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Abstract In this paper we present adaptive algorithms for
solving the uniform continuous piecewise affine approxima-
tion problem (UCPA) in the case of Lipschitz or convex
functions. The algorithms are based on the tree approxima-
tion (adaptive splitting) procedure. The uniform convergence
is achieved by means of global optimization techniques for
obtaining tight upper bounds of the local error estimate (split-
ting criterion). We give numerical results in the case of the
function distance to 2D and 3D geometric bodies. The result-
ing trees can retrieve the values of the target function in a fast
way.

Keywords Tree approximation - Precomputed maps -
Uniform approximation - Branch and bound -
D.C. optimization

1 Introduction

The analytical expression of most functions appearing in
practical applications is unknown a priori. These functions
are frequently given by

— Data provided by sensors and measurement devices.
— Data provided by the computer execution of a pro-
grammed algorithm.

In simulation applications we need to reproduce and inter-
polate the above data in a fast way. This can be done using
a suitable approximant. An ideal approximant should verify
the following conditions:
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— C1) Simplicity. The approximant should consist of not
too many elementary functions.

— (C2) Precision. The approximation to the target function
should be uniform and accurate.

— (C3) Fast computation. The retrieval of data should be
faster than that provided by the original data generator.

Piecewise affine (PA) functions satisfy condition C1 if
the number of subsets in the partition is not excessively large.
Moreover, if a PA-function is invertible, it can be inverted in a
closed form. Thus PA-approximation is ideal for applications
requiring the approximation of a function and its inverse. For
example, the field of robotics is rife with cases where changes
of coordinates play a key role:

— In mobile robot navigation [17,29].
— In the representation of gaits [28].

PA-functions have also been extensively used in computer
graphics [27].

We give below a formal definition of uniform continuous
PA-approximation.

Let {vg,vy,...,vg} be a set of d 4+ 1 vectors in R4,
This set is called affinely independent if the vectors {v; —
Vo, V2 — Vo, ..., Vg — Vo} are linearly independent. Suppose
now that {vg, vy, ..., v4} is an affinely independent subset of
RY. The d-simplex T generated by {vg, vi, ..., vg4}, denoted

by (vg, Vi, ..., Vq), is defined to be the convex hull of the
vectors vo, Vi, ..., V4. We denote by |T'| the diameter of a
d-simplex T.

We denote by I7; (R?) the space of polynomials of degree
less than or equal to 1, that is

Hl(Rd)z{a0+a1x1+--~+adxd:ai € R,
i=0,...,d}.
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Consider the d-interval I = [b, ¢], where b, ¢ € RY. We can
find n (closed) simplices 7; such that

Nty =2, i+#]j,
n

Urn=1r

i=l1

where 7' denotes the interior of the set 7' (for example, see
[4,24]). We call A = {T;}!_, apartition of /. The set of par-
titions of I is denoted by P (I). We have the following result

Proposition 1 ([12]) Let T = (vo, V1, ..., Vq) be a d-sim-
plex and let f be a continuous function from T to R, then
there exists a unique affine map It (f) such that

IT(f)(v)) = f(v)),

Let S be a compact set in R9. Let C(S) be the class of
functions g with domain S and range in R such that g is
continuous on S. The customary norm for C(S) is given by

j=0,1,....d.

I g llccs)= max|g(x)}
xes

From the above result, given f € C(T) we can define the
local approximation operator

It : C(T) — I (RY)
f = Ir(f).
The affine map I7(f) has the following properties

Proposition 2 LetT = (vg, vq, ...
tained in I and f € C(I), then

, Va4) be ad-simplex con-

@ Ifx =% nvi, 4 >0, i=0,....dand
Z?:() A =1, then

d
Ir(f)(®) = D 2if (i),
i=0

M(X), ..., Ag(X)) are usually called the barycentric
coordinates of x. Each \;(X) € Il is uniquely deter-
mined by 1;(v;) = &;;.

(b) Given € > 0 there exists a number § > 0 such that for
all d-simplices T contained in I with |T| < § we have

| f—1I7(f) llcar)< e

Proof a) follows from Proposition 1. ) is a consequence of
a) and the uniform continuity of f on I. O

Let A be a partition of [ and f € C(I). We define the
approximant

s= > (N,

TieA
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where xr; is the characteristic function of the set 7;.5s € C (/)
if the partition (triangulation) is conforming and is piecewise
continuous, otherwise. The partitions generated by the algo-
rithms described in this paper are nonconforming.

We try to find an algorithm to solve the following uniform
continuous PA-approximation (UCPA) problem:

Given e > 0 and f € C(/), find A € P(I) such that
I f =5 lleny=max || f —I;,(f) e < €.
TieA

We call such A €-PA tessellation. We add the following
condition

The tessellation should be of moderate size (C1).

Some usual algorithms for PA-approximation do not
accomplish these requirements, for example:

— Uniform refinement procedures. These methods, based
on Proposition 2b), are non adaptive, that is, regions in
which the function is affine are subdivided in the same
way that strong nonlinear regions. This implies tessella-
tions with a huge number of simplices. Therefore condi-
tion Cl1 is not satisfied.

— Moving mesh methods. These algorithms start with an
initial mesh and move the vertices with modification of
the combinatorial structure of the initial grid [18] or keep-
ing such structure [13]. Although these algorithm are
adaptive, the number of cells in the initial partition is taken
heuristically. Therefore, these methods do not guarantee
uniform convergence.

