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Abstract. Let X be anRY-valued special semimartingale on a probability space
(2,7, (A)o<i<T, P) with canonical decompositioX = X, + M + A. Denote

by G1(©) the space of all random variable -(X)t, whered is a predictable
X-integrable process such that the stochastic intetrl is in the space”? of
semimartingales. We investigate under which conditions on the semimartingale
X the spaceGr(0) is closed in%2(£2,.7 , P), a question which arises naturally

in the applications to financial mathematics. Our main results give necessary
and/or sufficient conditions for the closednes$g{©) in £ ?(P). Most of these
conditions deal witlBBMO-martingales and reversedkler inequalities which are
equivalent to weighted norm inequalities. By means of these last inequalities, we
also extend previous results on théllmer-Schweizer decomposition.

Key words: Semimartingales, stochastic integrals, revergddelr inequalities,
BMO space, weighted norm inequalitiesjlFfner-Schweizer decomposition

JEL classification: G10, G13

Mathematics Subject Classification (1991)60G48, 60H05, 90A09

0. Financial introduction

Despite its rather mathematical title, this paper is concerned with questions which
arise from a number of optimization problems in financial applications. It seems
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therefore appropriate to start with a motivating section to explain the background
and the financial interpretation of the results. We emphasize that this section will
not contain precise definitions and theorems; the mathematical introduction in
the next section will contain more technical details.

Our starting point is a-dimensional stochastic proceXs= (X;)o<i<t de-
fined on a probability space&X .77, P) and adapted to a filtratioR = (7)o<t<T
with a fixed time horizonT € (0, >]. The processX describes the discounted
price evolution ofd risky assets in a financial market containing also some risk-
less asset with discounted pri¥e= 1. Thus,. 7 is the information available at
timet andX/ is the relative price of assetat timet, expressed in units of some
fixed numeraire. Adaptedness Xfsimply means thax/ is observable at time
One of the central problems in financial mathematics in such a framework is the
pricing and hedging of contingent claims by means of dynamic trading strategies
based onX. The prime example of a contingent claim is of course a European
call option on some assetwith expiration datel and strike priceK, say. The
net payoff to its owner at is obviously the random amount

H () = max(X}(w) — K,0) = (XH(w) —K)".

More generally, a contingent claim will here simply be @f-measurable random
variableH describing the net payoff at of the financial instrument we want to
consider. This means that our claims are “European” in the sense that the date
of the payoff is fixed, but the amount to be paid out is allowed to depend on
the whole history ofX up to timeT (or even more, ifF contains additional
information). The problems of pricing and hedgiihy can then be formulated

as follows: What price should the seller S ldf charge the buyer B at time 0?
And having soldH, how can the seller S insure himself against the upcoming
random loss at tim&@ ?

A natural way to approach these questions is to consider dynamic portfolio
strategies of the formé(n) = (¢, nt)o<t<7, Whered is a d-dimensional pre-
dictable process anglis adapted. In such a strateg¥,describes the number of
units of asset held at timet, and; is the amount invested in the riskless asset
at timet. Predictability ofé is then a mathematical formulation of the informa-
tional constraint that is not allowed to anticipate the movementXf At any
time t, the value of the portfolio&, n;) is given by

Vi = 0% + 1t

and the cumulative gains from trade up to titnare
t

Gt(9) = /95 dXS = (9 . X)t
0

To have this expression well-defined, we assumeXhata semimartingale, and
G(#) is then the stochastic integral 6fwith respect taX. The cumulative costs
up to timet incurred by using{, n) are given by
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t
Co=V, —/esdxs:vt—et(e).
0

A strategy is called self-financing if its cumulative cost proc€ss constant in
time, and this is equivalent to saying that its value prodéss given by

t
(01) Vi=c +/05d)(5 =Cc+ Gt(H),
0

wherec = Vy = Cy denotes the initial cost to start the strategy. After time 0O,
such a strategy is self-supporting: any fluctuationsirtan be neutralized by
rebalancing? andn in such a way that no further gains or losses are incurred.
Observe that a self-financing strategy is completely determineddndé since

the self-financing constraint determin€s hence also;.

Now fix a contingent claimrH and suppose that there exists a self-financing
strategy ¢, 0) whose terminal valud/; equalsH with probability one. If our
market model does not allow arbitrage opportunities, it is immediately clear that
the price ofH must be given by, and tha® furnishes a hedging strategy against
H. This was the basic insight leading to the celebrated Black-Scholes formula
for option pricing; see Black and Scholes (1973) and Merton (1973) who solved
this problem for the case whett = (X; — K)* is a European call option and
is a one-dimensional geometric Brownian motion. The mathematical structure of
the problem and its connections to martingale theory were subsequently worked
out and clarified by J. M. Harrison and D. M. Kreps; a detailed account can be
found in Harrison and Pliska (1981). Following their terminology, a contingent
claimH is called attainable if there exists a self-financing trading strategy whose
terminal value equal#l with probability one. By (0.1), this means thidt can
be written as

.
(0.2) H = H0+/§§ dX  P-as,
0

i.e., as the sum of a constady and a stochastic integral with respectoWe
speak of a complete market if every contingent claim is attainable. (Recall that
we do not give here precise definitions; for a clean mathematical formulation,
one has to be rather careful about the integrability conditions imposét and

n)

The importance of the concept of a complete market stems from the fact that
it allows the pricing and hedging of contingent claims to be done in a preference-
independent fashion. However, completeness is a rather delicate property which
typically gets lost if one considers even minor modifications of a basic complete
model. For instance, geometric Brownian motion (the classical Black-Scholes
model) becomes incomplete if the volatility is influenced by a second stochas-
tic factor or if one adds a jump component to the model. If one insists on a
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preference-free approach under incompleteness, one can study the range of pos-
sible prices which are consistent with absence of arbitrage in a market containing
X, Y andH as traded instruments (see for instance El Karoui and Quenez 1995).
An alternative is to introduce subjective criteria according to which strategies are
chosen and option prices are computed, and we shall briefly explain two such
criteria in the sequel.

For a non-attainable contingent claim, it is by definition impossible to find
a strategy with final valu&/s = H which is at the same time self-financing. A
first possible approach is to insist on the terminal conditign= H; sincen is
allowed to be adapted, this condition can always be satisfied by choige. of
But since such strategies will not be self-financing, a “good” strategy should now
have a “small” cost procesS. To measure the riskiness of a strategy, the use
of a quadratic criterion was first proposed b§llImer and Sondermann (1986)
for the case wherX is a martingale and subsequently extended to the general
case in Schweizer (1991). Under certain technical assumptions, slodally
risk-minimizingstrategy can be characterized by two properties: its cost process
C should be a martingale (so that the strategy is no longer self-financing, but
still remains mean-self-financing), and this martingale should be orthogonal to
the martingale parM of the price procesX. Translating this description into
conditions on the contingent claird shows that there exists a locally risk-
minimizing strategy foH if and only if H admits a decomposition of the form

.
(0.3) H =Ho +/§SH dXs + LY P-a.s.,
0

whereL" is a martingale orthogonal thl ; see Blimer and Schweizer (1991).

The decomposition (0.3) has been calledfadmer-Schweizer decompositiof

H; it can be viewed as a generalization to the semimartingale case of the classical
Galtchouk-Kunita-Watanabe decomposition from martingale theory. Its financial
importance lies in the fact that it directly provides the locally risk-minimizing
strategy forH: the risky componen® is given by the integrang™, andy is
determined by the requirement that the cost pro&@ssould coincide withHg +

L™ . Note also that the special case (0.2) of an attainable claim simply corresponds
to the absence of the orthogonal tekfh. In particular cases, one can give more
explicit constructions for the decomposition (0.3). In the case of finite discrete
time, ¢&M andL" can be computed recursively backward in time; see Schweizer
(1995). If X is continuous, the &limer-Schweizer decomposition undercan be
obtained as the Galtchouk-Kunita-Watanabe decomposition, computed under the
so-calledminimal martingale measure (see for instancedflmer and Schweizer
1991).

One drawback of the preceding method is the fact that one has to work
with strategies which are not self-financing. To avoid intermediate costs or an
unplanned income, a second approach is therefore to insist on the self-financing
constraint (0.1). The possible final outcomes of such strategies are of the form
c+Gy(0) for some initial capitat € R and some strategy componéhin the set
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O, say, of all integrands allowed in (0.1). By definition, a non-attainable claim
H is not of this form, and so it seems natural to look for a best approximation
of H by the terminal value + Gy (#) of some pair ¢, #). The use of a quadratic
criterion to measure the quality of this approximation has been proposed by
Bouleau and Lamberton (1989) X is both a martingale and a function of a
Markov process, and by Duffie and Richardson (1991) and Schweizer (1994),
among others, in more general cases. To find sughean-variance optimal
strategy, one therefore has to projéttin £ ?(P) on the spac + G (0) of
attainable claims. In particular, this raises the question whether the €§34€x

of stochastic integrals is closed i#?(P), and this is the main problem studied

in this paper.

Before we turn to a more detailed mathematical introduction, let us very
briefly describe the main results of the paper. We provide necessary and suffi-
cient conditions for the closedness @f(0) in % ?(P), thus characterizing the
existence of mean-variance optimal hedging strategies for arbitrary contingent
claims H. Moreover, we also provide new results on the existence and conti-
nuity of the Fllmer-Schweizer decomposition, thus ensuring the existence of
locally risk-minimizing hedging strategies.

1. Mathematical introduction

While the previous section is aimed at the finance-oriented part of our readers,
this section will discuss in more detail the mathematical aspects of the paper. In
particular, we shall here be more careful about definitions and terminology. But
in order not to overload this introductory part with too many formal definitions,
we still refer to the subsequent sections for unexplained notations.

Consider anR%-valued semimartingalX = (Xt)o<t<T defined on a filtered

probability space((z,.?, (/t 0<t<T ? P) with a fixed time horizonl € (0, co].
If X is in .42

<, thenX is special and admits a canonical decomposition

X=Xg+M +A.

In the present paper, we shall develop @ff-theory, and so we introduce the
space® of all predictableX-integrable processéssuch that the stochastic inte-
gral

G(®) ::/QdX =0 X

is in the space¥? of semimartingales. As explained in the previous section,
a random variable of the forrdl = ¢ + G(f) with ¢ € R andfd € © can be
interpreted as the final value of a self-financing trading strategshich starts
with initial capital ¢, and so the question arises which random variableare
attainable, i.e., can be represented in the above form.

In the typical case of an incomplete financial market, the space of attain-
able random variables is a proper subspaceZot(12,.7 ,P). The problem of
determining whether the space
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Gr(@)={(0-X)r |00}

is closedin £?(12,. 7, P) is the central topic of this paper. Note thaGf (©) or
(equivalently) the space sp&((©), 1) spanned byst (@) and the constant func-
tions is closed inZ2(P), we may form the orthogonal projection frofs?(P)

onto spanGr(0), 1) and thus decompose a random varidbles £2(12,.7% , P)

asH =H'+H?2, whereH! is attainable whileH ? is orthogonal taGt(©) and1.

As explained in the financial introduction, this provides a mean-variance optimal
hedging strategy foH . But quite apart from the motivation for the present study
arising from these applications in financial mathematics, one can also consider the
problem of characterising the closednes<{®) from a purely mathematical
point of view.

In the case wher&X is a (local) martingale, this question has been studied
some time ago. In fact, the right notion of stochastic integration is designed in
such a way that the stochastic integral of a local martingale is an isometry between
Hilbert spaces, and so the closednes$e{©) holds true almost by definition
(see Kunita and Watanabe 1967). Actually, there is even a stronger result since
Yor (1978) has proved that i¥" andY are uniformly integrable martingales
such that .2 ),en converges weakly tY,, in £, and if Y™ = ¢"- X for all n,
then there is a predictable processuch thaty = ¢ - X. It is a natural question,
which might or should have been asked 15 or 20 years ago, to which extent such
results for local martingales generalize to semimartingales.

