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Abstract Semi-static trading strategies make frequent appearances in mathematical
finance, where dynamic trading in a liquid asset is combined with static buy-and-
hold positions in options on that asset. We show that the space of outcomes of such
strategies can have very poor closure properties when all European options for a fixed
date T are available for static trading. This causes problems for optimal investment,
and stands in sharp contrast to the purely dynamic case classically considered in
mathematical finance.
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1 Introduction and main results

Given a local martingale S and a finite stopping time T defined on a stochastic basis
(Ω,F ,F,P) in discrete or continuous time, we consider outcomes at time T of semi-
static trading in S. More specifically, we consider self-financing dynamic trading in
S and a risk-free asset with zero interest rate, combined with static (buy-and-hold)
positions in arbitrary European options written on the final value ST . Such outcomes
are of the form (H · S)T + h(ST ), where H · S denotes the stochastic integral of the
S-integrable process H with respect to S, and h is a measurable function satisfy-
ing some integrability conditions. The semi-static strategy consists of the pair (H,h)

chosen by the investor. This type of semi-static trading strategies has been used ex-
tensively in the literature; see e.g. [3, 9, 10, 12, 13] and the references therein. A key
reason is that the collection of time zero prices of all such static claims pins down the
law of ST under P, if P is the pricing measure.

One could also restrict the static component h(ST ) to lie in a given finite-dimen-
sional set of available traded options, for instance by requiring it to be of the form
h(ST ) = a0 + a1C1(ST ) + · · · + anCn(ST ), where Ci(ST ) = (ST − Ki)

+ is a vanilla
call payoff with given strike Ki and a0, . . . , an ∈ R are chosen by the investor. Such
a setup is also common in the literature; see e.g. [1, 4, 5]. It is, however, different
from our setting, where h is chosen from an infinite-dimensional space of measurable
functions. One of the main purposes of this paper is to clarify the sharply different
properties that the two situations may exhibit.

The largest reasonable space of outcomes of semi-static trading strategies is ar-
guably the sum U + V = {u + v : u ∈ U,v ∈ V }, where

U = {(H · S)T : H is S-integrable and H · S is a supermartingale on [0, T ]},
V = L1(Ω,σ(ST ),P

)
.

The supermartingale property of the gains processes H ·S is a weak restriction which
is implied by any reasonable admissibility or integrability condition that excludes
doubling strategies (recall that S from the outset is assumed to be a local martingale).
Requiring the static component to be integrable, rather than just measurable, corre-
sponds to a finite initial capital requirement: If an outcome f = (H · S)T + h(ST ) is
integrable—which we interpret as requiring finite initial capital—and if (H ·S)T ∈ U ,
then h(ST ) is necessarily integrable as well.

On the other hand, the smallest reasonable space of outcomes (at least in our set-
ting without trading constraints) is arguably the sum U∞ + V∞, where

U∞ = {(H · S)T : H is S-integrable and H · S is a bounded martingale},
V∞ = L∞(

Ω,σ(ST ),P
)
.

In particular, the dynamic components of such semi-static trading strategies clearly
satisfy all admissibility and integrability conditions that have been considered in the
literature to date.

The spaces U and V enjoy very strong closure properties. For V this is obvious;
for U much less so. Kunita and Watanabe [14] proved early on that if (Hn · S) is
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a sequence of H 2-martingales such that (Hn · S)T → f in L2 for some limit f ,
then the limit is again of the form f = (H · S)T , where H · S is an H 2-martingale;
see e.g. [15, Theorem IV.41]. The same result holds in the H p and Lp case for any
p ∈ (1,∞], and Yor proved that the statement also remains true under uniform (rather
than H 2-) integrability and L1- (rather than L2-) convergence; see [16] and [6] for
further discussion. In a similar vein, the following result is crucial for the develop-
ment of arbitrage theory in mathematical finance: if un ∈ U , un ≥ −1 and un → f

in probability for some random variable f , then f ∈ U − L0+. That is, f is dom-
inated by some element of U . Further discussion and generalizations can be found
e.g. in [7] and [8]. Note that these results imply in particular that U∞ is closed in L∞,
that its closure in any Lp-space (p ≥ 1) is contained in U , and that its closure in L0

is contained in U − L0+.
A natural question is to what extent these closure properties carry over to the

spaces U +V and U∞+V∞ of outcomes of semi-static trading strategies. The answer
is that they do not. The goal of the present paper is to demonstrate this by way of
example. This is done in our two main results, Theorems 1.1 and 1.3, which cover
the discrete- and continuous-time cases, respectively.