A procedure for solving the UCPA problem with tessel-
lations of moderate size, consists of using tree approxima-
tion or (adaptive splitting) algorithms. These algorithms
consider:

— A nonnegative function U(7T) which gives an upper
bound of || f — I7(f) llecr-

— An initial partition A of I.

— Analgorithm R for dividing any simplex into two or more
simplices.

Given € > 0 we say that a simplex 7 is good if
U(T) < €; otherwise T is called bad.
The algorithm proceeds in the following manner:

— The good simplices in the initial partition A are put into
the set G; and the bad simplices are put into the set Bj.

— At each step j we have a set of good simplices G; and
a set of bad simplices ;. We divide the simplices in B;
into their children according to R and test whether these



Uniform tree approximation by global optimization techniques

85

children T are good or bad to obtain the sets G; | and
Bjy1.

— The algorithm stops if B; = &. Then G; is the searched
partition A. If the stopping criterion is not satisfied, the
process is repeated.

This algorithm always converges due to Proposition?2.b.

Piecewise polynomial approximation by adaptive split-
ting was introduced by Birman and Solomjak [3] in the con-
text of Sobolev spaces and polynomials of degree n. This
method has been studied from a theoretical point of view
in, for example, [2,3,7-9]. In practice, the major difficulty
resides in computing the local error estimate

E(T) =r;1€a}<|f(X)—1T(f)(X)l- ey

In this paper we give efficient algorithms for finding tight
upper bounds on E(7). In this way tree approximation can
be implemented for obtaining uniform continuous PA-ap-
proximants (condition C2). The resulting data structures are
binary search trees. For binary search trees the average depth
over all nodes in the tree is O (log(M)) where M is the total
number of nodes [1, p. 105]. Therefore, the average retrieval
time will be also O (log(M)) (condition C3).

This paper is organized as follows, Sect. 2 gathers ana-
lytical upper bounds on the local error function E(T'). Sec-
tion 3 provides two methods based on global optimization
techniques to obtain tight upper bounds on E (7). Section 4
outlines the algorithm to generate the approximation tree.
Section 5 shows numerical experiments using as target func-
tion the distance from a point to a geometric figure. Section 6
provides some concluding remarks.

2 Upper bounds of analytical type

From now on, || . || denotes the Euclidean norm in R?. In
the case of smooth functions, we have the following upper
bound on E(T)

Theorem 1 ([30,32]) Let T be a d-simplex in R, Let f e
C%(T), then

lf(x) — Ir(f)(x)| < T flacor, VXET,

“4d+1)
2

where |T| is the diameter of T and | f|2.c0,T is the seminorm
on C*(T) defined by

2
[f12.007 =D f1 Lo (7)),

where
|D*f|(x) = sup |Dy,Du, f(X)].
uj ,UQERZ
lu;lI<1

The main drawback of the Subbotin—Waldron inequality
(2)is thatit can be applied only to C? functions. Nevertheless,
most functions which appear in practice are non-smooth. For
example, the distance to a convex geometric figure (test func-
tions used in this paper), is not differentiable at the boundary
of the figure. In the case of polygons and polyhedra, it is not
of class C? on some regions outside the body.

The above theorem can be applied with some modifica-
tions to the distance from a point to a d-sphere, which is of
class C? on regions that do not contain the boundary. Further-
more, its second order partial derivatives can be computed
easily. The following result shows how to apply the above
inequality in this case.

Proposition 3 (a) Let ¢ be a circle centered at the origin
with radius R. Let d.(X) be the distance from a point X to c.
If T = (vo, Vi, V2), where || Vi ||> R, i =0, 1,2, then

1
lde|2,00,7 < —
To

where 1, is the distance from the origin to the triangle T.

(b) Let s be a 3-sphere centered at the origin with radius
R. Let ds(X) be the distance from a point X to s. If T =
(vo, V1, V2,V3), where || v; ||> R, i =0,1, 2,3, then

|ds|2,oo,T =—,
To

where r, is the distance from the origin to the tetrahedron T .

Proof We give a proof of the last inequality. Part (a) can be
proved in a similar way. We first recall the definition of the
Frobenius norm of a m x n matrix A

1/2
m /

n
IATe= DD laijl?

i=1 j=I

DyDydp(x) = u’ Hv, where H is the Hessian matriz of dg.
If|ju<1land] v |<1,then

|DyDydp )| <[[w Il H IFI v I<I H |F.

Since d; = r — R, where r = (21‘3=1 x2)1/2, we have

sz.—i—x,%

Dj;d, = s Jk#i, =123
r

and
Xixj o, ..

Djjdy =——~, i#j, i,j=123,
r

then
V2

| H llr= ==
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Even in the case of a d-sphere, when a simplex T inter-
sects its boundary, the distance is non-differentiable on 7.
Therefore, we need upper bounds on E(7) in the case of
non-smooth functions. The following inequality considers
the case where f is convex.