WhenX is only a semimartingale, further assumptions must be added to study
this problem. A usual hypothesis in financial mathematics is a ‘no arbitrage’
condition, which roughly states that one cannot obtain a positive gain for free.
An important consequence is that the finite variation gadf X is absolutely
continuous with respect to the variance procéds of the martingale pari
(see Ansel and Stricker 1992). According to Delbaen and Schachermayer (1996a),
such an absence of arbitrage implies that there is a predictable processh
that

dA =d (M), X P-a.s. for allt € [0, T],

and so we shall assume thatexists. Moreover, we shall also assume the ex-
istence of the so-called mean-variance tradeoff process which is defined

by
K ::/Xd<M>)\,

where’ denotes transposition. In a discrete-time framework, Schweizer (1995)

has proved thaBGr(O) is closed ifK is uniformly bounded. The same result has

been established in continuous time by Monat and Stricker (1994, 1995).
Uniform boundedness &€ is equivalent to requiring that the martingaleM

is in H°°. This is sufficient for the closedness@f(©), but quite far from being

necessary (see Monat and Stricker 1995) for a counterexample. It turns out that

the closedness dbt(©) is rather related to the question of whetherM s in

BMO and the (intimately related) question of whether the exponential martingale

E(=A-M)or &(—X-M +N), for a suitable martingal®dl strongly orthogonal
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to M, satisfies the reversedttler conditionR,(P). In the case wherX is not
necessarily continuous, additional care has to be taken to find the right notion
for BMO, and it turns out thabmg is the right choice.

The main results of this paper are summarized in the subsequent three theo-
rems.

Theorem A. Let X be an R-valued semimartingale such that there is an equiv-
alent local martingale measure Q Witﬂﬁ € £?(P). Then the following two
assertions are equivalent :

i) The process\ - M is a martingale in bma

i) Condition D,(P) holds true, i.e., there is a constant € 0 such that for
all € L2(M)

101l 2y < € [16]] 2wy -

If, in addition, X is continuous, then i) and ii) are also equivalent to
i) G1(©) is complete with respect to the noifé - X

F2(P)"

Theorem B. Let X be an R-valued continuous semimartingale such that there
is an equivalent local martingale measure Q wﬁﬁ € £?(P). The following
assertions are equivalent :

i) G1(O) is closed in£?(12,.7 , P).

i) There is an equivalent local martingale measure Q that satisfies the reverse
Holder inequality R(P).

iii) The “variance-optimal” local martingale measure @' is equivalent to P
and satisfies {P).

Theorem C. Let X be an R-valued continuous semimartingale such that there
is an equivalent local martingale measure Q Wﬁg € £?(P). The following
assertions are equivalent :

i) G1(©) is closed in£2(£2,.7 , P) and there is a Bllmer-Schweizer decom-
position for X, i.e., the projectiom onto spaiiGr(©), 1) with Ker(r) = M+ is
well-defined and continuous o#?(£2,.7 , P).

ii) The “minimal” martingale measure @™ defined by

is well-defined, equivalent to P and satisfiegMR.

Let us comment on these three theorems. If we restrict our attention to the case
of continuous processes, they are arranged in ascending order of restrictive-
ness, i.e., the (equivalent) conditions of Theorem C (resp. Theorem B) imply the
(equivalent) conditions of Theorem B (resp. Theorem A). The central result is
Theorem B which — under the stated hypothesis — gives a necessary and sufficient
condition for the closedness &t (©). The proofs of these assertions as well as
several ramifications and complements will be scattered out through the paper,
where we also establish some of the results in greater generality. We also give
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several examples (some of them rather complicated) to show the limitations of
the above theorems.

Note that the difference between the situations described by Theorems B and
C, respectively, pertains to the difference between the “variance-optimal” and the
“minimal” martingale measure. This is another illustration of the phenomenon
already encountered in Delbaen and Schachermayer (1996b and 1995d) that the
“variance-optimal measure” which is of the forﬁj?;pt = &(—A-M +N)t for
a suitably chosen martingald strongly orthogonal tM in general has better
properties than the “minimal” martingale measure which is simply given by

WO = £ (—x-M)r.

This paper is organized as follows. In Sect. 2, we describe the model and
prove the results on thig;(P) property. This section is written in a very general
way and the theorems are stated in terms of spaces that are stable for stopping.
Our results generalise known results on the reversklét inequality. Section
3 deals withBMO and/orbma martingales as well as the connection with the
inequality Do(P). In Sect. 4, we investigate under which conditions the space
Gr(©) is closed, and in Sect. 5, we explicitly describe the closuré&pfo)
in some cases. Finally, Sect. 6 extends the definition of tibnér-Schweizer
decomposition under the assumptions of Sect. 4, and this provides another way
of proving the closedness @&+ (60).

Some results of this paper form the subject of a note which has been published
in the Comptes Rendws ’Académie des Sciencesee DMSSS (1994).

We thank M. Yor for his interest and help in the preparation of this paper.

2. Preliminaries

Let us now develop our model. We use the same notations as Schweizer (1994).
We recall them here. Lef2,.7 ,P) be a probability space arifl € (0, +oc] a

fixed horizon. We suppose that we have a filtratfon) ,_, ., on (£2,.7 ,P) sat-
isfying the usual conditions, that (s?{)o<t<T is right-continuous and complete,

and we assume moreover thad = .7. Let X = (Xi)o<t<T b€ an RY%-valued
semimartingale inf;2. This means that if o

X=Xg+M +A

is the canonical decomposition ¥f, thenM € .,//ZéJOC and the variationA' | of

the predictable finite variation processXf is locally square-integrable for each

i =1,...,d. For all unexplained notations, we refer to Jacod (1979) or Protter
(1990).

We recall a definition introduced in Schweizer (1994).
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Definition 2.1. X satisfies thestructure condition (SC) if there exists a pre-
dictable R'-valued process = (At)o<i<T Such that

(2.1) dA=d (M), A\ P-as.forallte[0,T],

and
t

(2.2) K ::/ Asd (M) Xs < +oo P-a.s. forall te [0, T],
0

where’ denotes the transposition.

We then choose an RCLL version & and we call it themean-variance
tradeoff(MVT) processof X.

As easily seen, adding ta a process that takes values in the orthogonal
complement of the infinitesimal range df(M) gives the same result. Hence
the process\ is only determined modulo the equivalence class of predictable
processes taking almost surely values in the orthogonal complement of the in-
finitesimal range ofl (M ). The existence ok as well as the almost sure finiteness
of Kt is related to arbitrage properties as shown by Delbaen and Schachermayer
(1996a). In the case whebe is continuous, it is a necessary condition for the
existence of an equivalent local martingale measure. Also in the case Where
is continuous, the finiteness &f is independent of the choice of probability
measure, as shown in Delbaen and Shirakawa (1996) or Choulli and Stricker
(1996).

Remark 2.2. For the interpretation of the process, we refer to Schweizer
(1994, 1995).

Definition 2.3. A predictable K-valued process = (6;)o< <7 belongs to E(M)

if
)

E (/ od <M>t9t) < +o
0

We define on the spacé(M) the norm|| . [ L2quy bY
) T

A predictableR%-valued procesg = (6t)o<i<T belongs td_2(A) if the process

101E2ay = 116 - M)z
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t
(/ |9gdA5|) is square-integrable.
0 0<t<T

We define on the spade?(A) the norm|| . l[L2(a) BY

i
18] = H Jz

Z2(P)

Finally, © is the space defined b9 := L2(M) N L%(A) ; 0 € O is called a%?-
strategy.

If the structure condition holds, then clearly

||9||E2(A) =E [(/OT ‘ng (M) >‘s|>2] .

Strictly speaking the Banach spat&M) is the space of equivalence classes

of predictable processéswith finite L>(M)-norm modulo the subspace of pre-
dictable processes for which the process - M vanishes almost surely. But we

use the usual identification of processes with the associated equivalence class if
no confusion can arise. A similar remark applied f¢A) and 6.

Remark 2.4.If 4 is X-integrable, we can define the stochastic integral process
Gi(9) :=(0-X), forallt € [0,T]. Then G(9) is a semimartingale inr? if

and only if 6 € © and in this case the canonical decomposition is given by
G@)=0-M+06-A.

The space&t(0) andG(©) are defined by
Gr(@):={@ -X)r | 6 € ©} and G(O) :={G(H) | € O}.

Note thatGr(6O) is a space of variables i 2(P) and thatG(©) is a space of
processes.

We next provide several definitions and inequalities which will be useful in
the sequel.

The following concept has been extensively studied in Delbaen and Schacher-
mayer (1994).

Definition 2.5. We say that Xadmits an equivalent local martingale measure
if there exists a probability Q equivalent to P such that X is a local martingale
under Q.
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For the next four definitions we refer to Dellacherie and Meyer (1980).

Definition 2.6. The space#2?(P) is the space of all RCLL adapted processes H
such that

H

=: |H¢
Z2(P)

A2P) T 22(P)

sup |H|
0<t<T

is finite.

Definition 2.7. We say that Mhas the predictable representation property
under P, denoted by PREP), if each martingale N relative t¢%%)o<t<7 and P

can be written
N=Ng+6-M

where N is . Z-measurable and is M -integrable.

Definition 2.8. Let Y = (Y;)o<t<7 be a uniformly integrable martingale. Then Y
belongs toBMO if there is a constant C> 0 such that

E[|Yr — Ys_|?| %] <C P-—as.

for every stopping time S.

Definition 2.9. Let Y = (Y;)o<t<T be a locally square-integrable, local martin-
gale. Then Ybelongs tobma if there is a constant C> 0 such that

ELY); — (Y)s | Al <C P-—as.

for every stopping time S.

We now introduce a new concept which is related to the concepts presented
below in Definitions 2.11 and 2.12.

Definition 2.10.We say that Xsatisfies the inequalityD,(P) if there is a constant
C > 0 such that

HHHLZ(A) S C HQHLZ(M) 5 VG S @

By a truncation argument, the inequality,(?) extends immediately frothe ©
to all & € L2(M).

The problem whether or not the spa@e(©) is closed is intimately related
to properties oBMO-martingales and their exponentials. A good reference for
this question is D@ans-Dade and Meyer (1979). For continuous martingales the
reader can consult Kazamaki (1994).
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Definition 2.11. If L is a uniformly integrable martingale such thag = 1 and
Lt > 0 P-a.s, then we say thatsatisfies the reverse Klder inequality under
P, denoted by KP), wherel < p < +oo, if and only if there is a constant C
such that for every t, we have

Lr\?,
E |\ 7| <c.
Lt

. Lt . _
For p = +co, we require thatLT is bounded byC (see Definition 3.1. of Kaza-
t

maki 1994).
We remark that ifL satisfiesR,(P), 1 < p < oo, then for the same constant
C as in the definition, we have for every stopping ti@é¢hat

LS < E[LY | .7&] < CLE.

In particular the martingalé is bounded inZP(P). We remark that a martin-
gale which satisfies the inequali®..(P) is necessarily bounded but there are
martingales which satisfy the inequali®s, (P) such that int; is not necessarily
bounded from below by a constatit> 0. A condition dual toR,(P) is the
inequality Aq(P) (see Definition 2.2. of Kazamaki 1994).

Definition 2.12. If L is a uniformly integrable martingale such thap & 1 and
Lr > 0 P-a.s, we say thdt satisfies the Muckenhoupt inequalitydenoted by
Aq(P) for somel < g < +oo, if and only if there is a constant C such that for

every t
1
L\ ot
E[(t) .%]gc.
Lt

. L .
If g = 1, we require thatLt is bounded by C.
T

Again, we remark that with the same consté&ht the inequality holds for
arbitrary stopping times.

Definition 2.13. Let Z be a positive procesg. satisfies condition(J) if there
exists a constant C- 0 such that

! Z <z2<CZ.

ctS4°=
In the (French) paper Deans-Dade and Meyer (1979), this condition is called
condition (S) since it involves the jumps (“sauts”) of To avoid confusion with
the structure condition (SC) in Definition 2.1, we have relabelled it here as (J).

Let us now recall some definitions and notations related to changes of law. If

Y is a semimartingaleYy = 0, then its stochastic exponential, denoted”bfy ),
is the semimartingale
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SN = exp(Yt - ; (Yc)t> H (1+AYs)e 2.

