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Abstract. Let X be anIRd-valued special semimartingale on a probability space
(Ω,F , (Ft )0≤t≤T ,P) with canonical decompositionX = X0 + M + A. Denote
by GT (Θ) the space of all random variables (θ · X)T , whereθ is a predictable
X-integrable process such that the stochastic integralθ ·X is in the spaceS 2 of
semimartingales. We investigate under which conditions on the semimartingale
X the spaceGT (Θ) is closed inL 2(Ω,F ,P), a question which arises naturally
in the applications to financial mathematics. Our main results give necessary
and/or sufficient conditions for the closedness ofGT (Θ) in L 2(P). Most of these
conditions deal withBMO-martingales and reverse Hölder inequalities which are
equivalent to weighted norm inequalities. By means of these last inequalities, we
also extend previous results on the Föllmer-Schweizer decomposition.
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0. Financial introduction

Despite its rather mathematical title, this paper is concerned with questions which
arise from a number of optimization problems in financial applications. It seems

Manuscript received: January 1996 / final version received: April 1996



182 F. Delbaen et al.

therefore appropriate to start with a motivating section to explain the background
and the financial interpretation of the results. We emphasize that this section will
not contain precise definitions and theorems; the mathematical introduction in
the next section will contain more technical details.

Our starting point is ad-dimensional stochastic processX = (Xt )0≤t≤T de-
fined on a probability space (Ω,F ,P) and adapted to a filtrationIF = (Ft )0≤t≤T

with a fixed time horizonT ∈ (0,∞]. The processX describes the discounted
price evolution ofd risky assets in a financial market containing also some risk-
less asset with discounted priceY ≡ 1. Thus,Ft is the information available at
time t andXi

t is the relative price of asseti at timet , expressed in units of some
fixed numeraire. Adaptedness ofX simply means thatXi

t is observable at timet .
One of the central problems in financial mathematics in such a framework is the
pricing and hedging of contingent claims by means of dynamic trading strategies
based onX. The prime example of a contingent claim is of course a European
call option on some asseti with expiration dateT and strike priceK , say. The
net payoff to its owner atT is obviously the random amount

H (ω) = max
(
Xi

T (ω)− K , 0
)

=
(
Xi

T (ω)− K
)+
.

More generally, a contingent claim will here simply be anFT -measurable random
variableH describing the net payoff atT of the financial instrument we want to
consider. This means that our claims are “European” in the sense that the date
of the payoff is fixed, but the amount to be paid out is allowed to depend on
the whole history ofX up to time T (or even more, ifIF contains additional
information). The problems of pricing and hedgingH can then be formulated
as follows: What price should the seller S ofH charge the buyer B at time 0?
And having soldH , how can the seller S insure himself against the upcoming
random loss at timeT?

A natural way to approach these questions is to consider dynamic portfolio
strategies of the form (θ, η) = (θt , ηt )0≤t≤T , whereθ is a d-dimensional pre-
dictable process andη is adapted. In such a strategy,θi

t describes the number of
units of asseti held at timet , andηt is the amount invested in the riskless asset
at time t . Predictability ofθ is then a mathematical formulation of the informa-
tional constraint thatθ is not allowed to anticipate the movement ofX. At any
time t , the value of the portfolio (θt , ηt ) is given by

Vt = θ′t Xt + ηt

and the cumulative gains from trade up to timet are

Gt (θ) =

t∫
0

θs dXs =: (θ · X)t .

To have this expression well-defined, we assume thatX is a semimartingale, and
G(θ) is then the stochastic integral ofθ with respect toX. The cumulative costs
up to timet incurred by using (θ, η) are given by
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Ct = Vt −
t∫

0

θs dXs = Vt −Gt (θ).

A strategy is called self-financing if its cumulative cost processC is constant in
time, and this is equivalent to saying that its value processV is given by

(0.1) Vt = c +

t∫
0

θs dXs = c + Gt (θ),

where c = V0 = C0 denotes the initial cost to start the strategy. After time 0,
such a strategy is self-supporting: any fluctuations inX can be neutralized by
rebalancingθ andη in such a way that no further gains or losses are incurred.
Observe that a self-financing strategy is completely determined byc andθ since
the self-financing constraint determinesV , hence alsoη.

Now fix a contingent claimH and suppose that there exists a self-financing
strategy (c, θ) whose terminal valueVT equalsH with probability one. If our
market model does not allow arbitrage opportunities, it is immediately clear that
the price ofH must be given byc, and thatθ furnishes a hedging strategy against
H . This was the basic insight leading to the celebrated Black-Scholes formula
for option pricing; see Black and Scholes (1973) and Merton (1973) who solved
this problem for the case whereH = (XT −K )+ is a European call option andX
is a one-dimensional geometric Brownian motion. The mathematical structure of
the problem and its connections to martingale theory were subsequently worked
out and clarified by J. M. Harrison and D. M. Kreps; a detailed account can be
found in Harrison and Pliska (1981). Following their terminology, a contingent
claim H is called attainable if there exists a self-financing trading strategy whose
terminal value equalsH with probability one. By (0.1), this means thatH can
be written as

(0.2) H = H0 +

T∫
0

ξH
s dXs P-a.s.,

i.e., as the sum of a constantH0 and a stochastic integral with respect toX. We
speak of a complete market if every contingent claim is attainable. (Recall that
we do not give here precise definitions; for a clean mathematical formulation,
one has to be rather careful about the integrability conditions imposed onH and
ξH .)

The importance of the concept of a complete market stems from the fact that
it allows the pricing and hedging of contingent claims to be done in a preference-
independent fashion. However, completeness is a rather delicate property which
typically gets lost if one considers even minor modifications of a basic complete
model. For instance, geometric Brownian motion (the classical Black-Scholes
model) becomes incomplete if the volatility is influenced by a second stochas-
tic factor or if one adds a jump component to the model. If one insists on a
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preference-free approach under incompleteness, one can study the range of pos-
sible prices which are consistent with absence of arbitrage in a market containing
X, Y andH as traded instruments (see for instance El Karoui and Quenez 1995).
An alternative is to introduce subjective criteria according to which strategies are
chosen and option prices are computed, and we shall briefly explain two such
criteria in the sequel.

For a non-attainable contingent claim, it is by definition impossible to find
a strategy with final valueVT = H which is at the same time self-financing. A
first possible approach is to insist on the terminal conditionVT = H ; sinceη is
allowed to be adapted, this condition can always be satisfied by choice ofηT .
But since such strategies will not be self-financing, a “good” strategy should now
have a “small” cost processC . To measure the riskiness of a strategy, the use
of a quadratic criterion was first proposed by Föllmer and Sondermann (1986)
for the case whereX is a martingale and subsequently extended to the general
case in Schweizer (1991). Under certain technical assumptions, such alocally
risk-minimizingstrategy can be characterized by two properties: its cost process
C should be a martingale (so that the strategy is no longer self-financing, but
still remains mean-self-financing), and this martingale should be orthogonal to
the martingale partM of the price processX. Translating this description into
conditions on the contingent claimH shows that there exists a locally risk-
minimizing strategy forH if and only if H admits a decomposition of the form

(0.3) H = H0 +

T∫
0

ξH
s dXs + LH

T P-a.s.,

whereLH is a martingale orthogonal toM ; see F̈ollmer and Schweizer (1991).
The decomposition (0.3) has been called theFöllmer-Schweizer decompositionof
H ; it can be viewed as a generalization to the semimartingale case of the classical
Galtchouk-Kunita-Watanabe decomposition from martingale theory. Its financial
importance lies in the fact that it directly provides the locally risk-minimizing
strategy forH : the risky componentθ is given by the integrandξH , and η is
determined by the requirement that the cost processC should coincide withH0 +
LH . Note also that the special case (0.2) of an attainable claim simply corresponds
to the absence of the orthogonal termLH

T . In particular cases, one can give more
explicit constructions for the decomposition (0.3). In the case of finite discrete
time, ξH andLH can be computed recursively backward in time; see Schweizer
(1995). If X is continuous, the F̈ollmer-Schweizer decomposition underP can be
obtained as the Galtchouk-Kunita-Watanabe decomposition, computed under the
so-calledminimal martingale measurêP (see for instance F̈ollmer and Schweizer
1991).

One drawback of the preceding method is the fact that one has to work
with strategies which are not self-financing. To avoid intermediate costs or an
unplanned income, a second approach is therefore to insist on the self-financing
constraint (0.1). The possible final outcomes of such strategies are of the form
c+GT (θ) for some initial capitalc ∈ IR and some strategy componentθ in the set
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Θ, say, of all integrands allowed in (0.1). By definition, a non-attainable claim
H is not of this form, and so it seems natural to look for a best approximation
of H by the terminal valuec + GT (θ) of some pair (c, θ). The use of a quadratic
criterion to measure the quality of this approximation has been proposed by
Bouleau and Lamberton (1989) ifX is both a martingale and a function of a
Markov process, and by Duffie and Richardson (1991) and Schweizer (1994),
among others, in more general cases. To find such amean-variance optimal
strategy, one therefore has to projectH in L 2(P) on the spaceIR + GT (Θ) of
attainable claims. In particular, this raises the question whether the spaceGT (Θ)
of stochastic integrals is closed inL 2(P), and this is the main problem studied
in this paper.

Before we turn to a more detailed mathematical introduction, let us very
briefly describe the main results of the paper. We provide necessary and suffi-
cient conditions for the closedness ofGT (Θ) in L 2(P), thus characterizing the
existence of mean-variance optimal hedging strategies for arbitrary contingent
claims H . Moreover, we also provide new results on the existence and conti-
nuity of the F̈ollmer-Schweizer decomposition, thus ensuring the existence of
locally risk-minimizing hedging strategies.

1. Mathematical introduction

While the previous section is aimed at the finance-oriented part of our readers,
this section will discuss in more detail the mathematical aspects of the paper. In
particular, we shall here be more careful about definitions and terminology. But
in order not to overload this introductory part with too many formal definitions,
we still refer to the subsequent sections for unexplained notations.

Consider anIRd-valued semimartingaleX = (Xt )0≤t≤T defined on a filtered

probability space
(
Ω,F ,

(
Ft
)

0≤t≤T
,P
)

with a fixed time horizonT ∈ (0,∞].

If X is in S 2
loc, thenX is special and admits a canonical decomposition

X = X0 + M + A .

In the present paper, we shall develop anL 2-theory, and so we introduce the
spaceΘ of all predictableX-integrable processesθ such that the stochastic inte-
gral

G(θ) :=
∫

θdX =: θ · X

is in the spaceS 2 of semimartingales. As explained in the previous section,
a random variable of the formH = c + GT (θ) with c ∈ IR and θ ∈ Θ can be
interpreted as the final value of a self-financing trading strategyθ which starts
with initial capital c, and so the question arises which random variablesH are
attainable, i.e., can be represented in the above form.

In the typical case of an incomplete financial market, the space of attain-
able random variables is a proper subspace ofL 2(Ω,FT ,P). The problem of
determining whether the space
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GT (Θ) := {(θ · X)T | θ ∈ Θ}
is closedin L 2(Ω,FT ,P) is the central topic of this paper. Note that ifGT (Θ) or
(equivalently) the space span(GT (Θ), 1) spanned byGT (Θ) and the constant func-
tions is closed inL 2(P), we may form the orthogonal projection fromL 2(P)
onto span(GT (Θ), 1) and thus decompose a random variableH ∈ L 2(Ω,FT ,P)
asH = H 1 +H 2, whereH 1 is attainable whileH 2 is orthogonal toGT (Θ) and1.
As explained in the financial introduction, this provides a mean-variance optimal
hedging strategy forH . But quite apart from the motivation for the present study
arising from these applications in financial mathematics, one can also consider the
problem of characterising the closedness ofGT (Θ) from a purely mathematical
point of view.

In the case whereX is a (local) martingale, this question has been studied
some time ago. In fact, the right notion of stochastic integration is designed in
such a way that the stochastic integral of a local martingale is an isometry between
Hilbert spaces, and so the closedness ofGT (Θ) holds true almost by definition
(see Kunita and Watanabe 1967). Actually, there is even a stronger result since
Yor (1978) has proved that ifYn and Y are uniformly integrable martingales
such that (Yn

∞)n∈IN converges weakly toY∞ in L 1, and if Yn = φn ·X for all n,
then there is a predictable processφ such thatY = φ ·X. It is a natural question,
which might or should have been asked 15 or 20 years ago, to which extent such
results for local martingales generalize to semimartingales.

WhenX is only a semimartingale, further assumptions must be added to study
this problem. A usual hypothesis in financial mathematics is a ‘no arbitrage’
condition, which roughly states that one cannot obtain a positive gain for free.
An important consequence is that the finite variation partA of X is absolutely
continuous with respect to the variance process〈M 〉 of the martingale partM
(see Ansel and Stricker 1992). According to Delbaen and Schachermayer (1996a),
such an absence of arbitrage implies that there is a predictable processλ such
that

dAt = d 〈M 〉t λt P-a.s. for allt ∈ [0,T],

and so we shall assume thatλ exists. Moreover, we shall also assume the ex-
istence of the so-called mean-variance tradeoff process ofX which is defined
by

K :=
∫

λ′d 〈M 〉λ,

where ′ denotes transposition. In a discrete-time framework, Schweizer (1995)
has proved thatGT (Θ) is closed ifK is uniformly bounded. The same result has
been established in continuous time by Monat and Stricker (1994, 1995).