Proposition 4 Let f be a convex, continuous and non neg-
ative function defined on T = (vo, V1, ..., Vq). If we define

gx) = It (fHx) = f(x)

and

M= N,
max (£ ()

then

0<g(x) <M, VxeT. 3)

Proof The left-hand side of inequality (3) is a consequence
of the convexity of f. Since f is non-negative, we have
- fx =0, xeT, “)

since I ( f) is convex it attains its maximum value at a vertex
of T

It (fHx) =M. Q)
If we add (4) and (5), the result follows. O

The above inequality is effective only for small simplices
near (or intersecting) the boundary of the d-sphere. It will be
used to complement the Subbotin—Waldron inequality.

Consider now the case of Lipschitz functions. Let S be a
d-simplex in R?, let L € [0, 00).1: S — Ris
L-Lipschitz on S if

lx) —Ix) <L|x—-x"|, x,x €S8 (6)
[ is Lipschitz on S if
Lip(l) = inf{L € [0,00) : [ is L — Lipschitz on S} < oo.

The function distance d to an arbitrary nonempty, closed set
in R? is Lipschitz on R with Lip(d) = 1 [6, p. 50].
We have the following result

Proposition 5 ([26]) Let S = (vo, V1, ..., Vq) be a d-sim-
plex in R and let | be L-Lipschitz on S, then

1
l <
(X)_d—i—l

d d
X Zol(vj)—i—Lor;l?SdeOH vi—vjl], VxeSs.
j= j=

(N

@ Springer

If f is a L-Lipschitz function, we can apply this inequal-
ity to problem (1). Define h(x) = | f(x) — Is(f)(x)|. Since
Is(f)(x) = Zflzl aix; + ag, Is(f) is a Lipschitz function

d
Zai (x; — x})

i=1

1Is(fH(x) = Is(HX)] =

172

d
< (Za?) Ix=x"l. ®

i=1

From (6) and (8) h(x) is L/-Lipschitz on S with L' =
L+ (Z;j:] a?)!/2. From (7) we have

1
h(x) < ——
™ =777
d d
X Zh(v,-) —i—L’OIQ?;dZ lvi—v;ll], xeS.
Jj=0 j=0
Define
1 d d
wO=7— Z)h(vf)“'o??;‘d% Ivi—vill].
Jj= Jj=

1(S) is never a tight bound because it is only of order |S]|.
Therefore, its direct use is inefficient. Further on, it will be
employed as a basic tool for subdivision algorithms.

From the above results, it seems clear that in the case of
non-smooth continuous functions it is necessary to design
new procedures for obtaining tight upper bounds on E(T).
In the next section we provide several such methods based
on global optimization techniques.

3 Tight upper bounds by global optimization techniques

In this section we introduce techniques for finding upper
bounds on E(T) lower than those provided by the analyt-
ical methods described in the previous section.

3.1 Truncated simplicial branch and bound method

Branch and bound is a major tool for solving hard optimi-
zation problems. A branch and bound algorithm consists of
several steps:

— Branching: Creation of one or more new subproblems
from an existing subproblem.

— Bounding: This process is applied to each subproblem.

— Prunning: Elimination of the subproblems which cannot
lead to an optimal solution.

— Retracting: Moving backward from a higher level to a
lower level.
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The branch and bound approach to optimization problems
was developed initially within the context of solving linear
programs with integer decision variables [19]. The first appli-
cation of this methodology to the optimization of multivariate
Lipschitz functions appeared in [25].

Below we describe the truncated branch and bound algo-
rithm which is a slight modification of the classical simplicial
branch and bound method [26].

Let i (x) be the function defined in Sect. 2 above. In order
to describe the algorithm, we need some previous definitions.

We denote by v(S) the set of vertices of any d-simplex S.
Ateachiterationcycle k = 1,2, 3, ... we have the following
elements

— A current list of adaptively generated, disjoint (with
respect to their interior) subsimplices of 7
Pe={T,....T;}, i=i(k),
that jointly cover the actual search region of interest.

— An estimate of the global optimizer z; = maxycy h(v)
where V = Ui‘:l v(T}). z,t is a lower bound on E(T).

— An upper bound 1 (T;), obtained from (9), for each T;
Pr.

Then we can state

Truncated simplicial branch and bound method

Let T = (vp, V1, ..., Vq) be the d-simplex under consid-
eration in the process of tessellation.

Read Niter (Number of iterations).
Make Py = T and zj; = maxo<;<q{h(v;)}.
Compute u(T) (bounding).
for k =0, Niter
{
-Build the set Ry = P — {T; : u(T}) < z;}
(prunning).
-Select a subsimplex 7; € Ry such that
u(Ty) = maxy, R, w(T,) (retracting).
-Divide 7; into two subsimplices by bisecting
the largest edge of T;. T; = U?z 1 Tt; (branching).
-Build the set Py = (Ry — T;) U (u§:1 Ti).
-Evaluate /1 on the new vertices and derive
a new estimate of the global optimizer zj_ ;.
-Compute 1 (T;) for each T; € Pyyq (bounding).
}
write: An upper bound of 2 on T is
[ = MaXT;ePy;pe, iy H(T))-
end

Note. The classical simplicial branch and bound algorithm
tries to find the maximum of / within an error €.

The for loop is replaced by

do {

Block of sentences equal to those

included in the above for loop.

Make pu = maxy;ep,,, #(T}).

} while(u — z; | > €)

and the last sentence by write The maximum is z;; 41> Tespec-
tively.