0<s<t

If Z is a semimartingale such that gaf<1 Zs > O (for instance ifZ is a strictly
positive local martingale), then its stochastic logarithm, denotelff), is the
semimartingale

; 1
£(Z) = - Z.
72 Z_
Now let Q be an equivalent probability measure and define
aQ N ap 1
Z=E F Z; = T =2
t P|:dp|t:|andt EQ[dQ|t} Z

From Bayes’ rule
Eolf | #Al4 = Ep[fZr | 7]
it easily follows thatZ satisfiesR,(P) if and only if yA satisfiesAq(Q) where of

course; + ; =1 and 1< p < +c0.

The following theorem relateBMO and R,(P) (see Dokans-Dade and Meyer
(1979), Propositions 5 and 6).

Theorem 2.14.The following assertions are equivalent for a strictly positive
martingale Z, 8 = 1: (1) 4(2) is in BMO(P) and there exists a constanth 0
such thatl + AZ(Z) > h. (2) Z”(Z) is in BMO(Q) and there exists a constant
h > 0such thatl +A,,Z"(Z) > h. (3) Z satisfies condition (J) ang,®) for some
p> 1 (4)2 satisfies condition (J) and,£Q) for some g< +oco. In addition, (3)

is satisfied forl < p < oo iff (4) is satisfied for o= pﬁl.

The next theorem states that the set of exponensich thatZ satisfies
Ro(P) is necessarily open. Of course, a similar argument holds\{¢P) (see
Doléans-Dade and Meyer (1979) Proposition 4).

Theorem 2.15.Assume Z is a strictly positive martingale with=Z 1. If Z satisfies
condition (J) and R(P) (p > 1), then there is p> p such that Z satisfies,RP).

A basic property, that we will need later on, is tha¥ifsatisfiesR,(P) then
the conditional expectation with respectQ@ois a continuous operator drf(P).
More precisely, we have (see Balns-Dade and Meyer (1979) Proposition 2 and
the corollary on page 318 combined with Proposition 4) the subsequent result :

Theorem 2.16.Assume Z is a strictly positive martingale with Z 1. For 1 <
p < +oo, assertions (1) and (2) below are equivalent
(1) Z satisfies RP).
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(2) There is a constant C such that for each Q-martingale N, and for qp

p—1
and\ >0
AIP[NF > A] < CEp[|Nr|9].

Moreover under the additional assumption that Z satisfies condition (J) the weak
inequality (2) implies the following strong inequality
(3) There is a constant K such that for each Q-martingale N, and fprpqp 1

Ep[(N?)] < KEn[|Nr[9].

Below we will give a generalization of this theorem. As we deal in this paper
with the case = 2 only, we do not focus our attention to possible extensions of
this generalization to the cage? 2, p > 1.

The symbolZ” denotes a vector space of bounded continuous adapted pro-
cesses. IfY € 77, we suppose tha¥p = 0. We requireZ” to be stable for
stopping, i.e. ifS is a stopping time and ¥ is in Z°, thenYS € Z". For each
stopping timeS, we denote byZs the vector spacéYs | Y € Z°}. The space
sZ7 is the spacdYr —Ys | Y € Z"}. We remark that this notation is consistent
with the notation for stopping and starting a process. We remarkzhatenotes
a vector space of adapted processes whileand s7° denote spaces ofAs
-resp..77- measurable) random variables. Singé is stable for stopping, we
have for every stopping tim8 and every sef € . 7% that1lp s7° C s7° C 1.
Clearly Zy = {0}. The setM (Z") denotes the set of all probability measures
Q that are absolutely continuous with respectPtand for which the elements
Y € Z" becomeQ-martingales. The symb®ll () is reserved for the elements
of M (Z") that are equivalent te.

We shall simply writeM € andM instead ofM §(Z") andM (7") if there is
no danger of confusion.

It is easily seen that i@ is absolutely continuous with respectRoand if L
denotes the adlag martingale

d ~
Lt:EP |:dg |'%:|7

thenQ € M (7) if and only if for everyY € 77, the proces¥L is a martingale
or, which is the same becausg’ is stable for stoppingE[LTYr] = 0. More
generally, we defind/ ® as the affine space of measugeabsolutely continuous
with respect taP such thatu(s2) =1 and

d
Ep [YT d’;] =0

forall Y € Z". If we denote byl the &dlag martingale
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d .
L = Ep [dgm},

then this is equivalent to the property thailLt] = 1 andLY is a martingale for
eachY € Z7. Without further notice, we will identify an absolutely continuous

measureu, with its Radon-Nikodym denvauvedg. In this settingM and M $

are closed sets of£(P) and if M ¢ is non empty, then it isZ(P)-dense in
M.

An important role will be played by the elementlfSn_£? that has minimal
£?(P)-norm, which we call thevariance optimal measurand which we denote
by QOPt,

This measure was previously studied by Schweizer (1995) as well as by
Delbaen and Schachermayer (1996b). It is shown therelMifat £ ?(P) is non
empty if and only if the constant function 1 is not in th&?-closure ofZ7. If we
adopt the convention that a bar denotes the closufg #P), thenM 3N £?(P)
is non empty if and only if 1¢ Z’¢. In this case, there is an elememtin
M S N £?(P) with minimal norm and it is given by

dp  1-f
dP ~ 1- E[f]’
wheref is the orthogonal projection of 1 onto the closed subspageof £ ?(P).
The % 2-norm of gz is given by

1 1 1

du _ _ _
H yopy  diSULZ7)  (1-E[f)Y2  sing’

dpP

where ¢ is the positive angle between 1 agflt. Exactly as in Theorem 3.1
of Delbaen and Schachermayer (1995b), one shows that due to the continuity of
elements i7", the measurg is necessarily nonnegative, ie.c M N _%?(P).

Lemma 2.17.If the variance optimal measure® € M &(Z") exists and the
cadlag martingale L defined as

onpt

L =E
! {dp

7]
satisfies R(P), then L satisfies condition (J).

Proof. Sincel satisfiesR,(P), L is a square integrable martingale. Hence we can
define for eacty € Z°t the Q°P'-martingale

ft = EQopt [fT | }//?]

Moreover if (") is a sequence i@ converging tdT with respect to theZ?(P)-
norm, then the sequencg"] converges uniformly it with respect to the norm
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of Z1(Q°) and hence in probability tdi. As each {) is a continuous mar-
tingale, theQ°P-martingale {;) is continuous whenevdiy € Z'1. In particular
if fr is the orthogonal projection of 1 ont# 1, then ) is a continuousQ°!-
martingale. Since
dQort 1-—f
Lt = =
dpP 1—EJ[f]

the Q°Pt-martingaleZ; = Eqon [Lt | 7] is continuous too. By Bayes'rule

5 _E [ZT2|74 _Ee (L5 [A]
t Ly - L,

Suppose now thdt satisfiesR,(P), then

Ep [L2 | Z]
1< [[3 }sc

and hence N
Ly <Z <CL.

SinceZ; is continuous, it follows thak satisfies condition (J).

In Delbaen and Schachermayer (1995b), it is shown thisk§in £ 2(P) # 0,
thenQ°Pt = i, € M ©. The theorem below investigates the inequalipyP) for
and part of its proof uses the same method as theirs. For simplicity of notation,
we assume that4 is trivial.

Theorem 2.18.1f 7" is a space of bounded continuous adapted processes such
that for each Ye Z” we have ¥ =0, if Z" is stable for stopping (as described
above), if.7 is trivial, then are equivalent

(1) The variance optimal measure®® ¢ M ¢(Z") exists and the adlag
martingale L defined as
onpt

L =E
t {dp

satisfies R(P).
(2) There is Qe M &(Z")N £ ?(P) such that the adlag martingale Z defined
as

_pg|dQ,
Zt—E{deﬁ}

satisfies the inequality J&°).
(3) There is a constant C such that for evenyeY7Z”

1Yy

v2p) < C Y1l oopy -

(4) There is a constant C such that for everyeYZ" and every\ > 0

AP[YF > A2 < C Yy

|2 -
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(5) There is a constant C> 0 such that for every stopping time S, every
Ac Zandevery Y € 57" ||[1a— Uy v2p) = CP[A]¥2. In addition, if one
of the above equivalent conditions is fulfilled, thePPGatisfies B(P) for some
p> 2

Remarks 2.19.i) In condition (5), we can of course restrict the inequality to
elementsUr in 5,7 i.e. elements constructed with the stopping tife= S

on A andSy = T on A®. These elements can be written BEYr — Ys) where

Y € Z". We remark that condition (5) expresses that there is a lower bound
o = arcsinC such that for each\ € .7, the angle betweefi, and the space
s7" is bounded below byg.

ii) If in Theorem 2.18 we take fo@Q an equivalent probability measure that
defines a density process that satishie$P) but that not necessarily satisfies
condition (J), if forZ” we take the space of all continuous bounded martingales
for Q, then (3) of Theorem 2.18 extends, at least for continuous martingales,
Proposition 2.16. The trick is that the density process of the variance minimal
measure forZ” satisfiesR,(P) and condition (J)!

Proof of Theorem 2.18lt is clear that (1) implies (2). By Theorem 2.15 and
Lemma 2.17 , (1) implies (3) and (2) implies (4), the constarteing valid for
every Q-uniformly integrable martingale. The strong inequality in (3) certainly
implies the weak inequality in (4). We now prove the equivalence of (4) and (5),
after which we show that (5), together with (4), implies (1).

(4) = (5

This is done by using a reflection argument. Fix a stopping Bna € .7% and

a procesd) of the formU = X — XS = 15(X — X5) whereX € Z". Define
vi=inf{t [ Uy > J} AT and let

Y, = Ut for t<v
71 2u, - U for t>u,

i.,e.Y is U reflected at timev. ThenY € " and
1Y7| = |Ur[lp=1) +|1 = Ur|l ey < |1 Ur|

sinceUt < ; on{r =T} OnA° we haveU =0, hencev =T andYr =0 ;
thus we obtainYy| < |1a — Ur|, and the weak inequality in (4) implies

[1a — Ut

vy = YTl ep)

> C—llp {YT* >

171/2
P23

2

Y

Cfl
) Plv < T]¥?

ct [ ., 1Y
= ZP{UT>2} .
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On the other hand,

1
Ut — 1all oy = 2P[Aﬁ {Ur <1/2)]%2
and hence
1 . /ct1
|Ur — 1all 2p) = SP[A]Y? where 6 = /2 mm( 5 2) :
(5) = (4)

For fixedY € 7" and A > 0, let us defineS = inf{t | |Y;| > A}. The element
Ut = —sign(Ys)(Yr — Ys) is clearly insZ" and hence foA={S < T} = {Y{ >
A} we have

1= T > CP[A]Y2

Z2(P)

or, what is the same
CAPLY > AIY2 < [|A1a = Ur|| yop) -
But A1a — Ut = A1a +sign(Ys)(Yr — Ys) = Yy 1asign(Ys) and hence

CAP[Yy > A]Y2 < ||AMla — Uy

vy < YTl zpy -

6) =1

This is the most technical part. The proof mimics the proof of Theorem 1.3 in
Delbaen and Schachermayer (1996b). Since we do not assume a priori that there
is an elemenQ € M ©®nN _%2(P), there are some extra technical difficulties. We
start with two lemmas. The first should be folklore (see Lemma 3.4 in Delbaen
and Schachermayer (1995b)). The second exploits that the angle betyapd

sZ " is bounded from below.

Lemma 2.20.1f U = (Ui)o<i<T iS @ Non-negative square integrable martingale,
if Ug > 0, if the stopping time- = inf{t | U; = O} is predictable and announced
by a sequence of stopping timgs)n>1, then

uz
e[z 178] o0
on the.7Z _-measurable sefU, = 0}.
Lemma 2.21.If condition (5) holds with a constant C, then for each stopping
time S there is an elementc Z2(P) suchthatHg |.75] = 1, E[¢? | . 75] < C~2

and E[gU]=0foreachUe 57 .

Proof of Lemma 2.2We proceed exactly as in Theorem 3.1 in Delbaen and
Schachermayer (1995b). Liebe the projection of 1 onto the spag@”. For each
A € T, the spaceds . sZ and1x . sZ° form an orthogonal decomposition
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of s7” and hencd 1, is the orthogonal projection dfs ontos, 7" =15 . s7.
This shows thaE[f21a] = E[f 1af 1a] = E[f 1a1a] = E[f 1a]. The inequality in
condition (5) shows thafls — f1A||2%2(p) > C?P[A] and henceE[1a — f1a] =
E[1a(1 —f)?] > C?P[A] for all Ac .7, i.e. 1- E[f | 7] > C2.