Uniform boundedness ofK is equivalent to requiring that the martingaleλ·M
is in H∞. This is sufficient for the closedness ofGT (Θ), but quite far from being
necessary (see Monat and Stricker 1995) for a counterexample. It turns out that
the closedness ofGT (Θ) is rather related to the question of whetherλ · M is in
BMO and the (intimately related) question of whether the exponential martingale
E (−λ ·M ) or E (−λ ·M + N ), for a suitable martingaleN strongly orthogonal
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to M , satisfies the reverse Hölder conditionR2(P). In the case whereX is not
necessarily continuous, additional care has to be taken to find the right notion
for BMO, and it turns out thatbmo2 is the right choice.

The main results of this paper are summarized in the subsequent three theo-
rems.

Theorem A. Let X be an IRd-valued semimartingale such that there is an equiv-
alent local martingale measure Q withdQ

dP ∈ L 2(P). Then the following two
assertions are equivalent :

i) The processλ ·M is a martingale in bmo2.
ii) Condition D2(P) holds true, i.e., there is a constant C> 0 such that for

all θ ∈ L2(M )
‖θ‖L2(A) ≤ C ‖θ‖L2(M ) .

If, in addition, X is continuous, then i) and ii) are also equivalent to
iii) G T (Θ) is complete with respect to the norm‖θ · X‖R2(P).

Theorem B. Let X be an IRd-valued continuous semimartingale such that there
is an equivalent local martingale measure Q withdQ

dP ∈ L 2(P). The following
assertions are equivalent :

i) GT (Θ) is closed inL 2(Ω,F ,P).
ii) There is an equivalent local martingale measure Q that satisfies the reverse

Hölder inequality R2(P).
iii) The “variance-optimal” local martingale measure Qopt is equivalent to P

and satisfies R2(P).

Theorem C. Let X be an IRd-valued continuous semimartingale such that there
is an equivalent local martingale measure Q withdQ

dP ∈ L 2(P). The following
assertions are equivalent :

i) GT (Θ) is closed inL 2(Ω,F ,P) and there is a F̈ollmer-Schweizer decom-
position for X , i.e., the projectionπ onto span(GT (Θ), 1) with Ker(π) = M⊥ is
well-defined and continuous onL 2(Ω,F ,P).

ii) The “minimal” martingale measure Qmin defined by

dQmin

dP
= E (−λ ·M )T

is well-defined, equivalent to P and satisfies R2(P).

Let us comment on these three theorems. If we restrict our attention to the case
of continuous processesX, they are arranged in ascending order of restrictive-
ness, i.e., the (equivalent) conditions of Theorem C (resp. Theorem B) imply the
(equivalent) conditions of Theorem B (resp. Theorem A). The central result is
Theorem B which – under the stated hypothesis – gives a necessary and sufficient
condition for the closedness ofGT (Θ). The proofs of these assertions as well as
several ramifications and complements will be scattered out through the paper,
where we also establish some of the results in greater generality. We also give
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several examples (some of them rather complicated) to show the limitations of
the above theorems.

Note that the difference between the situations described by Theorems B and
C, respectively, pertains to the difference between the “variance-optimal” and the
“minimal” martingale measure. This is another illustration of the phenomenon
already encountered in Delbaen and Schachermayer (1996b and 1995d) that the
“variance-optimal measure” which is of the formdQopt

dP = E (−λ · M + N )T for
a suitably chosen martingaleN strongly orthogonal toM in general has better
properties than the “minimal” martingale measure which is simply given by
dQmin

dP = E (−λ ·M )T .

This paper is organized as follows. In Sect. 2, we describe the model and
prove the results on theR2(P) property. This section is written in a very general
way and the theorems are stated in terms of spaces that are stable for stopping.
Our results generalise known results on the reverse Hölder inequality. Section
3 deals withBMO and/orbmo2 martingales as well as the connection with the
inequality D2(P). In Sect. 4, we investigate under which conditions the space
GT (Θ) is closed, and in Sect. 5, we explicitly describe the closure ofGT (Θ)
in some cases. Finally, Sect. 6 extends the definition of the Föllmer-Schweizer
decomposition under the assumptions of Sect. 4, and this provides another way
of proving the closedness ofGT (Θ).

Some results of this paper form the subject of a note which has been published
in the Comptes Rendus̀a l’Académie des Sciences; see DMSSS (1994).

We thank M. Yor for his interest and help in the preparation of this paper.

2. Preliminaries

Let us now develop our model. We use the same notations as Schweizer (1994).
We recall them here. Let

(
Ω,F ,P

)
be a probability space andT ∈ (0,+∞] a

fixed horizon. We suppose that we have a filtration
(
Ft
)

0≤t≤T
on
(
Ω,F ,P

)
sat-

isfying the usual conditions, that is
(
Ft
)

0≤t≤T
is right-continuous and complete,

and we assume moreover thatF = FT . Let X = (Xt )0≤t≤T be anIRd-valued
semimartingale inS 2

loc. This means that if

X = X0 + M + A

is the canonical decomposition ofX, thenM ∈ M2
0,loc and the variation|Ai | of

the predictable finite variation process ofXi is locally square-integrable for each
i = 1, ..., d. For all unexplained notations, we refer to Jacod (1979) or Protter
(1990).

We recall a definition introduced in Schweizer (1994).
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Definition 2.1. X satisfies thestructure condition (SC) if there exists a pre-
dictable IRd-valued processλ = (λt )0≤t≤T such that

(2.1) dAt = d 〈M 〉t λt P-a.s. for all t∈ [0,T],

and

(2.2) Kt :=
∫ t

0
λ′sd 〈M 〉s λs < +∞ P-a.s. for all t∈ [0,T],

where′ denotes the transposition.

We then choose an RCLL version ofK and we call it themean-variance
tradeoff (MVT) processof X.

As easily seen, adding toλ a process that takes values in the orthogonal
complement of the infinitesimal range ofd 〈M 〉 gives the same result. Hence
the processλ is only determined modulo the equivalence class of predictable
processes taking almost surely values in the orthogonal complement of the in-
finitesimal range ofd 〈M 〉. The existence ofλ as well as the almost sure finiteness
of KT is related to arbitrage properties as shown by Delbaen and Schachermayer
(1996a). In the case whereX is continuous, it is a necessary condition for the
existence of an equivalent local martingale measure. Also in the case whereX
is continuous, the finiteness ofKT is independent of the choice of probability
measure, as shown in Delbaen and Shirakawa (1996) or Choulli and Stricker
(1996).

Remark 2.2. For the interpretation of the processK , we refer to Schweizer
(1994, 1995).

Definition 2.3. A predictable IRd-valued processθ = (θt )0≤t≤T belongs to L2(M )
if

E

(∫ T

0
θ′t d 〈M 〉t θt

)
< +∞

We define on the space L2(M ) the norm‖ . ‖L2(M ) by

‖θ‖2
L2(M ) := ‖(θ ·M )T‖2

L 2(P) = E

(∫ T

0
θ′t d 〈M 〉t θt

)
.

A predictableIRd-valued processθ = (θt )0≤t≤T belongs toL2(A) if the process



190 F. Delbaen et al.

(∫ t

0
|θ′sdAs|

)
0≤t≤T

is square-integrable.

We define on the spaceL2(A) the norm‖ . ‖L2(A) by

‖θ‖L2(A) :=

∥∥∥∥∫ T

0
|θ′sdAs|

∥∥∥∥
L 2(P)

.

Finally, Θ is the space defined byΘ := L2(M ) ∩ L2(A) ; θ ∈ Θ is called aL 2-
strategy.

If the structure condition holds, then clearly

‖θ‖2
L2(A) = E

[(∫ T

0

∣∣θ′sd 〈M 〉s λs

∣∣)2]
.

Strictly speaking the Banach spaceL2(M ) is the space of equivalence classes
of predictable processesθ with finite L2(M )-norm modulo the subspace of pre-
dictable processesθ for which the processθ ·M vanishes almost surely. But we
use the usual identification of processes with the associated equivalence class if
no confusion can arise. A similar remark applies toL2(A) andΘ.

Remark 2.4. If θ is X-integrable, we can define the stochastic integral process
Gt (θ) := (θ · X)t for all t ∈ [0,T]. Then G(θ) is a semimartingale inS 2 if
and only if θ ∈ Θ and in this case the canonical decomposition is given by
G(θ) := θ ·M + θ · A.

The spacesGT (Θ) andG(Θ) are defined by

GT (Θ) := {(θ · X)T | θ ∈ Θ} and G(Θ) := {G(θ) | θ ∈ Θ}.

Note thatGT (Θ) is a space of variables inL 2(P) and thatG(Θ) is a space of
processes.

We next provide several definitions and inequalities which will be useful in
the sequel.

The following concept has been extensively studied in Delbaen and Schacher-
mayer (1994).

Definition 2.5. We say that Xadmits an equivalent local martingale measure
if there exists a probability Q equivalent to P such that X is a local martingale
under Q.
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For the next four definitions we refer to Dellacherie and Meyer (1980).

Definition 2.6. The spaceR2(P) is the space of all RCLL adapted processes H
such that

‖H ‖R2(P) :=

∥∥∥∥∥ sup
0≤t≤T

|Ht |
∥∥∥∥∥

L 2(P)

=: ‖H ∗
T ‖L 2(P)

is finite.

Definition 2.7. We say that Mhas the predictable representation property
under P, denoted by PRP(P), if each martingale N relative to(Ft )0≤t≤T and P
can be written

N = N0 + θ ·M

where N0 is F0-measurable andθ is M -integrable.

Definition 2.8. Let Y = (Yt )0≤t≤T be a uniformly integrable martingale. Then Y
belongs toBMO if there is a constant C> 0 such that

E[|YT − YS−|2 | FS] ≤ C P− a.s.

for every stopping time S .

Definition 2.9. Let Y = (Yt )0≤t≤T be a locally square-integrable, local martin-
gale. Then Ybelongs tobmo2 if there is a constant C> 0 such that

E[〈Y〉T − 〈Y〉S | FS] ≤ C P− a.s.

for every stopping time S .

We now introduce a new concept which is related to the concepts presented
below in Definitions 2.11 and 2.12.

Definition 2.10.We say that Xsatisfies the inequalityD2(P) if there is a constant
C > 0 such that

‖θ‖L2(A) ≤ C ‖θ‖L2(M ) , ∀θ ∈ Θ.

By a truncation argument, the inequality D2(P) extends immediately fromθ ∈ Θ
to all θ ∈ L2(M ).

The problem whether or not the spaceGT (Θ) is closed is intimately related
to properties ofBMO-martingales and their exponentials. A good reference for
this question is Doĺeans-Dade and Meyer (1979). For continuous martingales the
reader can consult Kazamaki (1994).
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Definition 2.11. If L is a uniformly integrable martingale such that L0 = 1 and
LT > 0 P-a.s, then we say thatL satisfies the reverse Ḧolder inequality under
P, denoted by Rp(P), where1 < p ≤ +∞, if and only if there is a constant C
such that for every t, we have

E

[(
LT

Lt

)p

| Ft

]
≤ C .

For p = +∞, we require that
LT

Lt
is bounded byC (see Definition 3.1. of Kaza-

maki 1994).
We remark that ifL satisfiesRp(P), 1 < p <∞, then for the same constant

C as in the definition, we have for every stopping timeS that

Lp
S ≤ E[Lp

T | FS] ≤ CLp
S.

In particular the martingaleL is bounded inL p(P). We remark that a martin-
gale which satisfies the inequalityR∞(P) is necessarily bounded but there are
martingales which satisfy the inequalityR∞(P) such that infLt is not necessarily
bounded from below by a constantδ > 0. A condition dual toRp(P) is the
inequalityAq(P) (see Definition 2.2. of Kazamaki 1994).

Definition 2.12. If L is a uniformly integrable martingale such that L0 = 1 and
LT > 0 P-a.s, we say thatL satisfies the Muckenhoupt inequalitydenoted by
Aq(P) for some1 ≤ q < +∞, if and only if there is a constant C such that for
every t

E

[(
Lt

LT

) 1
q−1

| Ft

]
≤ C .

If q = 1, we require that
Lt

LT
is bounded by C .

Again, we remark that with the same constantC , the inequality holds for
arbitrary stopping timesS.

Definition 2.13. Let Z be a positive process.Z satisfies condition(J) if there
exists a constant C> 0 such that

1
C

Z− ≤ Z ≤ CZ−.

In the (French) paper Doléans-Dade and Meyer (1979), this condition is called
condition (S) since it involves the jumps (“sauts”) ofZ . To avoid confusion with
the structure condition (SC) in Definition 2.1, we have relabelled it here as (J).

Let us now recall some definitions and notations related to changes of law. If
Y is a semimartingale,Y0 = 0, then its stochastic exponential, denoted byE (Y),
is the semimartingale
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E (Y)t := exp

(
Yt − 1

2
〈Yc〉t

) ∏
0<s≤t

(1 +∆Ys)e−∆Ys .

If Z is a semimartingale such that inf0≤s≤T Zs > 0 (for instance ifZ is a strictly
positive local martingale), then its stochastic logarithm, denoted byL (Z), is the
semimartingale

L (Z) :=
1

Z−
· Z .

Now let Q be an equivalent probability measure and define

Zt := EP

[
dQ
dP

| Ft

]
and Ẑt = EQ

[
dP
dQ

| Ft

]
=

1
Zt
.

From Bayes’ rule
EQ[f | Ft ]Zt = EP[fZT | Ft ]

it easily follows thatZ satisfiesRp(P) if and only if Ẑ satisfiesAq(Q) where of

course
1
p

+
1
q

= 1 and 1< p ≤ +∞.

The following theorem relatesBMO and Rp(P) (see Doĺeans-Dade and Meyer
(1979), Propositions 5 and 6).

