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ENDOGENOUS CURRENT COUPONS

ZHE CHENG AND SCOTT ROBERTSON

ABSTRACT. We consider the problem of identifying current couponsAgency backed To-be-Announced
(TBA) Mortgage Backed Securities. In a doubly stochastatdabased model which allows for prepayment
intensities to depend upon current and origination moegades, as well as underlying investment factors,
we identify the current coupon with solutions to a degereeedtiptic, non-linear fixed point problem. Using
Schaefer’s theorem we prove existence of current coupomsal¥é provide an explicit approximation to the
fixed point, valid for compact perturbations off a baseliaetér-based intensity model. Numerical examples
are provided which show the approximation performs remtaykaell in estimating the current coupon.

1. INTRODUCTION

The goal of this paper is to prove existenceesaflogenousnortgage origination rates, defined as those
which yield par-valued mortgage pools. For Agency backed. (6FNMA, FHLMC, GNMA) To-be-
Announced (TBA) pools of residential mortgages, such ratesalso calleaturrent coupons In addition
to proving existence of current coupons, we wish to providas easy to implement, and accurate way
of computing the current coupon, as it is well known (deé€ [@) that iterative, monte-carlo or partial
differential equation based, methods are prohibitivetyeticonsuming to implement.

The residential mortgage market is currently the largeginemt of the US fixed income market (see
[18]) and the problem of pricing Mortgage Backed Securi{lied8S) is of significant financial interest.
The primary difficulty in pricing MBS, however, is the factaththe home buyer has, at any time prior
to maturity of the loan, the right to prepay all or part of heortgage with few, if any, penalties. In
particular, the mortgagee may refinance (multiple times)lb&n in order to take advantage of current
market conditions. Adding to the complication is the welbm fact that individual mortgagors vary in
their financial sophistication and often do not prepay opliyn For example many mortgagors delay their
refinancing decisions even when interest rates declinesieehduch that it is financially optimal to refinance
(seel[26]).

Agency backed MBS has been the major component of the MBSehaikce the financial crisis. Is-
suance of agency MBS has remained robust since 2007 whilyager securitization by private financial
institutions has declined to very low levels (skel[25]). Allvkmown feature of agency MBS is that each
bond carries either an explicit government credit guamraeis perceived to carry an implicit one. Agency
MBS investors are thus protected from credit losses in cha®magage borrower default, and as such, for

valuation purposes, defaults appear to the pool holdehynigi@ntical to prepayments.
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Another less well-recognized feature of agency MBS is thattenthan 90 percent of agency MBS trading
volume occurs in a liquid forward market, known as the TBA ket see[[24]). The distinguishing feature
of a TBA trade is that the actual identity of the securitiedb&delivered on the settlement date is not
specified on the trade date. Instead, the buyer and the agliee upon general parameters of the securities
to be delivered, such as issuer, maturity, coupon, priceapemunt and settlement date. Closely related
to TBA mortgage-backed securities is the secondary-mafig$ rate, known as the current coupon. The
current coupon is a coupon rate interpolated from the olsefBA prices that makes the price of a TBA
with current delivery month equal to par. As such, the curomupon is an endogenous rate, and current
coupon rates are widely used as a benchmark for MBS poolt@afyglaying a key role in the secondary
mortgage market.

Broadly speaking, within the academic literature, theest&n methods used to valuate MBS: the “option
theoretic” and “reduced form” methods (seel[12, 9] for a ntbogough introduction and literature review).
The option theoretic method treats the right to prepay as merian style embedded option and MBS
valuation is performed using options pricing theory. Eaglsults along this line were obtained(in([4] 16, 15].
However, it was quickly recognized that option theoreti¢hmds suffer due to the non-optimal prepayment
behavior of borrowers, and hence the option theoretic ggirdias not been widely adopted by mortgage
market practitioners.

Alternatively, the reduced form method borrows from theotlyeof credit derivative valuation and as-
sumes prepayments are driven by an underlying intensitygssowhich may be estimated from historical
data. Here, the non-optimality of prepayment behavior ift lmto the intensity function. Reduced form
methods have been studied [in][22] 20,16, 3/ 12/ 11,19, 10,r@6hgst others. In this paper, we consider
the reduced form method. We pay particular attention to, [jch computes rates when the intensity is
driven by one (or many) economic factors and|[11], which aers similar intensities to those we treat.
Further connections witth [11] are discussed below.

Aside from the amortizing nature of a mortgage loan, the kifgrénce between MBS and credit deriv-
ative valuation is the dependence of the mortgage pool \@iube mortgage origination rate. Indeed, one
has the heuristic relationship

Mortgage Ratem, = Prepayment Timet(my) = Pool Value:M (my).

Thus, there is a natural and delicate fixed point problem idirfimg so thatM (mg) is par valued. In
reduced form models, this circular dependence is capturdbe intensity function. This is in contrast
to credit valuation, where one typically expresses theuefatensity v as a function of the underlying
economic factors, or state variablés Indeed, whereas an intensity specificatipn= ~(X;) may be
appropriate for credit derivatives, for MBS valuation,sitdesirable to allow to additionally depend upon
both the mortgage origination rate; and the current mortgage rate; available for refinancing: i.e.
v = (X, mg, my). Thus, in a time-homogeneous Markovian setting one hypaés thatn, = m(X;)

is a function of the underlying economic factors and hence

(1.1) = (X, m(Xo), m(X¢)).
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With this specification, the goal is then to findarrent coupon functiom so that the pool valug/ (m (X)) =
1 for all valuesXj,.

[20] and [9,[11] first incorporated the endogenous mortgadge into an intensity-based framework,
taking into account the dependence~obn m. In particular, [11] presented a proof of the existence of
a current coupon in a diffusion model similar to that prelseobnsidered. However, we wish to point
out three key differences betweén|[11] and the present wieirst and foremost, there is an error in]11]
(Proposition 4.1 therein is evidently incorrect for thecdistinuous intensities considered) which, while not
necessarily invalidating the main results, certainlyélem into question. Second, the existence proof,
based on a so-called "Lebesgue set method", is highly remdatd, whereas our proof of existence uses
standard topological fixed point theorems. Third, our métbiopproof has the added benefit that we are able
to show regularity in the current coupon function, wheregd.1] only measurable solutions are obtained.

Equally important as identifying existence of current congpis actually computing the current coupon.
Indeed, a naive application of the contraction principleevehone fixes an initial functiomg and then sets
mn(Xo) = M(my—1(Xp)),n = 1,2, ... with the idea thatn,, — 1, while not only theoretically unjustified,
is also prohibitively slow. To overcome this problem, |[12]iters the intensity as solely a function of the
underlying factors with the idea that this captures the laflprepayments. Then, for CIR interest rates,
the endogenous rate is rapidly computed using eigen-fumetkpansions. Iri[10] a non-iterative method
is proposed borrowing ideas from partial differential etpres theory. In the current paper we take an
alternate approach, approximating the current couponesbation analysis. Thus uses the well known
fact (seel[1ll]) that unique current coupon functions exts¢mv; = (X;) only depends upon the factors.
Specifically, we note that one may always write

v(x,m, Z) = /70('1') + 71($7m7 Z),

by taking~y(x) = 0, but also in the case where the full intensity is assumed todmnstant intensity > 0
plus an additional component. We then embed this deconposita

v (x,m, z) = yo(x) + ey1(x, m, 2); e > 0.

Fore = 0, there is a unique current coupon functien(z). Sendings — 0 we obtain a unique, explicit,
closed form expression fon,(x) so thatm®(z) = mo(z) + emi(z) + o(e). With this decomposition,
valid for any continuous fixed pointh® we naturally consider the numerical approximations(at 1) of
m(z) = mo(xz) + mq(z). It turns out this approximation does very well in practicgffering by < 10
basis points (on absolute rate levels48f — 12%) from the theoretical fixed point determined by naive
contraction.

The rest of the paper is organized as follows. In Sedfion 2 me g heuristic derivation of the fixed
point problem. Sectiohl3 specifies the fixed point problem kdaakovian framework where is a non-
explosive locally elliptic diffusion on a general state spanR¢, making precise assumptions on the model
coefficients, as well as the intensity function. Sedfibnlginates with Theorem 3.9 which proves existence
of a current coupon function, under the assumption that m, z) is approximately constant im for
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large values ofn (see Remark 317 for more discussion on our main assumptiSertion[# performs
the perturbation analysis with Theoréml4.3 explicitly itiiging the leading order terms in the expansion.
Section’b gives a numerical example where the current coapproximated via perturbation analysis is
compared to the function obtained through naive contractidppendice$ A £D contain the proofs. In
particular, as the mortgage market is typically incompleteigorous construction of the particular risk
neutral measures used here for pricing is given. Aside beamg for the sake of mathematical rigor, we
show that when pricing the mortgage pool, one may assumentbisity processes coincide between the
physical and risk neutral measures and hence can be eslinsite) observed prepayment data.

2. ENDOGENOUSCURRENT COUPONS

Consider a level-payment, fully amortizddyear fixed rate mortgage which is originated at time:
0. The mortgagor thus takes a loan &f dollars at origination and pays a continuous coupon stream a
the constant rate of > 0 dollars per annum during the lifetime of the mortgd@el’]. The interest is
compounded at the constant mortgage ratdixed at origination. In the absence of prepayments, the
scheduled outstanding principal of the mortgage, denoygdfym) for 0 < ¢t < T andm > 0, satisfies
the following ordinary differential equation (ODE):

(21) pt(t>m) = mp(tvm) -G p(ovm) = Iy, p(T> m) =0,

wherep; is the partial derivative with respect to(2.1) has solution

@2 s =m0, ptm) = B (1 - i)  (m=0).
1—emT T
SinceF, factors out of the above equation, we assurgpe= 1 throughout so that
1 — e m(T-t) t
(2.3) p(t,m) = o= 5 (M >0), p(t,m) = (1 - T) ; (m=0).
From [2.1) and[{2]3) we can express the coupon stream paynretérms ofm and7" as well:
(2.4) c=c(m) = T o= (m >0), c(m) = %; (m =0).

We first informally derive a fixed point equation for the cunreouponm. This argument will be made
rigorous in Sectiofl3 and AppendiX D below. In the absenceepayments, the mortgage balange m)
evolves according td (2.3). Consider now when there is ad@ar prepayment time under a pricing
measure (here, the underlying probability space(i3, G, Q)). In other words, ifr < T, the owner of
the mortgage at time prepays the remaining balangér, m). Assuming an interest rate= {r;},_, the
value of the mortgage is -

AT
(25) M(m) = EQ / c(m)e_ fot rududt + 1T§Tp(7_’ m)e— fo rudu
0

Prepayment

Coupon Payments
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Next, assume that the interest rate process is adapted t@aadil F = {J—“t}tg whereF = Vi< F; C G
and thatr has an intensityy = {~; }, with respect tqQ, F):

(2.6) @|:T>t']::|H:Q|:T>t

]:t] =e Jo yudu t>0,
for some non-negative, integrable, adapted progedsrom this, we obtain (see [11,112]) the value of the
mortgage as
(2.7) M(m)=1+E? { /0 ' p(t,m)(m — re)eJo ("“ﬂ“)d“dt} .
The mortgage rate: is said to beendogenous M (m) = Py = 1. In view of[2.7, we seekn so that

r t
(2.8) 0=E? {/ p(t,m)(m — ry)eJo (T“+V“)d“dt} .
0

3. THE MODEL AND FIXED POINT PROBLEM

The above analysis is now specified to a doubly stochastiensity based model for the mortgage
prepayment time. To make this precise, fix a probability spaée G, Q). We first remark:

Remark3.1 The measurd) is interpreted as a pricing, or risk neutral, measure and wee i |-] for
EQ [-] throughout. In AppendikD we offer two rigorous construntoof Q: one valid for a “large” pool
and one valid for a single loan pool. In particular we will shthat when estimating the prepayment
intensity functiony described in Assumptidn 3.6 below, one may use observedymgnt data rather than
estimating prepayments under the particular risk neutedsure). For ease of exposition, however, we
delay this construction, simply assuming a mortgagewats the current coupon if it satisfies (2.8).