We now define
1-f

T 1-E[f |7

The computation above shows thaff 2 | .7] = E[f | .75] and hence

g

2 — 1 -
( -E <C™-.
191 2(py [1_E[f 75]} B

Now, for eachA € .75 and eachJ € 577, we havelp,U € sZ and hence
E[1a1-f)U]=0.
An easy approximation argument on the bounded function

1
1-E[f | 7]

then shows thaE[gU]=0forallU € 57"

The positivity of g is shown exactly as in Theorem 3.1 of Delbaen and
Schachermayer (1995b).

This completes the proof of Lemma 2.21.

Proof of Theorem 2.18 continued_et us come back to the end of the proof of
Theorem 2.18. If we denote Hythe orthogonal projection of 1 onto the space
7 1, then as seen above, the optimal measdt® is nonnegative and is given
by
dQert  1-f
dP ~ 1-—E[f]

The next step is to construct a continuous process that resembles the ﬁocess
as in Delbaen and Schachermayer (1995b). There is a sequence of el¥thents
in 7 such that||Yf' — Y{**|| ., < 37" and such thaty — f in £?(P).
From the weak inequality, we deduce that

S OP | sup [Y =Y > 27| < Hoo
nS1 Lost<T

and hence the sequen¥@ converges uniformly it a.s. to a continuous process
that we denote by;. Clearlyf; =f. Define
= 1-—f;
Z = .
‘T 1-EIf

If we denote byl the density process
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onpt

Lt:Ep[ dp

| 5‘{] =Ep[Zr | A

then for each elemenX in Z°, we have th~aLth = EE[LTYT | #]. Sincely
andL. are in £ %(P), it follows that alsoLZ; = Ep[LZr | . 7] = Ep[L% | .ZA].
If 7 denotes the stopping time= inf{t | L;Z; = 0}, then we have

0 :/ L2dP
T<T

and hence.r =0 on{r < T}. This implies that., =0 on {r < T}. From the
continuity of Z, it follows that necessarily, > 0. Suppose now that

A={Z >0 n{r<T}

has strictly positive measure. Because = ZT =0 on{r < T} we have that

fr =1 onA. Hence the function (% ;)14 € ,,V. Let g be the positive element
constructed in Lemma 2.21 for the stopping time SinceE[g1a(1 —f,;)] = 0
and since (- f;) > 0 on A, we have thatE[¢g1la] = O, a contradiction to
Elg | .7,] = 1. It follows that alsoZ, = 0 and hence it | L, = 0} =
inf{t | Z = 0} = 7. We now proceed exactly as in the proof of Theorem 1.3
of Delbaen and Schachermayer (1996b). The stopping tinsepredictable and
announced by a sequencg)q>1. If

Lr\>,
E 7
l < LTn > | V T”]

would be greater tha@ —2, then we use the elemeptonstructed for the stopping
time 7, and whose existence is given by Lemma 2.21. The eleinggtwould
give an element irM S with smaller %2(P)-norm. This reasoning shows that
Lt > 0 according to Lemma 2.20, and that for every stopping t8neve have

L\,
E[('—S) | %%

This completes the proof of Theorem 2.18.

<C2

The existence of an element €N~ 2(P) is taken care of by the following
theorem (see Stricker 1990).

Theorem 2.22.If 7" is a space of bounded continuous adapted processes, if
is stable for stopping (as described above), thelf M.£?(P) is non-empty if
and only if

70 LHP) = {0}.



Weighted norm inequalities and hedging 201

One can improve slightly the above theorem as follows (see Yan 1980). This
result is formulated in the same language as (5) of Theorem 2.18.

Theorem 2.23.If 7" is a space of bounded continuous adapted processes, if
is stable for stopping (as described above), thelf M.£?(P) is non-empty if
and only if for every Ac .77, we havela ¢ Z4.

Proof. Suppose that there is € 7 N £2(P) , P[f > 0] > 0. For each such
element, let us denote b the setA; = {f > 0}. If (f.)n>1 iS @ sequence of
such elements theih=> 2" ||fn||;12(P) fn € 75 andAs = Un>1A;,. Hence there
is a maximal set of this form. Call & wheref is the associated function. Take
a sequence, strictly decreasing to 0 such thB{f > n,] > 0. For eac, take
en SO thate, < 373 and choosery € 77 so that||Yf' — f||,.p) < ci. It then
follows thatP[|f — Y| > en] < £2. HenceY{ > f — e, > 1n — &n ON a set of
measure at leaR[f > n,] — 2. The elementif, — en) 1Y = gy is still in Z7
and satisfie{gn > 1} on the set{f > nn}\{|YF — f| > en} which has measure
greater tharP[f > n,] — 2. We stop the procesgs when it hits the level 1, i.e.
V"= ((nn — en)~LY")" where

Clearly
) Vi =1on{f >y \{|Y7 —f| >en};
(i) Since A; is maximal, ¥9)* < 1p ;
(i) (V)™ < (0 —en)HYF) ™.

If n tends to o, (i) and (ii) show that /{)* — 1, whereas (iii) shows
that [|(VF)~ vopy < (i —en) IO |l wopy < (nn —en) €4 which tends to
0. This shows thal, € Z7. This completes the proof of Theorem 2.21.

3. The inequality D>(P) and its relation to BMO

Throughout this section, we do not assume ds continuous.

The inequalityD,(P) is an assumption which arises naturally when one stud-
ies the closedness dbr(©). Indeed, to prove that the limit of a sequence
(Gr(0"))n>0 Which converges inZ2(P) belongs toGr(©), we would like to
show that the sequencéj,>o converges to somé in L(M) andL?(A). Now,
convergence in?(M) is rather easy to study since a sequemt§,to converges
in L2(M) if and only if (0" - M)1)n>0 is @ Cauchy sequence i ?(P). Conver-
gence inL?(A) is more difficult to prove. So an idea to solve this problem is to
find an assumption under which convergencé 4(M) will imply convergence
in L2(A), that isL?(M) C L?(A) or, equivalently,© = L2(M).

We first show that the inequali,(P) is a sufficient condition for the struc-
ture condition (SC) (see Definition 2.1).
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Lemma 3.1. If the inequality B(P) holds, then\ exists and K is square-
integrable.

Proof. The inequalityD,(P) implies that if§ - M = 0, thenfd - A = 0 so by

the multidimensional Radon-Nikodym theorem (see Delbaen and Schachermayer
1996a), there exists a predictalfR¢-valued process such thatdA=d (M) \.

For eachn, let 0" = ALy \<n}no,-[ Where, is the predictable stopping time

Tn ::inf{t| /Otd<M>52n}.

Clearly 0"dA= \"d (M) AL xj<n}nio,-[ @ndD2(P) implies that for alln

2 -
E (/ Nd <M>/\> < C%E / Nd (M) X
{IIx I <n}A0, 7l {IIx I <n}n[0, 7l

2
< C?%E </ Xd<M>/\>
{IIM<n}n0,ml

Since both quantities are finite, we find

1/2

1/2

2
E </ A’d<M>/\> <Cc2
{IIx I <n}A[0, 7l

Whenn tends to o, we obtain thaKy is square-integrable. This completes the
proof of Lemma 3.1.

The next lemma gives an equivalent reformulatiorDe(P).

Lemma 3.2.The inequality B(P) holds if and only if B(M) C L?(A), i.e. if and
only if © = L2(M).

Proof. Since® = L2(M) is equivalent to saying thdt’(M) C L2(A), the “only

if” part is obvious. Conversely, suppose that(M) C L?(A). By means of

the multidimensional Radon-Nikodym theorem (see Delbaen and Schachermayer
(19964a))) it is easy to see thAtis absolutely continuous with respect @l ).

So we conclude that the graph of the identity mapping ftdifM) into L2(A) is

closed inL?(M) x L?(A). Hence the identity is continuous, and this proves the
“if” part.

The existence oA and the square-integrability &f are necessary conditions
for D,(P), but far from being sufficient. The necessary and sufficient condition
for D,(P) given by the next theorem is substantially stronger.
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Theorem 3.3.The inequality Q(P) holds if and only ifA exists and\ - M is in
bmo.

To prove Theorem 3.3, we need an auxiliary result. Recall hjadenotes
the space of all locally square-integrable local martingalesull at O such that

(Y)¥? is integrable.

Lemma 3.4.1f Z € .#/% and Re .7/, then [ Z_dR is in i and

e, s
ht

In particular, choosing R= /edM with 6 € L2(M) gives

v2||Rl[_zz2-

H/z_edMH <2z
hi

210 llzqw)-

Proof. Since

2
i
([zar) = [ 22aR), < ( sup zu|> R)r
T Jo 0<u<T
< 22+ = IRl 12

1
e, | )

by the Cauchy-Schwarz and Doob inequalities.

we get

hi

Proof of Theorem 3.31) Suppose first that - M is in bma. Take any bounded
positive random variabl¥ and denote by an RCLL version of the martingale

Z = E[Y | .Z]. Fix § € L%(M) and set{ := Z_0 so that [ (dM is in hi by
Lemma 3.4. By Fefferman’s inequality and the end of Lemma 3.4, we then obtain

E {Y /OT 0'd <M>>\|u] E UOT Z,_|de/ <M>)\u]

)

E U d|<(z_9)-M,A-M>u]
0

V2|/(Z-6) - Ml A~ M foma

VY172l - Mloma 10l

IAIA

%2

SinceY was arbitrary, we conclude that

< V8|A M lbma 10]lzgm)
%2

"
0]z = H [ a .
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and this proves the “if” part.

2) Now suppose that the inequaldg(P) holds. Then, in view of Lemma 3.2,
L2(M) = ©. Moreover,Kr = (A- M) is in £ by Lemma 3.1. Fixt € [0,T]
and a boundedz%-measurable random variabié and definey := AV 1j; 11 so
thaty € O, sinceKy € £ If Y is any bounded random variable, th¥ncan
be written as

Y =E[Y | F]+ (6 M)r+Ly

by the Galtchouk-Kunita-Watanabe projection theorem, wiésein L>(M) and
L € .#4§ is strongly orthogonal t@ - M for everyd € L?(M). By the definition

of A andv, this implies
T
v [ ddmnl
t

IV 1z 160,71 | 2ga
IV [ £2C € |2y
[V I[«CY

ELY(® - M)r]|

VAN VAR VAN

A

where the second inequality follows frol,(P). SinceY was arbitrary, we

deduce that
.
E M V2\.d (M)u)\u}

E [VZE [Kr — K¢ | A]].

C2IV % > [l - M)r|%e

SinceV was arbitrary chosen ity ?(.%, P), we conclude that
E[Kr —K{ | . %] <C? P-as,

and soX - M is in bma. This completes the proof of Theorem 3.3.

We now turn to the second part of this section where we return to our question
of closedness dBr(O) in £ 2(P). Givend € O, there are two ways to look at the
stochastic integra?- X : either we consider the entire proc€3§) = (0-X)o<t<T
or we only look at the final result, i.e. the random variaBlg(#) = (6 - X)t.

If we adopt the first point of view, we consider two other norms@n for
0 € ©, we define

161 = 161 2y *+ 1101l 2n
and as in Definition 2.6 above

||9||G(@) =|0- XH,ﬁZ(P)'

Both concepts define norms on the vector sp@ceith the property that these
norms equal 0 fof € @ if and only if the processi(- X)o<i<1 Vanishes almost
surely.

On the other hand, we consider on the vector sp@€¢©@) the norm

I M oz2py-
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Consider the diagram

©.1. 1) —— ©.]. lee)y) —— (Gr(O).] - l2p))

wherei denotes the identical map apdhe canonical map which associates to
0 € O the random variabl&r(6).

The continuity ofi follows from Doob’s inequality and the continuity pfis
obvious. Also note that the definition 6f was designed in such a way theatis
complete with respect tfy . ||, i.e., @©,] . ||) is a Banach space. As the maps
andj are surjective, we deduce from the open mapping theorem that the problem
whether® is complete with respect tf . ||y and whetheGr(©) is complete
with respect t] . || . is therefore equivalent to the question whetheresp.

j oi, are open maps.