Theorem 2.14. The following assertions are equivalent for a strictly positive
martingale Z , Z0 = 1: (1) L (Z) is in BMO(P) and there exists a constant h> 0
such that1 +∆L (Z) ≥ h. (2) L (Ẑ) is in BMO(Q) and there exists a constant
h > 0 such that1+∆L (Ẑ) ≥ h. (3) Z satisfies condition (J) and Rp(P) for some
p > 1. (4) Ẑ satisfies condition (J) and Aq(Q) for some q< +∞. In addition, (3)
is satisfied for1 < p <∞ iff (4) is satisfied for q= p

p−1.

The next theorem states that the set of exponentsp such thatZ satisfies
Rp(P) is necessarily open. Of course, a similar argument holds forAq(P) (see
Doléans-Dade and Meyer (1979) Proposition 4).

Theorem 2.15.Assume Z is a strictly positive martingale with Z0 = 1. If Z satisfies
condition (J) and Rp(P) (p > 1), then there is p′ > p such that Z satisfies Rp′ (P).

A basic property, that we will need later on, is that ifZ satisfiesRp(P) then
the conditional expectation with respect toQ is a continuous operator onLq(P).
More precisely, we have (see Doléans-Dade and Meyer (1979) Proposition 2 and
the corollary on page 318 combined with Proposition 4) the subsequent result :

Theorem 2.16.Assume Z is a strictly positive martingale with Z0 = 1. For 1 <
p < +∞, assertions (1) and (2) below are equivalent
(1) Z satisfies Rp(P).
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(2) There is a constant C such that for each Q-martingale N , and for q=
p

p − 1
andλ > 0

λqP[N∗
T > λ] ≤ CEP[|NT |q].

Moreover under the additional assumption that Z satisfies condition (J) the weak
inequality (2) implies the following strong inequality

(3) There is a constant K such that for each Q-martingale N , and for q=
p

p − 1

EP[(N∗
T )q] ≤ KEP[|NT |q].

Below we will give a generalization of this theorem. As we deal in this paper
with the casep = 2 only, we do not focus our attention to possible extensions of
this generalization to the casep 6= 2, p > 1.

The symbolV denotes a vector space of bounded continuous adapted pro-
cesses. IfY ∈ V , we suppose thatY0 = 0. We requireV to be stable for
stopping, i.e. ifS is a stopping time and ifY is in V , thenYS ∈ V . For each
stopping timeS, we denote byVS the vector space{YS | Y ∈ V }. The space
SV is the space{YT −YS | Y ∈ V }. We remark that this notation is consistent
with the notation for stopping and starting a process. We remark thatV denotes
a vector space of adapted processes whileVS and SV denote spaces of (FS

-resp.FT - measurable) random variables. SinceV is stable for stopping, we
have for every stopping timeS and every setA ∈ FS that1A SV ⊂ SV ⊂ VT .
Clearly V0 = {0}. The setIM (V ) denotes the set of all probability measures
Q that are absolutely continuous with respect toP and for which the elements
Y ∈ V becomeQ-martingales. The symbolIM e(V ) is reserved for the elements
of IM (V ) that are equivalent toP.

We shall simply writeIM e andIM instead ofIM e(V ) andIM (V ) if there is
no danger of confusion.

It is easily seen that ifQ is absolutely continuous with respect toP and if L
denotes the c̀adl̀ag martingale

Lt = EP

[
dQ
dP

| Ft

]
,

thenQ ∈ IM (V ) if and only if for everyY ∈ V , the processYL is a martingale
or, which is the same becauseV is stable for stopping,E[LTYT ] = 0. More
generally, we defineIM s as the affine space of measuresµ absolutely continuous
with respect toP such thatµ(Ω) = 1 and

EP

[
YT

dµ
dP

]
= 0

for all Y ∈ V . If we denote byL the c̀adl̀ag martingale
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Lt = EP

[
dµ
dP

| Ft

]
,

then this is equivalent to the property thatE[LT ] = 1 andLY is a martingale for
eachY ∈ V . Without further notice, we will identify an absolutely continuous

measureµ with its Radon-Nikodym derivative
dµ
dP

. In this setting,IM and IM s

are closed sets ofL 1(P) and if IM e is non empty, then it isL 1(P)-dense in
IM .

An important role will be played by the element ofIM s∩L 2 that has minimal
L 2(P)-norm, which we call thevariance optimal measureand which we denote
by Qopt.

This measure was previously studied by Schweizer (1995) as well as by
Delbaen and Schachermayer (1996b). It is shown there thatIM s∩L 2(P) is non
empty if and only if the constant function 1 is not in theL 2-closure ofVT . If we
adopt the convention that a bar denotes the closure inL 2(P), thenIM s∩L 2(P)
is non empty if and only if 1/∈ V T . In this case, there is an elementµ in
IM s ∩L 2(P) with minimal norm and it is given by

dµ
dP

=
1− f

1− E[f ]
,

wheref is the orthogonal projection of 1 onto the closed subspaceV T of L 2(P).

The L 2-norm of
dµ
dP

is given by∥∥∥∥dµ
dP

∥∥∥∥
L 2(P)

=
1

dist(1,VT )
=

1

(1− E[f ])1/2
=

1
sinϕ

,

whereϕ is the positive angle between 1 andV T . Exactly as in Theorem 3.1
of Delbaen and Schachermayer (1995b), one shows that due to the continuity of
elements inV , the measureµ is necessarily nonnegative, i.e.µ ∈ IM ∩L 2(P).

Lemma 2.17. If the variance optimal measure Qopt ∈ IM e(V ) exists and the
càdlàg martingale L defined as

Lt = E

[
dQopt

dP
| Ft

]
satisfies R2(P), then L satisfies condition (J).

Proof. SinceL satisfiesR2(P), L is a square integrable martingale. Hence we can
define for eachfT ∈ V T the Qopt-martingale

ft := EQopt

[
fT | Ft

]
Moreover if (f n

T ) is a sequence inVT converging tofT with respect to theL 2(P)-
norm, then the sequence (f n

t ) converges uniformly int with respect to the norm
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of L 1(Qopt) and hence in probability to (ft ). As each (f n
t ) is a continuous mar-

tingale, theQopt-martingale (ft ) is continuous wheneverfT ∈ V T . In particular
if fT is the orthogonal projection of 1 ontoV T , then (ft ) is a continuousQopt-
martingale. Since

LT =
dQopt

dP
=

1− f
1− E[f ]

the Qopt-martingaleZ̃t = EQopt

[
LT | Ft

]
is continuous too. By Bayes’rule

Z̃t =
EP

[
Z̃2

T | Ft

]
Lt

=
EP
[
L2

T | Ft
]

Lt

Suppose now thatL satisfiesR2(P), then

1≤ EP
[
L2

T | Ft
]

L2
t

≤ C

and hence
Lt ≤ Z̃t ≤ CLt .

SinceZ̃t is continuous, it follows thatL satisfies condition (J).

In Delbaen and Schachermayer (1995b), it is shown that ifIM e∩L 2(P) 6= ∅,
thenQopt = µ ∈ IM e. The theorem below investigates the inequalityR2(P) for µ
and part of its proof uses the same method as theirs. For simplicity of notation,
we assume thatF0 is trivial.

Theorem 2.18.If V is a space of bounded continuous adapted processes such
that for each Y∈ V we have Y0 = 0, if V is stable for stopping (as described
above), ifF0 is trivial, then are equivalent

(1) The variance optimal measure Qopt ∈ IM e(V ) exists and the c̀adlàg
martingale L defined as

Lt = E

[
dQopt

dP
| Ft

]
satisfies R2(P).

(2) There is Q∈ IM e(V )∩L 2(P) such that the c̀adlàg martingale Z defined
as

Zt = E

[
dQ
dP

| Ft

]
satisfies the inequality R2(P).

(3) There is a constant C such that for every Y∈ V

‖Y∗
T ‖L 2(P) ≤ C ‖YT‖L 2(P) .

(4) There is a constant C such that for every Y∈ V and everyλ ≥ 0

λP[Y∗
T > λ]1/2 ≤ C ‖YT‖L 2(P) .
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(5) There is a constant C> 0 such that for every stopping time S , every
A ∈ FS and every UT ∈ SV ‖1A − UT‖L 2(P) ≥ CP[A]1/2. In addition, if one
of the above equivalent conditions is fulfilled, then Qopt satisfies Rp(P) for some
p > 2.

Remarks 2.19. i) In condition (5), we can of course restrict the inequality to
elementsUT in SAV i.e. elements constructed with the stopping timeSA = S
on A and SA = T on Ac. These elements can be written as1A(YT − YS) where
Y ∈ V . We remark that condition (5) expresses that there is a lower bound
ϕ0 = arcsinC such that for eachA ∈ FS, the angle between1A and the space
SV is bounded below byϕ0.

ii) If in Theorem 2.18 we take forQ an equivalent probability measure that
defines a density process that satisfiesR2(P) but that not necessarily satisfies
condition (J), if forV we take the space of all continuous bounded martingales
for Q, then (3) of Theorem 2.18 extends, at least for continuous martingales,
Proposition 2.16. The trick is that the density process of the variance minimal
measure forV satisfiesR2(P) and condition (J)!

Proof of Theorem 2.18.It is clear that (1) implies (2). By Theorem 2.15 and
Lemma 2.17 , (1) implies (3) and (2) implies (4), the constantC being valid for
every Q-uniformly integrable martingale. The strong inequality in (3) certainly
implies the weak inequality in (4). We now prove the equivalence of (4) and (5),
after which we show that (5), together with (4), implies (1).
(4) =⇒ (5)
This is done by using a reflection argument. Fix a stopping timeS, A ∈ FS and
a processU of the form U = X − XSA = 1A(X − XS) whereX ∈ V . Define
ν := inf{t | Ut >

1
2} ∧ T and let

Yt =

{
Ut for t ≤ ν
2Uν − Ut for t > ν,

i.e. Y is U reflected at timeν. ThenY ∈ V and

|YT | = |UT |1{ν=T} + |1− UT |1{ν<T} ≤ |1− UT |
sinceUT ≤ 1

2 on {ν = T}. On Ac, we haveU = 0, henceν = T and YT = 0 ;
thus we obtain|YT | ≤ |1A − UT |, and the weak inequality in (4) implies

‖1A − UT‖L 2(P) ≥ ‖YT‖L 2(P)

≥ C−1 1
2

P

[
Y∗

T ≥ 1
2

]1/2

≥ C−1

2
P[ν < T]1/2

=
C−1

2
P

[
U ∗

T >
1
2

]1/2

.
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On the other hand,

‖UT − 1A‖L 2(P) ≥
1
2

P[A∩ {U ∗
T ≤ 1/2}]1/2

and hence

‖UT − 1A‖L 2(P) ≥ δP[A]1/2 where δ =
1√
2

min

(
C−1

2
,

1
2

)
.

(5) =⇒ (4)
For fixed Y ∈ V andλ > 0, let us defineS = inf{t | |Yt | > λ}. The element
UT = −sign(YS)(YT −YS) is clearly inSV and hence forA = {S < T} = {Y∗

T >
λ} we have ∥∥∥∥1A − UT

λ

∥∥∥∥
L 2(P)

≥ CP[A]1/2

or, what is the same

CλP[Y∗
T > λ]1/2 ≤ ‖λ1A − UT‖L 2(P) .

But λ1A − UT = λ1A + sign(YS)(YT − YS) = YT1Asign(YS) and hence

CλP[Y∗
T > λ]1/2 ≤ ‖λ1A − UT‖L 2(P) ≤ ‖YT‖L 2(P) .

(5) =⇒ (1)
This is the most technical part. The proof mimics the proof of Theorem 1.3 in
Delbaen and Schachermayer (1996b). Since we do not assume a priori that there
is an elementQ ∈ IM e ∩L 2(P), there are some extra technical difficulties. We
start with two lemmas. The first should be folklore (see Lemma 3.4 in Delbaen
and Schachermayer (1995b)). The second exploits that the angle between1A and
SV is bounded from below.

Lemma 2.20.If U = (Ut )0≤t≤T is a non-negative square integrable martingale,
if U0 > 0, if the stopping timeτ = inf{t | Ut = 0} is predictable and announced
by a sequence of stopping times(τn)n≥1, then

E

[
U 2
τ

U 2
τn

| Fτn

]
→ +∞

on theFτ−-measurable set{Uτ = 0}.

Lemma 2.21. If condition (5) holds with a constant C , then for each stopping
time S there is an elementg ∈ L 2

+ (P) such that E[g |FS] = 1, E[g2 |FS] ≤ C−2

and E[gU ] = 0 for each U∈ SV .

Proof of Lemma 2.2.We proceed exactly as in Theorem 3.1 in Delbaen and
Schachermayer (1995b). Letf be the projection of 1 onto the spaceSV . For each
A ∈ FS, the spaces1A . SV and 1Ac . SV form an orthogonal decomposition
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of SV and hencef 1A is the orthogonal projection of1A onto SAV = 1A . SV .
This shows thatE[f 21A] = E[f 1Af 1A] = E[f 1A1A] = E[f 1A]. The inequality in
condition (5) shows that‖1A − f 1A‖2

L 2(P) ≥ C2P[A] and henceE[1A − f 1A] =
E[1A(1− f )2] ≥ C2P[A] for all A ∈ FS, i.e. 1− E[f | FS] ≥ C2.

We now define

g =
1− f

1− E[f | FS]
.

The computation above shows thatE[f 2 | FS] = E[f | FS] and hence

‖g‖2
L 2(P) = E

[
1

1− E[f | FS]

]
≤ C−2.

