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Abstract

Research related to aggregation, robustness, and model uncertainty of regulatory risk

measures, for instance, Value-at-Risk (VaR) and Expected Shortfall (ES), is of fundamental

importance within quantitative risk management. In risk aggregation, marginal risks and

their dependence structure are often modeled separately, leading to uncertainty arising at

the level of a joint model. In this paper, we introduce a notion of qualitative robustness for

risk measures, concerning the sensitivity of a risk measure to the uncertainty of dependence

in risk aggregation. It turns out that coherent risk measures, such as ES, are more robust

than VaR according to the new notion of robustness. We also give approximations and

inequalities for aggregation and diversification of VaR under dependence uncertainty, and

derive an asymptotic equivalence for worst-case VaR and ES under general conditions. We

obtain that for a portfolio of a large number of risks VaR generally has a larger uncertainty

spread compared to ES. The results warn that unjustified diversification arguments for VaR

used in risk management need to be taken with much care, and potentially support the

use of ES in risk aggregation. This in particular reflects on the discussions in the recent

consultative documents by the Basel Committee on Banking Supervision.

Key-words: Value-at-Risk; Expected Shortfall; dependence uncertainty; risk aggrega-

tion; robustness; inhomogeneous portfolio; Basel III.

1 Introduction

Risk measurement, with its crucial importance for financial institutions such as banks, in-

surance companies and investment funds, has drawn a lot of attention in both academia and
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industry over the past several decades. Although a financial risk, often modeled by a probability

distribution, cannot be characterized by a single number, sometimes one needs. The determina-

tion of regulatory capital is one such example, the ranking of risks another. For such purposes,

quantitative tools that map risks to numbers were introduced, and they are called risk measures.

Over the past three decades, Value-at-Risk (VaR) became the benchmark (Jorion (2006)).

Expected Shortfall (ES), an alternative to VaR which is coherent, (Artzner et al. (1999)), is

arguably the second most popular risk measure in use. In two recent consultative documents

BCBS (2012, 2013), the Basel Committee on Banking Supervision proposed to take a move

from VaR to ES for risk measurement in banking. Under Solvency 2 and the Swiss Solvency

Test, the same discussion takes place within insurance regulation; see for instance Sandström

(2010) and SCOR (2008). As a consequence, there have been extensive debates on issues related

to diversification, aggregation, economical interpretation, extreme behavior, robustness, and

backtesting of VaR and ES. We omit a detailed analysis here and refer to Embrechts et al.

(2014), Emmer et al. (2014) and the reference therein.

Here are some of the issues raised: VaR is not coherent, but it is elicitable (Gneiting

(2011)), easy to backtest and more robust with respect to statistical uncertainty, as argued in

Gneiting (2011) and Cont et al. (2010); ES is coherent, but not elicitable, difficult to backtest

and less robust. There have been extensive discussions on the problematic diversification and

aggregation issues of VaR due to its lack of subadditivitity; see for example Embrechts et al.

(2013). Dańıelsson et al. (2005) argue that the violation of subadditivity for VaR is rare in

practice. VaR, being a quantile, does not address the crucial “what if” question. Whereas

this was clear since its introduction within the financial industry in 1994, it took some serious

financial crises to bring this issue fully onto the regulatory agenda.

The importance of robustness properties of risk measures has only fairly recently become a

focal point of regulatory attention. By now, numerous academic as well as applied papers address

the topic. Conflicting views typically result from different notions of robustness; Embrechts et

al. (2014) contains a brief discussion and some references. In this paper, issues related to both

aggregation and robustness for VaR and ES will be discussed. We will show that ES indeed

enjoys a new notion of robustness which VaR generally does not.

The mathematical property of (non-)subaddivity of a risk measure becomes relevant upon

analyzing the aggregate position of a portfolio. As often is the case in practice, the dependence

structure among individual risks in a portfolio is difficult to obtain from a statistical point of

view, while the marginal distributions of the individual risks (assets) may typically be easier

to model; see for instance Embrechts et al. (2013) and Bernard et al. (2014). Modeling a

high-dimensional dependence structure is well-known to be data-costly, and dimension reduction
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techniques such as vine copulas, hierarchical structures, and very specific parametric models often

have to be implemented. Whereas such simplifying techniques in general create computational

and modeling ease, they typically involve considerable model uncertainty. This leads to a notion

of dependence uncertainty (DU) in risk aggregation, a concept of main interest for this paper.

From a mathematical or statistical point of view it is clearly better to look at the robustness

properties of a model at the level of the joint distribution of the risk factors. The main reason

for separating the two (marginals, dependence) is because of processes in practice, where indeed

the two are often modeled separately. This is particularly true in a stress testing environment.

Hence for this paper, we introduce the notion of aggregation-robustness to study the ro-

bustness properties of risk measures for aggregation in the presence of dependence uncertainty.

The new notion of robustness is consistent with the classic notion of robustness for statistical

functionals in e.g. Huber and Ronchetti (2009), and is weaker than the robustness for risk mea-

sures for instance defined in Cont et al. (2010). However, as opposed to the conclusions in the

latter paper, we show that when the model uncertainty lies in the dependence structure, coher-

ent distortion risk measures (such as ES) are robust, whereas VaR in general is not. This result

supports the use of ES for risk aggregation, especially when statistical information on marginal

distributions is reliable.

Under DU, the values of VaR and ES lie in an interval. This interval can be seen as a

measurement of model uncertainty for a particular risk measure. When a risk measure is applied

to an aggregate position of a portfolio, the ratio between the risk measure of the aggregate risk

and the summation of the risk measures of the marginal risks, is called a diversification ratio.

The diversification ratio measures how good the risks in a portfolio hedge (compensate for) each

other. With only models for marginal distributions available, the diversification ratio also lies

in a DU-interval.

To study the DU-interval of VaR and ES, and their diversification ratios, one needs to

calculate the worst-case and best-case values of VaR and ES under dependence uncertainty.

Due to the subadditivity of ES, the worst-case value of ES is the summation of the ES of the

marginal risks. However, the other three quantities (best- and worst-case VaR, best-case ES)

are, in general, unknown. Partial results do exist. The worst-case values of VaR for n = 2 were

given in Makarov (1981) based on early results in multivariate probability theory. Embrechts

and Puccetti (2006) gave a dual bound for the worst-case VaR for n > 3 in the homogeneous

model, i.e. all marginal risks have the same distribution. Partial solutions for the worst-case and

best-case values of VaR are to be found in Wang et al. (2013), Puccetti and Rüschendorf (2013)

and Bernard et al. (2014), based on the notion of complete mixability introduced in Wang and

Wang (2011). A fast algorithm to numerically calculate the worst-case and best-case values of
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VaR under general conditions was introduced in Embrechts et al. (2013). For the best-case ES,

some partial analytical results can be found in Bernard et al. (2014) and Cheung and Lo (2013),

and a numerical procedure was proposed by Puccetti (2013).

In most of the existing analytical results, it is assumed that the marginal distributions have

to be identical (homogeneous case), with some extra conditions on the shape of the underlying

risk factor densities (assumed to exist). In this paper, we relax the assumptions on the marginal

distributions. Instead of explicit values for the worst-case and best-case VaR, we obtain approx-

imations. The new results obtained can be used within a discussion on capital requirement; they

moreover yield a DU-interval for VaR and its diversification ratio.