Theorem 1.1 There is a discrete-time stochastic basis (Ω,F , (Ft )t∈{0,1,2},P)

with a countable sample space Ω on which there exists a bounded martingale
S = (St )t∈{0,1,2} such that the following holds: There exist random variables g and
gm, m ≥ 1, such that

(i) gm ∈ U∞ + V∞ and gm ≥ 0 for each m;
(ii) gm → g almost surely and in Lp for every p ∈ [1,∞);

(iii) g /∈ U + V − L0+.

Thus, the nonnegative random variables gm are final outcomes of semi-static trad-
ing strategies of the most well-behaved kind: their dynamic and static components
are both bounded. In particular, the dynamic trading strategies are admissible in the
classical sense. Furthermore, the random variables gm converge to a limit g in a
rather strong sense; but this limit cannot be represented as, and not even dominated
by, the final outcome of any semi-static trading strategy satisfying minimal regular-
ity conditions. As will become clear from the construction, each gm can be viewed
as a portfolio of digital options, hedged by a position in the underlying stock; see
Remark 2.3 below.

To prove Theorem 1.1, we construct final outcomes gm converging to an integrable
limit g which, if it were to have a representation g ≤ u + v with u ∈ U and v ∈ V ,
would violate the simple bound ‖u‖1 + ‖v‖1 < ∞. To achieve this, we construct a
sequence of simpler models, each of which admits an element of U∞ + V∞ whose
Lp-norm is small, but whose components in U∞ and V∞ are nonetheless large in L1.
These models are then pasted together to form a new model, which admits the re-
quired sequence of elements gm. The individual models are described in Sect. 2, and
the pasting procedure is described in Sect. 3.

Remark 1.2 Let us mention a conceivable extension of Theorem 1.1: Is it possible
to strengthen part (ii) of Theorem 1.1 so that gm → g in L∞? We do not know the
answer.
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We emphasize that there is nothing special about discrete time that makes Theo-
rem 1.1 work. An analogous example may be constructed in a basic continuous-time
setting, as the following result shows.

Theorem 1.3 There is a stochastic basis (Ω,F ,F,P) equipped with a Brownian
motion W and a stopping time T such that the following holds for the price process
S = WT : There exist random variables g and gm, m ≥ 1, such that

(i) gm ∈ U∞ + V∞ and gm ≥ 0 for each m;
(ii) gm → g almost surely and in Lp for every p ∈ [1,∞);

(iii) g /∈ U + V − L0+.

Furthermore, S is uniformly bounded.

The proof follows the pattern of Theorem 1.1. The only difference lies in the con-
struction of the individual models, which is presented in Sect. 4. The pasting proce-
dure then works exactly as described in Sect. 3, and we refrain from repeating it.

Remark 1.4 In the context of the above theorems, two referees both asked the same
question: Is it possible to obtain the same conclusion in a model where the filtration
F is generated by S? It turns out that the answer is affirmative. In fact, slight modifi-
cations of the constructions in Sects. 2–4 yield this additional feature. We now sketch
these modifications.