Now, for eachA ∈ FS and eachU ∈ SV , we have1AU ∈ SV and hence

E[1A(1− f )U ] = 0.

An easy approximation argument on the bounded function

1
1− E[f | FS]

then shows thatE[gU ] = 0 for all U ∈ SV .
The positivity of g is shown exactly as in Theorem 3.1 of Delbaen and

Schachermayer (1995b).
This completes the proof of Lemma 2.21.

Proof of Theorem 2.18 continued :Let us come back to the end of the proof of
Theorem 2.18. If we denote byf the orthogonal projection of 1 onto the space
V T , then as seen above, the optimal measureQopt is nonnegative and is given
by

dQopt

dP
=

1− f
1− E[f ]

.

The next step is to construct a continuous process that resembles the processZ̃
as in Delbaen and Schachermayer (1995b). There is a sequence of elementsYn

in V such that
∥∥Yn

T − Yn+1
T

∥∥
L 2(P)

≤ 3−n and such thatYn
T −→ f in L 2(P).

From the weak inequality, we deduce that

∑
n≥1

P

[
sup

0≤t≤T
|Yn

t − Yn+1
t | > 2−n

]
< +∞

and hence the sequenceYn
t converges uniformly int a.s. to a continuous process

that we denote byft . Clearly fT = f . Define

Z̃t =
1− ft

1− E[ft ]
.

If we denote byL the density process
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Lt = EP

[
dQopt

dP
| Ft

]
= EP[Z̃T | Ft ]

then for each elementY in V , we have thatLt Yt = EP[LTYT | Ft ]. Since LT

and Lt are inL 2(P), it follows that alsoLt Z̃t = EP[LTZ̃T | Ft ] = EP[L2
T | Ft ].

If τ denotes the stopping timeτ = inf{t | Lt Z̃t = 0}, then we have

0 =
∫
τ<T

L2
TdP

and henceLT = 0 on {τ < T}. This implies thatLτ = 0 on {τ < T}. From the
continuity of Z̃ , it follows that necessarilỹZτ ≥ 0. Suppose now that

A = {Z̃τ > 0} ∩ {τ < T}

has strictly positive measure. BecauseLT = Z̃T = 0 on {τ < T} we have that
fT = 1 on A. Hence the function (1− fτ )1A ∈ τAV . Let g be the positive element
constructed in Lemma 2.21 for the stopping timeτA. SinceE[g1A(1− fτ )] = 0
and since (1− fτ ) > 0 on A, we have thatE[g1A] = 0, a contradiction to
E[g | FτA] = 1. It follows that alsoZ̃τ = 0 and hence inf{t | Lt = 0} =
inf{t | Z̃t = 0} = τ . We now proceed exactly as in the proof of Theorem 1.3
of Delbaen and Schachermayer (1996b). The stopping timeτ is predictable and
announced by a sequence (τn)n≥1. If

E

[(
LT

Lτn

)2

| Fτn

]

would be greater thanC−2, then we use the elementg constructed for the stopping
time τn and whose existence is given by Lemma 2.21. The elementLτng would
give an element inIM s with smallerL 2(P)-norm. This reasoning shows that
LT > 0 according to Lemma 2.20, and that for every stopping timeS, we have

E

[(
LT

LS

)2

| FS

]
≤ C−2.

This completes the proof of Theorem 2.18.

The existence of an element inIM e∩L 2(P) is taken care of by the following
theorem (see Stricker 1990).

Theorem 2.22.If V is a space of bounded continuous adapted processes, ifV
is stable for stopping (as described above), then IMe ∩ L 2(P) is non-empty if
and only if

VT ∩L 2
+ (P) = {0}.
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One can improve slightly the above theorem as follows (see Yan 1980). This
result is formulated in the same language as (5) of Theorem 2.18.

Theorem 2.23.If V is a space of bounded continuous adapted processes, ifV
is stable for stopping (as described above), then IMe ∩ L 2(P) is non-empty if
and only if for every A∈ FT, we have1A /∈ VT.

Proof. Suppose that there isf ∈ VT ∩ L 2
+ (P) , P[f > 0] > 0. For each such

element, let us denote byAf the setAf = {f > 0}. If (fn)n≥1 is a sequence of
such elements thenf =

∑
2−n ‖fn‖−1

L 2(P) fn ∈ VT andAf = ∪n≥1Afn . Hence there
is a maximal set of this form. Call itAf wheref is the associated function. Take
a sequenceηn strictly decreasing to 0 such thatP[f > ηn] > 0. For eachn, take
εn so thatεn ≤ 1

2η
2
n and chooseYn

T ∈ VT so that‖Yn
T − f ‖L 2(P) < ε2

n. It then
follows that P[|f − Yn

T | > εn] ≤ ε2
n. HenceYn

T > f − εn > ηn − εn on a set of
measure at leastP[f > ηn] − ε2

n. The element (ηn − εn)−1Yn
T = gn is still in VT

and satisfies{gn > 1} on the set{f > ηn}\{|Yn
T − f | > εn} which has measure

greater thanP[f > ηn] − ε2
n. We stop the processgn when it hits the level 1, i.e.

V n = ((ηn − εn)−1Yn)τ where

τ = inf{t | (ηn − εn)−1Yn
t ≥ 1}

Clearly
(i) V n

T = 1 on{f > ηn}\{|Yn
T − f | > εn} ;

(ii) Since Af is maximal, (V n
T )+ ≤ 1Af ;

(iii) ( V n
T )− ≤ (ηn − εn)−1(Yn

T )−.
If n tends to +∞, (i) and (ii) show that (V n

T )+ −→ 1Af whereas (iii) shows
that‖(V n

T )−‖L 2(P) ≤ (ηn − εn)−1 ‖(Yn
T )−‖L 2(P) ≤ (ηn − εn)−1ε2

n which tends to

0. This shows that1Af ∈ VT . This completes the proof of Theorem 2.21.

3. The inequality D2(P) and its relation to BMO

Throughout this section, we do not assume thatX is continuous.

The inequalityD2(P) is an assumption which arises naturally when one stud-
ies the closedness ofGT (Θ). Indeed, to prove that the limit of a sequence
(GT (θn))n≥0 which converges inL 2(P) belongs toGT (Θ), we would like to
show that the sequence (θn)n≥0 converges to someθ in L2(M ) andL2(A). Now,
convergence inL2(M ) is rather easy to study since a sequence (θn)n≥0 converges
in L2(M ) if and only if ((θn ·M )T )n≥0 is a Cauchy sequence inL 2(P). Conver-
gence inL2(A) is more difficult to prove. So an idea to solve this problem is to
find an assumption under which convergence inL2(M ) will imply convergence
in L2(A), that isL2(M ) ⊆ L2(A) or, equivalently,Θ = L2(M ).

We first show that the inequalityD2(P) is a sufficient condition for the struc-
ture condition (SC) (see Definition 2.1).
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Lemma 3.1. If the inequality D2(P) holds, thenλ exists and K is square-
integrable.

Proof. The inequalityD2(P) implies that if θ · M = 0, thenθ · A = 0 so by
the multidimensional Radon-Nikodym theorem (see Delbaen and Schachermayer
1996a), there exists a predictableIRd-valued processλ such thatdA = d 〈M 〉λ.
For eachn, let θn = λ1{‖λ‖≤n}∩[[0,τn [[ whereτn is the predictable stopping time

τn := inf

{
t |

∫ t

0
d| 〈M 〉 |s ≥ n

}
.

Clearly θndA = λ′d 〈M 〉λ1{‖λ‖≤n}∩[[0,τn [[ andD2(P) implies that for alln

E

(∫
{‖λ‖≤n}∩[[0,τn [[

λ′d 〈M 〉λ
)2
≤ C2E

[∫
{‖λ‖≤n}∩[[0,τn [[

λ′d 〈M 〉λ
]

≤ C2E

(∫
{‖λ‖≤n}∩[[0,τn [[

λ′d 〈M 〉λ
)2
1/2

.

Since both quantities are finite, we find

E

(∫
{‖λ‖≤n}∩[[0,τn [[

λ′d 〈M 〉λ
)2
1/2

≤ C2.

Whenn tends to +∞, we obtain thatKT is square-integrable. This completes the
proof of Lemma 3.1.

The next lemma gives an equivalent reformulation ofD2(P).

Lemma 3.2.The inequality D2(P) holds if and only if L2(M ) ⊆ L2(A), i.e. if and
only if Θ = L2(M ).

Proof. SinceΘ = L2(M ) is equivalent to saying thatL2(M ) ⊆ L2(A), the “only
if” part is obvious. Conversely, suppose thatL2(M ) ⊆ L2(A). By means of
the multidimensional Radon-Nikodym theorem (see Delbaen and Schachermayer
(1996a))) it is easy to see thatA is absolutely continuous with respect to〈M 〉.
So we conclude that the graph of the identity mapping fromL2(M ) into L2(A) is
closed inL2(M ) × L2(A). Hence the identity is continuous, and this proves the
“if” part.

The existence ofλ and the square-integrability ofK are necessary conditions
for D2(P), but far from being sufficient. The necessary and sufficient condition
for D2(P) given by the next theorem is substantially stronger.
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Theorem 3.3.The inequality D2(P) holds if and only ifλ exists andλ · M is in
bmo2.

To prove Theorem 3.3, we need an auxiliary result. Recall thath1
0 denotes

the space of all locally square-integrable local martingalesY null at 0 such that
〈Y〉1/2

T is integrable.

Lemma 3.4. If Z ∈ M2 and R∈ M2
0, then

∫
Z−dR is in h1

0 and∥∥∥∥∫ Z−dR

∥∥∥∥
h1

≤ 2‖ZT‖L 2‖R‖M2.

In particular, choosing R:=
∫

θdM with θ ∈ L2(M ) gives∥∥∥∥∫ Z−θdM

∥∥∥∥
h1

≤ 2‖ZT‖L 2‖θ‖L2(M ).

Proof. Since〈∫
Z−dR

〉
T

=
∫ T

0
Z2

u−d 〈R〉u ≤
(

sup
0≤u≤T

|Zu|
)2

〈R〉T ,

we get ∥∥∥∥∫ Z−dR

∥∥∥∥
h1

=

∥∥∥∥∥
〈∫

Z−dR

〉 1
2

T

∥∥∥∥∥
L 1

≤ 2‖ZT‖L 2‖R‖M2

by the Cauchy-Schwarz and Doob inequalities.

Proof of Theorem 3.3.1) Suppose first thatλ ·M is in bmo2. Take any bounded
positive random variableY and denote byZ an RCLL version of the martingale
Zt = E[Y | Ft ]. Fix θ ∈ L2(M ) and setζ := Z−θ so that

∫
ζdM is in h1

0 by
Lemma 3.4. By Fefferman’s inequality and the end of Lemma 3.4, we then obtain

E

[
Y
∫ T

0
|θ′d 〈M 〉λ|u

]
= E

[∫ T

0
Zu−|dθ′ 〈M 〉λ|u

]
= E

[∫ T

0
d |〈(Z−θ) ·M , λ ·M 〉|u

]
≤

√
2‖(Z−θ) ·M ‖h1

0
‖λ ·M ‖bmo2

≤
√

8‖Y‖L 2‖λ ·M ‖bmo2‖θ‖L2(M ).

SinceY was arbitrary, we conclude that

‖θ‖L2(A) =

∥∥∥∥∫ T

0
|θ′d 〈M 〉λ|u

∥∥∥∥
L 2

≤
√

8‖λ ·M ‖bmo2‖θ‖L2(M )
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and this proves the “if” part.
2) Now suppose that the inequalityD2(P) holds. Then, in view of Lemma 3.2,

L2(M ) = Θ. Moreover,KT = 〈λ ·M 〉T is in L 1 by Lemma 3.1. Fixt ∈ [0,T]
and a boundedFt -measurable random variableV and defineψ := λV 1]] t,T]] so
thatψ ∈ Θ, sinceKT ∈ L 1. If Y is any bounded random variable, thenY can
be written as

Y = E[Y | F0] + (ξ ·M )T + LT

by the Galtchouk-Kunita-Watanabe projection theorem, whereξ is in L2(M ) and
L ∈ M2

0 is strongly orthogonal toθ ·M for everyθ ∈ L2(M ). By the definition
of λ andψ, this implies

|E [Y(ψ ·M )T ]| =

∣∣∣∣E [V
∫ T

t
ξ′ud 〈M 〉u λu

]∣∣∣∣
≤ ‖V‖L 2 ‖ξ1]] t,T]]‖L2(A)

≤ ‖V‖L 2C‖ξ‖L2(M )

≤ ‖V‖L 2C‖Y‖L 2,

where the second inequality follows fromD2(P). Since Y was arbitrary, we
deduce that

C2‖V‖2
L 2 ≥ ‖(ψ ·M )T‖2

L 2 = E

[∫ T

t
V 2λ′ud 〈M 〉u λu

]
= E

[
V 2E

[
KT − Kt | Ft

]]
.

SinceV was arbitrary chosen inL 2(Ft ,P), we conclude that

E
[
KT − Kt | Ft

] ≤ C2 P − a.s.,

and soλ ·M is in bmo2. This completes the proof of Theorem 3.3.

We now turn to the second part of this section where we return to our question
of closedness ofGT (Θ) in L 2(P). Givenθ ∈ Θ, there are two ways to look at the
stochastic integralθ ·X : either we consider the entire processG(θ) = (θ ·X)0≤t≤T

or we only look at the final result, i.e. the random variableGT (θ) = (θ · X)T .
If we adopt the first point of view, we consider two other norms onΘ : for

θ ∈ Θ, we define
|||θ||| = ‖θ‖L2(M ) + ‖θ‖L2(A)

and as in Definition 2.6 above

‖θ‖G(Θ) = ‖θ · X‖R2(P) .