The classical branch and bound is not suitable for obtain-
ing upper bounds on E(7") because the number of iterations
is unknown a priori, and can be very large for a given €. We
call TSBBA the adaptive algorithm based on the truncated
simplicial branch and bound method.

3.2 Successive subdivision D.C. method

If f(x) is a convex function defined on a d-simplex 7 then
J&x) = Ir(f)(x) =0, VxeT.

Therefore, h(x) = IT(f)(x) — f(x) > 0 and (1) can be
written as

E(T) = max h(x) = —min(f(x) — I7(f)(x)).
xeT xeT
The problem

min(f (%) = Ir (f)(x)). (10)

is a difference of two convex functions (D.C.) optimization
problem.

Most algorithms for D.C. optimization are iterative (see,
e.g., [31] for a survey), therefore, they are not suited to be
included into an adaptive splitting algorithm. In this section
we use some preparatory results of an iterative algorithm
(prismatic branch and bound [16]) for obtaining methods
easy to implement within an adaptive splitting approach.

By introducing an additional variable ¢, (10) can be con-
verted into the equivalent problem

min  (t — Ir(f)(x)).

fx)—1=0

(11)

with concave objective function and convex feasible set.
In effect, it is clear that

min (1 — I7(f)(x)) = min(f (x) — I7(f)(X)).

xeT xeT
Sx)—1=0
From this equality the following result is obtained
Proposition 6 If x* is a solution of (10) and t* = f(x*),

then (X*, t*) is a solution of (11). Conversely, if (X*,t*) is a
solution of (11), then X* is a solution of (10).
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Let f : R? — R be a convex function and let z € R¥, the
subdifferential of f at z is given by

if@={veR!: f@+x—2).v<fx), VxeRe

S € df(z) is called a subgradient of f at z. We use the
following definition [16, p. 220].

Let f be a convex function on R? and let M be a finite set
of points in R?. Then the function

fm(x) = max((x —z).s + f(2)),
zeM

where s is a subgradient of f atz, has the following properties

fu(x) is piecewise affine and convex on RY.

fu(x) < f(x) forall x € RY.

fm(z) = f(z)forallz e M.

If My € M>, and we take the same subgradient in points
in My N M> as in points in M7, then fp, (X) < fum, (X) for
allx e RY,

A=

(11) can be written as

(xr?)ilelF(t — I7(/)(x),

where

F={x,1neR™ :xeT, f(x)—t<0).
Define

Py={x1eR* :xeT, fyux) —r<0},
where M is a finite subset of T. Then Py; D F, and

min (¢ — I7(f)(X)) =< (Xntl)iIEIF(t — I7(f)(x)),

x,t)ePy

hence

— min (r —I7(f)(x)) (12)

(x,1)€Py
is an upper bound on E(T). If we consider two finite sets
M and M> and fy, and fu, satisfying the conditions in
Property 4, we have

min (1 —I7(/)(x)) = min (¢ —I7(f)x),
(X.1)€ Py, (x.1)€Py,

This inequality gives an incremental procedure for improv-
ing the bound, but it depends on the position of the initial and
successive points and on the choice of the subgradients. Even
in the best case, the resulting procedure would be iterative.

An alternative heuristic approach consists of considering
a set M having many points uniformly distributed on 7. A
drawback of this method is the need of solving LP (linear pro-
gramming) problems (12) having a large set of linear restric-
tions. This can lead to numerical difficulties when standard
algorithms, such as the simplex method, are used for solving
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them (In an adaptive splitting procedure such LP problem
must be solved many times).

Further on, we detail the successive subdivision method,
that avoids large LP problems. Below we prove that when f
is the function dp (distance to a polytope P inR? d = 2, 3),
we can compute effectively Pyy.

Let d¢ the function distance to a closed, convex set C in
R?. The subdifferential of dc is given by

if zeC
if z¢ C

Nc¢(z) N By
(z—rnc @)/ | z—mc(2) |

ddc(z) = [

where m¢(z) denotes the projection of z on C, N¢(z) the
outward normal cone of C at z and B; the Euclidean unit
ball centered at the origin [15, p. 259].

If C is the convex polyhedron defined by

P={xeR:ajx<bj, j=1,...,NC}
and we define the set of active constraints at z by
J(z)={j:a;z2=0b;},

then

Np(z) =

E ojaj o = 0t,

Jjel (@)

see for example, [15, p. 138]. From the above expressions
we can calculate subgradients of dp at z. We consider d = 3
(the treatment of d = 2 is similar). If T is the tetrahedron
(vo, V1, V2, V3), f is the distance to P, represented by dp and
M is the set of vertices of T', we can give a precise description
of PM.
Every face of the tetrahedron can be represented by the
3-combination {i, j, k} of {0, 1, 2, 3}.
Let t denote the set of 3-combinations of {0, 1, 2, 3}.
The equation of the plane containing the face {i, j, k} is
given by
n;j.(x —v;) =0,
where
n;jp = (V; — Vi) X (Vg — V;).
Define

Eijx =njji.(vy —v;) where [ ¢ {i, j, k},

eijk = Eiji/|Eijkl.

Points x inside T satisfy

n;jr.(X —vj)ejjxr >0 forall {ijk} € 7.