Let us first discuss the continuous case. In the construction of Lemma 4.1, one
changes the Brownian motion W slightly: On the event {X = 1}, W is run “twice as
fast” after time σ , that is, we replace Wt by Wσ+2(t−σ) on this event for t ≥ σ . Before
σ and on {X = 0}, W is unchanged. Defining S as before, it follows that the outcome
of the “coin flip” X becomes known at time σ if one observes the right-continuous
filtration generated by S. This filtration therefore coincides with (Ft∧T )t≥0. Next,
note that the construction still works if W , and hence S, is started from any determin-
istic value in (−1,1). This now becomes useful for the pasting procedure in Sect. 3.
Indeed, letting sn, n ≥ 1, be countably many distinct numbers in (−1,1), we may
take Sn

0 = sn, so that S0 = sn on Ωn. This implies Ωn ∈ σ(S0) for each n. In sum-
mary, the right-continuous filtration generated by S now coincides with F up the time
horizon T . Moreover, the conclusion of Theorem 1.3 is unaffected by these changes.

Let us now consider the discrete case. In the construction of Lemma 2.1, intro-
duce an additional time point between t = 1 and t = 2, say t = 1.5. The definition
of St for t = 0,1,2, as well as of X, A, Ã and f remain the same. At time t = 1.5,
we take S1.5 = S1 on {X = 1}, and S1.5 = S2 on {X = 0}. We let (Ft )t∈{0,1,1.5,2} be
the filtration generated by S = (St )t∈{0,1,1.5,2}, and choose the probabilities so that
S is a martingale. In this way X, and hence f , is F1.5-measurable. With this con-
struction, Lemma 2.1 remains true for the new time set {0,1,1.5,2}. Indeed, prop-
erties (i) and (ii) are verified as before. Property (iii) is a consequence of the esti-
mates in Lemma 2.2, which are still valid. The proof is almost identical; just note
that P[S2 = ±a] ≥ 1/8 still holds, and that the first equality in (2.3) follows from
the fact that S1.5 = S1 on {X = 1}. Finally, by modifying the pasting procedure as in
the continuous case, one deduces that Theorem 1.1 holds for the new time set. This
concludes the affirmative answer to the question posed above. �
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A simple corollary of the above theorems is that the spaces
{
(H · S)T + h(ST ) : H · S is an H p-martingale, h(ST ) ∈ Lp

(
σ(ST )

)}

need not be closed in Lp (p ≥ 1). The closedness of the corresponding space in the
case p = 2, but with finitely many static claims was crucial for the semi-static Jacod–
Yor theorem in [2]. Thus, we do not expect that result to carry over to the case of
infinitely many static claims. The non-closedness of the above spaces is an example
of the well-known fact that sums of closed subspaces of Banach spaces need not be
closed; see e.g. [11, Sect. 41].

Another immediate corollary is that the space
{
(H · S)T + h(ST ) − f : H is 1-admissible, h(ST ) ∈ L1(σ(ST )

)
, f ∈ L0+

}

need not be closed in L1. Here H is called 1-admissible if it is S-integrable and
H ·S ≥ −1. This space is a natural space of outcomes in the context of portfolio opti-
mization with semi-static trading opportunities. Thus, existence of optimal strategies
is a delicate issue in such a setting.

Finally, we provide a result demonstrating that the non-closedness in Theorems 1.1
and 1.3 is caused by the infinite-dimensionality of the space V of static claims. If V

is replaced by a finite-dimensional space, then closedness is retained.

Theorem 1.5 Let C1, . . . ,Cn be linearly independent elements of L1. The closure in
L0 of the space

W =
{
(H · S)T +

n∑

i=1

aiCi : H is 1-admissible, a1, . . . , an ∈R

}

is contained in W − L0+. Here H is called 1-admissible if it is S-integrable and
H · S ≥ −1.

Proof Let ((Hm · S)T + hm)m∈N be an L0-convergent sequence in W . In particular,
it is bounded in L0; recall that a subset X ⊂ L0 is bounded if

lim
x→∞ sup

X∈X
P[|X| > x] = 0.