Let W be a standard, d-dimensional Brownian motion urf@eirhe underlying economic factors which
affect prepayments are governed by the procéssatisfying the stochastic differential equation (SDE)

The state space of is an open, connected regidh C R¢ which satisfies

Assumption 3.2. D = U2, D,, where for each, D,, is open and bounded with smooth boundary. Fur-
thermore,D,, C D,, .

Regarding the coefficients ii(3.1) we assume thatD — R? and letA : D — S?_, the space of
symmetric positive definitd x d matrices. We then take = v/A, the unique positive definite symmetric
square root ofd. We assumeé, A satisfy the following regularity and local-ellipticity sismptions

Assumption 3.3.

1) Ais locally elliptic: i.e. for eactn there exists(;(n) > 0 so that for allé € R?\ {0} andx € D,, we
have¢’A(z)¢ > Ki(n)¢'.

*This equality requires an additional hypotheses on hasvconstructed and will be shown to hold in the current setup.
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2) bandA are locally Lipschitz with Lipschitz constaris(n).

Assumptior 3.B implies existence of a local solution solutio the SDE in[(3]1). To ensure existence of
a global solution we assume the process does not explode: i.e

Assumption 3.4. For allz € D andT > 0, we haveQ” [X; € D, V¢t < T] = 1, whereQ”* denotes the
conditional probability given\, = .

Under Assumptions_3.8, 3.4 it follows that has a unique strong solution. Furthermore, since the short
term interest rate plays a key role in the mortgage evaluation, we assume thefissdinate ofX is the
interest rate: i.eX\") = r, and that the state space &fV is (0, 00): i.e.

Assumption 3.5. The state space of := X is (0, 00).

To precisely define the intensityin (2.8) we adopt the following methodology. Let: D — [0, o0) be
a given candidate current coupon function, in that we wishi¢x) to be the endogenous current coupon
given Xy = = € D. As mentioned in the introduction, we hypothesizis a function of

e The underlying factor process.

e The contract mortgage rate(z).

e The current mortgage rate available via refinaneingX )El

Thus, at time < T we havey, = v(X, m(z), m(X:)), wherey : D x [0,00) x [0,00) is an exogenously
defined function. To facilitate our main assumptiomowe first define the auxiliary function

Be b

3.2 = = inf ; .
( ) (x) 0<1%<1 (1 — 6)(1 — e_ﬁm)y x>0
Straightforward analysis shows tHais decreasing with: and

1 ) E(x)
3.3 E(r) = —forz < 2; lim ——— = 1.
(3.3) (z) z =4 zio0 ze—@=D)

With this definition, we make the following assumptions melijag v. To ease presentation, defifg :=
D x (0,00) x (0,00) @andE,, := D,, x (0,n) x (0,n),n € N.

Assumption 3.6. Assumey : E' — [0, co) satisfies

1) v € C%*(F) and for each, the derivatives of ordex 2 can be continuously extended 5, H and are
Lipschitz continuous o, with Lipschitz constant., (n).

2) y(xz,m, z) and~,,(z,0, z) are locally bounded im, uniformly in (m, z) andz respectively. |.e. for each
n there is aB,(n) > 0 so that

(34) sSup v(x,m, Z) é B‘/(n)a sSup vm(:n,O, Z) é B‘/(n)
z€Dy,m,2>0 rE€Dy,2>0

fTechnically we should allown to be time-dependent as well: i.ex, = m(t, X;) but, due to the time-homogeneity of the
diffusion X, it suffices to considem: = m(X4).

fHenceforth we will assume and its derivatives of ordet. 2 are defined oD x [0, 00) x [0, co) with the values at zero being
the continuous extensions.
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3) With Z as in [3.2), it holds that
(3.5) 0 <ym(z,m,2z) <E(mT); x€D,m,z>0.

Remark3.7. Regarding Assumption 3.6, that > 0 is standard. The local regularity conditions are not
overly restrictive since we do not require global boundshenderivatives’ size an@ (3.4) is an extension of
the case when is uniformly bounded.

However, conditior8) deserves comment. First of all, it automatically holds whes independent of
the contract raten. When~ does depend upom, that~,, > 0 is natural since prepayments should rise
with the current coupon. Next, under the given regulariguasptions we have (sde (B.4)):

(3.6) Ym(x,m, z) < By(n) + L, (n)m; x € Dypym,z € [0,n].

SinceZE(mT) = 1/(mT) for smallm we see that in fact[(3.5) is not restrictive for small But, for m
large it does imply that is approximately constant im. Note that for7" = 30 the thresholdnT < 2 is
satisfied form < 6.67%.

With the following assumptions in place we define what it nsstamm to be a current coupon function:

Definition 3.8. m : D — [0, 0) is acurrent coupon functioif (2.8) holds under the measu€"” for all
x e D:ie.

T t
(3.7) 0 = E* [/ p(t,m(z))(m(z) — r)e” Io (Tu-l-’Y(Xu7m(1’)7m(Xu)))dudt:| : reD.
0

A current coupon function is a fixed point of a non-linear @per.A. To see this, note thai(x) is
deterministic and hence we can write (3.7) as

7 [ p(t,m() e I3t e n ()i g
(3:8) m(@) = Alm](@) = —Lr :
B [ plt. m{z) e o et Xem@) m) gy

The complicating features of the above operator are thdinearity of A in m, and the joint dependence
of v on bothm(z), m(X;). Indeed, the first feature means that it is prohibitivelyicift to verify if A is
a contraction, and hence we we will have to appeal to a tomabfjxed point theorem for existence of
solutions. Second, due to the presencerndfr) within the expectationa-priori we do no expect any
smoothing of the map: — A[m], or that. A possesses the compactness properties necessary to imyoke a
classical topological fixed point theorem. However, thitoagdelicate localization argument, fixed points
do exist under the current assumptions, as Thebrem 3.9 rmmssH he lengthy proof is given in Appendix
Albelow.

Theorem 3.9. Let Assumptior[s 3.2[=3.6 hold. Then, there exists a stposjtive current coupon function
m: i.e. (34)holds. The functiomn is locally a-H6lder continuous for alkv € (0, 1).
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4. PERTURBATION ANALYSIS

Theoreni 3.P asserts the existence of current coupon fumdtiowever, since our method of proof does
not use the contraction principle, we do not know if solusi@me unique and do not automatically have a
method to compute them. One may certainly try an iteratieegaure in[(3.18), starting with an arbitrary
function mg on D and, definingm,, = A[m,_1],n = 1,2,..., but absent a contraction, it is not clear
if this procedure converges. Thus, in this section, we dadf@erturbation analysis where the intensjty
is perturbed off of a baseline intensiy which only depends upon the factors proc&ssThe goal is to
uniquely identifym up to leading orders of the perturbation. With this idendificn, we then in the next
section provide a numerical approximation to the fixed paird compare its performance.

As a starting point, we present a proposition, similartg [ldmma 2.1], which shows that whep =
~0(X) only depends upon the factor processthere is a unique current coupon function.

Proposition 4.1. Let Assumptioris 3.2[=3.5 hold. Assun(e, m, z) = o(x): and thaty, satisfiesl) — 2)
in AssumptioES& Then there exists a unique fixed pointz) solving(3.7), which in this instance reduces
to

T t
(4.1) 0=E" [ / p(t,m(z))(m(z) —r)e o <Tu+70<Xu>>d“dt} .
0

The functionm is locally a-Hdélder continuous orD for anya € (0, 1).

Proof of Propositiod 41 Fix x € D. Fort < T define

: t
£(0) o= B e RO p) = [
(4.2) 0

¢ t
g(t) = E* [rte_fo(’”’”%x”))d“}; G(t) := / g(u)du.
0
Next, define
T
WT,m) = emT/ (1 - e—m<T—t>) (mf(t) —g(t))dt; T >0,m>0.
0

Note that we will have a solution t6(4.1) if for eache D, T > 0 we can find a numbern = m(xz) > 0
such thath(T,m) = 0. Indeed, this follows by plugging ip(¢,m) from {Z.3) and noting that™” 1 —
e~™T=1) are strictly positive. To find such an, note that(0,m) = 0 and

9 (T, m) = memT T( f(t) —g(t) dt = me™ (mF(T) — G(T
SEh(Tom) = me™ [ f(e) = g(0) dt = me™ T (mF(T) = G(T))

§In fact, v need only be locally Lipschitz for the result to go through.



ENDOGENOUS CURRENT COUPONS 9

so thath(T,m) = [ me™ (mF(t) — G(t)) dt. Now, for G from (&.2) we have
t u
G(t) - ]Em |:/ (Tu + ’y(Xu)) e fo (Tv+’Y(Xu))dvdu:| :
0

t
=1-—FE* |:/ ’Y(Xu)e_ fou(rv'f"}/(xv))dvdu:| — E* |:€_ IS(T’U'FY(X’U))dU] ;
0

where we have séif (t) := 1 — E® [[g Y(Xy)e~ fou(rvﬂ(xv))d“du}. Sincer > 0:

t
(4.3) H(t) >1—E® [ / (ra + (X)) e I’ (’"”H(X’”))d”du] = F(t) > 0.
0

Coming back to» we have
h(T,m) = /0 " et (mF(t) +R(t) — H(t)) dt =m <emTF(T) - /0 ' e H (1) dt> .

Hence,h(T,m) = 0 is equivalent toF (T') — [, e=™(T=9 H(t)dt = 0. Using [&3B) it is clear that, as a
function of m, the left hand side is strictly increasing, takes the valyé’) — f(;r H(t)dt < 0 at0, and
limits to F/(T") > 0 asm 1 oo. Thus, there is a unique so thath(T',m) = 0. The statement regarding the
regularity ofm follows from Theoren 319 since fixed points are unique in daise.

O

Having established existence and uniqueness in the basgge, we now perform the perturbation anal-
ysis. To do so, assume

Assumption 4.2. v(z,m, z) = vyo(x) + 71 (x, m, z) where~, satisfies part$), 2) of Assumptiori 36 and
y1 € C%(E) is compactly supported with derivatives which are contiralp extendable t@ x {0} x {0}.