Consequently, Py is the set of points (x, £) € R* such that

x —v;).sdp(vi) +dp(v;) —t <0,

n;jc.(X —vi)ejjr >0,

i=0,1,2,3,
[ijk} € T.
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0 1

Fig. 1 2D mesh form =4

Therefore, (12) is a linear programming problem with 6 con-
straints in 2D and 8 constraints in 3D. It can be solved by
several procedures, for example, the simplex algorithm.

The idea behind the successive subdivision D.C. method
is the following. For a given d-simplex T', we can reduce the
upper bound on E(T') by subdividing 7 into a set of subsim-
plices and applying the above method to each one of them.
Then, an upper bound on 7 will be the maximum of the upper
bounds found for the subsimplices. If we repeat this process
over a fixed number of partitions of 7, we can choose the
upper bound on 7 as the minimum of the bounds obtained
for each partition.

To express concretely the algorithm, we detail the subdivi-
sion process used for 2-simplices (triangles) and 3-simplices
(tetrahedra).

The subdivision process is made by means of the algebraic
(transport) method.

In the plane we triangulate the standard triangle

§ = ((0,0), (1, 0), (0, 1)),

in the following way

— Every edge is subdivided into m equal parts.
— The points of the subdivision are connected by straight
lines as shown in Fig. 1.

In this way, we subdivide the standard triangle into m?

subtriangles. Then, given an arbitrary triangle
T = (vo, V1, v2) we export the mesh of S into 7 by means
of the application

w=(1—-x—y)vo+xv]+ yvs.

In three dimensions, we subdivide the standard tetrahe-
dron

89
section z=0 section z=0.25
y
2
3 1 1
3 2 2
3 3 1 3 1
3 3 2 3 2
3 3 3 1 3 3 1
0 1 0 1
’ section z=0.5 ; section z=0.75
4
2
3 1 1
0 1 0 1

Fig. 2 Generation of subtetrahedra for m = 4

§=1((0,0,0),(1,0,0), (0, 1,0), (0,0, 1))
into subtetrahedra in the following way

— Every edge is subdivided into m equal parts.

— We intersect S with the planes x = k/m, y = k/m,
z=k/m and x+y=k/m, k=0,...,m.

— Every triangle in the sections z = k/m, k=0,...,m
(Fig. 2) is used to generate 1, 2 or 3 subtetrahedra accord-
ing to the method described in [11].

In this way, we subdivide the standard tetrahedron into
m3 subtetrahedra. Then, given an arbitrary tetrahedron 7 =
(vo, V1, V2, v3) we export the mesh of § into 7 by means of
the application

w=(1—x—y—2)Vo+xv|+ yvy + z2V3.

Let T = (vg, Vi, ..., Vq) be the simplex under consider-
ation in the process of tessellation.
Denote by

d

T = (Vig. Vip, -, Vi), 1<k <m",

the elements of the mesh with m subdivisions by edge. Define
P} as the set

{(x,1) e R :x € T/ and

x—vi)sdp(vip) +dp(vii) —t <0, i=0,...,d}.

Using the above notation and denoting by ub the searched
upper bound, we can state
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Successive subdivision difference of two convex
functions method

Read N (Maximum number of subdivisions
of the edges)
ub = 10°;
form =2, N
{
ub™ = 0;
fork =1, m?
{
uby' = —ming e pm (t — agy (f)(X))
if Wb’ > ub™) ub™ =ubj';
}
if ub™ < ub) ub = ub™,
}

end

This algorithm explores uniformly the domain and it only
needs to solve a small LP problem of fixed size at each iter-
ation. We call SSDCA the adaptive algorithm based on the
successive subdivision difference of two convex functions
method.

4 Algorithm to generate the approximation tree

We assume that the initial domain D is the union of several
d-simplices with pairwise disjoint interiors. The adaptive
splitting algorithm (Sect. 1) is applied to each one of them
consecutively. The algorithm splits recursively each sub-
simplex into two subsimplices by dividing its largest edge
according to the following method. Given two positive
parameters € and M L, the split criterion is defined as

SPC(T) = {UB(E(T)) > € and MAXL > ML},

where UB(E(T)) is the upper bound computed according
to the methods specified in the above sections and MAXL
denotes the length of the largest edge of the simplex. We
impose a minimum value M L for the length of the subsim-
plices edges. In the experiments (Sect. 5), ML has been a
very small number and it has never been reached.

The resulting data structure is a binary search tree. A
C-like pseudocode of the algorithm to generate the approxi-
mation tree can be found in [23].

5 Computer experiments

In this section we test the above methods with the prob-
lem of approximating the function Euclidean distance to a
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geometric body. Its fast computation is necessary in robotic
applications (obstacle avoidance, path planning, etc) and in
VR-simulations. In pattern recognition this function allows
to compute the Hausdorff distance between polytopes [22]
(Hausdorff distance is a similarity measure between bodies).
The experimental environment has been the following:

— CPU Pentium IV 2GHz.

- RAM 1GB.

— Operating system Windows XP.

— Running software Microsoft Visual C 6.0.

5.1 Experiments in two dimensions

The domain of the functions to be approximated has been the
square [—4, 4]? containing each figure. This square is further
divided into two triangles by its diagonal. Every algorithm
has been applied to each triangle consecutively.

2D experiments are shown in Fig. 3. We use the following
notation

— ¢p6: convex hexagon.

— ¢p20: convex polygon with 20 sides.

— c: circle of radius 2.

— ncp: nonconvex polygon with 14 sides.