By 1-admissibility, Hm · S is a supermartingale, whence

E[|(Hm · S)T |] ≤ 1 +E[1 + (Hm · S)T |] ≤ 2,

so that the sequence ((Hm · S)T )m∈N is bounded in L1 and hence in L0. Thus the
sequence (hm)m∈N is bounded in L0. Now write hm = rm

∑n
i=1 am

i Ci , where rm ≥ 0
and the vector am = (am

1 , . . . , am
n ) has unit norm, and take a subsequence to obtain

am → a for some unit vector a. Thus
∑n

i=1 am
i Ci converges to a random variable,

which is nonzero by the linear independence of C1, . . . ,Cn. Boundedness in L0 of
(hm)m∈N then implies that (rm)m∈N is bounded, hence convergent after passing to a
subsequence. To summarize, we have shown that by passing to a subsequence, we



746 B. Acciaio et al.

may suppose that (hm) is convergent in L0. Thus ((Hm · S)T ) also converges in L0,
say to a limit f . By Corollary 4.11 in [6], this limit is of the form f = (H · S)T − g

for some 1-admissible H and some g ∈ L0+. This proves the result. �

2 The discrete case

The following lemma describes the individual models used in the proof of the
discrete-time result in Theorem 1.1. These individual models are later pasted together
according to the procedure described in Sect. 3.

Lemma 2.1 Fix ε ∈ (0,1/2], M > 0 and a, b ∈ [2,3]. There exists a discrete-time
stochastic basis (Ω,F , (Ft )t∈{0,1,2},P) with finite sample space Ω , equipped with
a martingale S = (St )t∈{0,1,2} with S2 taking values in {±a,±b} as well as a random
variable f , such that

(i) f ∈ U∞ + V∞ and f ≥ 0;
(ii) ‖f ‖p = M(ε/2)1/p for all p ∈ [1,∞);

(iii) any representation f ≤ u + v with u ∈ U and v ∈ V satisfies the estimate
‖u‖1 + ‖v‖1 ≥ M/16.

Proof The price process S = (St )t=0,1,2 and filtration (Ft )t=0,1,2 are constructed as
follows. Define S0 = 0 and let F0 = {∅,Ω}. Let S1 = ±1 with probability 1/2 each.
Next, let X be a Bernoulli random variable with P[X = 1] = ε = 1 − P[X = 0],
independent of S1. Set F1 = σ(S1,X). Define the event A = {S1 = 1} and consider
the slightly larger event

Ã = A ∪ {X = 1}.
Now set S2 = ±a on Ã and S2 = ±b on Ãc. By using the martingale condition
E[S2 | F1] = S1, the conditional probabilities are pinned down as

P[S2 = a | F1] = a + S1

2a
on Ã,

P[S2 = b | F1] = b + S1

2b
on Ãc.

(2.1)

Note that these indeed lie in (0,1) since a, b ≥ 2 and S1 = ±1. Finally, we set
F = F2 = σ(S1,X,S2). This completes the description of the stochastic basis
(Ω,F ,F,P) and the price process S. In particular, observe that the above construc-
tion only involves three independent “coin flips” and can thus be accommodated on
the eight-point sample space Ω = {0,1}3.

The random variable f is defined to be

f = M(1Ã − 1A) = MX1Ac .

We now prove that f satisfies the properties (i)–(iii).
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(i) Clearly, f ≥ 0. Observe that

f = −M

2
S1 + M

2
(1Ã − 1Ãc ). (2.2)

Since Ã = {|S2| = a}, it is clear that f ∈ U∞ + V∞.
(ii) Simply note that E[|f |p] = Mpε/2.
(iii) Suppose f ≤ u + v for some u ∈ U and v ∈ V . By nonnegativity of f , we

have f 2 ≤ f u + f v. Applying part (ii) and Lemma 2.2 below yields

1

2
εM2 = E[f 2] ≤ E[f u] +E[f v] ≤ 8εM (‖u‖1 + ‖v‖1) .

This completes the proof of Lemma 2.1. �

Above, the following key property of f was used; it intuitively states that while
f is an element of U + V , it is almost orthogonal to both U and V . This forces the
components of f in U and V to be large, despite f itself being rather small. We put
ourselves in the setting of the proof of Lemma 2.1.