Further understanding of the worst-case VaR can be obtained through the asymptotic be-

havior as the number of risks in the portfolio grows to infinity, i.e. a large portfolio regime. In

the homogeneous case, Puccetti and Rüschendorf (2014) obtained an asymptotic equivalence be-

tween the worst-case VaR and the worst-case ES under dependence uncertainty, and this under

a strong condition of complete mixability. The condition on the identical marginal distributions

was later weakened by Puccetti et al. (2013) (based on further results on complete mixability)

and Wang (2014) (based on a duality theory in Rüschendorf (1982)). It was finally removed by

Wang and Wang (2014) (based on the new notion of extremely negative dependence). When

the marginal distributions are not identical, Puccetti et al. (2013) also obtained the asymptotic

equivalence under the assumption that only finitely many different choices of the marginal dis-

tributions can appear; this mathematically allows a reduction to the case of identical marginal

distributions.

In this paper, we give a unifying result on this asymptotic equivalence, by allowing the

marginal distributions to be arbitrary. Only weak uniformity conditions on the moments of the

marginal distributions are required for our result to hold. These conditions are easily justified in

practice, and are necessary for the most general equivalence to hold. The new results lead to the

asymptotic DU-spread of VaR and ES, and show that VaR in general yields a larger DU-spread

compared to ES.

We hope that the results in this paper would successfully deliver the following message:

With respect to dependence uncertainty in aggregation, VaR is less robust compared to ES.

The rest of the paper is organized as follows. In Section 2 we introduce the notion of

aggregation-robustness and show that ES is aggregation-robust but VaR is not. In Section 3

we give new bounds on the diversification ratios under dependence uncertainty, and establish

an asymptotic equivalence between VaR and ES under a worst-case scenario. The dependence

uncertainty spread of VaR and that of ES are derived and compared in Section 4. In Section
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5, numerical examples are presented to illustrate our results. Section 6 draws some conclusions.

All proofs are put in the Appendix.

Throughout the paper, we let (Ω,A,P) be a standard atomless probability space and

L0 := L0(Ω,A,P) be the set of all real-valued random variables (rvs) on that probability s-

pace. Elements of L0, rvs, will often be referred to as risks. Their distribution functions we

simply refer to as distributions. We write X ∼ F to denote F (x) = P(X 6 x), x ∈ R. We also

denote the generalized inverse function of F by F−1(p), that is F−1(p) = inf{t ∈ R : F (t) > p}

for p ∈ (0, 1], and F−1(0) = inf{t ∈ R : F (t) > 0}.

2 Robustness of VaR and ES for risk aggregation

2.1 Robustness of risk measures

The robustness of a statistical functional or an estimation procedure describes the sensitivity

to underlying model deviations and/or data changes. Different definitions and interpretations

of robustness exist in the literature; see for example Huber and Ronchetti (2009) from a pure

statistical perspective, Hansen and Sargent (2007) in the context of economic decision making,

and Ben-Tal et al. (2009) on robust optimization. In statistics, robustness mainly concerns the

so-called distributional (or Hampel-Huber) robustness: the statistical consequences when the

shape of the actual underlying distribution deviates slightly from the assumed model.

A risk measure ρ is a function which maps a risk in L0 to a number, ρ : L0 → R ∪ {+∞}.

A risk measure is law-invariant if it only depends on the distribution of the risk. We omit the

general introduction of risk measures, and refer the interested reader to Föllmer and Schied

(2011). Since law-invariant risk measures are a specific type of statistical functionals, their

robustness properties are already extensively studied in the statistical literature; see e.g. Huber

and Ronchetti (2009).

In this paper, we focus on the two most popular risk measures: Value-at-Risk (VaR) at

confidence level p, defined as

VaRp(X) = inf{x ∈ R : P(X 6 x) > p}, p ∈ (0, 1), X ∈ L0, (2.1)

and the Expected Shortfall (ES) at confidence level p, defined as

ESp(X) =
1

1− p

∫ 1

p

VaRq(X)dq, p ∈ (0, 1), X ∈ L0. (2.2)

It is obvious that VaRp(X) = F−1(p) for p ∈ (0, 1) where X ∼ F . Though typically in (2.2) it

is assumed that E[|X|] <∞, we may occasionally allow that ESp(X) =∞ for some X. On the

other hand, VaRp(X) is always a finite number for X ∈ L0.
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It is often argued in the literature that quantile-based risk measures, such as VaR, are

more robust as compared to mean-based risk measures, such as ES; the notion of robustness

used most often is Hampel’s (Hampel et al. (1986)). ES is only robust with respect to stronger

metrics (e.g. the Wasserstein distance, Dobrushin (1970)); arguments of this type can be found

in, for instance, Cont et al. (2010), Kou and Peng (2014) and Emmer et al. (2014). It is well-

known that the qualitative robustness of a statistical estimator, as in Hampel et al. (1986), is

equivalent to the continuity of the corresponding risk measure at the true distribution. Thus,

to analyze statistical robustness, one typically studies the continuity at distributions of a risk

measure. Based on such consideration, we say that a law-invariant risk measure is robust at

a distribution F if it is continuous at F in some metric. To be precise, ρ is robust if for all

ε > 0, there exists δ > 0, such that |ρ(X) − ρ(Y )| < ε whenever d(F,G) < δ, where d is some

distance between the distributions F and G of X and Y . For example, the Lévy distance in

Huber and Ronchetti (2009) is used in Cont et al. (2010) to measure the difference between any

two univariate distributions F and G:

d(F,G) := inf{ε > 0 : F (x− ε)− ε < G(x) < F (x+ ε) + ε, ∀x ∈ R}. (2.3)

For rvs S and T , we also denote d(S, T ) := d(F,G) where F and G are the distributions of

S and T , respectively. Note that the Lévy distance metrizes the weak topology on the set of

distributions. Other metrics can also be used for the analysis of robustness; see Emmer et al.

(2014). It was shown in Cont et al. (2010) that VaRp is continuous at F if F−1 is continuous

at p, while ESp is not continuous at any distribution F . This result is often used to argue that

VaR has better robustness properties than ES. Note that if F−1 is not continuous at p, then

VaRp is not continuous at F in the Lévy metric. In Krätschmer et al. (2014) it is argued that

Hampel’s notion of (statistical) robustness is less relevant for risk management. Using a different

definition, they introduce a continuous scale of robustness.

In the following we will introduce a new, in our opinion practically relevant notion of

robustness for risk aggregation, which favors ES over VaR.

2.2 Aggregation-robustness

In this section, we show that if model uncertainty lies at the level of the dependence structure

but not at single risks, then VaR is not robust but ES is. For single risks Xi, i = 1, . . . , n, the

aggregate risk S is simply defined as S = X1 + · · · + Xn. Often in practice, a joint model of

X1, . . . , Xn is modeled in two stages: n marginal distributions F1, . . . , Fn and a dependence

structure (often through a copula C). As the modeling for marginal distributions is relatively

easy, the dependence structure can be really difficult to model, statistically estimate and test.
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Considerable model uncertainty, which is often different in nature from the model uncertainty

of marginal distributions, arises from modeling the dependence structure. In the following, we

study robustness with respect to uncertainty in the dependence structure; for the purpose of this

paper we assume the marginal distributions F1, . . . , Fn are given.