In two dimensions we have used the following algorithms

— TSBBA: algorithm based on the truncated simplicial
branch and bound method (Sect. 3).

— SSDCA: algorithm based on the successive subdivision
difference of convex functions method (Sect. 3).

— SUWAI and SUWAZ2: algorithms based on the Subbotin—
Waldron inequality (2).
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All these algorithms use the scheme for tree generation given
in Sect. 4. TSBBA uses a doubly linked list for implementig
the branch and bound process. SSDCA solves the linear pro-
gramming problem (12) by means of the two-phase simplex
method (see, e.g. [5]). SSDCA has been applied with maxi-
mum number of subdivisions of the edges N = 5 in all 2D
experiments. The distance from a point to a convex polygon
has been computed using the LSABF algorithm [21].

The algorithms have been implemented in different pro-
grams having the following supplementary features. Define
the average error

) /If(x)—lr(f)(x)ldx
E(T) =L ,
v(T)

where v(T') denotes the volume of the d-simplex 7. We call
Es(T) and E7(T) the result of evaluating (13) by means of
the Grundmann and Moller’s cubature rules of degree 5 and
7, respectively [14]. The upper bound UB(E(T)) in the case
of polygons has been determined by the following algorithm

(13)

if (A. T isinside the polygon)
UB(E(T)) = 0;
else if (B. T is contained within an outward
infinite rectangle normal to some edge)
UB(E(T)) = 0;
elseif (C. |Es(T) — E7(T)| < £} && E7(T) < Ey)
{
UB(E(T)) is determined by the corresponding
Global optimization algorithm
}
else
UB(E(T)) = 1000;

In the case of convex figures condition A is a test for
checking if the triangle T lies inside the figure (E(T) = 0).
In the nonconvex case we suppose that the nonconvex poly-
gon is the union of convex polygons with pairwise disjoint
interiors (components). We check if the triangle T lies inside
a component polygon.

In the case of convex figures condition B is a test for
checking if the three vertices of the triangle are projected
on the same edge of the polygon. In the nonconvex case we
check if the three vertices of the triangle are projected on the
same edge of the same component polygon without inter-
ference from the remainder components. In both cases the
distance is affine over T, therefore, E(T) = 0. Condition C
is a test for applying global optimization algorithms only to
feasible triangles. The first part of this test tries to guaran-
tee the accuracy of the approximated integrals (see [23] for
details).The Global optimization algorithms are TSBBA and

SSDCA in the case of convex polygons and TSBBA in the
case of nonconvex polygons.

For the circle, the algorithm for determining UB(E(T))
in the case of TSBBA and SSDCA is the same that the previ-
ously stated but removing condition B. In the case of applying
the Subbotin—Waldron inequality (SUWA1, SUWA?2), the
procedure is the following

if (A. T isinside the circle)
UB(E(T)) = 0;
elseif (B. T intersects the boundary of the circle)
UB(E(T)) is determined by inequality (3)
in the case of SUWAL and by formula (9)
in the case of SUWA2.
else
UB(E(T)) is determined by
the Subbotin—Waldron inequality (2);

The results obtained by applying TSBBA (e 0.05,
ML = 0.001) to the function distance, are shown in Fig. 4
as graphs of number of iterations versus number of trian-
gles in the tessellation. The number of triangles decreases
as the number of iterations increases reaching a stationary
value which corresponds to the best tessellation which can
be obtained using this method.

From now on, we call € precision. In the figures we use
the reciprocal of the precision K = 1/¢. The compared per-
formances of TSBBA, SSDCA applied to the function dis-
tance to the polygons and the circle and SUWA1 and SUWA2
applied to the function distance to the circle, are shown in
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Fig. 5 2D performance of the proposed algorithms

Table 1 Performance comparison between TSBBA and SSDCA

cpb cp20 c
TSBBA 816 1328 1176
SSDCA 776 1192 992

Fig. 5 as graphs of reciprocal of the precision versus the num-
ber of triangles in the tessellation. In all cases considered, the
behavior has been almost linear. The numbers of triangles
corresponding to K = 50 are shown in Table 1. TSBBA has
been applied with Niter = 9000 in the three examples.

Figure 6 shows the tessellations obtained by TSBBA
applied to the distance to ncp, corresponding to different
precisions (the data corresponding to K = 100 have been
obtained with the non-stationary value Niter = 950).

Figure 7 shows the graphs of the tessellations obtained
by applying SSDCA to the function distance to the hexa-
gon cp6. The number of triangles represented in these
graphs is

— SSDCA with K=100: 1480 triangles.
— SSDCA with K=1,000: 17372 triangles.

From Figs. 4, 5 and Table 1 we can conclude that

— SSDCA is the most effective procedure in the case of
convex figures (polygons and circle). It obtains greater
values of K than TSBBA. Moreover, the number of tri-
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Fig. 7 2D tessellations generated by SSDCA

angles is lower than that obtained with TSBBA, SUWA1
and SUWA2.

— TSBBA gives less values of K and requires more com-
putational resources than the other methods, but it can be
applied for obtaining €-PA tessellations of the function
distance to any figure, including non-convex ones.

The results about the runtime of TSBBA, SSDCA,
SUWA1 and SUWAZ2 are shown in Fig. 8 as graphs of recip-
rocal of the precision versus compute time.