Lemma 2.2 The random variable f satisfies E[f u] ≤ εM‖u‖1 for any u ∈ U , and
E[f v] ≤ 8εM‖v‖1 for any v ∈ V .

Proof Pick any u = (H ·S)2 ∈ U . In the present discrete setting, H ·S is a martingale.
Thus, using also the independence of X and S1,

E[f u] = ME[X1Ac(H · S)1]
= MεE[1Ac(H · S)1] = MεE[1Acu] ≤ Mε‖u‖1. (2.3)

Next, for any v ∈ V ,

E[f v] ≤ ME
[|v|E[X | S2]

]
.

We claim that E[X | S2] ≤ 8ε, which then completes the proof of the lemma. Since
X = 0 on Ãc, the bound clearly holds on that event. Furthermore, in view of (2.1) and
the fact that a ∈ [2,3] and P[Ã] ≥ 1/2, it follows that

P[S2 = a] = E
[
1Ã P[S2 = a | F1]

] ≥ 1

2

a − 1

2a
≥ 1/8.

Thus

E[X | S2 = a] ≤ E[X]
P[S2 = a] ≤ 8ε,

showing that the claimed bound holds on the event {S2 = a}. The event {S2 = −a} is
treated similarly. �

Remark 2.3 The second part of the representation (2.2) of the payoff f can be inter-
preted as a digital option written on the final value S2 of the price process. Indeed,
it pays either +M/2 if S2 = ±a, or −M/2 if S2 = ±b. Thus f can be viewed as a
portfolio consisting of a digital option together with the partial hedge −(M/2)S1.
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3 Pasting together the individual models

We now describe the pasting procedure that produces a proof of Theorem 1.1 from
the building blocks in Lemma 2.1.

Define

εn = 2−n2
, Mn = 2n,

and select countably many distinct numbers an, bn in the interval [2,3]. Apply
Lemma 2.1 for each n to obtain stochastic bases (Ωn,F n,Fn,Pn) and corresponding
price processes Sn = (Sn

t )t∈{0,1,2} and random variables fn satisfying the properties
of Lemma 2.1, with (ε,M,a, b) replaced by (εn,Mn,an, bn).

We now paste these models together. Specifically, define

Ω =
⋃

n≥1

Ωn, Ft = σ(A : A ∈ F n
t , n ≥ 1),

P[ · | Ωn] = Pn, P[Ωn] = 2−n,

where Ω is understood as a disjoint union. In particular, the collection of events
(Ωn)n≥1 constitutes an F0-measurable partition of Ω . Next, define the price process
by

St =
∑

n≥1

Sn
t 1Ωn,

and let the random variables gm and g be given by

gm =
m∑

n=1

fn1Ωn, g =
∑

n≥1

fn1Ωn.

Clearly, (gm) converges almost surely to g. In fact, the convergence actually takes
place in Lp for any p ∈ [1,∞). Indeed, writing En for the expectation under Pn, we
have by Lemma 2.1(ii) that

E[|g − gm|p] =
∞∑

n=m+1

2−n
En[|fn|p] = 1

2

∞∑

n=m+1

2−nεnM
p
n .

Since 2−nεnM
p
n = 2−n(n+1−p), the right-hand side tends to zero as m tends to infinity.

Moreover, each gm lies in U∞ + V∞. Indeed, for each n, Lemma 2.1(iii) yields
fn = (Hn · Sn)2 + hn(Sn

2 ) for some Hn and hn such that the two components are
bounded. Thus

fn1Ωn = (Hn1Ωn · S)2 + hn(S2)1Ωn,

and since Ωn = {|S2| ∈ {an, bn}} ∈ F0, the second term on the right-hand side is a
(bounded) function of S2. Thus fn1Ωn ∈ U∞ + V∞. Since gm is a finite sum of such
terms, it follows that gm lies in U∞ +V∞ as well. Also, gm is nonnegative since each
fn is nonnegative.
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Finally, assume for contradiction that g lies in U + V − L0+, say g ≤ u + v with
u = (H ·S)2 and v = h(S2). Then u and v lie in L1. On the other hand, by considering
the restrictions to Ωn, we deduce

fn = g|Ωn ≤ un + vn,

where un = (H |Ωn · Sn)2 and vn = h(Sn
2 ). In view of Lemma 2.1(iii), therefore,

‖u‖1 + ‖v‖1 =
∑

n≥1

2−n
En[|un| + |vn|] ≥ 1

16

∑

n≥1

2−nMn = ∞.