Both concepts define norms on the vector spaceΘ with the property that these
norms equal 0 forθ ∈ Θ if and only if the process (θ ·X)0≤t≤T vanishes almost
surely.

On the other hand, we consider on the vector spaceGT (Θ) the norm
‖ . ‖L 2(P).
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Consider the diagram

(Θ, ||| . |||) i−−−−→ (Θ, ‖ . ‖G(Θ))
j−−−−→ (GT (Θ), ‖ . ‖L 2(P))

where i denotes the identical map andj the canonical map which associates to
θ ∈ Θ the random variableGT (θ).

The continuity ofi follows from Doob’s inequality and the continuity ofj is
obvious. Also note that the definition ofΘ was designed in such a way thatΘ is
complete with respect to||| . |||, i.e., (Θ, ||| . |||) is a Banach space. As the mapsi
andj are surjective, we deduce from the open mapping theorem that the problem
whetherΘ is complete with respect to‖ . ‖G(Θ) and whetherGT (Θ) is complete
with respect to‖ . ‖L 2(P) is therefore equivalent to the question whetheri , resp.
j ◦ i , are open maps.

To take full advantage of this information, we want to know whetherj is one-
to-one, i.e. whether, forθ ∈ Θ, GT (θ) = 0 implies that the entire processG(θ)
vanishes almost surely. Fortunately, this is the case under a very mild condition.

Lemma 3.5. Assume that X is a (not necessarily continuous) semimartingale in
S 2

loc which is a local martingale under some equivalent measure Q with square-

integrable density
dQ
dP

. Then the map j is one-to-one.

Proof. Let us takeθ ∈ Θ such thatGT (θ) = 0. If Z is defined by

Zt := E

[
dQ
dP

| Ft

]
0≤ t ≤ T

thenZ is a strictly positive square-integrableP-martingale andG(θ)Z is aP-local
martingale. Moreover,G(θ)∗ as well asZ∗ are inL 2(P), by Doob’s inequality.
Hence the maximal function (G(θ)Z)∗ is P-integrable so thatG(θ)Z is aH 1(P)-
martingale. By hypothesis,GT (θ) = 0 so that theP-martingaleG(θ)Z vanishes
identically. AsZ is strictly positive almost surely, we conclude that the process
G(θ) also vanishes almost surely. This completes the proof of Lemma 3.5.

Proposition 3.6.Assume that X is a (not necessarily continuous) semimartingale
in S 2

loc.
(i) The normed space(Θ, ‖ . ‖G(Θ)) is complete if and only if the map i is an

isomorphism, i.e. if and only if there is a constant C> 0 such that

∀θ ∈ Θ, |||θ||| ≤ C ‖θ‖G(Θ) .

(ii) Assume in addition that there is an equivalent local martingale measure Q
for X with square-integrable density. Then the normed space(GT (Θ), ‖ . ‖L 2(P))
is complete, that is, GT (Θ) is closed inL 2(P), if and only if the map j◦ i is an
isomorphism, i.e., if and only if there is a constant C> 0 such that

∀θ ∈ Θ, |||θ||| ≤ C ‖GT (θ)‖L 2(P) .
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Proof. Immediate from Lemma 3.5 and Banach’s isomorphism theorem.

Now the question arises whether the property described in part (ii) of Propo-
sition 3.6 is related to the inequalityD2(P) studied in the first part of this section.
To answer this question, it is important to distinguish the continuous case from
the general case. In the former, we get an interesting connection between the
closedness ofGT (Θ) in L 2(P) and the inequalityD2(P) (see Theorem 3.7 be-
low). In the general case, however, there is no hope for a positive result as shown
by Example 3.9 below.

Theorem 3.7.Suppose that X is a semimartingale inS 2
loc such that A, the pre-

dictable part of X , is continuous. If j◦ i : Θ −→ GT (Θ) is one-to-one and if
GT (Θ) is closed inL 2(P) then the inequality D2(P) is satisfied.

In particular, D2(P) holds true if GT (Θ) is closed, A is continuous and there
is an equivalent local martingale measure with square-integrable density.

For the proof we need the following easy result.

Lemma 3.8. Suppose that A is continuous. Letθ ∈ Θ and η > 0. Then there
exists a predictable processε with values in{−1,+1} such that

∀t ∈ [0,T],

∣∣∣∣∫ t

0
εsθ

′
sdAs

∣∣∣∣ ≤ η.

Proof of Lemma 3.8.We can assume thatθ ·A is increasing. If it is not the case,
we multiply θ′dA by its sign. Then, we define a sequence (Tn)n≥0 of stopping
times by setting

T0 = 0 and Tn+1 = inf

{
t ≥ Tn |

∫ T

0
1]]Tn,t ]] (s)θ′sdAs ≥ η

}
.

SinceA is a finite variation process, the sequence (Tn)n≥0 is finite. Finally, we
set ε = 1 on [[T2n,T2n+1[[ and ε = −1 elsewhere. This completes the proof of
Lemma 3.8.

Proof of Theorem 3.7.Now let θ ∈ Θ and takeε as in Lemma 3.8. From Doob’s
inequality

‖GT (εθ)‖L 2 ≤ ‖θ‖L2(M ) + η.

Therefore, from Proposition 3.6, we deduce

‖θ‖L2(M ) + ‖θ‖L2(A) = ‖εθ‖L2(M ) + ‖εθ‖L2(A)

≤ C‖GT (εθ)‖L 2

≤ C(‖θ‖L2(M ) + η).
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Whenη tends to 0, we obtain the inequalityD2(P).

Let us comment on the hypothesis thatA is continuous. Of course, this is
satisfied ifX is continuous. But ifX has only jumps at totally inacessible stopping
times, we still can see thatA remains continuous. On the other hand whenX
jumps also at predictable stopping times the assumption thatA is continuous is
not satisfactory. Indeed suppose thatX jumps at a predictable timeτ and suppose
thatA is continuous. Sinceτ is predictable , this impliesE[∆Xτ | Fτ−] = 0. But
an economic interpretation ofA is related to the so-called “price of risk” process.
Assuming thatA is continuous atτ would then be interpreted as “the risk at time
τ is not rewarded”. In economic term such an assumption would mean that the
risk at timeτ can be “diversified”, a concept used in many texts but without a
precise definition.

We now pass to the general case : the subsequent example shows that for
processes with jumps, Theorem 3.7 does not hold true anymore.

Example 3.9.There is a bounded stochastic processX = (X0,X1,X2) admitting
a bounded equivalent martingale measure such that

(i) the inequalityD2(P) fails ;
(ii) G2(Θ) is closed inL 2(P).
First consider the following building block for the construction of the exam-

ple. Let 0< ε ≤ 1 and define the stochastic processYε = (Yε
0 ,Y

ε
1 ) by Yε

0 ≡ 0
and

Yε
1 =

{−1 with probability ε
2+ε

1 + ε with probability 2
2+ε

so thatE[Yε
1 ] = 1.

If (F0,F1) denotes the filtration generated byYε, then the predictable part
of Yε is given byAε0 = 0, Aε1 = E[Yε

1 ] = 1, and the martingale part byM ε
0 = 0

and

M ε
1 =

{−2 with probability ε
2+ε

ε with probability 2
2+ε

An elementary calculation gives

‖A1‖L 2(P) = 1, ‖M1‖L 2(P) =
√

2ε, ‖Y1‖L 2(P) =
√

1 + 2ε.

As ε > 0 tends to 0, the ratio‖A1‖L 2(P) / ‖M1‖L 2(P) tends to infinity while the
ratio (‖A1‖L 2(P) + ‖M1‖L 2(P)) / ‖Y1‖L 2(P) tends to one and therefore remains
bounded.

How is this related to the inequalityD2(P) and the closedness ofGT (Θ) in
L 2(P) ? Of course, both properties are satisfied forYε as the spaceΘ is simply
one-dimensional (the only stochastic integrals ofYε are the scalar multiples of
Yε). But the constantC in the definition ofD2(P) deteriorates asε tends to 0,
as for eachθ ∈ Θ, θ 6= 0,
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‖θ‖L2(A)

‖θ‖L2(M )

=
‖Aε1‖L 2(P)

‖M ε
1 ‖L 2(P)

= (2ε)−1/2.

On the other hand, the constant in Proposition 3.6 (ii) above does not deteriorate
asε tends to 0, as

|||θ|||
‖G1(θ)‖L 2(P)

=
‖Aε1‖L 2(P) + ‖M ε

1 ‖L 2(P)

‖Yε
1 ‖L 2(P)

=
1 + (2ε)1/2

(1 + 2ε)1/2
−−−−→
ε→0

1.

Finally, to transform this quantitative phenomenon into a qualitative one, it suf-
fices to glue a sequence of the above building blocks together. This is most easily
done in the following way : letX0 = X1 = 0, F0 = {∅, Ω} (to maintain our usual
setting) and letF1 be generated by a partition (Bn)n≥1 of Ω such thatP[Bn] > 0,
for eachn. Fix a sequenceεn > 0 tending to 0 and define

X2 =

{−1 on a subset ofBn of probability εn
2+εn

P[Bn]

1 + εn on a subset ofBn of probability 2
2+εn

P[Bn]

It is straightforward to check thatX satisfies the required properties.

We now construct a series of three counter-examples which are arranged in
ascending order of complexity.

The first example is similar to Example 7.5.3 of Durrett (1984); we also refer
to a more sophisticated example in Kazamaki (1994, Example 3.4).

The third example uses an idea from Schachermayer (1993) and Delbaen and
Schachermayer (1995d). We shall try to harmonize the present notation with that
of Delbaen and Schachermayer (1996d).

For a continuous semimartingaleX with canonical decomposition

X = X0 + M + A = X0 + M + 〈M 〉 · λ

we shall call the local martingaleL = E (−λ ·M ) the density process associated
to X.

In order not to obscure the subsequent calculations with irrelevant constants
we adopt the following notation : we writean ≈ bn if there is a constant 0<
c <∞ such thatan = cbn, for all n ∈ IN .

Example 3.10.For 1< p0 < +∞, we construct a continuous real semimartingale
X = (Xt )t∈[0,∞] with canonical decompositionX = M + A = M + 〈M 〉 · λ such
that the associated density processL = E (−λ ·M ) has the following properties :

(i) L satisfies the predictable representation property (PRP).
(ii) For 1 < p < p0 the martingaleL satisfiesRp(P). In particular L is

bounded inL p(P) and the martingaleλ ·M is in BMO.
(iii) The martingaleL is unbounded inL p0(P) as ‖L∞‖L p0(P) = ∞. In

particular, inequalityRp0(P) is not satisfied forL.
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Proof. Let W̃ denote a one-dimensional standard Brownian motion based on
(Ω, F̃ , (F̃t )t∈IR+ ,P) and X̃ the semimartingale

X̃ = W̃t − t .

In this caseλ ≡ −1 and the associated density processL̃ = E (W̃) simply equals
standard geometric Brownian motion.

The next step will also be used for the examples below : fix two parameters
a > 0, a /= 1, and 0< γ <min (1, a−1) and define inductively a sequence
(τn)n≥0 of stopping times by lettingτ0 = 0 and

τn = inf

{
t > τn−1 | L̃t

L̃τn−1

= a or b

}

where we defineb :=
1− aγ
1− γ

. Note that 0< b < +∞ andb /= 1. The martingale

property implies that

1 = E[L̃τ1] = aP[L̃τ1 = a] + bP[L̃τ1 = b].

The real numberb was chosen such that we obtain

(3.1) P[L̃τ1 = a] = γ andP[L̃τ1 = b] = 1− γ.

Define the random numberN = N (ω) as

N = inf

{
n | L̃τn

L̃τn−1

= b

}

and letτ denote the stopping timeτ = τN . We now stop the processes̃X and
L̃ at time τ and indicate this by dropping the tildes, i.e.,L = L̃τ , X = X̃τ , and
we denote byF and (Ft )t∈[0,∞] the σ-algebra and the (saturated and right-
continuous) filtration generated byX (or equivalently byL).

By iterating the argument in (3.1) above one easily obtains that, forn ≥ 1,
(3.2) P(τ = τn) = (1− γ)γn−1 ≈ γn

and
(3.3) L∞Lτ = ban−1 ≈ an on {τ = τn}.
Finally note that there are constantsc > 0 and C > 0, depending only ona
andγ, such that, for everyn ∈ IN and random timesS, T taking values in the
stochastic interval [[τn−1, τn]] we have that

(3.4) c ≤ LS

LT
≤ C P-a.s.

Now we fix the parametersa and γ by letting a > 1, e.g. a = 2, and
0 < γ < a−1 such thatap0γ = 1, which is obviously possible asp0 > 1. Let us
check thatL meets our requirements :

(i) is rather obvious,
(iii) : it suffices to simply calculate theL p0(P)-norm of L∞ = Lτ
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‖L∞‖p0

L p0(P) = E

[( ∞∑
n=1

Lτ1{τ=τn}

)p0
]
≈

∞∑
n=1

(an)p0γn = +∞.

(ii) : as regardsRp(P) for 1 < p < p0 first note that the same computation
as above reveals that

‖L∞‖p
L p(P) ≈

∞∑
n=1

(an)pγn <∞.