Under Assumptions,_3.2[=3.5 ahd 4.2 it follows from TheofemhtBat fore > 0 small enough, there
exists a continuous current coupon functi@f. In fact, m® is unique up to leading orders ofas well as
explicitly identifiable, as the following theorem shows:

Theorem 4.3. Let Assumptions_3.P=3.5 ahd 4.2 hold. Eor> 0 small enough, lein® be any current
coupon function, continuous dn. Then we have

(4.4) m(xz) = mo(x) + emq(x) + 0o(e).

Above, the convergence is locally uniform forc D. The functionm is the unique fixed point from
Proposition 4.1 and, fox € D
(4.5)
T T o t —ft(ru—l—’yo(Xu))du
B [y (moa) — o) plt,mo(w)) ( fi 1 (X mo(e), mo(X,))du) e~ o at]

m(z) = -
1 E* (g (mo(x) = r)pm(t,mo()) + p(t, mo())) e Joretro(Xeduy]
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Though the formula forn, is lengthy, the point of Theorem 4.3 is that itagplicitly identifiablegiven
myg, the unique fixed point in the baseline case. Additional/wéll be used in the following section,
we point out that the formula fom; makes perfect sense as long as the relevant random vareindes
expectations are well defined. In particular,need not be compactly support ang~; need not be? in
order for the above formula to make sense.

Proof of Theorerh 4]3Fore > 0 small enough, letn®(z) be any continuous solution of(3]7) (or equiva-
lently (3.8)) withy = 7o + &v;. From Theoreri 319 we know at least one such function existst, Bince
p(t,m) < 1,7 > 0,r > 0 the numerator if (3]8) is bounded above by

T t
(4.6) E* [/ ree” Jo T"d“dt} <1.
0

Second, using that; is compactly supported (and hence bounded above by $6mjeand Lemma_CJ1
below it follows for any=, > 0 small enough, the denominator [n(3.8) is bounded belowdry; & ¢:

T/2
%e—EOC-\/lT}Em [/ / o= fg rudtdt] )
0

As a function ofz the above is continuous and strictly positive/i where this latter fact follows from
the elliptic Harnack inequality: seé [19, Chapter 4]. Thus, is locally bounded onD, uniformly in
0 < e < g9. Now, recall [3Y), specified to the current setup:

T
@7  0=E { / (ma(x)—Tt)p(t,ma(w))e_fot(”““(xu)*m(Xuvms(x)’ms(xu)))d“dt}.
0

We first claim that for eaclr € D, lim.om®(z) = mo(z). Indeed, sincen® is locally bounded in
D, uniformly in 0 < e < &, it follows for eachz € D that{m®(z)}___ is uniformly bounded. Let
e, — 0 and assume*" (z) — m(x) for somem(z). Sincey, is continuous and compactly supported, the
dominated convergence theorem yields

T
05| [ na) = rple e B0y,
0
and so by the uniqueness f, from Propositio 411 we know thak(z) = mg(x). Since this works for
all subsequences, — 0 the convergence result holds. Next, defim¢éhrough
(4.8) m(x) = mo(x) + em(z, €); x € D,e < &p.
Using Taylor’s theorem we have
m®(z) —ry = mo(x) — r¢e + em(z, );
1
p(t7 ma(x)) = p(t7 m()(l')) + Em(l’, E)pm(ta mO(‘T)) + §€2m($, E)2pmm(t7 6(1', E))?
t
e Jo 1 (Xume (@)me(Xu)du _ g _ ¢ / (X, m (2), m" (X)) du
0

2

+ %52 </0t 71(Xu,m€(;n),m€(Xu))du> §(x,e,1),
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where
‘f(l‘,é‘)’ < E’W(I‘,E)’; 0< é(m,s,t) < eafgVl(Xu,mg(mef(Xu))du.

Plugging these expansions back ifta [4.7) and collectinggeoy explicit powers of, the zeroth order
term is

T
= |:/ (mO(x) - Tt)p(ta mo(l'))ﬁ_ fg(ru—i_WO(Xu))dudt = 07
0

where the equality follows from Proposition #.1. The firsd@r (in <) terms, within the expectation and
time integral, are

m(x, €)p(t, mo(x)) +m(x, €)(mo(x) — re)pm(t, mo())

~ (mo(@) — rp(t, mo(x)) /0 1 (X (), m (X, s

Using the given regularity, local boundedness and compaafpported assumptions, all higher order terms
together areD(<?), uniformly on compact subsets @#. Since the zeroth order term vanishes, we may
divide (4.7) bys > 0 to obtain

T t
0 = (e, )E” [ [ bltsmno(a) + (mof) = ropm(tsmola))) e <’“u+w<Xu>>d“dt}
0
T t . 4 0(52)
+ | [ mote) = rpttmo@) [ 1 (s 0, (3, ) e Hewon ety X,
0 0

which can be re-written as
B | Jy (mo(@) = rp(t; mo(@) fo 1(Xus me (@), m* (X,))du e~ ot (Xudugy | 4 O

£

i) = B7 [J§ (p(tmo(w) + (mo(@) = re)pm(t,mo @) € i ret gy |
E” [ (moz) — ro)p(t, mo(2)R(t; @, e)e Jo rut(Xuiugy] - OE)
O B T ot mole) + (ma(e) — o ma(e)) e~ RO ]
where

R(t;x,e) = /0 (71 (X, m (), 7 (X)) = 71(Xuy mo(), mo(Xu))) du.

We have already shown that®(z) — mg(z). SincemF is continuous,;m® converges tan, uniformly
on compact subsets d@. Sincey; is C? and compactly supported it thus follows by the dominated con
vergence theorem théin, o m(x, ) — mq(z) = 0 with uniform convergence on compact subsetsof
finishing the result.

O

5. A NUMERICAL APPROXIMATION

Theoreni 4.B offers a natural numerical approximation fangoting current coupon functions. Namely,
for a given intensity functiony we first identify if there is a decomposition

(51) 7(x7m7 Z) = ’YO(‘T) +’Yl(w7mﬂz)7
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and then we compute, from g, definem, as in [4.5) and output the approximation from Theokem 4.3 at
e=1:le.

(5.2) m(x) =~ mo(x) + my(z).

Note that this approximation is obtainable as longragm, are well defined, and does not necessarily
requireyo,; to satisfy the regularity and growth conditions in Assurmp{B.6. Computationally, the
advantage of this approximation over naive contractioridarc there is only one Monte Carlo simulation
(for eachx € D along a give mesh) needed to compute.

Next, we point out that a decompositidn (5.1) is always fasssince one may take, = 0. In this
instanceyng(z) from Proposition 411 solves

1—emo@T 1 T, ‘
(5.3) W = T/o EQ [e o ’"ud“} dt; r€D.
For many models of interest (e.g. seel[23, Example 6.5.2)f@nr ~ C'IR), the expectation on the right
hand size is explicitly computable amdl, is easily obtained by inverting the strictly decreasingction
y — (1—e7Y)/y. Alternatively, if there is some > 0 so thaty(z, m, z) > ~ then one can takey(z) =~

and~, (z,m, z) = y(x, m, z) — . Here, for constant, = ~ calculation shows that,, satisfies

_ e—mo(@)T T . _ e—mo(@)(T—t)
(5.4) o™ / e 'EC [e— Jo "ud“] 1+ 71 ‘ dt,
mo(z) 0 mo(z)

which is easy to obtain numerically given an explicit forandibr £* [e‘ I ’”} Oncemy is known, one
then may computez; using Monte Carlo simulation.

5.1. An Example. We now take an example similar to that in [12, Section 6] arslia® X is a CIR
process (i.ed =1, D = (0,00) andX () = r is a CIR process) angl takes the form

(5.5) Y(z,m,z) =7+ k(m—2)".

Thus, there is a constant baseline prepayment intensiyd the full intensity is adjusted upwards by the
difference between the contract rateand refinancing rate, when this value is positive. This adjustment
is then scaled by a factdr > 0. As in [12], we will assumé: = 5 so this is not necessarily a small
perturbation off the baseline case. Here, we perform twoagimations. The first setg(z) = 0,71 (x) =
v+ k(m—2z)*, computesn, from (5.3), and themr; from (£.3). The second approximation tak@$xz) =
v, 71 (x,m, z) = k(m — z)™ computesng from (5.4) and themn, from (4.3). For each approximation we
comparemg + my to the "theoretical fixed point’n obtained by naive contraction, which in this instance
converges rapidly (e.g. after approximately five iteragjoio a fixed function for a given initial guess®).
The model parameters are the same in [12}irif = k(0 — r;)dt 4+ o/redW; thenk = 0.25,0 = 0.06,
o = 0.1. Additionally, v = 0.045 andk = 5.

Figure[1l compares:y + m; to m whenvy(z) = 0. As shown in the right plot, the approximation does
very well, differing by less tha0 basis points (for an absolute leveld¥—12%) within the (2.5%, 97.5%)
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FIGURE 1. Current coupon functions (left plot) and errors (righdtpls a function of the
underlying CIR factor. In the left plot, the solid line is tloairrent coupon functiomn
obtained through naive contraction. The thick-dash pldhéapproximationng + m;
while the thin dash plot igg. Values are given in percentage points. For the right phet, t
error is the difference (in basis) points betwee@ndm,+m;. Also in the right plot is the
invariant pdf for the CIR process my is calculated withyy(z) = 0 andm; is calculated
with vy (z,m, z) = v+ k(m — z)*. Parameters are = 0.25,60 = 0.06,0 = 0.1, T' = 30,

k = 5 and~ = 0.045. Computations were performed usilatlab, Mathematicaand the
code can be found on the author’'s websitew.math.cmu.edu/users/scottrob/research

percentiles of the CIR invariant distribution. In the “midtof the invariant distribution, the approximation
is virtually identical to the naive fixed point, with errorsresistently betweef — 5 basis points.

Figure[2 makes a similar comparison, usipgz) = . Here, the performance is significantly improved
with the (2.5%, 90%) percentiles in that the approximatiem, + m; is nearly identical to the functiom
obtained through niave contraction. Indeed, the diffeeeldetweenng + m, andm is less thar8 basis
points. However, for large values ofthe error is a bit larger than in the previous method, apiogc
approximately7 basis points.

APPENDIXA. PROOF OFTHEOREM[3.9

A.1. Qutline of the Proof. The goal is to show the existence of a functien: D — (0, c0) so that[(3.B)

is satisfied. To do this, we will use Schaefer’'s Fixed Poiredrem, stated here for the convenience of the
reader

Theorem A.1(Schaefer:[[5]) Let K be a closed, convex subset of a Banach spaseith 0 € K. Assume
A : K — K is continuous, compact and such tHat € K | u = AA[u],0 < A < 1} is bounded. Theml
has a fixed point i

It is thus necessary to define the Banach spdcelosed convex subséf and verify the given assump-
tions regardingA4. For X we would like to choose the space @fHoélder continuous functions o and
have K be the subspace of non-negative functions. HoweveR &snot necessarily bounded, and the co-
variance matrixa is not necessarily uniformly elliptic o, we will have a difficult verifying the requisite
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FIGURE 2. Current coupon functions (left plot) and errors (righdtpls a function of the
underlying CIR factor. In the left plot, the solid line is tloairrent coupon functiomn
obtained through naive contraction. The thick-dash pldhéapproximationng + m;
while the thin dash plot igg. Values are given in percentage points. For the right phet, t
error is the difference (in basis) points betwee@ndm,+m;. Also in the right plot is the
invariant pdf for the CIR process my is calculated withy,(z) = + andm; is calculated
with vy (z,m, 2) = k(m — 2z)*. Parameters are = 0.25,60 = 0.06,0 = 0.1, T = 30,

k = 5 and~ = 0.045. Computations were performed usiMatlab,Mathematicaand the
code can be found on the author’'s websitew.math.cmu.edu/users/scottrob/research

continuity and compactness of the operatbr Thus, we must first localize the problem. At the localized
level we will obtain a fixed point using Schaefer’s theorene Wil then unwind the localization to get the
result. As such, the plan is:

1) Define an operatad™ related taA and show thad™ has a fixed poinin™ > 0 defined onD,, which is
a-Holder continuous for allv € (0, 1).