When the dependence structure between the risks is unknown, the possible distributions of

S form a class of distributions. We denote the admissible class as

Sn(F1, . . . , Fn) = {X1 + · · ·+Xn : Xi ∼ Fi, i = 1, . . . , n},

which for simplicity we further denote as Sn = Sn(F1, . . . , Fn) if (F1, . . . , Fn) is clear from the

context. Sn is the set of all possible aggregate risks. Note that for notational convenience, we left

out portfolio weight factors; these can easily be reintroduced when necessary. Risk aggregation

with dependence uncertainty concerns the probabilistic and statistical behavior of S ∈ Sn; see

Bernard et al. (2014). We say that an admissible class is compatible with a risk measure ρ if

ρ(Xi) < ∞ and E[|Xi|I{Xi<0}] < ∞ for Xi ∼ Fi, i = 1, . . . , n (the profit of each risk does not

have an infinite mean; note that here we allow E[XiI{Xi>0}] = ∞, i.e. extremely heavy-tailed

risks).

Definition 2.1 (Aggregation-robustness). A law-invariant risk measure ρ : L0 → R ∪ {+∞} is

aggregation-robust, if for all n ∈ N and admissible classes Sn compatible with ρ, and all ε > 0,

there exists δ > 0, such that |ρ(S)− ρ(T )| < ε, for all S, T ∈ Sn such that d(S, T ) < δ.

The robustness character of Definition 2.1 in intuitively clear. If the joint distributions of

(X1, . . . , Xn) and (Y1, . . . , Yn) are close according to some metric, say, then the distributions of

X1 + · · ·+Xn and Y1 + · · ·+ Yn are also close according to some metric. As a consequence, ρ is

insensitive to small perturbations of the joint distribution of the underlying risk factors, keeping

the marginal distributions of the individual risks fixed. It is clear that Hampel’s robustness, as

discussed in Cont et al. (2010), without the restriction of S, T being in a common admissible

class, implies aggregation-robustness. When the dependence structure is modeled by copulas, our

definition of robustness implies that a risk measure is insensitive to the copula of the individual

risks when the marginal distributions are assumed to be known. The fact that in Definition 2.1

we look at S, T ∈ Sn reflects our interest in aggregation and diversification. One could of course

look at other functional-robustness definitions beyond aggregation (summation).

Example 2.1 (VaR is not aggregation-robust). For t ∈ [0, 1], let Xt and Yt have joint distribu-

tion Ct,

Ct(x, y) = txy+(1−t)(max{min{x, 1/2}+min{y, 1/2}−1/2, 0}+max{x+y−3/2, 0}), x, y ∈ [0, 1].
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It is easy to see that Xt and Yt are both U[0, 1] distributed, hence Ct is a copula, t ∈ [0, 1]. Note

that Ct, t ∈ (0, 1) is a mixture of the independent copula C1 and another copula

C0 : [0, 1]2 → [0, 1], (x, y) 7→ max{min{x, 1/2}+ min{y, 1/2} − 1/2, 0}+ max{x+ y − 3/2, 0}.

C0 is the ordinal sum of two Fréchet lower copulas; see Neslen (2006, Section 3.2.2).

It is immediate that the distribution of Xt+Yt for t ∈ (0, 1] is symmetric, centered at 1, with

positive density on the interval (1/2,3/2). Thus, VaR1/2(Xt + Yt) = 1. It is also straightforward

that X0 + Y0 is a degenerate rv on {1/2, 3/2} with VaR1/2(X0 + Y0) = 1/2. As a consequence,

VaR1/2(X0+Y0) 6= limt→0 VaR1/2(Xt+Yt). Based on the simple fact that d(Xt+Yt, X0+Y0)→ 0

as t goes to zero, we conclude that VaR1/2 is not aggregation-robust. A similar example can be

constructed for VaRp, p ∈ (0, 1).

Note that in the above example, the joint distribution Ct with a small t > 0 can be seen

as the joint distribution C0 influenced by a small perturbation. It is moreover worth noting

that in Example 2.1, the marginal distributions are continuous with positive densities. Hence,

even if the true marginal distributions are known to have positive densities, VaR can still be

discontinuous in aggregation. This observation weakens the robustness of VaR in aggregation.

On the other hand, we will see that ES is aggregation-robust, although it is well-known to be

non-robust in Hampel’s sense since it is discontinuous at any distribution with respect to the

weak topology.

For generality, we study the aggregation-robustness of distortion risk measures, defined as

ρ(X) =

∫ 1

0

VaRt(X)dh(t), X ∈ L0 such that the integeral is well-defined,

where h is a probability measure on (0, 1]; h is called the distortion function of ρ. See Wang

et al. (1997) for distortion risk measures in the context of insurance premium calculations,

Kusuoka (2001) for their connection with coherent risk measures, and Cont et al. (2010) for their

robustness properties. A distortion risk measure ρ is coherent if and only if h is convex, in which

case ρ is called a spectral risk measure; see Acerbi (2002). Distortion risk measures are also closely

related to L-statistics; see Huber and Ronchetti (2009, Section 3.3). For p ∈ (0, 1), VaRp and ESp

are special cases of distortion risk measures, with distortion functions h(t) = I{t>p}, t ∈ [0, 1]

and h(t) = I{t>p}(t − p)/(1 − p), t ∈ [0, 1], respectively. Our main result on robustness now

becomes:

Theorem 2.1. All coherent distortion risk measures are aggregation-robust.

The main contribution of Theorem 2.1 is to justify that, when the model uncertainty lies at

the level of dependence but not at the level of the marginal distributions, coherent risk measures,

such as ES, are more robust than VaR.
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Remark 2.1. Cont et al. (2010) also introduced the notion of C-robustness, where C is a set of

distributions. A risk measure ρ is C-robustness if ρ is continuous in C with respect to the Lévy

distance; see Cont et al. (2010, Proposition 2). Using this notion, VaRp is Cp-robust, where Cp
is the set of distributions F for which F−1 is continuous at p. If we denote by D(Sn) the set of

all possible distributions of an admissible class Sn, then ρ is aggregation-robust if and only if ρ

is D(Sn)-robust for all possible choices of n ∈ N and D(Sn), in which Sn is compatible with ρ.

Our result can be interpreted using weak convergence in the admissible class Sn. For

S, S1, S2, · · · ∈ Sn and Sk → S weakly as k →∞, we have that ESp(Sk)→ ESp(S) as k →∞ by

Theorem 2.1. As illustrated by Example 2.1, the convergence VaRp(Sk)→ VaRp(S) as k →∞

may fail to hold.

Finally, we remark that it would be of much interest to characterize the class of aggregation-

robust statistical functionals (risk measures). Such a characterization is beyond the scope of this

paper and we leave it for future work.

3 Bounds on VaR aggregation

Given the considerable statistical difficulty in modeling inter-dependency of risks, one may

worry about, in addition to the sensitivity of risk measures to a small change in the dependence

structure as discussed in Section 2, the uncertainty of a misspecified dependence structure which

is relatively far away from that of the true underlying portfolio. In this section, we study the

worst-case values of VaR when the dependence structure in a portfolio with given marginal dis-

tributions is unknown. These values can be used to analyze extreme scenarios of risk aggregation

and determine conservative capital requirement under model uncertainty.

3.1 Aggregation and diversification under dependence uncertainty

We start with the motivating notion of diversification ratio, which is closely related to the

aggregation of VaR. Given a portfolio consisting of individual risks X1, . . . , Xn, the diversification

ratio of VaR at confidence level p ∈ (0, 1) is defined as

∆p
n =

VaRp(X1 + · · ·+Xn)∑n
i=1 VaRp(Xi)

.

The diversification ratio measures a kind of diversification benefit, and is for instance widely used

in operational risk (see examples in Embrechts et al. (2013)). In the latter context, Xi corre-

sponds to next year’s operational risk loss in business line i, i = 1, . . . , n; often explicit models

for the loss-dependence among business lines are not available. For capital charge purposes, one

estimates the total capital requirement for the superposition of the risks in each business line.
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One then typically adds up the risk measures across all business lines, and multiplies by a factor

which is an estimate of ∆p
n. For this purpose, one needs a joint model of the risks X1, . . . , Xn.