Next note that our construction is homogeneous with respect to the multiplicative
structure ofIR+ in the following sense : ifA ∈ Fτn is a set of positive measure
contained in{τ > τn} and if PA denotes the renormalized restriction ofP to A,
then the process (

Lt+τn

Lτn

)
t≥0

=

(
Lt+τn

an

)
t≥0

underPA is identical in law to the original process (Lt )t≥0 underP. In particular,
for everyn ≥ 1,

(3.5)
E[Lp

∞ | Fτn ]
Lp
τn

= E[Lp
∞]1{τ>τn}, which shows in-

equalityRp(P) to hold true for all stopping timesS of the formS = τn.
To verify Rp(P) for an arbitrary stopping timeS, it is easy to see that we

may assume that there isn ≥ 1 such thatS takes its values (except for infinity)
in ]]τn−1, τn]]. Indeed, the sets{S ∈]]τn−1, τn]]} are inFS.

So assume that [[S]] ⊆]]τn−1, τn]] ∪ [[∞]] and use (3.4) and (3.5) above to
estimate ∥∥∥∥E

[
Lp
∞

Lp
S

| FS

]∥∥∥∥
∞

≤ c−1

∥∥∥∥E

[
Lp
∞

Lp
τn

| FS

]∥∥∥∥
∞

= c−1

∥∥∥∥E

[
E

[
Lp
∞

Lp
τn

| Fτn

]
| FS

]∥∥∥∥
∞

≤ c−1

∥∥∥∥E

[
Lp
∞

Lp
τn

| Fτn

]∥∥∥∥
∞

≤ c−1E[Lp
∞].

This shows thatL satisfiesRp(P), thus finishing the proof of the assertions for
Example 3.10.

The next step is to construct an example with similar features as the first one,
but such that theL p0(P)-norm of L is finite and only the inequalityRp0(P) fails
for L.

Example 3.11.For 1< p0 <∞ we construct a continuous real semimartingale
X = (Xt )t∈[0,∞] with canonical decompositionX = M + A = M + 〈M 〉 · λ such
that the associated density processL = E (−λ ·M ) has the following properties :
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(i) L satisfies the predictable representation property (PRP).
(ii) For 1 < p < p0 the martingaleL satisfiesRp(P). In particular L is

bounded inL p(P) andλ ·M is in BMO.
(iii) The martingaleL is bounded inL p0(P), but L does not satisfyRp0(P).

Proof. If W̃ again denotes a standard Brownian motion, define now

X̃t =

{
W̃t for t ∈ [0, 1]

W̃t − (t − 1) for t ∈ [1,∞[.

Choose a partition (Ak)k≥1 of Ω into sets ofF1 satisfyingP(Ak) = 2−k .

Note that the density process̃L associated tõX now equals

L̃t =

{
1 for t ∈ [0, 1]
E (W̃t − W̃1) for t ∈ [1,∞[.

Define the stopping timesτn and the random numberN for the process̃L exactly
as above ; only for the definition ofτ we apply a small modification. Defineτ
to equalτN∧k on eachAk .

With this modification done define againX and L by stoppingX̃ and L̃ at
time τ and consider these processes with respect to the filtrations they generate.

The verification of the associated properties of this example now is a straight-
forward modification of the above arguments and left to the reader.

The next example, which again is a variation of the same theme, is more
tricky. This time, it is crucial to drop the property thatM (or equivalentlyL)
satisfies the predictable representation property. In this case the density process
L = E (−λ ·M ) associated toX = M + 〈M 〉 · λ is not the only candidate for (the
density process of) an equivalent martingale measure for the semimartingaleX ; if
Z is any positive local martingale,Z0 = 1, strongly orthogonal toL such thatZL,
the pointwise product process, is not only a local martingale but a true uniformly
integrable martingale, thenZ∞L∞ is the density of a measureQ under whichX
is a local martingale (see Ansel/Stricker (1992)). It was shown in Schachermayer
(1993) and Delbaen and Schachermayer (1996d) that, for a properly chosenZ ,
the processZL may have better properties than the processL. This also turns out
to be the case in the present context in a rather striking way.

Example 3.12.For 1< p0 <∞ we construct a continuous real semimartingale
X = (Xt )t∈[0,∞] with canonical decompositionX = M + A = M + 〈M 〉 · λ and
a continuous real uniformly bounded martingaleZ , strongly orthogonal toM ,
such that, forL = E (−λ · M ) denoting the density process associated toX, the
following properties are satisfied :

(i) The processZL is a martingale satisfying the predictable representation
property (PRP), while this property fails for the martingalesM , L andZ .
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(ii) For 1 < p < p0 the martingaleL satisfiesRp(P). In particular L is
bounded inL p(P) andλ ·M is in BMO.

(iii) The martingaleL is unbounded inL p0(P) as ‖L∞‖L p0(P) = ∞. In
particular, inequalityRp0(P) fails for L.

(iv) There are constants 0< c < C < ∞ such thatc ≤ ZL ≤ C ; whence
the product martingaleZL satisfiesR∞(P).

Proof. Choose (Ω,G , (Gt )t∈IR+ ,P) such that there are two independent standard
Brownian motionsW ′ andW ′′ defined on this stochastic base. LetL′ = E (W ′)
andL′′ = E (W ′′).

Fix the parametersa′ > 1, 0< γ′ < (a′)−1, a′′ = (a′)−1 and 0< γ′′ < 1.
We choose these parameters such that we have (a′)p0γ′γ′′ = 1, which obviously
is possible asp0 > 1.

Now define stopping times (τ ′n)n≥0 and (τ ′′n )n≥0 by letting τ ′0 = τ ′′0 = 0 and

τ ′n+1 = inf

{
t > τ ′n |

L′t
L′τ ′n

= a′ or b′
}

and

τ ′′n+1 = inf

{
t > τ ′′n | L′′t

L′′τ ′′n

= a′′ or b′′
}
,

whereb′ =
1− a′γ′

1− γ′
andb′′ =

1− a′′γ′′

1− γ′′
.

The idea of the example is to patch the processesL′ and L′′ together by in-
tertwining the stochastic intervals ]]τ ′n−1, τ

′
n]] and ]]τ ′′n−1, τ

′′
n ]] . Define inductively

the random times (τn)n≥0 and (σn)n≥0, which are stopping times for the filtration
(Gt )t∈IR+ , by lettingσ0 = τ0 = 0 and, for,n ≥ 1,

τn = σn−1 + τ ′n and σn = τn + τ ′′n .

Note that 0 =τ0 = σ0 < τ1 < σ1 < τ2 < . . . . Next define the processes̃X, L̃ and
Z̃ by specifying their values on the stochastic intervals ]]σn−1, τn]] and ]]τn, σn]]
inductively for n = 1, 2, . . . :
If t = t(ω) ≥ 0 is such thatσn−1 + t ≤ τn let

X̃σn−1+t − X̃σn−1 = (W ′
τ ′n−1+t −W ′

τ ′n−1
)− t ,

L̃σn−1+t − L̃σn−1 = L′τ ′n−1+t − L′τ ′n−1
,

Z̃σn−1+t − Z̃σn−1 = 0.

If t = t(ω) ≥ 0 is such thatτn + t ≤ σn let

X̃τn+t − X̃τn = 0,

L̃τn+t − L̃τn = 0,

Z̃τn+t − Z̃τn = L′′τn−1+t − L′′τn−1
.
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Loosely speaking, the processesX̃ and L̃ are constant on the intervals of the
form [[τn, σn]] and move only on the intervals of the form [[σn−1, τn]], where
they behave likeW ′

t − t andL′t resp. on the corresponding intervals [[τ ′n−1, τ
′
n]].

Similarly, Z̃ is constant on the intervals of the form [[σn−1, τn]] and moves on
the intervals of the form [[τn, σn]] as L′′ does on [[τ ′′n−1, τ

′′
n ]] . Define the random

numbersN (ω) andM (ω) as

N = inf

{
n |

L′τ ′n
L′τ ′n−1

= b′
}

= inf

{
n | L̃τn

L̃τn−1

= b′
}

and

M = inf

{
n |

L′′τ ′′n

L′′τ ′′n−1

= b′′
}

= inf

{
n | Z̃σn

Z̃σn−1

= b′′
}

and defineτ = τN , σ = σM ; finally, stop the processes̃X, L̃ and Z̃ at time
σ ∧ τ and indicate this by dropping the tildes, i.e.X = X̃σ∧τ , L = L̃σ∧τ , Z =
Z̃σ∧τ . DefineF and (Ft )t∈[0,∞] to be theσ-algebra and the (right-continuous,
saturated) filtration generated byL andZ . Note that neitherL norZ alone generate
F and (Ft )t∈[0,∞] while the productZL does generate them.

It is rather obvious thatL andZ are martingales with respect to the filtration
(Ft )t∈[0,∞] and thatL is the density process associated toX. Assertion (i) follows
from the remark in the preceding paragraph.

Similarly as in the previous examples note that there are constantsc < C <
∞ depending only on the parametersa′, a′′, γ′ andγ′′ such that, for eachn ≥ 1
and random timesS, T taking their values in [[σn−1, σn]] we have

c ≤ LS

LT
≤ C , c ≤ ZS

ZT
≤ C , c ≤ (ZL)S

(ZL)T
≤ C .

Making the crucial observation that because ofa′a′′ = 1 we have that (ZL)σn = 1
on {σn < τ ∧ σ} we conclude that, for arbitrary stopping timesS, T we have

c ≤ (ZL)S

(ZL)T
≤ C ,

which readily proves (iv).
To prove (iii) note that

P[τ ∧ σ = τn] ≈ P[τ ∧ σ = σn] ≈ (γ′γ′′)n

and that the values ofL∞ on {τ ∧ σ = τn} as well as on{τ ∧ σ = σn} are -up
to constant factors- equal to (a′)n. Hence we may calculate

‖L∞‖p0

L p0(P) =

∥∥∥∥∥
∞∑

n=1

Lτ∧σ(1{τ∧σ=τn} + 1{τ∧σ=σn})

∥∥∥∥∥
p0

L p0(P)

≈
∞∑

n=1

(a′)np0(γ′γ′′)n = +∞,
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which shows (iii). The analogous calculation for 1< p < p0 reveals that

‖L∞‖L p(P) <∞
and similar arguments as the ones used for the first example show thatL in fact
satisfiesRp(P), thus showing (ii).

This finishes the construction of Example 3.12.

We have seen that for the closedness ofGT (Θ) in L 2(P), the inequality
D2(P) is in general neither necessary nor sufficient. If we study the closedness
of G(Θ) in R2(P), we have a necessary and sufficient condition whenA is
continuous.

Theorem 3.13. Let X be an IRd-valued semimartingale such that there is an
equivalent local martingale measure Q withdQ

dP ∈ L 2(P) and such that the
predictable part A of X is continuous. Then the space G(Θ) is closed inR2(P)
if and only if the inequality D2(P) holds.

We need an auxiliary result to prove Theorem 3.13. The following lemma is
a slight variant of Proposition 2 of Yor (1985), adapted for our present purposes.
The main difference is that we do not assume that the local martingaleM is
continuous. Recall that the canonical decomposition ofX is X = M + 〈M 〉 · λ.

Lemma 3.14.Suppose that N:= λ ·M is in bmo2. If A is continuous, then there
is a constant C such that

E
[〈θ · X + Z〉T

] ≤ C ‖G(θ) + Z‖2
R2(P)

for all θ ∈ Θ and Z∈ M2
0 strongly orthogonal to M .

Proof. Define the processes̃L := θ ·M + Z and

L := L̃ + 〈L̃,N〉 = L̃ + θ · A = θ · X + Z = G(θ) + Z .

By Itô’s formula,

L2
t = 2

∫ t

0
Ls− dLs + [L]t

and therefore

E
[〈L〉T

]
= E

[
[L]T

]
≤ 2

(
E
[(

L∗T
)2
]

+ E

[
sup

t∈[0,T]

∣∣∣∣∫ t

0
Ls− dL̃s

∣∣∣∣
]

+E

[(∫
L− |d〈L̃,N〉|

)
T

])
.
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SinceA is continuous, we have [L̃] = [L] and so the Burkholder-Davis-Gundy
inequality yields

E

[
sup

t∈[0,T]

∣∣∣∣∫ t

0
Ls− dL̃s

∣∣∣∣
]
≤ CE

(∫ T

0
L2

s− d[L̃]s

) 1
2

 ≤ CE
[
L∗T [L]

1
2
T

]
.

Moreover,L is in S 2 and L̃ is in M2
0, and so

∫
L− dL̃ is in h1

0 by the same
argument as in Lemma 3.4. Hence Fefferman’s inequality implies

E

[∣∣∣∣〈∫ L− dL̃,N

〉∣∣∣∣
T

]
≤

√
2‖N‖bmo2

∥∥∥∥∫ L− dL̃

∥∥∥∥
h1

= CE

(∫ T

0
L2

s− d〈L̃〉s

) 1
2


≤ CE

[
L∗T〈L〉

1
2
T

]
,

since〈L̃〉 = 〈L〉 by the continuity ofA. Putting these estimates together, we obtain

E
[〈L〉T + [L]T

] ≤ C
(

E
[(

L∗T
)2
]

+ E
[
L∗T
(

[L]
1
2
T + 〈L〉 1

2
T

)])
≤ C

(
E
[(

L∗T
)2
]

+
(

E
[(

L∗T
)2
]

E
[
[L]T + 〈L〉T

]) 1
2

)
and therefore, from classical results on 2nd degree inequalities

E
[〈L〉T

]
= E

[
[L]T

] ≤ CE
[(

L∗T
)2
]
.

This completes the proof of Lemma 3.14.

Proof of Theorem 3.13. “if” part. Suppose thatD2(P) is satisfied. Let (G(θn))n≥0

a sequence ofG(Θ) which converges inR2(P). Then it is a Cauchy sequence
on the spaceR2(P), so that

‖G(θn)−G(θm)‖R2(P) < ε,

provided thatm andn are large enough.
SinceD2(P) is satisfied, it follows from Lemma 3.1 that we can define the

processN by Nt := (λ ·M )t and for eachθ in Θ, we have

〈θ · X,N〉t = (θ · A)t .