2) For eachn, obtain uniform (inn) Hélder norm estimates oR,,, for the fixed pointsn™, n > m + 1.

3) Show thatn™ has convergent subsequence with limitvhich solves the full fixed point problem.

As afirst step in the above plan, we need to obgajrioi Holder norm estimates on solutions to certain
partial differential equations (PDE) which are defined tlylo expectations.

A.2. A Priori Estimates of Holder norms. We first recall the standard definitions of the elliptic and
parabolic Holder spaces. For a more thorough introductiosuth spaces see€ [8] for the elliptic case and
[6l[17,5] for the parabolic case.

Fix n € N and recall the domain (i.e. open connected regibp)is bounded with smooth boundary.
Fork € N, denote byC*(D,,) the collection of functions: on D,, such that all partial derivatives of order
< k are continuous, and hy* (D,,) the subspace of functions with partial derivatives of ordék that are
continuously extendable @D,,. Next, for a given function. on D,, anda € (0, 1] set

u(z) — u(y
lu|p, := sup |u(z)]; (U], D, = sup 7| (z) £ )
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The spaceC’®*(D,,) is defined as the subset 6f(D,,) consisting of those functions, whose partial
derivatives of ordeK k have finite| - |p,, norm and whose partial derivatives of ordehave finite[-],, p,,
norm. On the spac€®<(D,,) define the norm

(A1) lully 5, = lulp, + Z sup [D7u|p, + sup [D7u]a,p,,

j=1181=i 1Bl=k
where3 is a multi-index consisting of non-negative integers, ..., 84 and|3| = Ele B; and DAy =
8|65 ‘7 5, tis weIIEnown thatC*<(D,,) with norm|| - || k.o.D, IS @Banach space. Lastly, wheer= 0 write
(D) for C°(D,,) and|| - ||, 5, Tor || - 10,0, 5,

For the parabolic Holder norms, define the dom@jn:= (0,7) x D,,. A typical pointP € @, takes the
form P = (t,2),0 <t < T,z € D,. ForP, = (t,x), P, = (t,Z) € Qy, the parabolic distance between
P, Pyisd(P, P) = (|Jz — 7>+ |t—f|)%. Now, leta € (0 1]. We recall the definitions of standard Holder
norms of a function: defined on(),,:

u(Pr) — u(P,)|
u 0, = Sup |u P N u = sup N
| | n PeQy | ( )| [ ]a,n P17P2€Qn7P1?éP2 d(Pl, Pg)a

(A.2) [ulan = [ulon + [U]an;

’u‘2+a7n ’U‘On + Z |D; u‘On + Z ’D u‘an + [Dyufa .-
t,j=1

Above, D;u = Dé 0 andD? S = D0 1,..ow Wwith the ones at andi, j respectively.

We now prove three Iemmas which establashriori estimates (both local and global) for the ”aﬁn
normand|- ||, , 5, norm of some conditional expectation expressions, whidtbeiessential in the proofs
below. For each, denote byr, the the first exit time of the process from D,,. Each of the lemmas below
concern the functiom : D,, — R defined by

TNATn
(A.3) u(x) := E* [/ g(t, Xy)e = Jo hlu,Xu) d“dt x € Dy,
0

whereg(t, z) andh(t, ) are functions defined of),,. To ease presentation, the bounding constants below
may change from line to line, and then the constants is assumed to absait{n),K2(n), B(n), L(n)

of Assumption§ 312=316, as well as the dimensipparabolic domaiid),,, and horizori". We will keep the
dependence upon the Hélder parametexplicit.

Lemma A.2 (Global C?“ estimate) Letu : D,, — R be defined ifA.3) and assume for some € (0, 1],
g and h satisfy

‘g’a,n < 0oQ; ‘h’a,n < Kg(n),
lim g(t,y) =0; x € 0D,

y—ax,t—T

for some positive constars(n). Then

”uH2,a7§n < C(TL, K3(n)7 a) . ‘g’a,n-
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Proof. Clearlyu(z) = U(0, z), where
TNATn
Ut,z) := E* {/ g(s, Xs)e™ J3 W Xo)db gy ; t<T,x € D,.
t

Under the given regularity and ellipticity assumptions, Teeorem 3.7] implie#/ is the unique solution to
the Cauchy-Dirichlet problem

Ui+ LU = h(t,z)U = —g(t,x), (t,z)€ Qn,
(A.4) w(T,z) =0, x€ Dy,

u(t,z) =0, (t,z)€[0,T] x dD,,.
The boundary Schauder estimate ($ée [6, Theorems 3.6, fiade the condition opast T T,y — x is
the compatibility condition therein) for parabolic equais yields

ully 05, < |Ul2+an < C(n, K3(n),@)|gla,n-

O

Lemma A.3 (Global C* estimate) Letw : D,, — R be defined irA.3) and assume for some, € (0, 1]
that g, h satisfy

|9lag,n < 00, [hlagm < 00, [hlon < Ka(n),
for some positive constait,(n). Then for alla € (0,1)
Hu”mﬁn < C(TL,K4(TL), «, aO) : ‘9’0,71-

Proof. Sinceg, h areag-Holder continuous, we can invoKe [7, Theorem 5.2] regayditochastic represen-
tations of solutions to parabolic PDEs to writéz) = U(0, x) whereU satisfies the linear parabolic PDE
in (A.4). Using the boundary BoundaWﬁ’l estimate for parabolic equations in[17, Theorem 7.3.2] we
obtain for allp > 1,

1Ullze(@n) + 1PUl p(@,) + Ut e (@) < C(n, Ka(n), ao)|glon-

Now, leta € (0,1). Since@,, is a Lipschitz domain we can apply the Sobolev embedding (&§ts
inequality) to get, for a sufficiently large depending upomv (as well as the model coefficients, domain,
aq, etc.)

lullo, B, < Ulan < C(n, Ku(n), o, a0) [Ullw1r(q,) < Cn, Ka(n), a, ao)lglon-
O
Lemma A.4 (Interior C* estimate) Letwu : D,, — R be defined irfA.3) and assume for some, € (0, 1]

that g, h satisfy
|9lag,n < 00, |hlagn < 00, |hlon < Ka(n),

for some positive constaits(n). Leta € (0,1). We then have for athh < n that

lull, 5, < C(m, Ka(m+1),,a0) - (|9lom+1 + [Ulom+1) 5
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whereU is satisfies the linear parabolic PD@&.4).

Proof. Againu(z) = U(0, ), whereU satisfies[(A.). Set
Q= <0, g) X Dy,

Forp > 2, the interiori¥;"! estimate for parabolic equatioris [17, Theorem 7.22] yields

1Ulleqr) + IDU Leqr ) + 1Utllzeqr,) < C(m, Ka(m + 1), a0) (Iglo,m+1 + [Ulom+1) -

m

Since@),, is a Lipschitz domain, Sobolev embedding yields for ang (0, 1) by takingp large enough
that

”uHa,ﬁm < ”UHa,Qin < C(m, Ky(m + 1)7047040)HUHW1,;;(Q;”)
< C(m7K4(m + 1)7 Q, Oé(]) (|g|07m+1 + |U|0,m+1) 5

where above we have st ||, ¢/ as thea-Holder norm on the regio®; ,.
O

A.3. The localized problem. Throughout this section, Assumptions]3.243.6 are in foM first seek
functionsm = m™ on D,, satisfying (compare witi (3.7)), for eaeghe D,,:

m(z)
The second term above is a correction term introduced tblestdocal regularity of solutions:, and will
vanish as: 1 co. To establish existence of solutions, et (0, 1) and fix a function; € K,, where

TNATn
(A5) E® [ / (m(z) — 7)p(t, m(x))e™ Jo rutrXum(@)m(Xu)duge| 4 = 0.
0

(A.6) K, = {ne C%D,):n >0},

and look for functionsn = m™" solving, forz € D,,:
m(x)?

S U ——
n(l — e=m@)T)

TN,
(A7) B [/ (m() — r)plt, m(@))e™ b et umlhn gy | 4
0

l.e. we substitute;(X;) for m"™(X;) in . Sincelim,,;om?/(1 — e ™) = 0 we define the second
term above to b® whenm(xz) = 0. Propositio_ A below establishes existence and unicgseotsuch
functionsm™". This defines the mapl™[n] := m™". Using thea-prioi estimates established in the
previous section we then verify this map satisfies the hygsmh of Schaefer’s theorém A.1 and hence there
is a fixed pointm™ satisfyingm™ = A"[m"] which is equivalent ton™ solving [A.5).

Before proving Proposition Al 7 we state two technical lerapproved in AppendikB. First, define

(A.8) cW = sup {w(l) NS Dn}; Cy, := sup{|z| : z € D, },

and note that any solution df (A.5) muatpriori satisfy0 < m"(z) < civ. Additionally, as in the
previous section, the bounding constants below may changeline to line and their dependence woris
understood to absorb the dependence upon the consdtatts, K2 (n), L (n), B,(n) of Assumption§ 313,
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[3.8, as well as the regiof,,, dimensiond and maturityT". To state the lemmas, for € K,, define the
functionk™(m, z;n) for z € D,,m > 0 by

m n

TN,
A9)  K'(m,zin) = —E [ / (m —rt) (1 - e‘m(T—“) e~ JoretrXuwmnXu))dugy| 4 T
0

and note from[(Z13) thaE(Al7) holds if for eaghe D,, we can findn = m(z) = m™"(x) > 0 so that
E™(m,x;n) = 0. The first technical lemma establishes regularity:'®in (x, m) for a fixedn.

LemmaA.5. Leta € (0,1) andn € K, and definek™ as in(A.9). Then
1) For a fixedz € D, k"(-,z;n) is continuously differentiable of0), c0). Furthermore, there exists a
constantA(n) such that for all) € K,,, m > 0 andz € D,;:
1
(A.10) ~ < Ok (@, min) < A(n).

2) For afixedm > 0, k"(m, -;n) € C*>%(D,,) and there exists a constait(n, 7l 5, ) such that for all
0<m< C,gl)

(A11) K" (ms )05, < Al [10llo,5,)-

For R > 0, A(n,[In[|, 5,) can be made uniform (i.e. depending only upow) for |7, 5 < R.
The second lemma establishes regularity’ofvith respect to changes in both andy.