With a known joint distribution of (X1, . . . , Xn), ∆p
n may be calculated theoretically. If

∆p
n 6 1, we say there is a diversification benefit in the portfolio; if ∆p

n > 1, we say there is

a diversification penalty in the portfolio. When F1, . . . , Fn are known and the joint model of

(X1, . . . , Xn) is unspecified, the worst diversification ratio is defined as

∆
p

n =
sup{VaRp(X1 + · · ·+Xn) : Xi ∼ Fi, i = 1, . . . , n}∑n

i=1 VaRp(Xi)
=

sup{VaRp(S) : S ∈ Sn}∑n
i=1 VaRp(Xi)

.

By definition ∆
p

n > 1 if
∑n

i=1 VaRp(Xi) > 0. In the following we denote the comonotonic VaR

by VaR+
p (Sn), i.e.

VaR+
p (Sn) =

n∑
i=1

VaRp(Xi).

Note here that Sn is symbolic and does not represent a particular rv. The calculation of ∆
p

n, as

a measure of the worst-case diversification effect of VaR, serves two purposes:

• Conservative capital requirement. ∆
p

nVaR+
p (Sn) can be used as the most conservative

capital requirement in the case of given (or estimated) marginal distributions F1, . . . , Fn

of the individual risks.

• Measurement of model uncertainty. If ∆
p

n is small, then the model uncertainty is small,

and the risk measure VaR is considered as less problematic in risk aggregation; capital

requirement principles based on VaR+
p become more plausible. If ∆

p

n is large, then the

model uncertainty is severe, and arguments of diversification benefit need to be taken with

care.

The best diversification ratio, replacing the sup by an inf, can be studied similarly. Since we are

more interested in the worst-case (corresponding to a conservative capital requirement), we omit

a discussion of the best diversification ratio.

In the recent literature, it was shown that the value of ∆
p

n is closely related to the risk

measure ES. Denote the worst-case ES by ESp(Sn) = sup{ESp(S) : S ∈ Sn}; since ES is

subadditive and comonotonic additive, we have that

ESp(Sn) =

n∑
i=1

ESp(Xi) = ES+
p (Sn),

where the latter +-notation is in line with the notation used for the comonotonic VaR case. Since

VaR is bounded by ES, the worst-case VaR is bounded by the worst-case ES. If VaR+
p (Sn) > 0,

we have the following direct upper bound for ∆
p

n:

1 6 ∆
p

n 6
ES+

p (Sn)

VaR+
p (Sn)

=
ESp(Sn)

VaR+
p (Sn)

. (3.1)
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See also Embrechts et al. (2014) for a discussion on this upper bound. Later in this section we

will show that the second inequality in (3.1) is asymptotically sharp as n→∞.

By definition, calculation of the worst diversification ratio is equivalent to the calculation

of the worst-case VaR

VaRp(Sn) := sup{VaRp(S) : S ∈ Sn}. (3.2)

For the history and a general discussion on problems related to (3.2) from the perspective of

quantitative risk management, we refer to Embrechts et al. (2014). When F1 = F2 = · · · =

Fn =: F , i.e. the homogeneous case, Wang et al. (2013) obtained VaRp(Sn) for F with a tail-

decreasing density. If F1, . . . , Fn are not identical, explicit calculations of VaRp(Sn) and ∆
p

n are

not available in general. Embrechts et al. (2013) introduced the Rearrangement Algorithm to

numerically calculate VaRp(Sn) based on a discretized approximation.

Regarding the asymptotic behavior of VaRp(Sn) and ∆
p

n, Puccetti and Rüschendorf (2014)

obtained that, as n→∞,
VaRp(Sn)

ESp(Sn)
→ 1, (3.3)

in the homogeneous case under a condition of complete mixability for the marginal distribu-

tions. See also Wang (2014) and Wang and Wang (2014) for weaker conditions so that (3.3)

holds. Puccetti et al. (2013) considered the case when there are finitely many different marginal

distributions in the sequence F1, F2, . . . and obtained the same equivalence (3.3). A consequence

of (3.3) is that

lim
n→∞

∆
p

n = lim
n→∞

ESp(Sn)

VaR+
p (Sn)

, (3.4)

given that the right-hand limit exists. That is, the second inequality in (3.1) is asymptotically

sharp. However, as mentioned above, the existing results only deal with the (almost) homoge-

neous case, and some specific assumptions on the marginal distributions need to be imposed.

Later in this section, we will provide analytical approximations for VaRp(Sn) and ∆
p

n. Based on

these results, we will give a proof of (3.3) and (3.4) under very general conditions and, moreover,

obtain a rate of convergence.

3.2 Bounds on VaR aggregation for a finite number of risks

In this section, we will give inequalities for the worst-case and best-case VaR and its diver-

sification ratio. For the rest of Sections 3 and 4, we assume that the distributions Fi, i ∈ N are

continuous; this constitutes no real restriction, and is only assumed for the ease of notation. For

a continuous distribution Fi, define

µ(i)
p,q =

1

q − p

∫ q

p

F−1i (t)dt,

11



for 1 > q > p > 0, i = 1, . . . , n. Note that µ
(i)
0,q and µ

(i)
p,1 might be infinite. Using the above

notation, it is immediate that

ESp(Sn) =

n∑
i=1

ESp(Xi) =

n∑
i=1

µ
(i)
p,1.

For future discussion, we also denote the best-case VaR by VaRp(Sn), that is

VaRp(Sn) = inf
S∈Sn

VaRp(S),

and the best-case ES by ESp(Sn), that is

ESp(Sn) = inf
S∈Sn

ESp(S).

Analytical formulas for each of VaRp(Sn), VaRp(Sn) and ESp(Sn) are not available under

general assumptions on the marginal distributions; see Bernard et al. (2014) and Embrechts et

al. (2014) for existing results on VaRp(Sn), VaRp(Sn) and ESp(Sn).

The following theorem contains our main result regarding approximations of VaRp(Sn) and

VaRp(Sn).

Theorem 3.1. Suppose F1, . . . , Fn are continuous distributions. We have for p ∈ (0, 1),

sup
q∈(p,1]

{
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1i (q)− F−1i (p))

}
6 VaRp(Sn) 6 ESp(Sn), (3.5)

and
n∑

i=1

µ
(i)
0,p 6 VaRp(Sn) 6 inf

q∈[0,p)

{
n∑

i=1

µ(i)
q,p + max

i=1,...,n
(F−1i (q)− F−1i (p))

}
. (3.6)

In particular, if F1, . . . , Fn are supported on [a, b], a < b, a, b ∈ R, then

ESp(Sn)− (b− a) 6 VaRp(Sn) 6 ESp(Sn). (3.7)

Note that in the case when all marginal distributions are bounded, VaRp(Sn) and ESp(Sn)

differ by at most a constant which does not depend on n. Theorem 3.1 can also be formulated

for the worst diversification ratio of VaR.

