0N Il vidy) < 20 a5 -
Siyisny €Mv(dy) < oo as.

Define

T <z

ffoo dx e* ﬁRd 1ln (Zlgigdflwiséfeyi> v(dy) z<0
e (2) = o 1 o (58)
¢ [0 dx e” [pa 1ln (Zlgigdqwﬁi,eyi )>my(dy) 2>0

T,_

and assume there exists measurable functions o : [to,T] x RT — {0} — RT,
X : [to, T] x RT — {0} = RT such that for all t € [to,T] and for all z € R:

ot, ;=) =1 \/IE [(szzl wiw;pij 048] SLSL) |It7} a.s.,
xer,_(z) =E[n(2)|Li-] as.

Then the index call price (T, K) — C, (T, K), as a function of maturity and
strike, is a solution (in the sense of distributions) of the partial integro-differential
equation

80,50 - 8Ot0 O'(T, K)2 82Ot0 /Jroo 82Ct0 K
(60)

(59)

on [tg, 00[x]0, 00| with the initial condition:

VK > 0, Cto(thK):(Ito_K)-i--
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Proof. (By);>o defined by
Zlii:1 w; S;_8;dW/
d 1y __5i5j8i Sj 1/2
Ei,j:lwlepw 10t Pr—Oi—

is a continuous local martingale with quadratic variation ¢: by Lévy’s theorem,
B is a Brownian motion. Hence I may be decomposed as

dB; =

d T T d . . ’
IT = Z wle) + / T(t)]t_ dt + / Z Wi;Wj Pi5 6;5? SLSL dBt
i=1 0 0 \ij=1 (61)

T d
+/ / > wiSi_(e¥ — 1)N(dt dy)
0 JRYo

The essential part of the proof consists in rewriting (I;) in the suitable form ()
to apply Theorem [l Applying the It6 formula to In (I7) yields

I T 1<
T PP
In I_O = /0 |:’I“(t) — W Z W; Wy P4 6t5g St,Sg,
=4 =1
N cicqWiSi_evi N icicqWiSi_evi
[ B Sy Tasssa Sy )
T d AP T SolcieqwiSi_eYi\
+ / — | > wiw;pi; 6,67 S;_SI_ | dBi+ / / In [ =222 7 ) N(dt dy).
0 Itf ij=1 0 It,

Using the convexity property of the logarithm,

_w;SE_eY: _w Sty _w;SE_eY:
In (Elgzgd cr ) > Zlglgd D > —llyll, and In (Elgzgd ot ) §1n<max eyi>7

It_ It— It—

implying that

D icicawiSi_eY: w; S}
1<i<d Mt — PRt
1n< : )g > WSy < S il <l
t= 1<i<d “t~ 1<i<d
. _w;S_eYi B w; S _eYi .
so the functions y — In <ZISS% and y — 2135% are in-

tegrable with respect to v(dy) under the assumptions (B7). We furthermore

observe that
In <Zl<i<d w;Sy_evi )

1A
/

T 2‘1n (Zlgigd w;Sf_eYi ) ‘
/ / e - v(dy)dt < oo a.s.
0 Hllyl>1}
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Similarly, (57) implies that [ (e¥' — 1 — 14, /<13¥i ) ¥(dy) < oo so In (S%) may
be expressed as

T
In(S%) = In(SY) —I—/ (T(t) - %(5;)2 - / (eyi —-1- l{m‘gl}yi) V(dy)) dt

0
T ) T B
o [Cstawis [ fusara
0 0

Define the d-dimensional martingale W; = (W}, --- , W& ! By). For 1 <i,j <
d — 1 we have

. o
> =1 WipiiSi_ 0}

(W' Wiy, = p; it and (W' B); = - -
(Ei,j:l Wi W Pij 5%5% S;_Sg_)

t.