Lemma A.6. For 7,12 € K, and0 < mq,mg < cY there exists a constatk’(n, |n1l, 5, Im2ll0. 5, )
so that
(A.12)

[ () = K" (ma, 512) .05,

<N, Imllop,: Im2llas,) (||771 —m2llop, + M1 —ma|+Im —n2ll, 5, [m1 — m2|> :
and
sup |0 k" (my, z;m) — k™ (ma, z;m2)|

(A.13) v&Dn

< N5, Inellas,) (Ima = mal + I = nell,.5, ) -

The constanf\’ can be made uniform for alln ||, 5., 72/l 5, < R for R > 0.
Having established regularity® we now present:

Proposition A.7. For « € (0,1) andn € K, there exists a unique function = m™" that is strictly

positive inD,, and solvegA.7) in D,,. m™" is continuously differentiable if,, with gradient

VK" (m, z;

(A.14) Vom™(z) = _M )
8mk (m7$777) m:m”v"?(w)

Furthermore,v3 € (a, 1), m satisfies the following a priori estimate of tigeHolder norm:
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whereC'(n, 5) does nodepend upom.

Proof of Propositio AJ7 As mentioned above, it suffices for eacte D, to findm = m(z) = m™"(z)
so thatk™(m, x;n) = 0. From LemmaAJb we know that" is strictly increasing inn. Additionally, by
the dominated convergence theorem andthat0, r; < 0,2”,75 < 7, we have
TNy, .

lilf(l] E™(m,x;n) = —E* {/ (T — t)e~ Joratr(Xu0n(Xu))du gy | g,

m 0

li%n E™(m,z;m) = oo.
So for anyz € D, there exists an unique(z) > 0 such that" (m(z),z;n) = 0 and this defines the map

m = m™" : D, — (0,00). We next show the priori estimate for the Hélder norm of. in (A15). By
definition,Vz, y € D,

(A.16) E*(m(z),z;m) = k" (m(y),y;n) = 0,
which implies
(A.17) k" (m(y),y;n) — k" (m(z),y;m) = k" (m(x), z;m) — k" (m(z), y;n).

Sincey is fixed, the mean value theorem appliechto— k"™ (m, y; 1) (which isC* in m from LemmdAJ)
asserts the existence ©betweenn(z) andm(y) such that

(A.18) Omk™ (&, y5m) - (m(y) — m(x)) = k" (m(z), x3n) — k" (m(x), y;n).
By LemmdA.% we thus have
(A.19) Im(z) —m(y)| < nlk™(m(z), z;n) — k" (m(z), y;n)|-

Now, fix = (think of this as a parameter) and note th&{m(z),;n) = «"®" whereu™" is defined
in (B:7) below. Noting thatn(z) < C.” it follows from (B:8), [B9), [B.ID) below, as well & <

y® 4 y(y, m(z),n(y) < CY + B, (n) on D, that we may apply LemnfaA.3 to obtain for dlle (q, 1)

that

m(a) (] L—e @
[ @), 5, < Cln, Kaln), B,0) sup  |m(x) — )|
(tyy)GQn

where the constant’,(n) does not depend upon Thus, from [[A.19) we obtain

< O Kan), 5,0,

Im(z) — m(y)| < nlk™(z, m(z);n) — k" (y,m(z);n)| < C(n, Ka(n), B, a0)|z —y|”.

Since it is clear from[{Al7) that,™" < c'V, the estimate i (A.15) holds. Lastlj, (Al14) follows imnied
ately from the implicit function theorem since LemniaslA.58Anply that for a fixed) € K,,, k™ (m, z; 1)
is Ctin (0,C) x D,. O

In light of Propositio’A.Y we define the mag® : K,, — K,, by
(A.20) A"n) = m™"; n € K,.

The following lemma will be needed in the proof of the contipwf the operator4™.
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Lemma A.8. Leta € (0,1) andny,ma(z) € K,,. Letm; = A"[n1], me = A"[n2]. Then, there is a
constantA (n, Imll.5, > Im2ll, 5, ) which can be bade uniform fdjm: |, 5, , 72l 5, < R such that

sup |my(x) —ma(x)| < An, [mll, 5, 172065, m = n2lla5,

LEEDTL
Sup [Vok™ (@, ma(z);m) = Vak" (2, ma(@)ine)] < A Il 5, ello 5,0 I = n2llo 5,
[ASY D2
SUp (k" (@, ma (2);m) = Ok (2, ma(2); 112)| < Al 5, I2llo 5,0 I =2l 5, -
ASY D

Proof of Lemm&Al8By definition of m,my we have for allx € D,, that0 = k"(my(x),z;m) =
E™(mgy(z), z;m2) and hence

k™ (ma(x), x5n2) — K" (ma(x), 23n2) = k" (ma(x), z3m) — k" (ma(z), z;m2).

By the mean value theorem applied to the map— k™ (m,z;n2) (which is C' from LemmalADb)
there is some& betweenm; (z), ma(x) S0 thatd,, k™ (&, z;n2)(me(z) — mi(z)) = k™ (me(z),z;n2) —
E™(mq(x), z;m2). It thus follows that

i (x _ R (ma (@), 25mp) — K" (ma (), 23m)|
rele) =l = 0 (€ i) ’

<t (m Imllo 0 1205, ) I = mallo 5,

A, [lmlla, 1n2llap,)Mm = n2ll, 5, -

where the inequality follows fromi (A.12) in Lemnia A.6 sinGe< mi(z) < 'V on D,,. The second
inequality follows immediately from the first by (A]12) of ema[A.6. Similarly, the third inequality
follows from the first by[(A.IB) of LemmiaAl6. O

The following Proposition establishes a fixed poiniKip:

Proposition A.9. Leta € (0,1). There existsn™ € K, that is strictly positive for: € D,, and solves the
fixed point equatiomn™ = A"[m"] in D,,. Equivalently,n™ satisfies{A.5). Furthermore ¥ € (a, 1), m”
satisfies the following a priori estimate of tifeHolder norm onD,,:

Imlls 5, < C(n,B).

Proof of Propositiod A9 The existence of a fixed point™ will follow from Theorem[A.1 by verifying the
steps below. Here, the Banach spac&’is=- C%(D,,), the closed convex subset containing K,, and the
operatorA is A" from (A.20).

1) The mappingd” : K,, — K, is continuous.For anyn,,n. € K,,, letmy = A"[m1] andmgy = A"[no].
In light of the first part of Lemm&‘Al8, we need only consides [, — mg]am semi-norm, and clearly,
it suffices to show thatup,c p,, [Va(mi(z) —ma(z))| < C(n, [Imll, 5, In2ll,5,)llm —nll, 5, TO
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this end, we have from Propositibn A.7 that foe 1,...,d andz € D,,:
Oz, k" (ma(x),23m)  Og k" (ma(z), z3m2)

O, (Mm1(z) —ma(x)) = — | == — = ,
s ) = ma() (amkn<m1<w>,x;m> 8k (@), 3371

_Ou k" (mu (), w3m) — O k" (ma (), 23 72)
Omk™(ma (), z;3m)
Oz, k" (ma(z), 25m2) X (k™ (m1(x), 23m) — Omk" (ma(z), 7572))
Omk" (ma (), z;m)O0m k™ (ma(x), 2;12) ’

and so from Lemmds_Al.b, A.8 we have
|0z, (ma(x) — ma(z)) | < 0|0y, k" (M (), z3m) — O3, k" (ma(2), 3m2)
+ 1P M (1, |72l 1, [Om K™ (ma (), 25m1) — O™ (ma(), x5 m2)|

+

<A Imllop, Il p,) (7 + 22A0s 02,5, ) I =2l 5,

proving continuity.
2) The mappingAd™ : K,, — K, is compact.Let us fix some3 € («, 1). Given any bounded sequence
{n; }ien in K,,, Propositio ALY yieldsyi € N,

HA"[m]HcB(m < C(n,B).

By the standard compact embeddings of Holder spaces, tikests @ subsequenceA™[n;, | }ren Of
{A"[mi]}ien such that{.A"[n;, | }rew converges in| - [|ca 5, NOM to some limit ink,.

3) The set{m € K,, : m = AA"[m] forsomed < X\ < 1} is bounded. Supposen € K, satisfies
m = A\A"[m]| for some0 < X\ < 1. We have from Propositidn’Al.7

Imllce @y = AA" Ml ca @y < Clnsa).

Schaefer's Theorem thus asserts that the opeyitdnas a fixed pointn™ in K,,. By Propositiol A/ ™
is strictly positive. Moreovenmn™ satisfies the following priori estimate of thes-Hdlder norm onD,,:

HchB(D_n) <C(n,B), VB € (a,1).

0

A.4. Global existence of a fixed point.For an arbitrary € (0,1) andn € N we now choosen™ € K,,
such thatn™ is a fixed point of the operatod” in K,,, whereA™ is from (A.20). Let us now fix an arbitrary
n € N. The following lemma establishespriori estimates for the-Holder norms of m” (x) }n~5 I Ds.
We adopt the notatioA (72) to denote some positive constant that changes from line¢aind may depend
on the dimensiom, the model coefficient&; (7 + 1), K2 (n + 1) from Assumptiorh 313, the local Lipschitz
constantL- (7 + 1) and local bounded constast, (2 + 1) from Assumptioi3J6, and the time horiz@h
and domainsDy;, Dy 4. If additionally, the constant depends upon the Holder agpbs we will write
A(n, B) to stress this dependence. As such when we vfie) the constantioes nodepend upors.
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Lemma A.10. Let3 € (0,1). For anyn € N there exists a positive constafi{n, 5) such thatvn > n,
Hmnucﬁ(ﬁﬁ) < A(n, B).
Proof of Lemm&A.d0Let « € (0, 3). Sincem™ solves[(A.Y) we have, fom™(x) > 0, rearranging terms

that for alln > n + 1 andx € Dj;:

B [T rp(t, m () o 7oy o) ()l gy

mn(:E) - T t n n mn(x ’
(A21) E= [fOTA " p(t, mn(x))e” Jo ruty(Xu,m™ (z),m (Xu)))dudt] + n(l_eﬂin)(z)T)
2
< < A(n).
- inf Ex [foT/z/\TﬁJrl e~ fg(rudu—i-C'—y(ﬁ—i-l))dudt} - ( )
wEDﬁ

Above, the second inequality has used](4.6), Lernméa C.1 andlliptic Harnack inequality. We next turn

to the 3-Holder semi-norm. Froni (A.18), for all, y € D;; we have

kP (™ (z), @;m") — K" (m"(x), y; m")
Omk™(&,y; m™)

where¢ is some number between” () andm™(y). From [B.2), [B.B) and(BI6) below, we obtain

ok™

(A22) I (@) — m"(y)| =

)

%(E y;m'™)
TNATh —&(T— —&(T=
> RQ [/ " e fot(Tu+7(Xu,m"(r),m”(Xu)))d“1 —e Y _52(T e o dt] ;
0
T 2NTh —m(T— —m(T—
>R [/ o pye Jo (ruty(Xum? (@), m™ (X)) du et - m; It dt] ;
0 m m=m"(z)Vm" (y)

1—e ™2 —m(T/2)e=™T/2)

EY
m2

m=mn (x)Vm" ()
. T/2/\T7'L+1
> A(n)EY [ / ree= o “d“dt] ;
0

> A().