To take full advantage of this information, we want to know whejhisrone-
to-one, i.e. whether, fof € ©, Gr(0) = 0 implies that the entire proce§¥(6)
vanishes almost surely. Fortunately, this is the case under a very mild condition.

Lemma 3.5. Assume that X is a (not necessarily continuous) semimartingale in

%2 which is a local martingale under some equivalent measure Q with square-

integrable densityzg. Then the map j is one-to-one.

Proof. Let us taked € © such thatGr () = 0. If Z is defined by

dQ

Z =E|:dP

| 7{} 0<t<T

thenZ is a strictly positive square-integralifemartingale and(6)Z is aP-local
martingale. MoreoverG(6)* as well asZ* are in%£?(P), by Doob’s inequality.
Hence the maximal functiorq(#)Z)* is P-integrable so tha®(0)Z is aH (P)-
martingale. By hypothesigGr () = 0 so that theP-martingaleG(0)Z vanishes
identically. AsZ is strictly positive almost surely, we conclude that the process
G(0) also vanishes almost surely. This completes the proof of Lemma 3.5.

Proposition 3.6.Assume that X is a (not necessarily continuous) semimartingale
in .2

(i) The normed spac®, || . [|g(g)) is complete if and only if the map i is an
isomorphism, i.e. if and only if there is a constantC0 such that

Voco, [0 <Clflge)-

(i) Assume in addition that there is an equivalent local martingale measure Q
for X with square-integrable density. Then the normed sg&s€o), || - |, 2p))

is complete, that is, @©) is closed in£?(P), if and only if the map pi is an
isomorphism, i.e., if and only if there is a constant-C0 such that

voeo, 0] <ClGr(0)

|2 -
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Proof. Imnmediate from Lemma 3.5 and Banach’s isomorphism theorem.

Now the question arises whether the property described in part (ii) of Propo-
sition 3.6 is related to the inequaliB,(P) studied in the first part of this section.
To answer this question, it is important to distinguish the continuous case from
the general case. In the former, we get an interesting connection between the
closedness 067(0) in £ ?(P) and the inequalityD,(P) (see Theorem 3.7 be-
low). In the general case, however, there is no hope for a positive result as shown
by Example 3.9 below.

Theorem 3.7.Suppose that X is a semimartingale.#j2 such that A, the pre-
dictable part of X, is continuous. Ifgi : © — G7(O) is one-to-one and if
Gr(0) is closed in%?(P) then the inequality B(P) is satisfied.

In particular, D,(P) holds true if G(©) is closed, A is continuous and there
is an equivalent local martingale measure with square-integrable density.

For the proof we need the following easy result.

Lemma 3.8. Suppose that A is continuous. Lete © andn > 0. Then there
exists a predictable processwith values in{—1, +1} such that

t
vt e [0,T], / ese;dAs] <n.
0

Proof of Lemma 3.8We can assume thét- A is increasing. If it is not the case,
we multiply 6’dA by its sign. Then, we define a sequendg){>o of stopping
times by setting

T
TO =0 and Tn+1 =inf {t Z Tn | / 1]Tn,t] (S)HédAs 2 7]} .
0

SinceA is a finite variation process, the sequentg){>o is finite. Finally, we
sete = 1 on [Ton, Tonsa[ and e = —1 elsewhere. This completes the proof of
Lemma 3.8.

Proof of Theorem 3. Mow letf € © and takes as in Lemma 3.8. From Doob’s
inequality
G (D) 22 < |0]] 2quy * -

Therefore, from Proposition 3.6, we deduce

102y + [10llizmy = 1012y + 1€ 20a
ClIGr(et)l 2

Cl10lzquy +m)-

INIA
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Whenn tends to 0, we obtain the inequaliB,(P).

Let us comment on the hypothesis thatis continuous. Of course, this is
satisfied ifX is continuous. But i has only jumps at totally inacessible stopping
times, we still can see tha remains continuous. On the other hand whén
jumps also at predictable stopping times the assumptionAhatcontinuous is
not satisfactory. Indeed suppose tKajumps at a predictable timeand suppose
thatA is continuous. Since is predictable , this implieE[AX; | .7 _]1= 0. But
an economic interpretation éfis related to the so-called “price of risk” process.
Assuming thafA is continuous at would then be interpreted as “the risk at time
7 is not rewarded”. In economic term such an assumption would mean that the
risk at timer can be “diversified”, a concept used in many texts but without a
precise definition.

We now pass to the general case : the subsequent example shows that for
processes with jumps, Theorem 3.7 does not hold true anymore.

Example 3.9.There is a bounded stochastic proc&ss (Xo, X1, X2) admitting
a bounded equivalent martingale measure such that

(i) the inequalityD,(P) fails ;

(i) G2(®) is closed iInZ?(P).

First consider the following building block for the construction of the exam-
ple. Let 0< ¢ < 1 and define the stochastic process= (Y5, Y7) by Y§ =
and

vE = -1 with probability ,;_
1 71 1+e with probability ,_
so thatE[Y] = 1.

If (7,.77) denotes the filtration generated by, then the predictable part
of Y¢ is given byAj = 0, A] = E[Y] = 1, and the martingale part byl; = 0
and

M = { -2 with probability ,5_
17 e with probability ,7_

An elementary calculation gives

[[Ad

vopy =L M1l yoey = V22, [[Yallgzpy = V1+2.

Ase > 0 tends to 0, the rati@Aq|| o, 2p) / [[Mi] 2y tends to infinity while the
ratio (|Adll 2y * M1l 2p)) / [[Y1ll 2p) tends to one and therefore remains
bounded.

How is this related to the inequalit,(P) and the closedness &+ (O) in
£?(P) ? Of course, both properties are satisfied¥6ras the spacé® is simply
one-dimensional (the only stochastic integralsYSfare the scalar multiples of
Y¢). But the constan€ in the definition ofD,(P) deteriorates as tends to O,
as for eacl € ©, 6 7 0,
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10llzgy _ ATl 2y

= = (20) V2.
101l zgny 1M1

%2(P)

On the other hand, the constant in Proposition 3.6 (ii) above does not deteriorate
ase tends to 0, as

I
1G1(0)

ML oy _ 1+ (20)Y/2

z2(pP) _
Z2(P) (1 + 25)1/2 e—0

1

~2(P) IYE

Finally, to transform this quantitative phenomenon into a qualitative one, it suf-
fices to glue a sequence of the above building blocks together. This is most easily
done in the following way : leXo = X; = 0,.% = {0, 2} (to maintain our usual
setting) and let4 be generated by a partitioB{)n>1 of {2 such thaP[B,] > 0,

for eachn. Fix a sequence, > 0 tending to 0 and define

X, = -1 on a subset 0B, of probability ,30 P[By]
271 +en  oOn a subset 0B, of probability 22 P[Bn]

+en

It is straightforward to check tha{ satisfies the required properties.

We now construct a series of three counter-examples which are arranged in
ascending order of complexity.

The first example is similar to Example 7.5.3 of Durrett (1984); we also refer
to a more sophisticated example in Kazamaki (1994, Example 3.4).

The third example uses an idea from Schachermayer (1993) and Delbaen and
Schachermayer (1995d). We shall try to harmonize the present notation with that
of Delbaen and Schachermayer (1996d).

For a continuous semimartingale with canonical decomposition

X=Xo+M +A=Xg+M +(M) - A

we shall call the local martingalle = < (—\ - M) the density process associated
to X.
In order not to obscure the subsequent calculations with irrelevant constants
we adopt the following notation : we write, =~ b, if there is a constant &
C < oo such thata, =ch,, for alln € N.

Example 3.10.For 1< pp < +o0o, we construct a continuous real semimartingale
X = (Xt)te,o] With canonical decompositioX =M + A=M + (M) - X such
that the associated density procéss & (—X - M) has the following properties :

(i) L satisfies the predictable representation property (PRP).

(if) For 1 < p < po the martingaleL satisfiesRy(P). In particularL is
bounded in£AP(P) and the martingalé. - M is in BMO.

(iii) The martingaleL is unbounded inZ™(P) as ||Lm||%p0(P) = co. In
particular, inequalityR,,(P) is not satisfied for.
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Proof. Let W denote a one-dimensional standard Brownian motion based on
(2,7, (F)ter., P) and X the semimartingale

X =W, —t.

In this case\ = —1 and the associated density procEg %’(W) simply equals
standard geometric Brownian motion.

The next step will also be used for the examples below : fix two parameters
a>0a#1 and 0< v <min (1,a~1) and define inductively a sequence
(Tn)n>0 Of stopping times by lettingy = 0 and

. L
rn:|nf{t>rn1|~ t :aorb}
1

Th—

where we defind := 11_ ay. Note that 0< b < +oo andb # 1. The martingale

property implies that -
1=E[L,,] = aP[L,, =a] +bP[L,, =h].
The real numbeb was chosen such that we obtain
(3.1) P[L,, =a] =~ andP[L,, =b] =1 — .

Define the random numbé&t = N(w) as

N =infd{n| ~LT" =b
LTn—l

and let denote the stopping time = 7y. We now stop the process&s and
L at timer and indicate this by dropping the tildes, i.e.= L™, X = X7, and
we denote by and (%), the o-algebra and the (saturated and right-
continuous) filtration generated by (or equivalently byL).

By iterating the argument in (3.1) above one easily obtains that) forl,

(32) P(r=m)=(1—""~7"
and
(3.3) Lo, =ba"t~a" on{r=m}

Finally note that there are constats> 0 andC > 0, depending only o
and~, such that, for everyy € N and random times$, T taking values in the
stochastic interval §,_1, ] we have that

(3.4) c<S<c pas
Lt
Now we fix the parametera and v by lettinga > 1, e.g.a = 2, and
0 < v < a~? such thataP~ = 1, which is obviously possible g% > 1. Let us
check that. meets our requirements :
(i) is rather obvious,
(iii) : it suffices to simply calculate theZ™(P)-norm of L, =L,
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ILoo

[e's) Po [eS)
'?ng(P) = [(Z LTl{T:Tn}) ] ~ Z(a“)po,yn = +00.
n=1 n=1

(ii) : as regardsR,(P) for 1 < p < po first note that the same computation
as above reveals that

oo
||L00||'?Ap(p) ~ Z(an)p,yn < 00.

n=1

Next note that our construction is homogeneous with respect to the multiplicative
structure ofR. in the following sense : ifA € .7, is a set of positive measure
contained in{T > 7, } and if P, denotes the renormalized restrictionPfto A,

then the process
()= ()
L />0 a" Jiso

underP, is identical in law to the original procesk;§;>o underP. In particular,

for everyn > 1,
E[L?, | 7, . :

(3.5) [ °°Lp| & =E[L5.]11(+>,}, Which shows in-
equality Ry(P) to hold true for all gntopping timeS of the formS = 7,.

To verify Ry(P) for an arbitrary stopping timé, it is easy to see that we
may assume that there s> 1 such thatS takes its values (except for infinity)
in Jm—1, 7n]- Indeed, the set$S €] m_1, ]} are in.7.

So assume thatq] C]m_1,m] U [oc] and use (3.4) and (3.5) above to

estimate
LP [LP
<[5, = el Al
[

IA
o

oo o0

e [ [ ~1 1 =
= ClEE[LE /T}/s]

‘ o0

IN
(9]
N

e,
[ 17)

< c7E[L”].

‘ (oo}

This shows that satisfiesR,(P), thus finishing the proof of the assertions for
Example 3.10.

The next step is to construct an example with similar features as the first one,
but such that theéZ™(P)-norm ofL is finite and only the inequalitiR, (P) fails
for L.

Example 3.11.For 1< pp < oo we construct a continuous real semimartingale
X = (Xo)tepo,) With canonical decompositioX = M + A=M + (M) - X such
that the associated density procéss & (—)\ - M) has the following properties :
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() L satisfies the predictable representation property (PRP).

(if) For 1 < p < po the martingaleL satisfiesRy(P). In particularL is
bounded in£AP(P) and\ - M is in BMO.

(iii) The martingaleL is bounded inZ™(P), but L does not satisfyRy, (P).