Corollary 3.2. Suppose F1, . . . , Fn are continuous distributions, and VaR+
p (Sn) > 0. We have

for p ∈ (0, 1),

sup
q∈(p,1]

{∑n
i=1 µ

(i)
p,q −maxi=1,...,n(F−1i (q)− F−1i (p))

VaR+
p (Sn)

}
6 ∆

p

n 6
ESp(Sn)

VaR+
p (Sn)

. (3.8)

In particular, if F1, . . . , Fn are supported in [a, b], a < b, a, b ∈ R, then

ESp(Sn)

VaR+
p (Sn)

− b− a
VaR+

p (Sn)
6 ∆

p

n 6
ESp(Sn)

VaR+
p (Sn)

. (3.9)
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In the homogeneous case, i.e. F := F1 = F2 = . . . , the left-hand side and right-hand side

of (3.9) both converge to
ESp(X)
VaRp(X) as n → ∞, where X ∼ F , assuming VaRp(X) 6= 0. In the

following, we will study the limit of the worst- and best-case VaR and its diversification ratio

under general marginal assumptions, as n goes to infinity.

3.3 Asymptotic equivalence and limit of the worst diversification ratio

Based on Theorem 3.1, we now derive the asymptotic equivalence between the worst-case

VaR and the worst-case ES under very weak general conditions. For an asymptotic analysis,

some uniformality conditions on Fi, i ∈ N need to be imposed. In what follows, Xi is any rv

with distribution Fi, i ∈ N. Define the following conditions, for some p ∈ (0, 1) and k > 1:

(a) E[|Xi − E[Xi]|k] < M for some M > 0;

(b) lim infn→∞ n−1/k
∑n

i=1 ESp(Xi) = +∞, and

(b*) C0 := lim infn→∞
1
n

∑n
i=1 ESp(Xi) > 0.

The above conditions only concern the moments of Fi, i ∈ N, and hence they are quite weak

and commonly satisfied. Condition (a) is a uniform boundedness condition, ensuring that the

aggregate portfolio Sn does not contain a single risk with a too heavy tail that dominates the

other risks. Condition (b) is assumed to guarantee that the average ES of the sequence of risks

does not vanish to zero too fast. Without (a) or (b), the limiting portfolio would exhibit a

finite-n behavior. Hence, in view of an asymptotic analysis, both conditions are reasonable. The

condition (b*) is a stronger version of (b). In particular, in the homogeneous case when Fi,

i ∈ N are identical, ESp(X1) > 0 implies (b*) and hence it also implies (b). We also remark that

condition (a*) below is stronger than condition (a):

(a*) E[|Xi|k] is uniformly bounded.

Theorem 3.3. Suppose that the continuous distributions Fi, i ∈ N, satisfy (a) and (b) for some

p ∈ (0, 1) and k > 1, then

lim
n→∞

VaRp(Sn)

ESp(Sn)
= 1. (3.10)

If, in addition, (b) is replaced by (b*), then for sufficiently large n,

1 >
VaRp(Sn)

ESp(Sn)
> 1− Cn−1+1/k, (3.11)

where

C =

(
1

1− p
k

k − 1
+ 1

)
M1/k

C0
> 0,

M is given in (a) and C0 is given in (b*).
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Theorem 3.3 establishes the asymptotic equivalence of the worst-case ES and the worst-

case VaR for risk aggregation for general, possibly inhomogeneous portfolios. As mentioned

in Section 3.1, homogeneous or almost-homogeneous cases for (3.10) to hold were previously

obtained in the literature. While existing methods of proof were mainly based on the theory

of complete mixability, an extension using the same techniques to arbitrarily many different

marginal distributions was not possible.

Similarly to Theorem 3.3, we can obtain the limit of the best-case VaR bounds. In the

following we define the left-tail ES (LES) as

LESp(X) =
1

p

∫ p

0

VaRq(X)dq = −ESp(−X),

and denote its best-case value under dependence uncertainty by

LESp(Sn) := inf
S∈Sn

LESp(S) =

n∑
i=1

LESp(Xi) =

n∑
i=1

µ
(i)
0,p,

where the second equality can be seen from the symmetry between ES and LES. For the best-case

VaR bounds, we use a slightly different set of conditions, for some p ∈ (0, 1) and k > 1:

(c) lim infn→∞ n−1/k
∑n

i=1 LESp(Xi) = +∞, and

(c*) C0 := lim infn→∞
1
n

∑n
i=1 LESp(Xi) > 0.

The following corollary is obtained from Theorem 3.3 by symmetry.

Corollary 3.4. Suppose that the continuous distributions Fi, i ∈ N, satisfy (a) and (c) for

some p ∈ (0, 1) and k > 1, then

lim
n→∞

VaRp(Sn)

LESp(Sn)
= 1. (3.12)

If, in addition, (c) is replaced by (c*), then for sufficiently large n,

1 >
VaRp(Sn)

LESp(Sn)
> 1− Cn−1+1/k, (3.13)

where

C =

(
1

1− p
k

k − 1
+ 1

)
M1/k

C0
> 0,

M is given in (a) and C0 is given in (c*).

Remark 3.1. The conditions (c) and (c*) are slightly stronger than (b) and (b*), respectively,

and this asymmetry is due to the fact that we mainly consider the cases when the aggregate

risk measures LTE and ES are positive. The asymmetry can be trivially removed by assuming

lim infn→∞ | 1n
∑n

i=1 LESp(Xi)| > C0 instead of (c).
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Finally, we remark that the limit of ∆
p

n as n→∞ can be obtained directly from Theorem

3.3. Suppose the continuous distributions Fi, i ∈ N satisfy (a) and (b) for some p ∈ (0, 1) and

k > 1, then, as n→∞,

∆
p

n

VaR+
p (Sn)

ESp(Sn)
→ 1.

If in addition, Rp := lim
n→∞

ESp(Sn)

VaR+
p (Sn)

exists in [1,∞], then ∆p
n → Rp as n→∞.

4 Uncertainty spread of VaR and ES

In addition to the distribution-wise continuity as discussed in Section 2, in this section

we study the uncertainty spread of VaR and ES when the dependence structure is completely

unknown, based on results obtained in Section 3. This quantifies the magnitude of dependence

uncertainty in a model for risk aggregation. We show that VaR generally exhibits a larger spread

compared to ES. This result suggests that VaR is more sensitive to dependence uncertainty

compared to ES and can be seen as a supporting argument for Theorem 2.1. For p ∈ (0, 1) we

define the dependence uncertainty spread (DU-spread) of VaRp as

VaRp(Sn)−VaRp(Sn),

and of ESp as

ESp(Sn)− ESp(Sn).

See Embrechts et al. (2014) for a discussion on the DU-spread of VaR and its relevance in risk

management.

By definition ESp(X) > VaRp(X) for any risk X and the inequality is strict when X is

continuous. Naturally, when switching from VaR to ES for the purpose of capital requirement,

one should consider a lower confidence level for ES. In the most recent consultative document

BCBS (2013), it was proposed that for internal risk models, VaR0.99 should be replaced by ES0.975

which often yields a similar value to VaR0,99 for light-tailed risks. Under the Swiss Solvency

Test (SST), VaR0.995 is used to compare with ES0.99 to calculate the capital requirement for

the change in the Risk Bearing Capital (RBC) over a one-year period; see (EIOPA, 2011, p.32).

Kou and Peng (2014) also proposed that, in order to compare with ESp, one could use the

corresponding Median Shortfall (MS), which is the median of the conditional tail distribution

above VaRp, and hence satisfies

MSp(X) = VaR(p+1)/2(X);

thus, it is consistent with the SST regime. Hence, it may be useful to compare the DU-spread of

VaRq and ESp for q > p. The following proposition compares the DU-spread of VaRq and that

15



of ESp in the asymptotic sense. In what follows, we denote by µn the summation of the means

of F1, . . . , Fn, assumed to exist.

Proposition 4.1. Suppose 1 > q > p > 0.