This contradiction shows that g /∈ U + V − L0+ and completes the proof of Theo-
rem 1.1.

4 The continuous case

The proof of Theorem 1.3 works exactly as the proof of Theorem 1.1, except that
Lemma 2.1 needs to be replaced by Lemma 4.1 below when pasting together the
individual models.

Lemma 4.1 Fix ε ∈ (0,1/2], M > 0 and a, b ∈ [2,3]. There exists a stochastic basis
(Ω,F ,F,P) equipped with a Brownian motion W , a stopping time T and a random
variable f such that the price process S = WT is bounded with ST ∈ {±a,±b} and
the random variable f satisfies

(i) f ∈ U∞ + V∞ and f ≥ 0;
(ii) ‖f ‖p = M(ε/2)1/p for all p ∈ [1,∞);

(iii) whenever f ≤ u + v with u ∈ U and v ∈ V , we have ‖u‖1 + ‖v‖1 ≥ M/16.

Let (Ω,F ,P) be a probability space with a Brownian motion W and an indepen-
dent Bernoulli random variable X with P[X = 1] = ε = 1 − P[X = 0]. Let

σ = inf{t ≥ 0 : |Wt | = 1}
be the first time the absolute value of the Brownian motion hits level one. Now let F
be the right-continuous filtration generated by the processes W and X1[[σ,∞[[. Thus,
prior to time σ , only the Brownian motion is observed. Then, at time σ , the realization
X is observed as well. With respect to this filtration, σ is a stopping time, W is a
Brownian motion, and X is Fσ -measurable but independent of Fσ−.

Next, similarly to the discrete-time case, we define the events

A = {Wσ = 1}, Ã = A ∪ {X = 1},
and we set

S = WT , T = inf{t ≥ σ : |Wt | = a1Ã + b1Ãc }.
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Thus depending on whether Ã or Ãc occurs, T is the first time the absolute value of
the Brownian motion reaches a or b, respectively. In particular, T is a stopping time
with T > σ . The price process S is a bounded martingale with ST ∈ {±a,±b}.

As in the discrete-time case, the random variable f is defined to be

f = M(1Ã − 1A) = MX1Ac .

The three properties of Lemma 4.1 are proved exactly as in the discrete-time case,
where we use that Lemma 2.2 remains valid in the present continuous-time setting:

Lemma 4.2 The random variable f satisfies E[f u] ≤ εM‖u‖1 for any u ∈ U , and
E[f v] ≤ 8εM‖v‖1 for any v ∈ V .

Proof Pick any u = (H · S)T ∈ U , and write Y = H · S for simplicity. Nonnegativity
of f and the supermartingale property of Y yield

E[f u] = E
[
fE[YT − Yσ | Fσ ]] +E[f Yσ ] ≤ E[f Yσ ].

Since X is independent of Yσ ∈ Fσ−, we have E[f Yσ ] = MεE[1AcYσ ]. The super-
martingale property of Y finally yields

E[1AcYσ ] = E[Yσ ] +E[1A(YT − Yσ )] −E[1AYT ] ≤ −E[1AYT ] ≤ ‖YT ‖1 = ‖u‖1,

whence E[f u] ≤ Mε‖u‖1 as claimed.
The statement regarding v ∈ V follows exactly as in the proof of Lemma 2.2,

where instead of (2.1) one relies on the identities

P[ST = a | Fσ ] = a + Sσ

2a
on Ã,

P[ST = b | Fσ ] = b + Sσ

2b
on Ãc,

which are direct consequences of the martingale property of S and the definition
of T . �
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