Proof. If W again denotes a standard Brownian motion, define now

% = W, for te[0,1]
' W —(t—1) for tel[l, o

Choose a partition/)x>1 of §2 into sets of 77 satisfyingP(Ac) = 27K,
Note that the density processassociated t&X now equals

[ = 1 for te]0,1]
Tl W — W) for  t el o0

Define the stopping times, and the random numbé¢ for the process exactly
as above ; only for the definition af we apply a small modification. Define
to equalmy,kx On eachAy.
With this modification done define agai and L by stoppingX andL at
time = and consider these processes with respect to the filtrations they generate.
The verification of the associated properties of this example now is a straight-
forward modification of the above arguments and left to the reader.

The next example, which again is a variation of the same theme, is more
tricky. This time, it is crucial to drop the property thist (or equivalentlyL)
satisfies the predictable representation property. In this case the density process
L=&(—X-M) associated tX =M + (M) - X is not the only candidate for (the
density process of) an equivalent martingale measure for the semimartihgdle
Z is any positive local martingal@y = 1, strongly orthogonal tb such thatzL,
the pointwise product process, is not only a local martingale but a true uniformly
integrable martingale, then, L., is the density of a measuf@ under whichX
is a local martingale (see Ansel/Stricker (1992)). It was shown in Schachermayer
(1993) and Delbaen and Schachermayer (1996d) that, for a properly cBpsen
the procesZL may have better properties than the prodesthis also turns out
to be the case in the present context in a rather striking way.

Example 3.12.For 1< pp < oo we construct a continuous real semimartingale
X = (Xhepo,00] With canonical decompositioX =M +A=M + (M) - A and
a continuous real uniformly bounded martingae strongly orthogonal tiv,
such that, fol. = & (—X - M) denoting the density process associateX tahe
following properties are satisfied :

(i) The proces<L is a martingale satisfying the predictable representation
property (PRP), while this property fails for the martingaldsL andZ.
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(i) For 1 < p < po the martingaleL satisfiesRy(P). In particularL is
bounded in%P(P) and\ - M is in BMO.

(iii) The martingaleL is unbounded iNZ™(P) as ||Lo| zmE) = oo. In
particular, inequalityR,,(P) fails for L.

(iv) There are constants @ ¢ < C < oo such thatc < ZL < C ; whence
the product martingal@L satisfiesR,,(P).

Proof. Choose (2, <, (%%)icr, , P) such that there are two independent standard
Brownian motionsW’ andW" defined on this stochastic base. lLét= & (W’)
andL” = &(W").

Fix the parametera’ > 1, 0< 4/ < (a’)~%, a” = (@’)~t and 0< 7" < 1.
We choose these parameters such that we hay&+'~"” = 1, which obviously
is possible apy > 1.

Now define stopping times{)n>o0 and ;/)n>0 by letting 7{ = 7{’ = 0 and

: L
Theq = inf {t > L’t =a’ orb’
7

and
L//
ho=inf{t > 7| L’t =a’ orb” },

1—a’~ 1—a”’~"

whereb’ = 7 andb” = i
1— 'Y/ 1— ’)/H

The idea of the example is to patch the procedseand L” together by in-
tertwining the stochastic intervals] ,, 7:] and ]r/"_,, /1. Define inductively
the random timesr{)n>0 and @n)n>0, Which are stopping times for the filtration

(“%ter,, by lettingog = 79 = 0 and, for,n > 1,
Th=on_1+7, and on =1 +7..

Note that 0 =ro = 09 < 71 < 01 < 7> < .. .. Next define the processe&s L and
z by specifying their values on the stochastic intervaig |, m] and Jm, on]
inductively forn=1,2,...:

If t =t(w) > 0is such that,_; +t < 7, let

Y — / /
Koo st — Koy = (W, L —W/ )—t,
n—1 n—1
Ea— +t*f|:cr = L +t7|—/’ ,
n—1 n—1 Th_1 Th_1
Z(7'n—1+t - Zo'n—l = O

If t =t(w) > 0is such that,, +t < oy, let

XTn+t - XTn = 07

I—‘rn+t - LTn = 07

o - — " "
Z"'n"'t - Z'f'n - LTn,]_+t - LTnfl'
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Loosely speaking, the processﬁsandi: are constant on the intervals of the
form [m,on] and move only on the intervals of the forms{_1,m], where
they behave lika\! —t andL{ resp. on the corresponding intervalg [ ,, 7]

Similarly, Z is constant on the intervals of the forna,[_1, 7] and moves on
the intervals of the form {,,on] asL” does on [ ,, 7/]. Define the random
numbersN (w) andM (w) as

| L, | .
N=inf¢n| ," =b'}p=inf<n| ™ =b
LT/ LTn—l
n—1
L//// Z
M :inf{n| ) :b”}:inf{n| g :b”}
Lo, Loy s

and definer = 7y, o = ow ; finally, stop the processe%, L and Z at time
o A 7 and indicate this by dropping the tildes, iX%.= X 7, L = L°/7, Z =
Z°/". Define.7 and Atepo, ) to be thes-algebra and the (right-continuous,
saturated) filtration generated byandZ. Note that neithek nor Z alone generate
7 and (A)iep,c] While the producZL does generate them.

It is rather obvious thalt andZ are martingales with respect to the filtration
(Zhrep,0) @nd thatl is the density process associatectoAssertion (i) follows
from the remark in the preceding paragraph.

Similarly as in the previous examples note that there are constant€ <
oo depending only on the parametars a”’, ' and~"” such that, for each > 1
and random time$, T taking their values in §,_1, on] we have

Ls Zs (ZL)s
c< " <C, c<_<C, c< <C.
I Zr (ZL)r

Making the crucial observation that because@f”’ = 1 we have that4l),, =1
on {on < 7 A o} we conclude that, for arbitrary stopping tim8sT we have

(ZD)s
°= @y, =©

and

which readily proves (iv).
To prove (iii) note that

Plr Ao =m]~Plr Ao =on] = (7))
and that the values df,, on {r Ao = 7,} as well as on{T Ao = on} are -up
to constant factors- equal ta’]". Hence we may calculate
Po

Po

0o
ZLPo(P) Z LT/\O'(l{T/\G'zTn} + l{‘r/\(r=an})

n=1

oo
D @)™ ('Y = +oo,
n=1

oo

ZPo(P)

Q
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which shows (iii). The analogous calculation foxdp < pp reveals that

ILoo |

and similar arguments as the ones used for the first example show ithdact
satisfiesR,(P), thus showing (ii).
This finishes the construction of Example 3.12.

wrP)y < 00

We have seen that for the closednessGaf(©) in £ ?(P), the inequality
D,(P) is in general neither necessary nor sufficient. If we study the closedness
of G(©) in .2?(P), we have a necessary and sufficient condition wheis
continuous.

Theorem 3.13.Let X be an R-valued semimartingale such that there is an
equivalent local martingale measure Q Wiﬂg € £?P) and such that the
predictable part A of X is continuous. Then the spad®¥is closed in%2?(P)

if and only if the inequality B(P) holds.

We need an auxiliary result to prove Theorem 3.13. The following lemma is
a slight variant of Proposition 2 of Yor (1985), adapted for our present purposes.
The main difference is that we do not assume that the local martindals
continuous. Recall that the canonical decompositioXaé X =M + (M) - A.

Lemma 3.14.Suppose that N= X\ - M is in bma. If A is continuous, then there
is a constant C such that

E[(6-X+2)7] < CIG(0) +Z|

for all € © and Z € . /4 strongly orthogonal to M.

Proof. Define the processefs:: 0-M+Z and
L:=L+(L,N)=L+0-A=0-X+Z=G(H)+Z.
By Itd’s formula,
L2 = 2/t Ls_ dLs + [L];
and therefore :

E [(L)r] E[[Ll7]

2<E [(L#)Z} +E [ sup

IN

|

t
/ Ls_ dLs
te[0,T] 0

(] mm) )
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SinceA is continuous, we havefl = [L] and so the Burkholder-Davis-Gundy

inequality yields
T N2 s
1 < CE [(/0 L§d[L]S> ] < CE [L;[L]ﬂ.

t
/ Lsf d LS
0

Moreover,L is in .2 andL is in .Z43, and so[L_dL is in h} by the same
argument as in Lemma 3.4. Hence Fefferman’s inequality implies

e[ fw-scn) fr,
ce| ([ 00)

CE w3

Elsup

te[0,T]

IN

\/ZHN ”me

IN

since(L) = (L) by the continuity ofA. Putting these estimates together, we obtain
E[Lr+itr] < ¢ (B[] +E [ (i +w)])
C (E ()] + (B[] Elur + <L>T])%)

and therefore, from classical results dif 2egree inequalities

IN

E [{L)7] =E[1LIr] < CE[(L5)°].

This completes the proof of Lemma 3.14.

Proof of Theorem 3.13. “if” part Suppose thaD,(P) is satisfied. LetG(6™))n>0
a sequence of(©) which converges inz2?(P). Then it is a Cauchy sequence
on the space#?(P), so that

1G(0™) — GE™)] ozpy < €

provided thatm andn are large enough.
Since D,(P) is satisfied, it follows from Lemma 3.1 that we can define the
processN by N; := (A - M), and for each¥ in ©, we have

(0-X,N), =(0-A)x.
Hence, by Lemma 3.14, we deduce that
E[((0" — 6™ - X);] <e,

for m andn large enough. Since
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E [((0" —6™) - X)¢] = 6" — 9m||L2(M)>
the sequencedl),>o is a Cauchy sequence (M), || . [2qwy), SO that it

converges irL?(M) to a proces$. Thanks taD,(P), the convergence of{)>o
to @ in L2(M) implies the same convergenceliA(A). Finally,

1G(0") — GOl ey =

sup [((0" — 0) - X)|
te[0,T]

Z2(P)

IN

sup [((8" —6) - M)|

tel0,T]

L2(P)

+

sup [((8" — ) - A)|
t€[0,T]

“2(P)
2([6" = Ol zquy + 116" — Ol 2(ay

IN

from Doob’s inequality. Therefore, the sequen&{{"))n>o converges td(6)
in .222(P), which completes the proof of the “if" part.

“only if" part . Let us now suppose th&(®) is closed in#22(P). Consider the
mapping

k(O] . |||_2(M)+ [ HLZ(A)) — (GO), ] . ”.ﬁZ(P))
0 — G)=06-X.

Thenk is one-to-one and continuous by Doob’s inequality. Due to the closedness
of G(O) in .22?(P), the inverse mapping is also continuous, so that the norms
[ Mizguy ¥ - iz @nd|l - [l ey are equivalent : there a@, > 0 andC, > 0

such that

V0 € O, Ca([|0ll 2qny + 10ll2(a) < IGO). 22y < C2([10] 2gmy + 101l 2a)-

Let § € © andn > 0, and choose a processas in Lemma 3.8. Then Doob’s
inequality yields

1G(e0)

2(P) sup [((g6) - Xl
te[0,T] 2Py
< || sup [((e0) - M )|+ sup |((0) - A)]
te[0,T] te[0,T] Z2(P)
< 2|l zguy + 11201 2y
<

2(161 2quy * -

Hence
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102y + 11002y = €02y *+ 1€ 20a
1
< ¢ 18D
1
<

C, (2 101l 2w +77)

Whenny tends to 0, we obtain the inequaliBy(P), and this completes the proof
of the “only if” part.

4. Necessary and sufficient conditions for the closedness Gf (®)

In this section we will suppose tha is a continuous semimartingale. The
symbol 7" stands for the space of stochastic integralsX such thatf is a
simple integrand and - X remains bounded. As shown in Sect. 3, a necessary
condition for the closedness & (©) is that the mappingoi : © — G(O)

is one-to-one and thdd,(P) holds. The following theorem solves the problem
of the closedness d&r(©) for continuous semimartingales completely.

Theorem 4.1.Let X denote a continuous semimartingale, then are equivalent :
(1) There is an equivalent local martingale measure with square integrable
density and G(O) is closed inZ?(P).
(2) There is a square integrable local martingale measure Q that satisfies the
inequality R(P).
(3) The variance optimal measure®®is in M ® N L%(P) and satisfies KP).
(4) 3C such that for all Ye 7" we have||Y7 || 2 < C Y7
(4") 3C such that for allh € © we have

1O - X)7 | 2y = [10llg0) < C N0 - X7l ey -

(5) 3C such that for all Ye 7" and all A > 0 we haveAP[Y; > \]Y/?
C Y1l o 2)-
(5") 9C such that for all? € © and all A > 0 we have

z2(p)-

IN

AP[(0-X)5 > AIY2 < C 10 X1l yzqpy -
(6) 3C > 0 such that for every stopping time S and everg A% we have
1a —U

o) > CP[A]Y? forevery Ue s7".