)

T/2N15
/ [ Tte—fot(T’u+v(Xu,mn(I)M”(Xu)))dudt]
0

Above, the second and third inequalities follow simee— m=2(1 — =™ =%) — (T — u)e~™T~%)) is
strictly positive and decreasing in. The fourth inequality use (A.21) and thatX,,, m"™(z), m™(X,)) <
By (n + 1) almost surely fort < T'/2 A 7541. The last inequality follows by taking the infimum of
- t
E@ [fOT/ZAT”“ re=Jo “d“dt} overy € Dj; and noting that by Harnack’s inequality this value is slyict
positive givenD; is strictly contained inD; 1. For the numerator in (A.22) we have
EM(m™ (@), @;m™) — K" (m" (x), y;m") = u™" O () — ™" @ (y),
wherew™" is from (B.7) below. Note that™"(*)™" is of the form [A3) withg = ¢™" @) andh =
" (@):m" from (B.8) below. Specifically, we have
1 — e—m™@)(T-1)

g™ @ (t,y) = (m"(z) — yW) mi(z) R () = 4B 4y (y, m"(z), m" (y)).
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Since0 < m"(x) < ¢tV we have from[(B.B) and_(B.10) that the assumptions of Lemndbake satisfied
(with ap = « sincem™ € C%(D,,) for the given, arbitraryx € (0, 3)) and hence for alB € (0,1) by
takinga € (0,1),a < 3:

I oy S5 (o o " )
< A(n,B) <A(n +1)+ C’(+1 + ™ (),m” lo Dn+1> :
Now, fory € Dj:
™" @ (| = (K (m"™ (x), y; m”|
< /OT (1- e @I RS 1,0, e~ halrutaXum™ @ (X gy

m” (x)

TN, —m"™(x)(T—
+EY [/ e © n(( ))( D o B K @ me () gy |
0 m\x

TNy, ~
<T+ TEY |:/ re” Jo Tududt:| + w
0

<oy At

=A(n+1).
Hence we conclude that™" (*)™"| 5 < A(7, 5) and thus
K" (m" (), z3m™) = K" (m" (), y;m")| < A7, B)|z —y|.
Putting these two estimates together[in (A.22) gives
m™ () = m"(y)| < AR, B)|x —yl°, Va, y € Dy,
finishing the proof, in view of (A.21). O
With all these preparations, we are now ready to prove The@&8.
Proof of Theorerh 319Note that[3.F7) is equivalent to
R UOT rep(t, m(z))e fot(ru-i-'Y(Xu,m(x),m(Xu)))dudt]

m(z) = = - ; x e D.
Ee [ p(t, m())e A Kem mXa)d gy

Leta € (0,1). From LemmdAID, there exists a positive constafit, o) such thatvn > 1, we have
[m"[|, 5, < A(1,a). The Arzela-Ascoli theorem asserts the existence of a suesee offm™ (z)},>1,

which we denote by{m”l(el)(x)}k N and somen(!) ¢ K; such that for eacl*m,(j), m" satisfies the
S

equality in [A.21) forz € D; and such thata™ () converge ton(" () uniformly in D, ask — oo, with
[m M5, <A @).
Applying LemmdA.T0D again, we have that there exists a pesidonstant\ (2, o) such thatVn,(;) > 2,

(1) . : : .
we havel|m"+ [, 5, < A(2, «). The Arzela-Ascoli theorem again assures the existencesobsequence
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of {m”z(f) (;p)}k . and somen(® € K, such thatn”s converge ton(? uniformly in Dy ask — oo, with
Im®||, 5, < AE(Q, «). Note that by constructionp® (z) = m()(z) for = € Dj.

The above procedure can be carried out iteratively and welude thatvl € N, there exists a subse-
quence of{m"i(cl)}k>1, denoted b){m”gfﬂ)}keN, and functionm(+1) e K, ,, such thaim"i(clm converge
to m 1) uniformly in Dy11 ask — oo, and||m*1 |, 5, < A(l + 1,«). Moreover, by construction,
mHD) (z) = mW(z) for z € D;.

Now, for allz € D, there is somé € N such thate € Dy, Vk > [. We definen : D — [0, 00) by

(A.23) m(z) == m®(z),

and note that by constructiom is well defined andn(z) € C{ (D), Va € (0,1). We claim thatn is the

desired fixed point. Indeed, fixand note that for € D; we have thain(z) = limy_, mk )(3:) for any
I’ > 1. Thus, for anyl’ > [ we can write, usingd (A.21),

(A.24)
- , W0 A
‘ T ) — Jo | rutyr(Xu,m™k - (2),m"k  (Xu)) | du
lim E* | [, % rp(t,m™ " (x))e dt
k—o0
m(w) - t n(ll) n(l/) /
, AT @) o (mwxu,m k' (o)m"k (Xu»)du ™ (@)
lim E= | [, % p(t,m™ (x))e dt| + )
k—roo ng/)<1—emnk (96)>
_A)
B’

where, (recall: € D; andl is fixed)

@) (@)
T N1y ) —fg (T‘u-‘r’y(Xu7mnk (x),mnk (Xu))>du
A(l') = lim E* / rp(t,m" (x))e
0

k—o00

, @) ()
TAT (11 a — Jo | ruty(Xu,m™  (z),m"k

[ et @)e

TATy

(Xu))> du

+ lim E* dt

k—o0

TATy ¢
e [ | e (T“ﬂ(xu’m(m)’m(X“)))d“dt}
0

@) NG

T/\’Tn(l/) a —fg (ru+~/(Xu,m"k (x),m"k
+ lim E° / et mm (@))e

k—o0 TATy

<Xu>>>du
dt|

The second equality above follows from the bounded convesgéheorem since < p < 1,0 < r; < Cl(,l),

. () .
~ > 0and smcen"kl (Xu) — m(X,) almost surely for, < 7/, and also, sincé > [, fromxz € D; C Dy
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(1"

som™ " (x) — m(x). As for the second term we have

[ @ @
AT an a b (mﬂ(xu,m% (w),m" (xu>>>du
0<E” / koryp(t,m™ (x))e

TATy

dt|

T t
<E” / rre” Jorudugy|

TATy

Taking!’ 1 oo and using the non-explosivity of along with the monotone convergence theorem it thus
follows that

T
lim A() = E7 V rep(t, m(z))e” Jo(retr (Xum@m(X)dugy|
> 0

Repeating the same calculation Br!’) and noting the only difference is a) the absenceofvhich is
ll

bounded fort < 7/, and b) the fractionn” )(x)/(n(l/)(l — e~™"* (#)) which clearly goes away as
k 1 oo, it similarly follows that forxz € D;:

T
lim B(1) = E* [/ plt, m(x))e™ o oty Xum@)mXu)idugy |
oo 0

Thus, sincen(z) on the left hand side of (A.24) did not depend ugbthe result follows.

APPENDIX B. SUPPLEMENTARY PROOFS FROMSECTION[A. 3|

Proof of Lemm&Al5Note thatr,, v( Xy, m, n(X;) are non-negative and uniformly bounded abové‘é9+
B, (n) for t < 7,,. Additionally, from [3.4) and[{3]5) we have that for allc D,,,m,z > 0 that

By(n) + Ly(n) m<1

_ = M(n),
=(T) m > 1

(B.1) Ym(x,m,z) <min{B,(n) + Ly(n)m,=Z(mT)} < {

so thaty,, (X, m,n(X;)) is almost surely bounded above or 7,, by a constant depending only upan
It thus follows by the bounded convergence theorem that wepukthe differential operator (with respect
to m) within the expected value and integral in (A.9) to obtain

(B.2)
Ok (m, x, T; ) = E¥ [ /0 o (1= 22) (1= emm=0) e BtrwsrCumatxupan) dt] +

m
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By differentiating and collecting terms (again all inteaciges of the integral and derivative are allowed
given the current hypotheses) we obtain

eJo (rutr(Xumn(Xu))du o 5 ((1 _ ﬁ) (1 _ e—m(T—t)) - fé(rnﬂ(Xu,m,n(Xu)))du)
m

2 - + /0 ’Vm(Xuvmv’r/(Xu))du>

(B.3) = - -

<1 _ o—m(T—t) (T — t)e—m(T—t) 1 — e—m(T—1t)
Tt m

t
(T — t)e=mT=0) _ (1 =m(T=1)) / (X, (X))
0

For allm > 0,t < T calculation shows

1— e—m(T—t) (T _ 75)6—771(T—t) 1 1— e—m(T—t)
— < (T —t)% < < (T-1).
m2 m - 2( ) 0= m < 2

(B.4) 0<

Since0 < v (x,m,2) < M(n)and0 < r; < Cr(f) almost surely inD,, it follows that the right hand side
of (B.3) is bounded below by

t
(B.5) (T =)™ — (1 — e™T0) /0 Y (Xu, m, (X)) du,
and from above by

2
The upper bound i (A.10) readily follows. As for the loweroal, from [3.5) we have

oW <1(T — )2 + (T — t)tM(n)> + (T —1t).

t
(T — t)e_m(T_t) — (1 — e—m(T—t))/ ’Ym(Xua m, T/(Xu))du
0

(B.6) > (T — t)e ™I _ E(mT)(1 — e T,

To see the third inequality note that (writilg= 1 — ¢/7" and multiplying numerator and denominator by
T)

= . Be=AmT ] (T — t)e~m(T—1)
D) = A T A ety ~ ieloir) {1 e @Dy

It thus follows from [B.3B) that almost surely for alt > 0 andt < T' A 7,, that

O ((1 - %) (1 - e—m(T—o) - f5<rn+w<xu,m,n<xu>>>du) -

which yields the upper bound ih (A 110). Lastly, it is evidémm (B.3) that the map

m = O, ((1 — 2) (1 — e—M(T—t)) e~ fé(rnﬂ(Xu,m,n(Xu)))du)
m

is almost surely continuous in and non-negative with upper bound

oM (%T2 + T2M(n)> +T,
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and hence by the bounded convergence theorem thenmap 0,,k"(m,xz;n) is continuous and each
m > 0. Turning to (A.11), writek™(m, -;n) = «™" where

—m(T—t
1—e¢ ( )e_ fg(ru—i-’y(XuvmW(X“)))dudt : r € D,

TATn
B.7)  u"™(z) = E* / (m —ry)
0
u™" is of the form [A:3) with
_ —m(T—t)
g (tw) = (m— a0

(B.8) "
R™N(t, x) = ™ (x) = (M +y(x, m,n(x)).