Define
., o
1 ... prd—1 Sj=1 wip1S]_ 61
,a— —— - 173
(4 g wiwspij i8] si_s]_)"
= d PR
O Y91 wipa—1,;5i_6]
Pa-1,1 1 d isd gi gi \1/2
P S (Ei,jzl wiwjpij 6t 8% St—st—)
S wie,; ST 81 >4 wipa_1,;5]_5] .
I b v AR y 1958
(328 j=1 wiwspij 6767 S_S]_) (¢ o1 wiwjpij 8157 Si_s]_)

There exists a standard Brownian motion (Z;) such that W, = AZ; where A is a
d x d matrix verifying © = ‘A A. Define X7 = (In(S}),--+ ,In (S%71),In (Ir));

5b e 0 0
0= 0 ... (5,‘3_1 0 ,
1
0 tee 0 I% (Zlii,jzl W; Wy Pij 5%6% S;_Sg_) :
r(t) = 500:) = [ (" =1 —y1) v(dy)
o= P(0) = ) = f (%91 = 1= yas) v(dy)
1 d .. STST Qi J Elgigd wiSZQeyi Elgigd wiszfeyi
r(t) — T Zmzl wiw;pi; 016 St_Si_ — [ (—IF —1—In (—IF >> v(dy)
Y1
and wt(y) = Yd—1

In 21991 w;Sy_e¥i
I
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Then X7 may be expressed as

T T T
0 0 0 Rd

The predictable function ¢; defined, for ¢ € [0,T],y € 1:(R%), by

¢u(y) = (yl oy Yd—1,1n (eydlt_ — Dicicd-1 wiSfeyi>>

wde,

is the left inverse of ¢;: ¢:(w, Y+(w,y)) = y. Observe that ¢(.,0) = 0, ¢ is pre-
dictable, and ¢;(w,.) is differentiable on Im(v) with Jacobian matrix V¢ (y)
given by

1 0 0 0
(Vyoe(y)) = 0 1 0
—eVlwy S} —eVd—1lyy ;571 evd I,
eYdli_ =3 1<i<qg—1 wiS;_eYi e¥dly_ —3icic<a—1wiS;_e¥i  e¥dli_ —3lcicqq wiS;_eVi

so (v, v) satisfies the assumptions of [5, Lemma 2]: using Assumption (Asgp),
forall T >t >0,

T
E U | an i) o) dt}

, 2
T cqWiSi_eYi
/ / INY+ o +yi +In <Zl<z<d : ) v(dy)dt
0o Jrd

I

IN

T
| [ in i vy < o
0 JRd
Define vy, the image of v by ¢ by
V¢(w7ta B) = V(¢t(w7 B)) for B C 1/}t(]Rd) (64)

Applying [B, Lemma 2], X7 may be expressed as

T T T
XT=X0+/ ﬁtd/t-i-/ (StAdZt-f—/ /yM(dtdy)
0 0 0

where M is an integer-valued random measure (resp. M its compensated ran-
dom measure) with compensator

pwlws dt dy) = m(t, dy; w) dt,
defined via its density

eydft,

eValy — 3 cicgq WiSi_€Y

dp
@(wﬂ%y) = 1y, reyy (¥) [detVy el (y) = iy, rayy (y)
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with respect to v4. Considering now the d-th component of X7, one obtains
the semimartingale decomposition of In (1;):

In (IT) —In (Io)
T 1 d o .
= [ (055 | 3w st si_si

4,j=1

_w; SE_eY: _w; SE_eY:
_/ (El<l<d] t -l <El<l<d[ t )) y(dy)) i
t— t—

T d T
1 P . ~
b [ | X wwesisisisi | dnes [ [yt
o li- 0

ij=1

where K is an integer-valued random measure on [0,7] x R with compensator
k(t, dy) dt where

k(t, B)

Lo nttdy = [ 1oy 0) etV ) vo(t, dy)
Re-1x B Re-1x B
- / etV ) (2 () (dy)

RA—1x By, (R4)

i evi v(dy) for B e B(R-{0}).
~/{y€Rd{0},ln<zl<i<d1—wisfe)eB} (dy) (R—{0})

Iy

In particular, the exponential double tail of k(t, dy) which we denote n:(z)

_ f—zoodx emk(tv]_oovx])v 2<0;
(=) = { f;oo dx e*k(t,[z,00[), 2z>0,

is given by (B8)). So finally I+ may be expressed as

[N

T T d
IT = IQ + / T‘(f)[t_ dt + / Z W; Wy Pig 5;5% SZ_Sg_ dBt
0 0

ij=1
T ~
+ //(ey—l)It_K(dtdy).
0 R4

The normalized volatility of I; satisfies, for t € [0,T],

1 (Elgigd w; S}_eYi )
n
7

d isi gi QJ d
o waw;ipi; 0707 St_ST_ o
Sy 8IS St g
t7

1,j=1

< lyll-
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Hence

wiw;pi; 6167 St ST T
/ Xhom ity : dt+/ /(ey—1>2k(t7dy)dt
0

7
wiw;pi; 6167 St ST
_ / Zz] 1 ]p2] t dt
I
. 2
T icq1 WiSi_eY +wySg eY
n / / <21< <d—1 ¢ t — 1) v(dys, -, dyq_1,dy)dt
R4 Itf
< Z pij 5] + / / el — 1)2u(dyy, -, dyq_1, dy) dt.
4,j=1 e