(6’) 9C > 0 such that for every stopping time S, every=AZ and every
0 € 6 with 6 = 01} 1] we havel|1a — (0 - X)1| o) > CP[A]Y2.

Proof. The theorem is almost a reformulation of the results of Sect. 2. A local
martingale measure foX is the same as a martingale measure #or Since

the appropriate spaces of simple stochastic integrals are dense in the spaces of
stochastic integrals, we simply deduce from Theorem 2.18 that the properties
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(2), (3), (4), (4),(5), (5), (6), (6) are all equivalent. Let us now show that (1)
implies all the other properties. If there is an equivalent martingale measure with
square-integrable density, then Proposition 3.6 applies andgab@)-norm and

the £2(P)-norm are equivalent (both to th&(M )-norm in fact). As a result one
obtains (4’) and hence all the other equivalent conditions. Conversely if (2) up
to (6) hold, we have to deduce that the sp&&g®) is closed. By assumption
there is a local martingale measure with square-integrable density that satisfies the

dQ 1.
dp ‘ﬁ:|_LI'

Then L; is necessarily of the fornh = & (—X-M + U) whereU is a local
martingale strongly orthogonal td, i.e. (M,U) = 0 (see for instance Ansel
and Stricker (1992)). The lemma below shows that - M + U is in bma.
SinceM andU are strongly orthogonal, we have A -M +U) = (A-M)+(U)
and hence the local martingale) - M is also inbmg, which by the way is
the same as BMO sindé is continuous. ThereforX satisfiesD,(P) and the
norm on O is equivalent to theL?(M)-norm. From Lemma 3.14 we deduce
that theL?(M)-norm on @ is dominated by thez22(P)-norm on G(6). This
norm is by hypothesis equivalent to thé&?2(P)-norm onGr(0). We finally find
that the norm or@ is equivalent to theZ?(P)-norm onGr(©) and hence by
Proposition 3.6, the spader(©) is closed.

This completes the proof of Theorem 4.1 (modulo the subsequent lemma).

inequalityRx(P). So letQ be this martingale measure and fil

Lemma 4.2.1f L is a uniformly integrable martingale with{L> O and Ly = 1
that satisfies the inequality.fP), then necessarily L is of the for#(N) where
N is in bma.

Proof. The proces& remains strictly positive and hence the procéis1 )
u—/ o<t<T
is locally bounded. The square-integrability of the prodessiplies that the lo-
. ) 1 . : .
cal martingaleN defined bydN, = L dL, is locally square-integrable so that it

u—
makes sense to talk abo{l ). The process is therefore of the forn = ¢ (N)
with N locally square-integrable.

For s > 0 fixed we define the sequence of stopping timB9.o by

. L 1
To=s, Tn:|nf{t>Tn_1Lt SZ}AT.
Tn—l

Let C be theR,(P) constant ofL, i.e. for allt we have

L 2
E[( T) |(%1<cz.
Lt

We first show that there is < 1, only depending o1, such that for alh,

PITa < o0 | 7, ] <7.
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This follows easily from the fact that ofiT,_1 < T}

L L
e[ e[
Lt

— LT,
1 T +E
LTn—l n—1 {Tn<T} ‘ n_1:| |:

" Lremy | A
Ly =Ty [P

n—1

. . 1
The first term is smaller theBP[Tn < T |.%,_,] whereas the second can be
estimated from above using the Cauchy-Schwarz inequality. We obtain
1 — . 1/2
1< 2P[Tn <T|%#A_]+C (1— P[Th<T| ,/rnfl])

This implies the existence of < 1 such thaP[T, < T | . % _,] <~ and where
~ clearly depends only of.
Z(N)
Fort > Th_ tUr=
R ()

t <Tn, 2Ui— > 1 we have

E [Ny, = (N)p, | 74, ]

and note thadU = U_dN. Since for

E [[NIr, = [N]t,_.| A, ]

Tn
< E[/ 4U52d[N]S|,%'n_11
T

n—1
< 4E[UE | A
It follows that
E[(N)y, = (N)y,_, | 74, ] <4c?
Now we finally can estimat& [(N); — (N);| .7]| by the series

SE[N) — (N, 1A < YE[E[N)g — Ny | AL 1A

k>0 k>0

< YE[E[Ng - Ny |

k>0

1{Tk—1<T} | %]

IN

4C*N E [Lm,emy | 7).
k>0

Since

E [l{Tk<T} ‘ %/—S] E [l{Tk—1<T} E [1{Tk<T} |"%k—1] ‘ %/-S]
< E[l{Tk71<T}'V ‘ 7;517
we find thatE[1(r, <7y | 7] < ~+*~* and hence
4C?
E [(N); — Tz < 4C? k< .
[Ny = (), 7] < 43 O

This completes the proof of Lemma 4.2.
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5. On the closure ofGr (®) in £2(P)

Throughout this section, we do not assume ds continuous.

When X admits an equivalent local martingale meas@Qrand whenM has
the predictable representation property urldewe shall determine the closure of
Gr(©) in £%(02,.7 ,P) . If the density of the equivalent martingale measure is
square-integrable, the closure ®f(O©) is the space of square-integrable random
variablesH such thatEg[H | .%] = 0. On the contrary, when the density of the
equivalent local martingale measure is not square-integrable and if we assume
moreover thaiX is continuous, we can prove that the closureGf(©) is the
whole spaceZ?(12,.7 , P), under the assumption thag is trivial. These results
are related to the results obtained by Delbaen and Schachermayer (1996c¢). We
start with an auxiliary proposition.

Proposition 5.1.Suppose that M satisfies the predictable representation property
under P and that there exists an equivalent martingale measure Q for X. Then
(1) For every bounded7 -measurable random variable ) there exists a

sequencégd”)n>o € © such that?" - X is a bounded Q-martingale and

(Eo[Ur [.70] + (6" - X)1) 154

converges to i in £ ?(P) and £2(Q).
(2) £, 7,P) +Gr(0) = L2(02,.7 ,P).

Proof. (1) Let Ut be a random variable ity °(.77). SinceM has the PRMR),
X satisfies the PRE)) so that there exists a predictab¥;integrable procesg
such that

Ut =Eq[Ur | 7] + (6 - X)r.

If Uy := Eq[Ur | Z] + (6 - X): = Eg[Ur | %], then U is uniformly bounded
and thereforef - X is in .2(P). So we can define an increasing sequence of
stopping times T,)n>0 Which tends toT and such tha®" := 610 1,1 is in 6.
From the definition ofT,, the sequencéUT“)n>0 := (Ur,)n>0 converges tdJt

in ~?(P) and %4 2(Q) because this sequence is bounded.

(2) Let H be a random variable iZ2(£2,.7 ,P) which is orthogonal to
L0, P, P)+Gr(0). If U is a bounded random variable, part (1) allows us
to build a sequenceUf)n>0 Which converges tdJr in ~#2(P) and such that
UP =Ug + (0" - X)r with " € © andUy € £2(2,.7%,P). So

Ep[HU+] = nIin+‘| Ep[HUT] = nIir‘g Ep[H (UG + (0" - X)) =0.
These equalities imply that =0 P-a.s., thatis

L2, T, P)+Gr(O) = LN, 7 ,P).
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By means of Proposition 5.1, we can easily prove the next result.

Theorem 5.2.1f M satisfies the predictable representation property under P and
if X admits an equivalent local martingale measure Q with a square-integrable
density, therGr(0) = {H € £?(12,.7 ,P) | Eq[H | %] = 0}.

Proof. Let H be a random variable i®¢?(£2,.7 , P), such thaEqg[H | .7%] = 0.
We already know that£2(2,.%, P) + G1(O) = £?(12,.7 ,P), so

H = lm_ (H+(" - X)r).

where HY € £2%(2,.7%,P) and 9" € ©O. Since the density of) is square-
integrable, we can take the conditional expectation with respeéfytanderQ
in the last equality and we obtain

lim Hg =0,

n—+oo
which implies thatH is in Gr(0).

In the case where the density of the equivalent local martingale measure is no
longer square-integrable , we can also characterize entirely the closGi€®j
in £2(2,.7 ,P), under the assumption thag is trivial.

Theorem 5.3.Let X be a adlag semimartingale which admits an equivalent local
martingale measure Q. Assume that M satisfies the predictable representation
property under P and that the density of Q is not square-integrable. Theg, if

is trivial, Gr(0) = £%(12,.7 , P).

Proof. Denote by.7% the hyperplane iz > (P)
T ={U € £, 7 ,P) | Eg[U] = 0}.

As the density of) is not square-integrable we have tha&f is dense inZ > (P)
with respect to the norm-topology induced py | 2, on £ >(P).

Proposition 5.1 implies thaGr(©) is | . [|,2p, -dense in.77, we just
have seen thatZ is | . || ,p)-dense in£>°(P) and, of course,Z>°(P) is
| - Il ,2(p)-dense inZ2(P).

HenceGr(©) is dense in(i%Z(P), (el %z(p)).

Remark 5.4.1t is easy to construct an example such that Theorem 5.3 fails if
we drop the assumption thag is trivial.
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6. The Follmer-Schweizer decomposition and propertyR,(P)
for the minimal martingale measure

Throughout this section we assuiXas a continuous semimartingale with canon-
ical decomposition
X=X+M +A

We extend some results of Schweizer (1994) and Monat and Stricker (1995)
and prove thaX admits a Blimer-Schweizer decomposition if and only if the
minimal martingale measure exists and satisRgd>).

Definitions 6.1. (i) Given a semimartingale X as above, we say that a random
variable H € £2 (£2,.7 ,P) admits aFolimer-Schweizer decompositionde-
noted by F-S decomposition in what follows, if it can be written

(6.1) H=Ho+ (£-X)r +Lt P-a.s. where klis an.g-measurable ran-
dom variable£ € © and L= (L)g<;<7 IS @ martingale in 222, strongly orthog-
onal to M. o

(i) The semimartingale X admits Bollmer-Schweizer decomposition if
there are unique continuous projections, 71 andm, : %?(P) — %£?(P) such
that every He £?(P) admits a Pllmer-Schweizer decomposition

H=m(H)+m(H)+m(H)=Ho+(# X)t +Lt

where by € £2(02,.7%,P), 0 € © and(Lt)o<t<T is a martingale in #2, strongly
orthogonal to M.

For the next definition we refer totfimer and Schweizer (1991).

Definition 6.2. Suppose X is a continuous semimartingale satisfying the structure
condition (SC). If(& (—X - M),)o<t<7 IS @ martingale, then the measure™@

with densitygg = & (=X - M)y is called theminimal martingale measure

Theorem 6.3.Suppose X is a continuous semimartingale satisfying the structure
condition (SC). Then X admits afFmer-Schweizer decomposition if and only if
QMM exists and satisfies,P).

Proof. We first prove the “only if” part.

Suppose thaX admits a Bllmer-Schweizer decomposition and denote by
7o, 1, T2 the corresponding projections i 2(P).

Let (Th)n>0 be an increasing sequence of stopping times converging station-
arily to T and such that for each > 0, Ky, is uniformly bounded. It fol-
lows from Schweizer (1994) and Monat and Stricker (1995) that for elery
£2(02,.7,,P) there is a Bllmer-Schweizer decompositidth = Ho+(6-X)t +Lt
such that the following formulae are valid :
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(6.2)  Ho=mo(H)=Eqm(H | .7%)
(6.3)  Ho+(0-X) +Li = Eqme(H | .7) for t € [0,T]

As by assumptiongg is continuous ortZ?(P) and coincides WitlEgmin (- | .70) on
each £ 2(£2,.7,,P) we obtain thaEqmin (- | .7) is a continuous linear functional
on £?(0,.7,,P), whence ZMMo< <1 = (&£ (—=A-M))o<t<T iS @ bounded mar-
tingale in £ 2(P). Therefore the minimal martingale measure exists and formula
(6.2) holds for everyH ¢ £?(P).

To show the boundedness of the projectors

P’( = EQmin(' | ,7{)
as operators fromiZ2(02,. 7, P) to £ ?(12,.%, P), write
Pi=Piomg+Piom+Pyomo.