Calculation shows fob < m < Cfll) that

< Cr(Ll)Tl—a/Z + T(Cr(Ll))l—a

a,n

(B.9) Jim ¢"(ty) =0,2€0Dn;  |g"lon <CIVT5 (9"

)

and
B Mo < CSY + By (n);

(B.10) m (11—« (1) 1-a
[ < (COV 4 LoV CDV Il ,) ((2C)' = + Il 5, )

Note that the above can be made uniform for[all , 5 < R foranyR > 0. Thus, Lemm@AlR yields the

upper bound iN(AJ1).
O

Proof of LemmaAl6We havek™(mq,-;n1) — k™ (ma, -;n2) = w™M — w212 whereu™" is from (B1).
For0 < mj,mg < ¢V, from (B.9), [B.10) (applied for the respective;, ;), it follows from LemmdA.2
that for ™" = U™ (0, -) whereU™-" solves the linear parabolic PDE given in(A.4). Furthermore
|uminil, 5 < C(n,|nill,p,) where the bounded constant can be made unifornyrfdr, 5, < R.
DefineV .= U™ — ™22 ThenV solves the linear parabolic PDE

V;f"i'ﬁv_hmhnlv:_g) (t,l’) Gan
(B.11) V(T,z) =0, x€ Dy,

V(t,x) =0, (t,z)€[0,T] x ID,,
where we have set (recall (B.8)):

(B.12) g(t,x) = g™ (t, @) — g™ (t,2) + U™ (t,x)(h™ — 70N (2).

From [B.1I0) we have thdlhmlvm\am is bounded from above by a constant which only depends upon
n, |mll, 5, (Which can be made uniform . ||, 5. < R). A lengthy, though direct, calculation shows

1
g™ = g™ o < <T + 5cy<3>T2> Img — my|,

B — B < Ly OO il 5, V Il 5,) (12 = mlla , + lm2 —ma ).



28 ZHE CHENG AND SCOTT ROBERTSON

Note the above, again, can be made uniform|figt|, 5 < R. LemmaB.1 below shows that there is a
constanti(n, |ml, 3, , 172, 55, ) (uniform for ||, 5 . 72, 55, < R) so that

(B.13)
1
(g™ — g™, < ((1 +2rCM)T /2 4 5T2(C,gl>)1—a> Imy —ma|,

[ —pmee] < Al 5,0 1026 5,) (\ml = ma| +[In2 = mll, 5, + lm1 — malllnz — mHa,ﬁn> '

)

From [B.12), it easily follows sincg/™m2|, | 5 < C(n, |n2]l, p, ) that (by potentially enlarging.”)

Flan < A0 Il 5, el 5, (Ima = ma] + llm = mall, 35, + Ima = malllm = mll, 5, ) -

The result then follows from Lemnfa A.2 sing® andU™2-"2 take the value zero ah= T, x € 9D,,, and
hence the compatibility condition holds.
We next prove[(A.113). As follows froni (Bl.2) and (B.3) we have

Omk" (M, z5m1) — O k" (K2, 23m2)

(B.14) TA™,
= E* [ /0 (A1 (t) (B()C1(t) + Di(t)) — Aa(t) (B(t)Ca(t) + Da(t))) dt] :

where fori = 1,2

Ai(t) = e~ JoratrKumim (Xde, gy — g,

9

1 _ e—mi (T—t)

t
(1 — e miT=D) (T — t)e‘mi(T‘t)) + / Yo (X, M, mi (X)) du,
0

my
t
D(t)) = (T — t)e™ =0 — (1 — e7milT=1) / Vi (Xuy M mi (X)) du.
0
Using the elementary estimate
|A1(BCy + Dy) — Aa(BCa + Do)| < [A1]|B]|Cy — Cof + (|B||Ca| + [Da|)|Ar — Az| + |A1|| Dy — Do,

we will obtain the upper bound ii (A.lL3). First, we have thea@dt sure inequalities

Aaml<t B < Y,

GOl <7 (34T )5 Da0)] < (1 + W)



ENDOGENOUS CURRENT COUPONS 29

Above, we have used that> 0,0 < r; < Cr(f) ont < 7,, (B.4), and[(B.ll). Next, we have
|C1(t) — Ca(t)]

1—e Tt (T — t)e=™ T8 1 —e=m2(T=t) _ypo(T — t)em2(T—1)

B mi m3
1— e—ml(T—t) T
i [ P (e (X)) = 3 (X2, (X))

1— 6—m1(T—t) 1 — e—mQ(T—t)

T
+ / o (X iz, 12 X))
0 mi mo

The mapm +— (1 — e ™7t —m(T —t)e=™T 1) /m? has derivative- (2/m3)(1 — ™™= —m(T —
t)e=™T=) — (1/2)m?(T — t)%e~™T=1)) which is non-positive and is bounded in absolute valuglof-
t)3/3 < T3/3. Thus,

T3

1—e ™It (T —t)e ™ T=) 1 —e=m2(T=1) _ypo(T — t)e=m2(T—1)
< ?|m1 — ma|.

2 2
my my

For the second term we have

1—e ™ (T—1t)

T
e [ P (X.0) = 90 (X2 ()

< 2Ly 0V COV o, V allap,) (1 = mal + I = mallo 5, ) -
For the third term we have

1 — e—ml(T—t) 1 — e—mQ(T—t)

T
m (X, ma, n2(Xy))du
/0 Yom ( 2,m2(Xu)) - o~

< Tgﬁ(n)\ml — ma,

N =

sincem — (1 — e "™T=1)/m has a derivative bounded " — t)2/2. Thus, we can find a constant
C(n, Hmuaﬁn, \|172||a5n) so that almost surely far< T

|C1(t) — Caft)

< O lmllap, . Il p,) (Im1 = mal + lm =l 5, )

We next have, by the non-negativity afy and the fact thae=* — e~%| < |a — b| for a,b > 0, that almost
surely fort < T A 7,:

T
‘Al(t) - AZ(t)’ S /(; ”Y(Xuamhnl(Xu)) - ’Y(qum27n2(Xu))‘ dua
<TLy(nvCI V.5, Viel.s5,) (!ml —ma| + [lm — 772Ha,5n) ;

= C om0 Il0p,) (Im1 = mal + llm = mll, 5, )
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Lastly, we have

|D1(t) — Da(t)]

T
<T ‘e_ml(T_t) - e—mz(T—t)‘ + (1 - e—mz(T—t))/ ”Ym(Xw my, nl(Xu)) - ’Ym(Xw ma, nZ(Xu))’ du
0

T
+/ Vi (X, ma, m2(Xy,))du ‘6—m2(T—t) _ e—ml(T—t)‘ 7
0

< T —mal + TLy (0 v OOV il 5, V Il 5,) (fmn = mal + =l 5,)

+ M(n)T2|m1 — ’I’)’L2|,
< Clmlop, s Inello,) (Ima = mal + Iy = m2ll, 5, )

Putting this all together in_(B.14) gives for alle D,, that

|Om k"™ (M1, 25m) — Opk™ (M2, 3m2)| < C(n, Imll, 5, In2ll.p,) (!ml —ma| + ||l — 772Ha,§n) ;

which is the desired result. O
LemmaB.1. For 0 < my, ms < iy, m,ne € K, andg™, h™ as in(B.8) the inequalities in(B.13) hold.

Proof. The proof is a lengthy calculation based off of Taylor’s failm using the fact that is both C?,
with derivatives of ordex 2 which can be continuously extendedfox {0} x {0}, as well as such that
all derivatives of ordek 2 are Lipschitz continuous i®,, x [0,n] x [0, n] with Lipschitz constanf., (n).
In particular, for any partial derivative of v with order< 2, anyn and constants,,, z,, > 0
sup lu(z,m,z)| < oo,
r€Dp m<Mp,2<2p
sup lu(z,m, z) —u(z',m',2")| < Ly(nVmn V z,) (|v —2'| +|m—m'| + |z — 2]).

z,x'€Dpymm/<mp;z,2"' <zpn
The above inequalities are used repeatedly in the sequeb, &l(n, ||, 5., 72l 5,) is @ constant
which may change from line to line and can always be made mmifo 7., 7, for [|n1 |, 5, . [In2/l, 5, < R-
Now, fors,t < T, x,y € D,, we have

g (tx) — g™ (t,w) — (9™ (s,y) — 9" (s,9))

1 — e M1 (T—t) 1— e—mz(T—t)

= (my —z(W) — (mg — 2M)

my ma
1 — e—ma(T—s) 1 — e—m2(T—s)
—Qm—ww—ii————mrwm%—i———,

mq m2

m (1)
= / <(T _ t)e—m(T—t) + :E—Z (1 _emm(T—t) _ m(T — t)e—m(T—t))> dm
mo m

mi (1)
/ ((T — s)e ™T=s) 4 371_2 (1 —e7™T=9) _ (T — s)e_m(T_5)>> dm.

ma2
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We have

‘/n:l ((T —t)e ™ Tt _ (T - S)e_m(T—s)> dm‘ — ‘/ml /: e~ T=7) (m(T — 7) — 1)dem‘

m2
< (1 +CWT|t — s||my — mal.

Next, we have

1) 1
T —m(T— —m(T— Y —m(T—s —m(T—s
W <1—€ (T t) —m(] —t)e (T t)> _W <1—€ (T ) —m(] —S)e (T ))

1= e~ T=) (T — t)e=™T=) 1 — e=mT=t) _ (T — t)e=™T—1)
< — - —
1— e T=5) (T — s)e~™(T=9)
2 — ) (T~ 3)

For anyk > 0 the functionm — m~=2 (1 — e~*™ — kme~*™) is non-negative and deceasingrin > 0
with limit asm — 0 of (1/2)k2. Using this we have

1— e ™T=5) (T — s)e~™T—9)

m2

o _ 1 2w~ L
|zt — gy Sg(T—S) 2 —y \Sg\x -yl

Next, for anym > 0 the mapm — m=2 (1 — e ™T=7) — (T — 7)e~™T=7)) has derivative— (T —
7)e~"™T=7) which is bounded above in absolute valuerog T by T'. This implies

1—e™T=) (T — t)e=™T=) 1 — =Tt _ (T — t)e=™T—1)

2+ < OoWT|t - 5.

m?2 m?2

Putting these two terms together gives

mi (1) 1)
/ <x_ (1 — 7Tt (T — t)e_m(T_t)) v (1 — e T8 (T — s)e_m(T_5)>> dm

m?2 m?2

m2
T2
< (G =y Tl = o) .
Therefore
g™ (t,x) — g™ (t,2) — (9" (s,y) — g™ (s,9))]
T2
<y = mal (1420007 = o] + 1otV V1),

and hence

a,n —

T2
97 = 7o < r = ma] (14 200D 1 e )
which is [B.13) forg. Turning toh, write a;(x) := (z,m;,n;(z)) fori = 1,2 andx € D,,. Set
(B.15) My, == nVCIVinl,p, Viel.s,
and note that

(816) a’l(x) € EMn = DMn X [07 Mn] X [O7Mn] ) UAAS Dn
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We have, from the second order Taylor formula

(B.17)

R () — W22 () — (RO (y) — R (y))
=(a1(z)) — y(az(2)) — (v(ar(y)) — v(az(y)))
= (m1 —ma) (ym(az(x)) — ym(az(y)))

+7:(a2(2)) (m (x) — n2(2)) = 72(a2(y)) (m (y) — n2(y))

+ (m1 — m2)® (Rym (a1 (z)

+ R..(a1(z)|az(x)) (m () — n2(2))? — R..(a1(y)]|az(y)) (m () — m2(y))”