Hence, by Lemma 3.14, we deduce that

E
[〈(θn − θm) · X〉T

] ≤ ε,

for m andn large enough. Since
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E
[〈(θn − θm) · X〉T

]
= ‖θn − θm‖L2(M ) ,

the sequence (θn)n≥0 is a Cauchy sequence in (L2(M ), ‖ . ‖L2(M )), so that it
converges inL2(M ) to a processθ. Thanks toD2(P), the convergence of (θn)n≥0

to θ in L2(M ) implies the same convergence inL2(A). Finally,

‖G(θn)−G(θ)‖R2(P) =

∥∥∥∥∥ sup
t∈[0,T]

|((θn − θ) · X)t |
∥∥∥∥∥

L 2(P)

≤
∥∥∥∥∥ sup

t∈[0,T]
|((θn − θ) ·M )t |

∥∥∥∥∥
L 2(P)

+

∥∥∥∥∥ sup
t∈[0,T]

|((θn − θ) · A)t |
∥∥∥∥∥

L 2(P)

≤ 2‖θn − θ‖L2(M ) + ‖θn − θ‖L2(A)

from Doob’s inequality. Therefore, the sequence (G(θn))n≥0 converges toG(θ)
in R2(P), which completes the proof of the “if” part.

“only if” part . Let us now suppose thatG(Θ) is closed inR2(P). Consider the
mapping

k : (Θ, ‖ . ‖L2(M ) + ‖ . ‖L2(A)) −→ (G(Θ), ‖ . ‖R2(P))

θ 7−→ G(θ) = θ · X.

Thenk is one-to-one and continuous by Doob’s inequality. Due to the closedness
of G(Θ) in R2(P), the inverse mapping is also continuous, so that the norms
‖ . ‖L2(M ) +‖ . ‖L2(A) and‖ . ‖R2(P) are equivalent : there areC1 > 0 andC2 > 0
such that

∀θ ∈ Θ, C1(‖θ‖L2(M ) + ‖θ‖L2(A)) ≤ ‖G(θ)‖R2(P) ≤ C2(‖θ‖L2(M ) + ‖θ‖L2(A)).

Let θ ∈ Θ and η > 0, and choose a processε as in Lemma 3.8. Then Doob’s
inequality yields

‖G(εθ)‖R2(P) =

∥∥∥∥∥ sup
t∈[0,T]

|((εθ) · X)t |
∥∥∥∥∥

L 2(P)

≤
∥∥∥∥∥ sup

t∈[0,T]
|((εθ) ·M )t | + sup

t∈[0,T]
|((εθ) · A)t |

∥∥∥∥∥
L 2(P)

≤ 2‖εθ‖L2(M ) + ‖εθ‖L2(A)

≤ 2‖θ‖L2(M ) + η.

Hence
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‖θ‖L2(M ) + ‖θ‖L2(A) = ‖εθ‖L2(M ) + ‖εθ‖L2(A)

≤ 1
C1

‖G(εθ)‖R2(P)

≤ 1
C1

(
2‖θ‖L2(M ) + η

)
Whenη tends to 0, we obtain the inequalityD2(P), and this completes the proof
of the “only if” part.

4. Necessary and sufficient conditions for the closedness ofGT (Θ)

In this section we will suppose thatX is a continuous semimartingale. The
symbol V stands for the space of stochastic integralsθ · X such thatθ is a
simple integrand andθ · X remains bounded. As shown in Sect. 3, a necessary
condition for the closedness ofGT (Θ) is that the mappingj ◦ i : Θ −→ GT (Θ)
is one-to-one and thatD2(P) holds. The following theorem solves the problem
of the closedness ofGT (Θ) for continuous semimartingales completely.

Theorem 4.1.Let X denote a continuous semimartingale, then are equivalent :
(1) There is an equivalent local martingale measure with square integrable

density and GT (Θ) is closed inL 2(P).
(2) There is a square integrable local martingale measure Q that satisfies the

inequality R2(P).
(3) The variance optimal measure Qopt is in IM e ∩ L2(P) and satisfies R2(P).
(4) ∃C such that for all Y∈ V we have‖Y∗

T ‖L 2(P) ≤ C ‖YT‖L 2(P).
(4’) ∃C such that for allθ ∈ Θ we have

‖(θ · X)∗T‖L 2(P) = ‖θ‖G(Θ) ≤ C ‖(θ · X)T‖L 2(P) .

(5) ∃C such that for all Y∈ V and all λ ≥ 0 we haveλP[Y∗
T > λ]1/2 ≤

C ‖YT‖L 2(P).
(5’) ∃C such that for allθ ∈ Θ and all λ ≥ 0 we have

λP[(θ · X)∗T > λ]1/2 ≤ C ‖(θ · X)T‖L 2(P) .

(6) ∃C > 0 such that for every stopping time S and every A∈ FS we have

‖1A − U ‖L 2(P) ≥ CP[A]1/2 for every U∈ SV .

(6’) ∃C > 0 such that for every stopping time S , every A∈ FS and every
θ ∈ Θ with θ = θ1]]S,T]] we have‖1A − (θ · X)T‖L 2(P) ≥ CP[A]1/2.

Proof. The theorem is almost a reformulation of the results of Sect. 2. A local
martingale measure forX is the same as a martingale measure forV . Since
the appropriate spaces of simple stochastic integrals are dense in the spaces of
stochastic integrals, we simply deduce from Theorem 2.18 that the properties
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(2), (3), (4), (4’),(5), (5’), (6), (6’) are all equivalent. Let us now show that (1)
implies all the other properties. If there is an equivalent martingale measure with
square-integrable density, then Proposition 3.6 applies and theR2(P)-norm and
theL 2(P)-norm are equivalent (both to theL2(M )-norm in fact). As a result one
obtains (4’) and hence all the other equivalent conditions. Conversely if (2) up
to (6’) hold, we have to deduce that the spaceGT (Θ) is closed. By assumption
there is a local martingale measure with square-integrable density that satisfies the

inequalityR2(P). So letQ be this martingale measure and putE

[
dQ
dP

| Ft

]
= Lt .

Then Lt is necessarily of the formL = E (−λ · M + U ) where U is a local
martingale strongly orthogonal toM , i.e. 〈M ,U 〉 = 0 (see for instance Ansel
and Stricker (1992)). The lemma below shows that−λ · M + U is in bmo2.
SinceM andU are strongly orthogonal, we have〈−λ ·M + U 〉 = 〈λ ·M 〉+〈U 〉
and hence the local martingale−λ · M is also in bmo2, which by the way is
the same as BMO sinceM is continuous. ThereforeX satisfiesD2(P) and the
norm onΘ is equivalent to theL2(M )-norm. From Lemma 3.14 we deduce
that theL2(M )-norm onΘ is dominated by theR2(P)-norm on G(Θ). This
norm is by hypothesis equivalent to theL 2(P)-norm onGT (Θ). We finally find
that the norm onΘ is equivalent to theL 2(P)-norm onGT (Θ) and hence by
Proposition 3.6, the spaceGT (Θ) is closed.

This completes the proof of Theorem 4.1 (modulo the subsequent lemma).

Lemma 4.2. If L is a uniformly integrable martingale with LT > 0 and L0 = 1
that satisfies the inequality R2(P), then necessarily L is of the formE (N ) where
N is in bmo2.

Proof.The processL remains strictly positive and hence the process

(
1

Lu−

)
0≤t≤T

is locally bounded. The square-integrability of the processL implies that the lo-

cal martingaleN defined bydNu =
1

Lu−
dLu is locally square-integrable so that it

makes sense to talk about〈N〉. The processL is therefore of the formL = E (N )
with N locally square-integrable.

For s ≥ 0 fixed we define the sequence of stopping times (Tn)n≥0 by

T0 = s, Tn = inf

{
t > Tn−1 | Lt

LTn−1

≤ 1
2

}
∧ T.

Let C be theR2(P) constant ofL, i.e. for all t we have

E

[(
LT

Lt

)2

| Ft

]
≤ C2.

We first show that there isγ < 1, only depending onC , such that for alln,

P[Tn <∞ | FTn−1] ≤ γ.
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This follows easily from the fact that on{Tn−1 < T}

1 = E

[
LTn

LTn−1

| FTn−1

]
= E

[
LTn

LTn−1

1{Tn<T} | FTn−1

]
+ E

[
LTn

LTn−1

1{Tn=T} | FTn−1

]
The first term is smaller then

1
2

P[Tn < T | FTn−1] whereas the second can be

estimated from above using the Cauchy-Schwarz inequality. We obtain

1≤ 1
2

P[Tn < T | FTn−1] + C
(
1− P[Tn < T | FTn−1]

)1/2

This implies the existence ofγ < 1 such thatP[Tn < T | FTn−1] ≤ γ and where
γ clearly depends only onC .

For t ≥ Tn−1 set Ut =
E (N )t

E (N )Tn−1

and note thatdU = U−dN. Since for

t ≤ Tn, 2Ut− ≥ 1 we have

E
[
〈N〉Tn

− 〈N〉Tn−1
| FTn−1

]
= E

[
[N ]Tn − [N ]Tn−1| FTn−1

]
≤ E

[∫ Tn

Tn−1

4U 2
s−d[N ]s | FTn−1

]
≤ 4E

[
U 2

Tn
| FTn

]
.

It follows that
E
[
〈N〉Tn

− 〈N〉Tn−1
| FTn−1

]
≤ 4C2.

Now we finally can estimateE
[〈N〉T − 〈N〉s | Fs

]
by the series∑

k≥0

E
[
〈N〉Tk

− 〈N〉Tk−1
| Fs

]
≤

∑
k≥0

E
[
E
[
〈N〉Tk

− 〈N〉Tk−1
| FTk−1

]
| Fs

]
≤

∑
k≥0

E
[
E
[
〈N〉Tk

− 〈N〉Tk−1
| FTk−1

]
1{Tk−1<T}| Fs

]
≤ 4C2

∑
k≥0

E
[
1{Tk−1<T} | Fs

]
.

Since

E
[
1{Tk<T} | Fs

]
= E

[
1{Tk−1<T} E

[
1{Tk<T} |FTk−1

] | Fs
]

≤ E[1{Tk−1<T}γ | Fs],

we find thatE[1{Tk−1<T} | Fs] ≤ γk−1 and hence

E
[〈N〉T − 〈N〉s | Fs

] ≤ 4C2
∑
k≥0

γk ≤ 4C2

1− γ
.

This completes the proof of Lemma 4.2.
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5. On the closure ofGT (Θ) in L 2(P)

Throughout this section, we do not assume thatX is continuous.
WhenX admits an equivalent local martingale measureQ and whenM has

the predictable representation property underP, we shall determine the closure of
GT (Θ) in L 2(Ω,F ,P) . If the density of the equivalent martingale measure is
square-integrable, the closure ofGT (Θ) is the space of square-integrable random
variablesH such thatEQ[H | F0] = 0. On the contrary, when the density of the
equivalent local martingale measure is not square-integrable and if we assume
moreover thatX is continuous, we can prove that the closure ofGT (Θ) is the
whole spaceL 2(Ω,F ,P), under the assumption thatF0 is trivial. These results
are related to the results obtained by Delbaen and Schachermayer (1996c). We
start with an auxiliary proposition.

Proposition 5.1.Suppose that M satisfies the predictable representation property
under P and that there exists an equivalent martingale measure Q for X . Then

(1) For every boundedFT-measurable random variable UT, there exists a
sequence(θn)n≥0 ∈ Θ such thatθn · X is a bounded Q-martingale and(

EQ[UT | F0] + (θn · X)T
)

n≥0

converges to UT in L 2(P) andL 2(Q).
(2) L 2(Ω,F0,P) + GT (Θ) = L 2(Ω,F ,P).

Proof. (1) Let UT be a random variable inL∞(FT ). SinceM has the PRP(P),
X satisfies the PRP(Q) so that there exists a predictable,X-integrable processθ
such that

UT = EQ[UT | F0] + (θ · X)T .

If Ut := EQ[UT | F0] + (θ · X)t = EQ[UT | Ft ], then U is uniformly bounded
and therefore,θ · X is in S 2

loc(P). So we can define an increasing sequence of
stopping times (Tn)n≥0 which tends toT and such thatθn := θ1]]0,Tn ]] is in Θ.
From the definition ofTn, the sequence

(
U n

T

)
n≥0

:= (UTn )n≥0 converges toUT

in L 2(P) andL 2(Q) because this sequence is bounded.

(2) Let H be a random variable inL 2(Ω,F ,P) which is orthogonal to
L 2(Ω,F0,P) + GT (Θ). If UT is a bounded random variable, part (1) allows us
to build a sequence (U n

T )n≥0 which converges toUT in L 2(P) and such that
U n

T = U n
0 + (θn · X)T with θn ∈ Θ andU n

0 ∈ L 2(Ω,F0,P). So

EP[HUT ] = lim
n→+∞EP[HU n

T ] = lim
n→+∞EP[H (U n

0 + (θn · X)T )] = 0.

These equalities imply thatH = 0 P−a.s., that is

L 2(Ω,F0,P) + GT (Θ) = L 2(Ω,F ,P).



Weighted norm inequalities and hedging 221

By means of Proposition 5.1, we can easily prove the next result.

Theorem 5.2.If M satisfies the predictable representation property under P and
if X admits an equivalent local martingale measure Q with a square-integrable
density, thenGT (Θ) =

{
H ∈ L 2(Ω,F ,P) | EQ[H | F0] = 0

}
.

