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Abstract. This note wants to explain how to obtain meaningful pictures of (pos-
sibly high-dimensional) convex polytopes, triangulated manifolds, and other ob-
jects from the realm of geometric combinatorics such as tight spans of finite
metric spaces and tropical polytopes. In all our cases we arrive at specific, geo-
metrically motivated, graph drawing problems. The methods displayed are im-
plemented in the software system polymake.

1. Introduction

Clearly, visualization is a key tool for doing experimental mathematics. However,
what to do if the geometric objects that we want to understand do not admit a
straightforward, natural way of visualization? Reasons for this may include some
of the following: The objects live in Euclidean space but only of high dimension.
The objects do not come with any embedding into Euclidean space (or any other
known geometry). We are only interested in combinatorial features and thus are
after a visualization which abstracts from geometric “randomness.”

In order to be able to give answers to the question posed we restrict our attention
to convex polytopes, triangulated surfaces and some other objects derived from
them. The common theme will be that we will assign a graph to the object in
question which then asks for a suitable, meaningful visualization. In some cases
there is an obvious candidate for such a graph like the vertex-edge graph of a
polytope; see Section 2. In other cases there are interesting choices to be made
as for abstract simplicial manifolds; see Section 5.3.

A graph G = (V, E) is a pair of a node set V and an edge set E, consisting
of 2-element subsets of V . That is, our graphs are usually undirected and simple
(loop-less and without multiple edges). We use the term polytopal graph in a loose
sense: a polytopal graph is associated with some polytope(s) in one way or another.

It is a basic fact that each graph can be drawn in R3 with straight edges and with-
out self-intersections; see Remark 7. An obvious question is how to find a “good”
drawing representing a given graph (which may even admit self-intersections). But
these quality parameters depend on the context, and so we will discuss them, time
and again, in the subsequent sections. The methods which we present are imple-
mented in the software package polymake [10, 11].

The following is to describe the contents. We start out with a very brief introduc-
tion to convex polytopes (the objects polymake primarily is designed for) and their
graphs in Section 2. The situation for polytopes in dimension ≤ 4 is special in that
there is a canonical way of visualizing. For dimensions ≤ 3 this is obvious, and
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in dimension 4 Schlegel diagrams come in handy. Their interactive construction
is the topic of Section 3. Section 4 discusses the use of pseudo-physical mod-
els to produce drawings of a graph. A dynamic process is modeled which often
converges to an acceptable drawing of the graph. Additionally, we discuss and ex-
emplify the use of (pseudo-physical) forces which turn out to be particularly useful
for polytopes. In Section 4.2 the rubber band method by Maxwell [20] and Cre-
mona [6] is explained, which expresses the dynamic process from a special planar
pseudo-physical model in terms of linear algebra.

We conclude this paper by discussing visualizations of polytopal graphs which
come from areas which recently received some attention. This includes tight spans
of finite metric spaces (used for phylogenetic reconstructions in computational bi-
ology) [2, 26] and tropical polytopes (arising in combinatorial aspects of algebraic
geometry) [7, 16, 5]. Finally we introduce pd-graphs to visualize simplicial mani-
folds.

For general references to graph drawing see [27, 17].

2. Facts About Convex Polytopes and Their Graphs

A (convex) polyhedron is the intersection of finitely many closed affine half-spaces
in some Euclidean space. It is called a polytope if it is bounded. Each polytope is
the convex hull of finitely many points, and vice versa. Likewise, each polyhedron
can be described as the Minkowski sum of polytope, a finitely generated pointed
cone, and an affine subspace. The polyhedron is pointed if it does not contain
any affine subspace. In the following we will assume that the polyhedron P ⊂ Rd

will affinely span the space. This is not much of a restriction since otherwise we
can continue our discussion by considering the affine span of P as the surrounding
space.

A proper face of such a full-dimensional polyhedron P is the intersection with
a supporting affine hyperplane. The empty set and P itself are the two non-proper
faces. Faces are again polyhedra, and the set F (P) of all faces is partially ordered
by inclusion. This poset is naturally ranked by the dimension of a face, which is
the dimension of its affine span. The faces of dimensions 0, 1, d−2, d−1 are called
vertices, edges, ridges, and facets, respectively.