Using assumptions (57)), the last inequality implies that I; satisfies (H]). Hence
Theorem [Il can now be applied to I, which yields the result. o

2.6 Forward equations for CDO pricing

Portfolio credit derivatives such as CDOs or index default swaps are derivatives
whose payoff depends on the total loss L; due to defaults in a reference portfolio
of obligors. Reduced-form top-down models of portfolio default risk [20} 22 [35]
111, [36] represent the default losses of a portfolio as a marked point process
(L¢)e>0 where the jump times represents credit events in the portfolio and the
jump sizes AL; represent the portfolio loss upon a default event. Marked point
processes with random intensities are increasingly used as ingredients in such
models [20] 22] 28| 35, B6]. In all such models the loss process (represented as
a fraction of the portfolio notional) may be represented as

t el
Lt:/ / x M (ds dz),
0o Jo

where M (dt dx) is an integer-valued random measure with compensator
w(dt dx; w) = m(t, de; w) dt.

If furthermore )
/ xm(t,dz) < oo, (65)
0

then L; may be expressed in the form

L= // m(s, dz) ds—i—M(dsd:z:)),
/Ot/olx]\;[(dsdx),
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is a P-martingale. The point process Ny = M([0,¢] x [0,1]) represents the
number of defaults and

M) = [ it dei)

represents the default intensity. Denote by 77 < T < .. the jump times of N.
The cumulative loss process L may also be represented as

Nt
L= 7,
k=1
where the “mark” Zj, with values in [0, 1], is distributed according to

mx (t,dx;w)
)\t(W)

Note that the percentage loss L; belongs to [0,1], so AL, € [0,1— L;_]. For the
equity tranche [0, K|, we define the expected tranche notional at maturity T as

Cio (T, K) = E[(K — Lr) 4| ). (66)

Fy(d;w) =

As noted in [T1], the prices of portfolio credit derivatives such as CDO tranches
only depend on the loss process through the expected tranche notionals. There-
fore, if one is able to compute C, (T, K) then one is able to compute the values
of all CDO tranches at date ty. In the case of a loss process with constant loss
increment, Cont and Savescu [12] derived a forward equation for the expected
tranche notional. The following result generalizes the forward equation derived
by Cont and Savescu [12] to a more general setting which allows for random,
dependent loss sizes and possible dependence between the loss given default and
the default intensity:

Proposition 5 (Forward equation for expected tranche notionals). Assume
there exists a measurable function my : [0,T] x [0,1] = R([0,1]) such that for
all t € [to, T) and for all A € B([0,1)],

my (t, A, Li_) = E[mx(t, A, )| Le_], (67)

and denote My (dtdy) the integer-valued random measure with compensator
my (t,dy, z) dt. Define the effective default intensity

1-z
N(t,2) = /0 my (t,dy, z). (68)

Then the expected tranche notional (T, K) — Ct, (T, K), as a function of matu-
rity and strike, is a solution of the partial integro-differential equation

aCy,
aT

K o2 K-y
__/0 aa;t; (T,dy> [/0 (K—y—z)my(T,dz,y)—(K—y))\Y(T,y) )

(69)

(T, K)
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on [tg, 00[Xx]0, 1[ with the initial condition: VK € [0,1], Cy,(to,K) = (K —
Lto)-l-'

Proof. By replacing P by the conditional measure Pz, given Fo, we may re-
place the conditional expectation in (66]) by an expectation with respect to the
marginal distribution pr(dy) of L under Pz, . Thus, without loss of general-
ity, we put tg = 0 in the sequel and consider the case where Fy is the o-algebra
generated by all P-null sets. (66]) can be expressed as

Cr.K) = [ (K=" prtay). (70)

Differentiating with respect to K, we get
oC K 0°C

ok = ), =Bl <], G Tdy) =pr(y). (7))

For h > 0 applying the Tanaka-Meyer formula to (K — L;)™ between T and
T + h, we have