Proof. Let H be a random variable inL 2(Ω,F ,P), such thatEQ[H | F0] = 0.
We already know thatL 2(Ω,F0,P) + GT (Θ) = L 2(Ω,F ,P), so

H = lim
n→+∞

(
H n

0 + (θn · X)T
)
,

where H n
0 ∈ L 2(Ω,F0,P) and θn ∈ Θ. Since the density ofQ is square-

integrable, we can take the conditional expectation with respect toF0 underQ
in the last equality and we obtain

lim
n→+∞H n

0 = 0,

which implies thatH is in GT (Θ).

In the case where the density of the equivalent local martingale measure is no
longer square-integrable , we can also characterize entirely the closure ofGT (Θ)
in L 2(Ω,F ,P), under the assumption thatF0 is trivial.

Theorem 5.3.Let X be a c̀adlàg semimartingale which admits an equivalent local
martingale measure Q. Assume that M satisfies the predictable representation
property under P and that the density of Q is not square-integrable. Then, ifF0

is trivial, GT (Θ) = L 2(Ω,F ,P).

Proof. Denote byH the hyperplane inL∞(P)

H = {U ∈ L∞(Ω,F ,P) | EQ[U ] = 0}.

As the density ofQ is not square-integrable we have thatH is dense inL∞(P)
with respect to the norm-topology induced by‖ . ‖L 2(P) on L∞(P).

Proposition 5.1 implies thatGT (Θ) is ‖ . ‖L 2(P) -dense inH , we just
have seen thatH is ‖ . ‖L 2(P)-dense inL∞(P) and, of course,L∞(P) is
‖ . ‖L 2(P)-dense inL 2(P).

HenceGT (Θ) is dense in
(

L 2(P), ‖ . ‖L 2(P)

)
.

Remark 5.4. It is easy to construct an example such that Theorem 5.3 fails if
we drop the assumption thatF0 is trivial.
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6. The Föllmer-Schweizer decomposition and propertyR2(P)
for the minimal martingale measure

Throughout this section we assumeX is a continuous semimartingale with canon-
ical decomposition

X = X0 + M + A.

We extend some results of Schweizer (1994) and Monat and Stricker (1995)
and prove thatX admits a F̈ollmer-Schweizer decomposition if and only if the
minimal martingale measure exists and satisfiesR2(P).

Definitions 6.1. (i) Given a semimartingale X as above, we say that a random
variable H ∈ L 2

(
Ω,F ,P

)
admits aFöllmer-Schweizer decomposition, de-

noted by F-S decomposition in what follows, if it can be written

(6.1) H = H0 + (ξ · X)T + LT P-a.s. where H0 is anF0-measurable ran-
dom variable,ξ ∈ Θ and L= (Lt )0≤t≤T is a martingale inM2

0, strongly orthog-
onal to M .

(ii) The semimartingale X admits aFöllmer-Schweizer decomposition if
there are unique continuous projectionsπ0, π1 andπ2 : L 2(P) → L 2(P) such
that every H∈ L 2(P) admits a F̈ollmer-Schweizer decomposition

H = π0(H ) + π1(H ) + π2(H ) = H0 + (θ · X)T + LT

where H0 ∈ L 2(Ω,F0,P), θ ∈ Θ and(Lt )0≤t≤T is a martingale inM2
0, strongly

orthogonal to M .

For the next definition we refer to Föllmer and Schweizer (1991).

Definition 6.2. Suppose X is a continuous semimartingale satisfying the structure
condition (SC). If(E (−λ ·M )t )0≤t≤T is a martingale, then the measure Qmin

with density
dQ
dP

:= E (−λ ·M )T is called theminimal martingale measure.

Theorem 6.3.Suppose X is a continuous semimartingale satisfying the structure
condition (SC). Then X admits a Föllmer-Schweizer decomposition if and only if
Qmin exists and satisfies R2(P).

Proof. We first prove the “only if” part.
Suppose thatX admits a F̈ollmer-Schweizer decomposition and denote by

π0, π1, π2 the corresponding projections inL 2(P).
Let (Tn)n≥0 be an increasing sequence of stopping times converging station-

arily to T and such that for eachn ≥ 0, KTn is uniformly bounded. It fol-
lows from Schweizer (1994) and Monat and Stricker (1995) that for everyH ∈
L 2(Ω,FTn ,P) there is a F̈ollmer-Schweizer decompositionH = H0+(θ·X)T +LT

such that the following formulae are valid :
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(6.2) H0 = π0(H ) = EQmin(H | F0)

(6.3) H0 + (θ · X)t + Lt = EQmin(H | Ft ) for t ∈ [0,T]

As by assumption,π0 is continuous onL 2(P) and coincides withEQmin(· | F0) on
eachL 2(Ω,FTn ,P) we obtain thatEQmin(· | F0) is a continuous linear functional
onL 2(Ω,FTn ,P), whence (Zmin

t )0≤t≤T := (E (−λ·M )t )0≤t≤T is a bounded mar-
tingale inL 2(P). Therefore the minimal martingale measure exists and formula
(6.2) holds for everyH ∈ L 2(P).

To show the boundedness of the projectors

Pt := EQmin(· | Ft )

as operators fromL 2(Ω,FT ,P) to L 2(Ω,Ft ,P), write

Pt = Pt ◦ π0 + Pt ◦ π1 + Pt ◦ π2.

As regardsPt ◦π0 = π0 this operator clearly is uniformly bounded int . Similarly
we have according to the contraction property forP-martingales

∀t ∈ [0,T] ‖Pt ◦ π2‖ ≤ ‖π2‖

where‖ · ‖ denotes the operator norm onL 2(Ω,FT ,P). Finally we claim that
there is a constantC > 0 such that

(6.4) ‖Pt ◦ π1‖ ≤ C‖π1‖.

Indeed this follows from the fact that, by the assumption of the continuity
of the projectionπ1, we have thatπ1(L 2(Ω,FT ,P)) = GT (Θ) is closed in
L 2(Ω,FT ,P). Hence we know from Proposition 3.6 that there exists a constant
C > 0 such that for eachθ ∈ Θ we have

‖(θ · X)∗‖L 2(P) ≤ C‖(θ · X)T‖L 2(P)

which readily implies (6.4). This shows the uniform boundedness of the family
of projections

Pt = EQmin(· | Ft ).

This uniform boundedness is easily seen to be tantamount to conditionR2(P)
for the minimal densityZmin (see for instance Doléans-Dade/Meyer (1979) page
318).

Finally the boundedness of the operatorsPt also shows that (6.3) holds true
not only for H ∈ L 2(Ω,FTn ,P) but for arbitraryH ∈ L 2(Ω,FT ,P). This
completes the proof of the “only if” part.

Now we prove the “if” part.
We suppose that the minimal density satisfiesR2(P). In particular it is a

square integrable martingale. To prove that the decomposition is unique, we can
and shall assume thatH = 0. If
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H0 +
∫ T

0
θsdXs + LT

is a F-S decomposition ofH , thenH0 = 0 becauseH0 = EQmin[H | F0]. So∫ T

0
θsdXs + LT = 0.

From the continuity ofX, taking the bracket withL in the previous equality
yieldsLT = 0. Finally,θ ·X is aQ-martingale such that (θ ·X)T = 0, soθ ·X ≡ 0.
SinceX is continuous andθ · X is a P-semimartingale inS 2, the last equality
implies thatθ = 0 in L2(M ), which completes the proof of the uniqueness.

Now let us prove thatX admits a F̈ollmer-Schweizer decomposition. Re-
call that the minimal density satisfiesR2(P) and is continuous, so the stochastic
logarithm L (Zmin) is in BMO(P) by Theorem 2.14,Θ = L2(M ) and D2(P)
holds. Denote byM⊥

0 the space of martingalesL ∈ M2
0 strongly orthog-

onal to M and consider the Banach spaceB = L 2(Ω,F0,P) × Θ × M⊥
0

equipped with the norm‖(H0, θ, L)‖ := ‖H0‖L 2(P) + ‖θ‖L2(M ) + ‖LT‖L 2(P). The
mappingφ : B → L 2(Ω,FT ,P) defined byφ(H0, θ, L) := H0 + (θ · X)T + LT

is continuous. The uniqueness of the Föllmer-Schweizer decomposition means
that φ is one to one. We know thatH0 = EQmin(H | F0). Hence‖H0‖L 2(P) ≤
‖H ‖L 2(P) as Qmin and P coincide onF0. According to Lemma 3.14 we have
E(〈θ · X + L〉T ) ≤ C ‖(θ · X + L)∗T‖L 2(P) . SinceZmin satisfiesR2(P) and is con-
tinuous, Theorem 2.16 tells us that‖(θ · X + L)∗T‖L 2(P) ≤ C ‖(θ · X + L)T‖L 2(P) .
Hence we obtain

(6.5) ‖H0‖L 2(P) + ‖θ‖L2(M ) + ‖L∗T‖L 2(P) ≤ C‖H0 + (θ · X)T + LT‖
It follows thatφ−1 defined onφ(B) is continuous and thereforeφ(B) is complete.
From Schweizer (1994) and Monat/Stricker (1995) we know that for everyn ≥ 0
we have thatL 2(Ω,FTn ,P) ⊂ φ(B). Sinceφ(B) is complete, we obtainφ(B) =
L 2(Ω,FT ,P) and the proof of the theorem is complete.

We end this section with an example which is somewhat different in spirit
than the material presented above. So far we saw results following roughly the
pattern :GT (Θ) has nice closedness properties iff the semimartingaleX = M + A
is not too far from being a (local) martingale, i.e.A is somehow small compared
to M . But this type of result only holds true if we add an assumption of type
: “X admits an equivalent local martingale measure”. The next example shows
that some hypothesis of the latter type is indeed indispensable. We shall see that
if we turn completely around and consider the case whereM is small compared
to A (which typically excludes the existence of an equivalent local martingale
measure forX), then againGT (Θ) may be closed.

For example, if (Ft )0≤t≤∞ is the filtration generated by a standard Brownian
motion and we simply let the processX be strictly increasing and deterministic,
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e.g. Xt = arctan(t), then G∞(Θ) equals the entire spaceL 2(Ω,F∞,P) and
therefore is of course closed. This easily follows from the arguments given in
the example below, which presents a slightly more complicated situation. Note
that in the subsequent example there does not exist an equivalent martingale
measure forY and the structure condition (SC) does not hold true.

Example 6.4.Let Yt := Wt + t , where (Wt )0≤t<∞ is a one-dimensional standard
Brownian motion with natural filtration (Ft )0≤t<∞. Now consider the predictable
processφ defined byφt = (1 + t2)−1 and setX := φ · Y . Then the processX
extends to a semimartingale at infinity and its natural filtration is (Ft )0≤t≤∞
whereF∞ is the sigma-algebra generated by∪0≤t<∞Ft . We claim thatG∞(Θ) =
L 2(Ω,F∞,P). In particular every random variableH ∈ L 2(Ω,F∞,P) has a
F-S decomposition. However this decomposition is not unique andK does not
exist.

To prove thatG∞(Θ) = L 2(Ω,F∞,P), it will suffice to prove that there is
a constantc > 0 such that for everyn ∈ IN and for everyf ∈ L 2(Ω,Fn,P)
there is an integrandθ ∈ Θ such that

(6.6) (θ · X)∞ = f and ‖θ‖L2(M ) + ‖θ‖L2(A) ≤ c ‖f ‖L 2(P) .

In order to prove this inequality fix an integern and let (ni )i≥1 be a strictly

increasing sequence of positive integers such that
∞∑
k=1

(n1 . . . nk)−1/2 < ∞. We

set n0 := n, θ(0) := f φ−11]]n,n+1]], g0 := (θ(0) · M )∞ and for i ≥ 1 si := 1 + n1 +

. . . + ni , θ
(i ) := −gi−1

ni
φ−11]]si ,si +1]] , gi := (θ(i ) ·M )∞, θ :=

∞∑
i =0

θ(i ).

Then
∥∥θ(i )

∥∥
L2(A)

= ‖gi−1‖L 2(P) , ‖θ‖L2(M ) = ‖gi ‖L 2(P) =
‖gi−1‖L 2(P)√

ni
. Hence

‖θ‖L2(M ) + ‖θ‖L2(A) ≤ 2‖f ‖L 2(P)

∞∑
k=0

(n1 . . . nk)−1/2.

Thus inequality (6.6) is proved and the proof of the example is now complete.

7. Conclusion

This paper gives necessary and sufficient conditions on a discounted asset price
X for the subspace of attainable claims to be closed in the spaceL 2(P) of
square-integrable random variables. This closedness is important for applications
in financial mathematics since it allows the construction of mean-variance optimal
hedging strategies for arbitrary square-integrable contingent claims. Mathemat-
ically, our results involve weighted norm inequalities, and the condition onX
(apart from continuity) is that the variance-optimal local martingale measure for
X should be equivalent to the original measure and satisfy the reverse Hölder
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inequality with exponent 2. Our techniques also allow us to extend existing re-
sults on the F̈ollmer-Schweizer decomposition, and this can in turn be used for
the construction of locally risk-minimizing hedging strategies.

References

1. Ansel J.P., Stricker C.: Lois de martingale, densités et d́ecomposition de F̈ollmer-Schweizer.
Annales de l’Institut Henri Poincaré 28, 375–392 (1992)
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Probabilit́es XII, 265–309) Berlin, Heidelberg: Springer 1978

34. Yor M.: Inégalit́es de martingales continues arrêt́eesà un temps quelconque (Lect. Notes Math.
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