(i) Suppose that the continuous distributions Fi, i ∈ N, satisfy (a) and (c), then

lim inf
n→∞

VaRq(Sn)−VaRq(Sn)

ESp(Sn)− ESp(Sn)
= lim inf

n→∞

ESq(Sn)− LESq(Sn)

ESp(Sn)− ESp(Sn)
> lim inf

n→∞

ESq(Sn)− µn

ESp(Sn)− µn

> 1.

(4.1)

(ii) Suppose that the distributions Fi, i ∈ N, are identical and equal to F , and E[|X|] < ∞

where X ∼ F , then

lim
n→∞

VaRq(Sn)−VaRq(Sn)

ESp(Sn)− ESp(Sn)
=

ESq(X)− LESq(X)

ESp(X)− E[X]
> 1. (4.2)

Proposition 4.1 suggests that VaR is overall more sensitive to dependence uncertainty for

large n, compared to ES. Numerical evidence of the comparison of DU-spread for VaR and ES at

the same level can be found in Section 5, even for small numbers of n. Note that, although the

DU-spread of ES is smaller than that of VaR asymptotically, both risk measures have a rather

large uncertainty spread in general, suggesting that dependence uncertainty in risk aggregation

must be taken with care no matter whether ES or VaR is chosen as the underlying risk measure.

Remark 4.1. In the homogeneous case, for any continuous distribution F , the limit of the DU-

spread ratio in (4.2) is strictly greater than 1 since LESq(X) < E[X] and ESq(X) > ESp(X).

In the case q = p, we note that, for light-tailed risks X, LESp(X) is slightly smaller than

E[X]; for heavy-tailed risks X, LESp(X) can be significantly smaller than E[X], leading to a

much larger DU-spread of VaR. From Proposition 4.1, we can also see that, approximately, the

VaRq interval under DU is [
∑n

i=1 LESq(Xi),
∑n

i=1 ESq(Xi)] and the ESp interval under DU is

[µn,
∑n

i=1 ESp(Xi)]. Note that when Fi, i ∈ N are the same, no conditions other than a finite

first moment of F are needed for the asymptotic equivalence in Theorem 3.3 and Corollary 3.4

to hold. This was also suggested by Corollary 3.7 of Wang and Wang (2014). In this case, the

limit of the ratio between the two uncertainty spreads is explicitly given in (4.2).

In the following we give a result for finite n, in the case of bounded risks. A proof can be

directly obtained from Theorem 3.1.

Corollary 4.2. Suppose that 1 > q > p > 0, F1, . . . , Fn are continuous distributions, supported

in [a, b], a < b, a, b ∈ R, and

n∑
i=1

(ESq(Xi) + E[Xi]− ESp(Xi)− LESq(Xi)) > 2(b− a), (4.3)
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where Xi ∼ Fi, i = 1, . . . , n, then

VaRq(Sn)−VaRq(Sn)

ESp(Sn)− ESp(Sn)
> 1.

Note that in Corollary 4.2, since ESq(Xi) > ESp(Xi) and E[Xi] > LESq(Xi), the left-hand

side of (4.3) is the summation of n non-negative terms while the right-hand side of (4.3) is a

constant, hence (4.3) holds for n sufficiently large as long as the summation of the left-hand side

of (4.3) diverges as n→∞.

We remark that it remains theoretically unclear whether the DU-spread of VaRq is always

larger than (or equal to) ESp for finite n and q > p. In all our numerical examples (see Section

5 below), VaRq always has a larger DU-spread than ESp.

5 Numerical examples

As suggested by BCBS (2013), the risk measure ES0.975 is a candidate to replace VaR0.99.

The SST (see EIOPA, 2011) used VaR(1+p)/2 to compare with ESp. Based on such considerations,

in this section, we provide the worst-case and the best-case values of VaR0.99, VaR0.9875, VaR0.975

and ES0.975 for different portfolios under dependence uncertainty. We compare the dependence

uncertainty spread of VaR and ES in each model, and also look at the influence on the number

n of risks in the portfolio. The numerical calculation is carried out through the Rearrangement

Algorithm (RA) described in Embrechts et al. (2013), with discretization step ∆x = 10−6. The

following three models are considered, and the results for n = 5, 10, 20 are reported in Tables

1-3.

(A) (Mixed portfolio) Sn = X1 + · · · + Xn, where Xi ∼ Pareto(2 + 0.1i), i = 1, . . . , 5; Xi ∼

Exp(i− 5), i = 6, . . . , 10; Xi ∼ Log–Normal(0, (0.1(i− 10))2), i = 11, . . . , 20.

(B) (Light-tailed portfolio) Sn = Y1+· · ·+Yn, where Yi ∼ Exp(i), i = 1, . . . , 5; Yi ∼Weibull(i−

5, 1/2), i = 6, . . . , 10; Yi
d
= Yi−10, i = 11, . . . , 20.

(C) (Pareto portfolio) Sn = Z1 + · · ·+ Zn, where Zi ∼ Pareto(1.5), i = 1, . . . , 20.

From Tables 1-3, we have the following observations.

(i) The worst-case VaR at level 0.975 and the worst-case ES at level 0.975 are very close, even

for small numbers of n, in all models considered (Theorem 3.3, (3.10)).

(ii) The ratio between the worst-case VaR at level 0.975 and the worst-case ES at level 0.975

goes to 1 as n grows large. In the heavy-tailed model (C), the convergence is relatively

slow (Theorem 3.3, (3.11)).
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Table 1: Bounds obtained with RA (∆x = 10−6), Model (A): mixed portfolio.

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(Sn) 22.48 44.88 22.40 22.52 55.59 33.07 29.15 102.35 73.20

VaR0.975(Sn) 9.79 41.46 31.67 10.04 52.67 42.63 21.44 100.65 79.21

VaR0.9875(Sn) 12.06 56.21 44.16 12.06 69.03 56.98 22.12 126.63 104.51

VaR0.99(Sn) 12.96 62.01 49.05 12.96 75.34 62.38 22.29 136.30 114.01

ES0.975(Sn)

VaR0.975(Sn)
1.08 1.06 1.02

Table 2: Bounds obtained with RA (∆x = 10−6), Model (B): light-tailed portfolio.

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(Sn) 4.72 10.71 5.99 24.55 63.19 38.63 31.33 126.38 95.04

VaR0.975(Sn) 3.69 10.57 6.88 13.61 61.41 47.81 13.61 125.73 112.13

VaR0.9875(Sn) 4.38 12.15 7.77 19.20 78.75 59.55 19.20 160.75 141.55

VaR0.99(Sn) 4.61 12.66 8.05 21.21 84.80 63.59 21.21 172.96 151.75

ES0.975(Sn)

VaR0.975(Sn)
1.01 1.03 1.01

Table 3: Bounds obtained with RA (∆x = 10−6), Model (C): Pareto portfolio.

n = 5 n = 10 n = 20

best worst spread best worst spread best worst spread

ES0.975(Sn) 103.8 172.6 68.8 166.2 345.1 178.9 266.2 690.3 424.1

VaR0.975(Sn) 15.7 130.6 114.9 21.8 291.3 269.5 43.5 620.8 577.3

VaR0.9875(Sn) 22.6 207.3 184.7 27.6 462.4 434.8 46.7 985.5 938.8

VaR0.99(Sn) 25.5 240.5 215.0 30.5 536.5 506.0 47.5 1143.6 1096.0

ES0.975(Sn)

VaR0.975(Sn)
1.32 1.19 1.11
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(iii) The DU-spreads of VaR0.99, VaR0.985 and VaR0.975 are larger than those of ES0.975 in all

considered models (Proposition 4.1).