We can conclude from these experiments that

— SUWALI and SUWA?2 are the fastest algorithms.

— SSDCA shows an acceptable compute time.

— TSBBA is the slowest of all algorithms because its sta-
tionary behavior is reached after many iterations.

We have studied the increment in the number of triangles
in the tessellations as the domain of the function distance
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increases. The results obtained by applying SSDCA to the dis-
tances to cp6, cp20 and ¢ are shown in Fig. 9 as graphs of area
versus number of triangles. In all cases, the error and mini-
mum edge length are fixed: ¢ = 1073 and ML = 107*
We have considered the domains: [—3, 312, [—4, 4]%,[-5, 5]?
and [—6, 6]%. In the case of polygons with a small number
of vertices, a little change in the size of the domain implies a
big change in the number of triangles in the tessellation. This
instability accounts for the results obtained for cp6.

x 10

2 4

-8 - 4

-12 - b

_14 I I I I I I I

x10

Fig. 10 Approximation tree

Figure 10 shows the approximation tree generated by
SSDCA in the case of the distance to the hexagon cp6
with € =0.01 and ML =0.001 (1480 triangles). The initial
domain has been the triangle with vertices (—4, —4), (4, —4)
and (4, 4).

5.2 Experiments in three dimensions

In this subsection we consider the function distance to a 3D
geometric body. The domain of this function has been the
cube [—4, 413 containing each of the considered bodies. Due
to RAM requirements, we have decomposed the cube into
twelve tetrahedra by means of its center and the diagonals of
its faces. The algorithms have been applied to each tetrahe-
dron consecutively.

In some 3D experiments we have used ellipsoidal polyhe-
dra, that is, those inscribed in the ellipsoid

x2/a* + Y2 b+ (z =)/ = 1.

The ellipsoid has been subdivided axially (z axis) into
m parts and radially (x—y plane) into n parts. The result-
ing polyhedron has (m — 2)n + 2 vertices and (m — 1)n
faces. We denote by £(n, m, a, b, c) any polyhedron of this
type.

3D experiments are shown in Fig. 11. We use the following
notation

— cpl4: tetrahedron.

— cpl6: cube.

— ¢pl20: icosahedron.

— s: sphere of radius 1.5 centered at the origin.

— epll: £(10, 10, 1, 1, 1.5) (82 vertices and 90 faces).
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— epl2: £(20,26, 1, 1, 1.5) (482 vertices and 500 faces).
— epl3: £(25,33, 1, 1, 1.5) (777 vertices and 800 faces).

The specific features of the bodies with less vertices are
described below.

— The vertices of the tetrahedron are

(1.5,—-1.5,—-1.5) | (1.5,1.5,—1.5)
(—1.5,0,—-1.5) (0,0, 1.5)
— The vertices of the cube are
(1.5, —-1.5,—-1.5) (1.5,1.5,-1.5)
(=15,15,—-1.5) | (—=1.5,—-1.5,—1.5)
(1.5,—-1.5,1.5) (1.5,1.5,1.5)
(—1.5,1.5,1.5) (—1.5,—-1.5,1.5)

— The vertices of the icosahedron are

(1,0, 1) (-L,0,7) | (O0,—7,1)
(r,—1,0) (r, 1,0) ©O,7,1
(=7,—-1,0) | (=7,1,0) | (0,7,—-1)
(-1,0,-7) | (1,0, =7) | (0, =7, =1)

where T = 1.618034.

We have used SSDCA and SUWAI adapted to three
dimensions. The distances from a point to a polyhedron have
been computed using the LSABF algorithm [21]. SSDCA
determines UB(E(T)) in the case of polyhedra by the fol-
lowing algorithm

@ Springer

if CA. T isinside the polyhedron)
UB(E(T)) = 0;
else if (B. max(dp(a), dp(b),dp(c),dp(d)) < E1)
UB(E(T)) is determined by inequality (3);
else if (C. T is contained within
an outward infinite prism normal
to some face of the polyhedron)
UB(E(T)) = 0;
elseif (D. |Es(T) — E7(T)| < b && E7(T) < Ey)
{
UB(E(T)) is determined by SSDCA;
}
else
UB(E(T)) = 1000;

Condition A is a test for checking if the tetrahedron lies inside
the polyhedron (E(T) = 0).

The two-phase simplex method can become unbounded if
the tetrahedra are small and they lie near the boundary of the
polyhedron (or sphere). Condition B is a test for detecting
this situation and using inequality (3) instead of SSDCA.

Condition C is a test for checking if the four vertices of the
tetrahedron are projected on the same face of the polyhedron
(the distance is affine over T, therefore, E(T) = 0). Condi-
tion D is a test for applying global optimization algorithms
only to feasible triangles (see the 2D case).

In the case of the sphere, the algorithm for determining
UB(E(T)) using SSDCA is identical to the previous one but
removing test C. The method used by SUWA1 (Subbotin—
Waldron) is the following

if (A. T is inside the sphere)
UB(E(T)) = 0;
else if ( B. 7 intersects the boundary of the sphere)
UB(E(T)) is determined by inequality (3);
else
UB(E(T)) is determined
by the Subbotin—Waldron inequality (2);

In all 3D experiments we have applied SSDCA with maxi-
mum number of subdivisions N = 1.