+2(my — my) (Rinz(a1(x)|az(x)) (ni(z) — n2(x)) — Rmz(a1(y)|az(y)) (m(y) — n2(y))) -

Here, fora; (z),az(x), z € D,, we have set

1
R (21 () 23(2)) = /0 (1~ )Y (21(2) + u(an(a) — a3 (2))) du,
1
- /0 (1 — w)youm (2,3 + u(ma — ma), ma(@) + u(m (@) — ma(2))) dus

with analogous formulas foR,, and R,,,.,. Sincemgy + u(m; — my) is in betweenm; andmy, and
n2(x) + u(ny(x) — n2(x)) is in between; (x) andne(z) this formula immediately gives (recall (BI116))

(B.18) | R (a1(2)|a2(2))| < 5 sup |ymm(@,m, 2)| = Cn, Il 5, [m2]l0 5,)-

(z,m,z)EER

| =

(with analogous formulas fak,,., R..) as well as

| R (21 () @2()) — Rinm (a1 (1) [22(1)) |

IN
~

1
+(Mp,) / (1 —u) (Jz —y| + (1 —u)(m2(x) —n2(y)) +uln(z) —n(y))|) du,
(B.19) 0

IN
| =

I
QN

Ly (M) (e =yl + Ielly 3, 12 = 91° + o 5, b = 91%)

(n, Imllo5,: Im2lla5,) |z —yI%

(with analogous formulas faR. ., R,,. as well). We now usé (B.18), (B.19) to bound the five terms en th
right hand side of (B.17) separately. First,
[(m1 — ma2) (vm(a2(2)) — ym(az(y)))|
< Iy = ma| Ly (My) (J2 =yl + mell p, Jo = 91%)

< C(n,|mll, 5, In2llop,)m —mallz —y|®.
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Second

7= (22(2)) (m () — n2(2)) — v=(a2(y)) (m (y) = 12(y))]
< Iyz(az(@) ] m(x) = n2(x) = (m(y) = m2@)] + Imy) —n2(y)l r=(az2(x)) —7z(az(y))l,

< sup "Yz(x7m7z)m771 —?72Ha,§n’1’—y’a
(z,m,z)EEN,

o+l = mallo 5, Ly (M) (12 =yl + Inell 5, J2 = 917
(0%

=Cllmllap, In2llap)lm =l 52—yl

Third, from (B.19) we get

(m1 — m2)? (R (a1 (2)]az(z)) — Ry (a1 (y)|as(y)))
<M (n, Imll,5,, In2ll,5,)lm1 — ma|lz — y[*,

=C(n, Imll, 5, In2llo5,) M1 — ma|lz —y|*
Fourth (recall[BIB){B19) ana — b*> = (a — b)(a + b))

|R..(a1(z)|az(2)) (n(z) — n2(2))® — R.z(a1(y)]|az () (m (y) — m2(y))?|
< |R.2(a1(2)]ag(2))] | (m(z) — n2(2))?* = (m(y) — n2())?|
+ (m(y) — m(y))? |R..(a1(z)|az(x)) — R..(a1(y)|az(y))|,
<20, Imllop,: Imllop)m = n2llop, |7 = y*
+ llm — 772||a75n (n, Imllo5, In2llo. 5,12 — yl*

‘ a

=Clmllop, In2llap,)lm = mellap2 -y
Lastly, or fifth
12(m1 —m2) (Rin: (a1 (2)|az(@)) (m (2) — n2(2)) — R (a1(y)|a2(y)) (m (y) — 12(y))) |
)|

< 2[my — mal| Ry (a1 (z) [az(2))| Im () = m2(x) = (m(y) — 12(y))]

)
+ 2[ma — mal |1 (y) — 12(y)| | Rz (a1 (2)[a2(2)) — R (a1 (y)|a2(y))]
< 2y = ma| (O, Il o, M2l ) =l 12 = 91 + C il o, el o = 1°)

= Cllmllap,: Imellap,)lme —mallm =l 52—yl
Putting together the five estimates above in (B.17) we obtain
[ () — TR () — (R () — B (y))|
<Cn,|ml,5,: Inll.s,) <|m1 —ma|+ |lm —n2ll, 5, + [m1 —ma|llm — 772||a7§n) lz —y|%

from which the result in[(B.13) follows.
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APPENDIXC. TECHNICAL RESULTS

The following lemma shows that for atk > 0, the first time the balange(t, m) falls at or belowl /2 is
at leastr’/2:

Lemma C.1. Forall m > 0, inf {¢t € [0,T] : p(t,m) < (1/2)} >T/2.
Proof. Assume for somen > 0,t € [0,T7], p(t,m) = 2. Then
1 1
t=T+ —log|=(1+e™)).
+—log <2 (1+e )>

It is clear that

Z i 1 —mT _Z l —mT —mT/2
>3 <:>mlog<2(1+e )>> 5 <:>2(1+e ) >e :
The last inequality holds for ath > 0 andT" > 0, finishing the proof. O

APPENDIXD. ON THE CONSTRUCTION OF THERISK NEUTRAL MEASUREQ

Let D be as in Assumption 3.2 and let: D — R%and A : D — S? be given functions satisfying
Assumptior 3B. Assume thdd, b and A are so that there exists a (necessarily unique) solutioheo t
Martingale problem (se€ [27]) for the second order linearafor L associated t()?), A)onD.

Now, fix a probability spacé2, G, P) and denote bW a d-dimensional Brownian motion undé: Set
W as theP-augmented version of the right continuous enlargemerttehatural filtration folV, so that
FW satisfies the usual conditions. Since the Martingale probiter L is well posed, there exists a unique
strong solution to the SDE

(D.1) dX; = b(Xy)dt + a(X;)dW.

wherea = V/A. Nextlety : D — R%, Y : D — S% also satisfy Assumptidn 3.3. With= /X, the market
is formed via trading instrumentss, S°) whereS = (S', ..., S%) have dynamics

dsi

k
5 =y (Xp)dt+ ) o (X)dW;  i=1,...4,

=1

andsSy = exp (fot rudu) is the money market where= X). Defineb : D + R? by

(D.2) b(x) = b(x) — a(z)o(z) ™" (u(x) = r1),

wherel € R¢ is the vector of ones. Note thatsatisfies Assumption 3.3. Lastly, assume the Martingale
problem forL associated t@b, A) is also well posed o). Under these hypotheses it is well known (see
[23, Ch. 5], [19]2]) the above market (wiltl" adaptedS-integral trading strategies) is complete, and the
unique risk neutral measuf@on 7} has Radon-Nikodym derivative

@ == ZT7 Zt = g (— / (/L(Xt) — ’f’tl)/ O'_l(Xt)th> 5 t§ T.
t

(D.3) _
dP ]:ZV? 0
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In particular,Z is a(P, IE‘W) martingale. WithQQ being well-defined odfw, we recall (se€ [23, Ch. 5]) that,
provided the requisite integrability holds,Gf = {C(t)},., is a cumulative cash-flow stream, adapted to
FV and with rateC'(t) = C(t), then the unique price for the stream is given[EtR/[foT C(t)e” I T’Ududt].
With this notation in place, we now derive the mortgage piticevo instances.

D.1. Large PooI.EI Assume that in addition toV/, (©,G,P) supports arP-i.i.d. sequence ot/ (0, 1)
random variables{Ui}i:L___ which are alsdP independent ofV. Let v be any non-negative, integrable,

FW adapted process. Giventhe random time$r; } are constructed via

i=1,...
(D.4) T,:inf{tzo | Ui:e—fot“fud“}; i=1

Note that the{r; },.; arelP conditionally i.i.d. givenF), each with commoi® - intensity~y.

Now, consider a large pool, consisting of infinitely manyrsavhich are (uniformly) infinitely small.
More precisely, fixV and fori = 1,..., N setr; as the prepayment time of th& loan in anN-loan
pool, with each loan of sizé/N. The pool has common contract rateand hence the respective principal
balances and coupons argt, m) = (1/N)p(t,m) (wherepis from (2.3) andt; = (1/N)m/(1—e~™7T) =
(1/N)e(m) fori =1, ..., N. The cumulative cash flows of the pools is thus:

1 & 1 -
Cn(t) =5 D_cltAm) + 5 > p(mim) <
i=1 i=1

By the conditional law of large numbers and Glivenko-Cdntgbe theorem in[[2B, Theorem 6.6] we have
thatP-almost surely:

lim sup [Cn(t) —C(t)] =0,
Jim s [Cx(t) ()

where fort < T andr a generic copy of;:
C(t) = e [t A7|FF | +E [p(r, m) et FFY |
t w + B
= cte™ Jordu c/ wyye™ Jo 1y 4 / p(u, m)yue”Jo 7y,

0 0

The cash flow rate is
C(t) = ce™ Jo ity p(t, m)ye Jo e,
It thus follows that the price of the large pool is given by

T T
EQ [/ (c+ p(t,m)y)e” f()t(ru"l"Yu)dudt:| =1+EQ [/ (m — ry)p(t,m)e” Jo rutya)du gy 7
0 0

where the last inequality follows by using (P.1) and intéigraby parts. This yieldd(2/7) andis theP
prepayment intensity.

9This derivation is alluded to, if not explicitly given, in1i[12] and uses an argument similar to thafid [14].
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D.2. Single Loan Pool. Here, we assume that in addition &, (Q,G,P) supports a’(0,1) random
variable U which isP - independent of’. The random time- is created as ir(Dl4) wherg is again

a non-negative, integrablé‘,w adapted process. Associatedrtés the indicator proces&l = {H;},-
with H;, = 1,-,. H generates the filtratioR” = {Hi}so ViaHy = o(Hg;s < t) andr is clearly_an
FH -stopping time. Furthermor&” andF"W areP independent. Lastly, the enlarged filtratiGhis that
generated by botR" and theP-augmented versions &, and is right continuous [13, Theorem 1]. Now,
let A € FV andt > 0. We clearly have that" [1,-:14] = EF [(1 —e b vud“)lA] and hence

PP |:7'>t']:W:| = PP |:T>t

ftw} =1 —e_f(§7"d“,

so thaty is the (PP, IE‘W) intensity ofr. Enlarge the market described above to allow@oadapted trading
strategies. Though this market is now incomplete, it foldvat the minimal entropy martingale measure
Q (same notation as above) satisfies

Ccll% . =Zr; T 2>0.
Indeed, this fact has been shownl[in[[1} 21] amongst othersnéifeclaim thaty is theQ intensity ofr as
well. To see this note thdf ~ U(0, 1) underQ sinceQ [U < u] = Ef [1y<,Zr] = P[U < u] = u. Next,
U is Q independent of W since for allA € f{? foranyT > 0:

QU <u, Al = EF [1p<y14Z7] =P[U <u]Q[A] = QU < u]Q[4],
and hence th@ independence follows. Thus, for &l € IE‘W andt > 0:
7] 52 14 (1))

proving thaty is theQ intensity ofr. Now, starting with the price for the mortgage as[in2.5) wet@ is
now the minimal entropy measure in the enlarged market, teou2.1) still holds (sed(216)) and hence

(2.2) and[(2.B) hold.

_ g [y ,Q
Q[ >t,Al=E [1AE |:1U>e*f3’y’ud“
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