T+h
(K — Lryn)™ = (K - Ly)™* —/ Lir,_<kydLy
g (72)
+ Y [(K—L)* — (K= Lio)" + 11, <xyAL].
T<t<T+h

Taking expectations, we get

C(T+hK)-C(T,K) = E

T+h 1-L;_
/ dtl{Lt,<K} / xm(t,da:)
T B 0

+ E| Y (K-L)" = (K- L )"+ 1, <AL
T<t<T+h

The first term may be computed as

T+h 1—-Ly— T+h 1-Ly—
T 0 T 0

T+h 1-Ls
= / dtE |E 1{Lt,§K} / xm(t,da:)’Lt,
0

T+h 1-L;_
= / dtE 1{Lt7§K}/ xmy(t,dx,Lt,)
0

_ (T -KpT(dy) Y eyt dry))
T 0 0
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As for the jump term,

E Z (K —L)" — (K = L) + 141, <xyAL
T<t<T+h

T+h 1—L;—
= V dt/ m(t,dx) (K — Li- — )" — (K—Lt—)++1{Lt<K}x)]
= / dtE
T L
T+h [ 1—Lye
= / dtE |E l/ m(t,dz) (K — Li— — )" — (K — Li_)T + (1, <) ‘Lt_H
T 0

1-Ly—
/0 m(t,dx) (K — Ly- —x)* —(K—Lt-)++1{Lt<K}x)]

T+h 1-L¢—
= / dtE / my(t,dx,Lt,) ((K - Ltf - I)+ - (K - Lt7)+ + I{Lt,SK}'r)
T 0

T+h 1 1-y
- / dt / pr(dy) / my (t,dr,y) (K —y — 2)* — (K —9)* + Liyeryz) |
T 0 0

where the inner integrals may be computed as
1 11—y
[ prtdn) [ my o) (6 =y =) = (K = )" + 1gem09)
0 0

K 1—y
- / pr(dy) / my (t,d,y) (K =y — )1 (x_ysay — (K —y — 2))
0 0

K 1—-y
= [ mtn) [ mvidey)(K -y ),
0 K-y
Gathering together all the terms, we obtain

C(T + h,K) — C(T, K)

/Tﬂdt/ pr(dy) (/1 ywmy t,dx y) /Tﬂdt/ pr(dy) (~/K1—j mY(t’d%y)(K_y_x))
/det /O () (_ /O“ my<t,dx,y><z<—y—x)+(K—y)AY(T,w)-

Dividing by h and taking the limit A~ — 0 yields

K K-y
g—g = _/0 pT(dy) [/0 (K—y—x)my(T,dx,y)—(K—y))\Y(T,y)

_ 9%C T.d Kny o . or
= —/0 BKQ( Y) /0 (K —y—x)my(T,dz,y) — (K —y)A\" (T,y)

O
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In [12], loss given default (i.e. the jump size of L) is assumed constant
6 = (1 —R)/n: then Zj =4, so Ly = 6N; and one can compute C(T, K) using
the law of N;. Setting tp = 0 and assuming as above that JF;, is generated by
null sets, we have

C(T,K) =E[(K — L7)"] = E[(kd — L7)"] = 6 E[(k — N7)"] = 6 Ci(T). (73)

The compensator of L; is A; €5(dz) dt, where €5(dz) is the point mass at the
point §. The effective compensator becomes

mY(t7 dZ, y) = E[)‘tlLt— = y] Eg(dZ) dt = )‘Y(t7y) 66(d2)7

and the effective default intensity is AY (t,y) = E[\;|L¢— = y]. Using the nota-
tions in [12], if we set y = jo then

AV (t,j6) = E[N|Li— = j6] = E[X|Ni— = j] = a;(t)

and p(dy) = 377 q;(t)ejs(dy). Let us focus on (BJ) in this case. We recall
from the proof of Proposition [B] that

aC

/o pr(dy) Hr. (k6 —y)*

[ ortan) [0 =y -2 = (5= ) N (T esla)
0 0

1
- / pr(dy) XY (T, ) (k8 — 5 — 6)F — (k6 — )] 1sc1_y

—6> 4;(T) a;(T) 1j<k-1y-
§=0

This expression can be simplified as in [I2, Proposition 2], leading to the forward
equation

ACK(T) =2
oT

j=1

N

-2

I
-

J

Hence we recover [12] Proposition 2] as a special case of Proposition bl
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