The results obtained by applying SSDCA to the function
distance to the 3D bodies defined above are shown as graphs
of reciprocal of the precision versus number of tetrahedra and
reciprocal of the precision versus compute time in Fig. 12.
In the case of elliptic polyhedra, the number of tetrahedra
is almost independent of the combinatorial complexity (i.e.,
the number of vertices, edges and faces) of the polyhedron
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Fig. 13 Comparison between SSDCA and SUWAL in the case of the
function distance to a sphere

considered. The compute time of SSCDA depends on two
factors: the number of tetrahedra in the tessellation and the
compute time of the distance from a point to the correspond-
ing body (in classical algorithms such as LSABF, this com-
pute time depends on the combinatorial complexity of the
polyhedron considered).

The results obtained with SUWA1 applied to the distance
to a sphere were compared with those obtained with SSDCA
as shownin Fig. 13. SSDCA obtains tessellations with a num-
ber of tetrahedra lower than those obtained with SUWAL.

K=100, z=0.123 section K=100, z=1.512 section

4 rpRT i jINiIsizEsess: 4
| |
£
2 s = 2
= = 3
0 0
2 S
A T
-2 S 2K X
A
" BN % 4
-4 -2 0 2 4 -4 -2 0 2 4
K=200, z=0.123 section K=200, z=1.512 section
4 4
2 A 2
L : ]
0 0
S : :
2 S )
-4 -4
-4 -2 0 2 4 -4 -2 0 2 4

Fig. 14 Intersections of 3D tessellations with horizontal planes

The compute time of SSDCA, although greater than the cor-
responding to SUWAL, is relatively moderate. Therefore, we
can conclude that SSDCA is more efficient than SUWALI in
the case of spheres.

We have applied SSDCA to the function distance to the
icosahedron cpl20 with different precisions. Figure 14 shows
the intersections of the corresponding tessellations with the
planes z = 0.123 and z = 1.512.

We have studied the increment in the number of tetrahe-
dra in the tessellations as the domain of the function distance
increases.

The results obtained by applying SSDCA to the distances
to the bodies cpl4, cpl20 and epl3 are shown in Fig. 15 as
graphs of volume versus number of tetrahedra. In all cases,
we have set € = 1072 and ML = 10~3. We have consid-
ered the domains: [—3, 3%, [—4, 4], [-5, 5] and [—6, 6]°.
In the case of polyhedra with a small number of vertices, a
little change in the size of the domain implies a big change in
the number of tetrahedra in the tessellation. This instability
accounts for the results obtained for cpl4.

6 Concluding remarks

A method for approximating functions by piecewise polyno-
mials on partitions of a given domain is nonlinear partition-
ing. In this procedure the partition is generated by refining
some but not all cells. In numerical implementations we need
a way to decide when to refine a cell or not. An adaptive algo-
rithm provides such a strategy typically by using local error
estimates that monitor the error between the target function
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Fig. 15 3D domain variation experiments for SSDCA

and the current approximation on a given cell. Constructing
good error estimates in the given numerical setting is usually
the main challenge in adaptive approximation [10].

In this paper we present adaptive algorithms for solving
the UCPA problem with tessellations of moderate size, in
the case of Lipschitz or convex functions. These algorithms
compute the local error estimate using two procedures based
on global optimization techniques:

— TSBBA performs a truncated branch and bound process
for every cell T.

— SSDCA subdivides T into subcells and applies the differ-
ence of convex functions minimization method, described
in Sect. 3, to each one of them.

Numerical experiments on the function distance d from a
point to a geometric body show that TSBBA can approach the
distance to convex or nonconvex bodies uniformly but their
memory and compute time requirements are large. The pos-
sibility of applying analytical bounds based on second deriv-
atives (SUWA) and using the algorithms described in Sect. 3
and inequality (3) for those subsimplices T with d ¢ C>(T)
presents the difficulty of determining such subsimplices. For
example, in the case of convex polyhedra, d ¢ C*(T') when
T intersects the surface of separation between the Voronoi
zones of the different features (vertices, edges, faces). There-
fore, the corresponding intersection tests will become cum-
bersome for complex polyhedra. In the case of nonconvex
polyhedra, d ¢ C'(T) when T intersects the surface of sep-
aration between Voronoi zones of the different features. In
this case, Voronoi zones can be very difficult to determine
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beforehand. In both cases d ¢ C L(T) when T intersects the
boundary of the polyhedron, therefore, tests of intersection
with the boundary are also necessary.

SSDCA cannot be applied to approximate the distance to
nonconvex bodies, but its RAM memory and compute time
requirements are moderate. This allows to obtain precise dis-
tances, even in 3D.

When SSDCA is applied to the distance to a sphere, its
performance is better than that corresponding to the algo-
rithm based on the Subottin-Waldron inequality (SUWAL).

Figure 12 shows that the number of tetrahedra in the tes-
sellations for the distance to convex polyhedra with very
different combinatorial complexity, is almost identical. This
implies that the average retrieval time of the corresponding
precomputed maps will be similar. By contrast, fast algo-
rithms for computing the distance [20,21] present a compute
time increment as the combinatorial complexity of the poly-
hedra increases.

To sum up, we have presented some algorithms with which
one can obtain tree approximants satisfying conditions Cl1,
C2 and C3 in the case of moderately nonlinear Lipschitz or
convex functions.
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