(iv) In the heavy-tailed Model (C), the DU-spreads of VaR are significantly larger than those

of ES (Remark 4.1).

6 Conclusion

In this paper, we considered the risk measures VaR and ES under dependence uncertainty.

We introduced the notion of aggregation-robustness and showed that all coherent distortion risk

measures, including ES, are aggregation-robust while VaR is not. We also derived bounds for

the worst-case and best-case VaR in aggregation and its diversification ratio under dependence

uncertainty. An asymptotic equivalence between VaR and ES for inhomogeneous portfolios under

the weakest known conditions on the marginal distributions was established. It was shown that

VaR generally exhibits a larger uncertainty spread compared to ES at the same or a lower

confidence level. Numerical examples were provided to support our theoretical results. The

main results in this paper suggest that VaR is less robust than ES with respect to dependence

uncertainty in aggregation.
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A Proofs

A.1 A useful lemma

Before presenting the main proofs, we first introduce a lemma that is essential to prove the

main results in Sections 3 and 4 in this paper. Recall the definitions of the essential supremum

and the essential infimum of rvs: for any rv S,

ess-supS = sup{t : P(S 6 t) < 1},

and

ess-infS = inf{t : P(S 6 t) > 0}.
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We denote Sn = X1 + · · ·+Xn in the following. We remind the reader that such Sn is different

from the symbolic one in the notation of VaRp(Sn). We hope this will not lead to notational

confusion.

Lemma A.1. Suppose that (Fi, i ∈ N) is a sequence of distributions on [0, 1], then there exist

Xi ∼ Fi, i ∈ N, such that for each n ∈ N,

ess-supSn − ess-infSn 6 1. (A.1)

Proof. We first show that if X and Y are counter-monotonic and both take values in [0, 1],

then ess-sup(X + Y ) − ess-inf(X + Y ) 6 1. Since X and Y are counter-monotonic, there exist

U ∼ U[0, 1] such that X = F−1(U) and Y = G−1(1−U) where F and G are the distributions of

X and Y , respectively. For u, v ∈ (0, 1), one of F−1(u)− F−1(v) and G−1(1− u)−G−1(1− v)

is non-positive. Hence,

F−1(u) +G−1(1− u)− (F−1(v) +G−1(1− v))

= (F−1(u)− F−1(v)) + (G−1(1− u)−G−1(1− v))

6 max{F−1(u)− F−1(v), G−1(1− u)−G−1(1− v)}

6 1.

Thus,

ess-sup(X+Y )−ess-inf(X+Y ) = sup
u∈(0,1)

{F−1(u)+G−1(1−u)}− inf
v∈(0,1)

{F−1(v)+G−1(1−v)} 6 1.

Let X1 ∼ F1. For k > 2, let Xk be counter-monotonic with Sk−1. Since ess-sup(X1) −

ess-inf(X1) 6 1, by induction we get that ess-sup(Sk) − ess-inf(Sk) = ess-sup(Sk−1 + Xk) −

ess-inf(Sk−1 +Xk) 6 1 for all k > 2. This completes the proof.

Remark A.1. Lemma A.1 is of independent interest in the probability theory of negative de-

pendence. Indeed, it shows that an extremely negatively dependent sequence always exists for

bounded marginal distributions. The definition of and details on extremely negative dependence

can be found in Wang and Wang (2014). In the latter paper, it was shown that an extremely

negatively dependent sequence always exists for identical marginal L1-distributions. Lemma

A.1, as a new contribution, confirms that the same statement holds for inhomogeneous marginal

distributions if we assume some uniform boundedness.

The following useful corollary is directly implied by Lemma A.1.

Corollary A.2. Suppose that (Fi, i ∈ N) is a sequence of distributions with bounded support,

then there exist Xi ∼ Fi, i ∈ N, such that for each n ∈ N,

|Sn − E[Sn]| 6 Ln. (A.2)
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where Ln is the largest length of the support of Fi, i = 1, . . . , n, that is,

Ln = max{ess-supXi − ess-infXi : Xi ∼ Fi, i = 1, . . . , n}.

A.2 Proof of Theorem 2.1

Proof. Suppose ρ is a distortion risk measure with distortion function h. Since h is increasing

and convex on (0,1), its has left-derivative on (0, 1), denoted as

δ(t) := lim
x→0+

h(t)− h(t− x)

x
, t ∈ (0, 1).

Since h may have a jump at 1, we let δ(1) = δ1(h(1) − h(1−)), where δ1 is the Dirac delta

function at 1. It follows that ρ(X) =
∫ 1

0
VaRt(X)δ(t)dt. Note that since Sn is compatible with

a coherent risk measure ρ, we have that E[|Xi|] <∞, i = 1, . . . , n. For q ∈ (1/2, 1), define

ρ̃q(X) =
1

1− h(q)

∫ 1

q

VaRt(X)δ(t)dt, X ∈ L0.

We can easily check that ρ̃q is also a coherent distortion risk measure.

For any S ∈ Sn(F1, . . . , Fn), write S = X1 + · · · + Xn, where Xi ∼ Fi, i = 1, . . . , n. For

q ∈ (1/2, 1), we have that∣∣∣∣ρ(S)−
∫ q

1−q
VaRt(S)δ(t)dt

∣∣∣∣ =

∣∣∣∣∫ 1−q

0

VaRt(S)δ(t)dt+

∫ 1

q

VaRt(S)δ(t)dt

∣∣∣∣
6

∣∣∣∣∫ 1−q

0

VaRt(S)δ(t)dt

∣∣∣∣+ |(1− h(q))ρ̃q(S)|

6 δ(1− q)
∫ 1−q

0

|VaRt(S)|dt+ |(1− h(q))ρ̃q(S)| .

Note that

|(1− h(q))ρ̃q(S)| 6

∣∣∣∣∣(1− h(q))

n∑
i=1

ρ̃q(Xi)

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

∫ 1

q

VaRt(Xi)δ(t)dt

∣∣∣∣∣ .
On the other hand, by the comonotonic additivity of VaRt, t ∈ (0, 1), we have that∫ 1−q

0

|VaRt(S)|dt =

∫ 1−q

0

|VaRt(SI{S>0}) + VaRt(SI{S<0})|dt

6
∫ 1−q

0

VaRt(SI{S>0})dt+

∫ 1−q

0

VaR1−t(−SI{S<0})dt

6
∫ 1−q

0

VaRt(|S|)dt+

∫ 1−q

0

VaR1−t(|S|)dt

6 2(1− q)ESq(|S|)

6 (1− q)
n∑

i=1

ESq(|Xi|)

= 2

n∑
i=1

∫ 1

q

VaRt(|Xi|)dt.
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Note that for i = 1, . . . , n, ρ(Xi) < ∞ implies that
∫ 1

q
VaRt(Xi)δ(t)dt → 0 as q → 1, and that

E[|Xi|] <∞ implies that
∫ 1

q
VaRt(|Xi|)dt→ 0 as q → 1. As a consequence, as q → 1,

η(q) :=

∣∣∣∣ρ(S)−
∫ q

1−q
VaRt(S)δ(t)dt

∣∣∣∣→ 0

uniformly in S ∈ Sn. Therefore, for each ε > 0, there exists 1/2 < q < 1 such that η(q) < ε/3.