As regard<P; o mg = mg this operator clearly is uniformly bounded tinSimilarly
we have according to the contraction property Fomartingales

vt € [0, T] [Pt o ma|| < [l

where| - || denotes the operator norm 6f?(£2,.7 , P). Finally we claim that
there is a constar€@ > 0 such that

(6.4) IPt o m1|| < Cljmall.

Indeed this follows from the fact that, by the assumption of the continuity
of the projectionw;, we have thatri(£2(£2,.%,P)) = Gr(O) is closed in
£2(2,.7,P). Hence we know from Proposition 3.6 that there exists a constant
C > 0 such that for each € © we have

10 - X)*

y2py < Cl(0 - X)r

%2(P)

which readily implies (6.4). This shows the uniform boundedness of the family
of projections

P’( = EQmin(' | .%_)

This uniform boundedness is easily seen to be tantamount to con&{®)
for the minimal densitz ™" (see for instance Déhns-Dade/Meyer (1979) page
318).

Finally the boundedness of the operatBrsalso shows that (6.3) holds true
not only forH € £2(£2,.7,,P) but for arbitraryH € £?(£2,.7,P). This
completes the proof of the “only if” part.

Now we prove the “if" part.

We suppose that the minimal density satisfiegP). In particular it is a
square integrable martingale. To prove that the decomposition is unique, we can
and shall assume thét = 0. If
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T
Ho +/ 0sdXs + Lt
0

is a F-S decomposition dfl, thenHg = 0 becausédy = Eqmn[H | .70]. SO

;
/ 0sdXs + Lt = 0.
0

From the continuity ofX, taking the bracket with_ in the previous equality
yieldsLt = 0. Finally,f- X is aQ-martingale such that( X)t =0, sof-X = 0.
SinceX is continuous and - X is a P-semimartingale in?, the last equality
implies thatd = 0 in L2(M), which completes the proof of the uniqueness.

Now let us prove thaX admits a Bllmer-Schweizer decomposition. Re-
call that the minimal density satisfiés(P) and is continuous, so the stochastic
logarithm £ (Z™") is in BMO(P) by Theorem 2.140 = L?(M) and D,(P)
holds. Denote by #Z; the space of martingalels € .#Z3 strongly orthog-
onal to M and consider the Banach spaBe= £?2(02,.%,P) x © x .5
equipped with the norn{(Ho, 6, L)|| = [[Hol| -2y * 101l 2wy + [IL7 | 2y~ The
mappinge : B — £2(02,.7,P) defined byg(Ho, 0,L) := Ho+ (8 - X)1 + Lt
is continuous. The uniqueness of théllmer-Schweizer decomposition means
that ¢ is one to one. We know thatlp = Eqmn(H | .7). Hence||Hol| ,2p) <
[H &2y asQ™" and P coincide on.%. According to Lemma 3.14 we have
E((0-X+L)7) <C (- X+L)7ll ozp)- Sincez™n satisfiesR,(P) and is con-
tinuous, Theore_m 2.16 tells us tHEE - X + L)1 [ 20y < C[[(0- X + L)1l o2py -
Hence we obtain

(6.5)  [Ho

w2y T 110llequy + L7 [l 2y < ClIHo + (6 - X)7 + Lr ]

It follows that¢ ! defined onp(B) is continuous and thereforgB) is complete.
From Schweizer (1994) and Monat/Stricker (1995) we know that for ewery0
we have thatZ2(12,.77,,P) C #(B). Since¢(B) is complete, we obtaig(B) =
£2(2,. 7 ,P) and the proof of the theorem is complete.

We end this section with an example which is somewhat different in spirit
than the material presented above. So far we saw results following roughly the
pattern :Gt(©) has nice closedness properties iff the semimartinjateM + A
is not too far from being a (local) martingale, i&is somehow small compared
to M. But this type of result only holds true if we add an assumption of type
: “X admits an equivalent local martingale measure”. The next example shows
that some hypothesis of the latter type is indeed indispensable. We shall see that
if we turn completely around and consider the case whéris small compared
to A (which typically excludes the existence of an equivalent local martingale
measure foixX), then againGt(©) may be closed.

For example, if %)o<i< is the filtration generated by a standard Brownian
motion and we simply let the proce¥sbe strictly increasing and deterministic,
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e.g. X, = arctan{), then G..(©) equals the entire spac&?(12,.7,P) and
therefore is of course closed. This easily follows from the arguments given in
the example below, which presents a slightly more complicated situation. Note
that in the subsequent example there does not exist an equivalent martingale
measure foly and the structure condition (SC) does not hold true.

Example 6.4.Let Y; := W, +t, where YW )o<t<« iS @ one-dimensional standard
Brownian motion with natural filtration#;)o<t<~. Now consider the predictable
processy defined by, = (1 +t?)~! and setX := ¢ - Y. Then the procesX
extends to a semimartingale at infinity and its natural filtration.78)d<t <o
where. 7, is the sigma-algebra generatedunyk « .-7%. We claim thalG,(©) =
L2(12,. 7, P). In particular every random variablé € £?(12,.7,P) has a
F-S decomposition. However this decomposition is not uniquekardbes not
exist.

To prove thatG..(O) = £?(92,. 7, P), it will suffice to prove that there is
a constant > 0 such that for everyn € N and for everyf € £2(02,.%,,P)
there is an integrand € © such that

(6.6) (0-X)oo =f and [|0f| 2wy * [0l 2y < CIf

z2(pP) -

In order to prove this inequality fix an integer and let (;)i>1 be a strictly
o0

increasing sequence of positive integers such Jan ... n) " < co. We

k=1
setng :=n, 09 =1 neg, go = (0@ M)y and fori > 15 :=1+n +
Lo, 00 = *ginfldfllls,sﬂ], g =00 M), 0:=> 60,

! i=0

_ Hgifl‘l‘AZ(p)
o/ . Hence

Then H9(i)||L2(A) = |lgi—4ll Z2(P) ) H9||L2(M) =gl z2P) ~

o0
@) Z(nl L) TY2,
k=0

||9HL2(M) + ||9HL2(A) S 2||f

Thus inequality (6.6) is proved and the proof of the example is now complete.

7. Conclusion

This paper gives necessary and sufficient conditions on a discounted asset price
X for the subspace of attainable claims to be closed in the sp&aée”) of
square-integrable random variables. This closedness is important for applications
in financial mathematics since it allows the construction of mean-variance optimal
hedging strategies for arbitrary square-integrable contingent claims. Mathemat-
ically, our results involve weighted norm inequalities, and the conditiorXon
(apart from continuity) is that the variance-optimal local martingale measure for
X should be equivalent to the original measure and satisfy the reveikkemH
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inequality with exponent 2. Our techniques also allow us to extend existing re-
sults on the Bllmer-Schweizer decomposition, and this can in turn be used for
the construction of locally risk-minimizing hedging strategies.

References

1. Ansel J.P., Stricker C.: Lois de martingale, dezsiet @composition de &lmer-Schweizer.
Annales de I'Institut Henri Poincar28, 375-392 (1992)

2. Black F., Scholes M.: The pricing of options and corporate liabilities. J. Political Ecor®my
637-654 (1973)

3. Bouleau N., Lamberton D.: Residual risks and hedging strategies in Markovian markets. Stochas-
tic Processes and their Applicatio88, 131-150 (1989)

4. Choulli T., Stricker C.: Deux applications de laabmposition de Galtchouk-Kunita-Watanabe.
Séminaire de Probabifis XXX. Berlin, Heidelberg: Springer 1996

5. Delbaen F., Monat P., Schachermayer W., Schweizer M., Stricker &jalits de normes avec
poids et fermeture d'un espace dégrales stochastiques. CRAS P&19, Série |, 1079-1081
(1994)

6. Delbaen F., Schachermayer W.: A General Version of the Fundamental Theorem of Asset Pricing.
Mathematische AnnaleBO0, 463-520 (1994)

7. Delbaen F., Schachermayer W.: The Existence of Absolutely Continuous Local Martingale Mea-
sures. Annals of Applied Probability (1996a)

8. Delbaen F., Schachermayer W.: The Variance-Optimal Martingale Measure for Continuous Pro-
cesses. BernoulR, 81-106 (1996b)

9. Delbaen F., Schachermayer W.: Attainable Claims pithMoments. Annales de I'Institut Henri
Poincaé (1996¢)

10. Delbaen F., Schachermayer W.: A simple counterexample to several problems in the theory of
asset pricing arising generically in incomplete markets. Forthcoming (1996d)

11. Delbaen F., Shirakawa H.: A Note on the No Arbitrage Condition for International Financial
Markets. To appear in Financial Engineering and the Japanese Markets (1996)

12. Dellacherie C., Meyer P.A.: Probal#lit et Potentiel. chapitres & VIII. Paris: Hermann 1980

13. Dokans-Dade C., Meyer P.A.:égalies de normes avec poidser8inaire de Probabibs XIlI,
313-331. Berlin, Heidelberg: Springer 1979

14. Duffie D., Richardson H.R.: Mean-Variance Hedging in Continuous Time. Annals of Applied
Probability 1, 1-15 (1991)

15. Durrett R.: Brownian Motion and Martingales in Analysis. Wadsworth Advanced Books &
Software 1984

16. El Karoui N., Quenez M.-C.: Dynamic programming and pricing of contingent claims in an
incomplete market. SIAM Journal on Control and Optimizat&8) 29-66 (1995)

17. Polimer H., Schweizer M.: Hedging of Contingent Claims under Incomplete Information. Applied
Stochastic Analysis, Stochastic Monografh889—-414 (1991)

18. Folimer H., Sondermann D.: Hedging of non-redundant contingent claims. In: Hildenbrand W.,
Mas-Colell A. (eds.) Contributions to Mathematical Economics, pp. 205-223. Amsterdam: North-
Holland 1986

19. Harrison J.M., Pliska S.R.: Martingales and Stochastic Integrals in the Theory of Continuous
Trading. Stochastic Processes and their Applicatibhs215-260 (1981)

20. Jacod J.: Calcul Stochastique et Peolds de Martingales (Lecture Notes Math. 714) Berlin,
Heidelberg: Springer 1979

21. Kazamaki N.: Continuous Exponential Martingales and BMO (Lecture Notes Math. 1579) Berlin,
Heidelberg: Springer 1994

22. Kunita H., Watanabe S.: On square integrable martingales. Nagoya Math209-245 (1967)

23. Merton R.C.: Theory of rational option pricing. Bell Journal of Economics and Management
Scienced, 141-183 (1973)

24. Monat P., Stricker C.: Fermeture @& (0) et deL?(%) + Gr(©). Seminaire de Probabiis
XXVIII, 189-194. Berlin, Heidelberg: Springer 1994



Weighted norm inequalities and hedging 227

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Monat P., Stricker C.:dllmer-Schweizer Decomposition and Mean-Variance Hedging for Gen-
eral Claims. Annals of Probability, VoR3(2), 605-628 (1995)

Protter P.: Stochastic Integration and Differential Equations (Applications of Mathematics 21)
Berlin, Heidelberg: Springer 1990

Schachermayer W.: A counter-example to several problems in the theory of asset pricing. Math.
Finance3, 217-230 (1993)

Schweizer M.: Option hedging for semimartingales. Stochastic Processes and their Applications
37, 339-363 (1991)

Schweizer M.: Approximating Random Variables by Stochastic Integrals. Annals of Probability
22(3), 1536-1575 (1994)

Schweizer M.: Variance-Optimal Hedging in Discrete Time. Mathematics of Operations Research
20, 1-32 (1995)

Stricker C.: Arbitrage et lois de martingale. Annales de I'Institut Henri Poin26r 451-460
(1990)

Yan J.A.: Caraérisation d’une classe d’ensembles convexesdeu H! (Seminaire de Prob-
abilites XIV, 220-222) Berlin, Heidelberg: Springer 1980

Yor M.: Sous-espaces denses dahsou H! et repésentation des martingalesé(Binaire de
Probabilies XIl, 265-309) Berlin, Heidelberg: Springer 1978

Yor M.: Inégalies de martingales continues&eesa un temps quelconque (Lect. Notes Math.
1118, 110-146) Berlin, Heidelberg: Springer 1985