By Theorem 1 of Cont et al. (2010), the distortion risk measure

ρ̂q(X) :=
1

2q − 1

∫ q

1−q
VaRt(X)δ(t)dt, X ∈ L0

is continuous at all distributions with respect to the Lévy distance. In summary, for each ε > 0,

and q ∈ (1/2, 1) fixed, there exists δ > 0 such that |ρ̂q(S) − ρ̂q(T )| < ε/3 for all S, T such that

d(S, T ) < δ. Therefore, for all S, T ∈ Sn with d(S, T ) < δ, we have that

|ρ(S)− ρ(T )| 6 (2q − 1)|ρ̂q(S)− ρ̂q(T )|+ 2η(q) < ε.

Thus, ρ is aggregation-robust.

A.3 Proof of Theorem 3.1

Proof. We will use the following equivalence lemma in Bernard et al. (2014); in the latter paper,

an alternative definition of VaR is used:

VaR∗p(X) = inf{x ∈ R : P(X 6 x) > p}, p ∈ (0, 1).

Lemma A.3 (Lemma 4.3 of Bernard et al. (2014)). For p ∈ (0, 1) and a continuous distribution

F ,

sup
S∈Sn

VaR∗p(S) = sup{ess-infS : S ∈ Sn(Fp,1, . . . , Fp,n)},

and

inf
S∈Sn

VaRp(S) = inf{ess-supS : S ∈ Sn(F p
1 , . . . , F

p
n)},

where Fp,i is the conditional distribution of Wi ∼ Fi on [F−1i (p),∞), and F p
i is the conditional

distribution of Wi ∼ Fi on (−∞, F−1i (p)), i = 1, . . . , n.

For the proof of Theorem 3.1, we first show that for p ∈ (0, 1) and q ∈ (p, 1],

sup{ess-infS : S ∈ Sn(Fp,1, . . . , Fp,n)} >
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1i (q)− F−1i (p)). (A.3)

Since the case when F−1i (q) = ∞ for some i is trivial, we suppose that F−1i (q) < ∞ for all

i = 1, . . . , n.
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Let F
(i)
p,q be the conditional distribution of Wi ∼ Fi on [F−1i (p), F−1i (q)] for 0 < p < q 6 1.

By Corollary A.2, there exist rvs Xi ∼ F (i)
p,q, i = 1, . . . , n, such that

X1 + · · ·+Xn >
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1(q)− F−1(p)).

Let Zi, i = 1, . . . , n be any rv with distribution Fq,i, and let C be a set independent of

X1, . . . , Xn, Z1, . . . , Zn and with P(C) = (q − p)/(1 − p). Define Yi = XiIC + Zi(1 − IC) for

i = 1, . . . , n. It is straightforward to check that Yi has distribution Fp,i, and

Y1 + · · ·+ Yn > X1 + · · ·+Xn >
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1i (q)− F−1i (p)).

Thus

ess-inf(Y1 + · · ·+ Yn) >
n∑

i=1

µ(i)
p,q − max

i=1,...,n
(F−1i (q)− F−1i (p)),

and we obtain (A.3). Since VaRp(X) > VaR∗r(X) for any r < p and any rv X, we have that

VaRp(Sn) > lim
r→p−

(
sup

S∈Sn

VaR∗p(S)

)
> lim

r→p−

(
n∑

i=1

µ(i)
r,q − max

i=1,...,n
(F−1i (q)− F−1i (r))

)

=

n∑
i=1

µ(i)
p,q − max

i=1,...,n
(F−1i (q)− F−1i (p)).

Note that here we use the fact that F−1i is left-continuous for each i. On the other hand,

VaRp(Sn) 6 sup
S∈Sn

VaR∗p(S) = sup{ess-infS : S ∈ Sn(Fp, . . . , Fp)} 6
n∑

i=1

µ
(i)
p,1

always holds. Thus we obtain (3.5). We can show (3.6) similarly.

A.4 Proof of Theorem 3.3

Proof. First, let us assume that E[Xi] = 0 for all i ∈ N. Note that ESp(Sn) =
∑n

i=1 ESp(Xi) =∑n
i=1 µ

(i)
p,1 for Xi ∼ Fi. We use (3.5) and take qn = 1−n−1 for n large enough such that qn > p.

By (b), we have
∑n

i=1 µ
(i)
p,1 > 0 for large n.

Note that by (a), E[|Xi|k] 6 M uniformly. Therefore, [F−1i (t)]k(1 − t) 6 M for t ∈ (0, 1),

and we have

F−1i (t) 6

(
M

1− t

)1/k

, t ∈ (0, 1), i ∈ N.
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Note that for Xi ∼ Fi,

µ
(i)
p,1 − µ(i)

p,qn =
1

1− p
E[XiI{Xi>F−1

i (p)}]−
1

qn − p
E[XiI{F−1

i (qn)>Xi>F−1
i (p)}]

6
1

1− p
E[XiI{Xi>F−1(qn)}]

=
1

1− p

∫ 1

qn

F−1i (t)dt

6
1

1− p

∫ 1

qn

(
M

1− t

)1/k

dt

=
1

1− p
1

1− 1/k
M1/k(1− qn)1−1/k.

As a consequence we have

sup
S∈Sn

VaRp(S) >
n∑

i=1

µ(i)
p,qn − max

i=1,...,n
(F−1i (qn)− F−1i (p))

>
n∑

i=1

µ
(i)
p,1 −

n∑
i=1

(µ
(i)
p,1 − µ(i)

p,qn)− max
i=1,...,n

F−1i (qn)

>
n∑

i=1

µ
(i)
p,1 −

n∑
i=1

1

1− p
1

1− 1/k
M1/k(1− qn)1−1/k −

(
M

1− qn

)1/k

=

n∑
i=1

µ
(i)
p,1 −

1

1− p
1

1− 1/k
M1/kn1/k −M1/kn1/k

=

n∑
i=1

µ
(i)
p,1 −O(n1/k). (A.4)

By (b), it follows that

1 >
VaRp(Sn)∑n

i=1 µ
(i)
p,1

> 1− O(n1/k)∑n
i=1 µ

(i)
p,1

→ 1 as n→∞,

hence we obtain (3.10).

Now for the case that E[Xi] 6= 0 for some i ∈ N, we denote by F ∗i the distribution of

Xi − E[Xi], and by

S∗n = {Y1 + · · ·+ Yn : Yi ∼ F ∗i , i = 1, . . . , n}.

Then, by (A.4), with Sn replaced by S∗n, we have

sup
S∈Sn

VaRp(S) = sup
S∈S∗

n

VaRp(S) +

n∑
i=1

E[Xi]

=

n∑
i=1

(µ
(i)
p,1 − E[Xi])−O(n1/k) +

n∑
i=1

E[Xi]

=

n∑
i=1

µ
(i)
p,1 −O(n1/k).

Thus, (A.4) still holds for Sn in the case E[Xi] 6= 0 for some i.
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When (b*) holds, by (A.4), we have that

1 >
VaRp(Sn)∑n

i=1 µ
(i)
p,1

> 1−

(
1

1−p
k

k−1 + 1
)
M1/k(n1/k)∑n

i=1 µ
(i)
p,1

> 1− Cn−1+1/k,

for n sufficiently large. This leads to (3.11) and completes the proof of the theorem.

A.5 Proof of Corollary 4.1

Proof. (i) By Theorem 3.3 and Corollary 3.4, we have that

lim
n→∞

VaRp(Sn)−VaRp(Sn)

ESp(Sn)− LESp(Sn)
= 1,

and (4.1) follows directly, noting that ESp(X) > E[X] > LESp(X) for any rv X and any

p ∈ (0, 1).

(ii) Corollary 3.3 of Wang and Wang (2014) implies that

lim
n→∞

ESp(Sn)

n
= E[X],

and hence we obtain (4.2).
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