In the following let us assume that the polyhedron P is bounded, that is, it is
a polytope. If P is an arbitrary pointed polyhedron, this again is not much of a
restriction: In this case P is the image of a polytope under a projective linear trans-
formation. If P is not pointed then its projection to the orthogonal complement to
the lineality space (that is, the maximal affine subspace that it contains) is pointed.
Thanks to cone polarity the polytope P has a polar polytope P∗ (with respect to a
chosen interior point). Its face poset is the same as F (P) but with reversed inclu-
sion. In fact, if we take ‘intersection’ as the meet-operation and ‘joint convex hull’
as the join-operation, the poset F (P) becomes an atomic and co-atomic Eulerian
lattice.

The (vertex-edge) graph of P, denoted as Γ(P), has the vertices of P as its nodes
and the edges of P, well, as its edges. There is also the dual graph Γ∗(P) formed
from the facets and ridges. We have Γ∗(P) � Γ(P∗). Notice that the Simplex
Method from linear optimization walks along the vertex-edge graph of a polyhe-
dron (that is, the set of admissible points) to a vertex which is optimal with respect
to a given linear objective function.
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A 0-dimensional polytope is a point, a 1-dimensional polytope is an edge, and
a 2-dimensional polytope is a convex n-gon. Hence, in terms of combinatorial
properties of their graphs or their face lattices, polytopes become interesting in
dimension 3 and beyond. We list some facts known about polytopal graphs.

A graph is connected if any two of its nodes are joined by an edge path. We
call a graph with at least k + 1 nodes k-connected if removing any set of at most
k−1 nodes and the incident edges leaves the graph induced on the remaining nodes
connected. This means that a 1-connected graph is the same as a connected graph.
Note that this must not be confused with the notion of higher connectivity common
in topology.

Theorem 1 (Steinitz [24, 25]). A graph is isomorphic to the graph of a 3-dimensi-
onal polytope if and only if it is planar and 3-connected.

Here a graph is called planar if it admits a drawing in R2 without self-intersec-
tions.

Theorem 2 (Balinski [1]). The graph of a d-dimensional polytope is d-connected,
in particular, the degree of each vertex is at least d.

While graphs of polytopes do have a variety of properties which make them spe-
cial, altogether the class of polytopal graphs is large in the following sense: Kaibel
and Schwartz proved that the graph isomorphism problem restricted to polytopal
graphs is as hard as the general problem [18].

There is a particularly interesting class of polytopes: A d-dimensional polytope
is simple if its graph is d-regular, that is, each vertex has degree d. A polytope is
simple if and only if its polar is simplicial, that is, each proper face of the polar is
a simplex. In particular, if the affine hyperplanes spanned by the facets of P are
in general position, then P is simple. Examples of simple polytopes include the
n-gons, the simplices and the cubes (of arbitrary dimension).

Theorem 3 (Blind and Mani [4]). Two simple polytopes with isomorphic graphs
have isomorphic face lattices.

We will read this last result in the following way: For the visualization of high-
dimensional simple polytopes it may suffice to visualize their vertex-edge graphs.

For further information about polytopes the reader is referred to Ziegler [30].

3. Schlegel Diagrams

The combinatorial features of a polytope are properties of its boundary, which is
of one dimension lower. This can be exploited for visualization. The Schlegel di-
agram is a particular projection of the polytope onto one of its facets which still
contains all the combinatorial data. This works in any dimension, but it is par-
ticularly useful to understand the structure of 4-dimensional polytopes by their
3-dimensional projections.

Definition 4. Let P ⊂ Rd be a d-polytope and F one of its facets. Let HF = {x ∈
Rd | ax = b} with a ∈ Rd and b ∈ R be the supporting hyperplane of F, that is,
F = P ∩ HF and P is contained in the positive half-space {x ∈ Rd | ax ≤ b} defined
by F. Choose a point v contained in the negative half-space of F and in the positive
half-spaces of all other supporting hyperplanes of P. We call v a point beyond F.
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Figure 1. Schlegel diagrams of the 4-permutohedron with respect
to two different facets: a 3-permutohedron (left) and a prism over
a hexagon (right).

For every point x ∈ P we define the projection of x onto F by

π(x) = v +
b − av
ax − av

(x − v) .

The Schlegel diagram of P on F is the polytopal subdivision of F consisting of the
image under π of all proper faces of P except F, that is,

D (P, F) = {π(G) ⊂ F |G ∈ F (P) \ {∅, P, F}} .

The construction guarantees that a Schlegel diagramD (P, F) properly shows the
relative positions of the facets of P and their intersections. For Schlegel diagrams
of 4-polytopes it is common to visualize only their 1-skeleta, that is, their graphs,
in order to be able to look “inside” F. Schlegel diagrams of 2- and 3-dimensional
polytopes are shown in the subsequent Section 3.1.

Example 5. If we write the permutation σ ∈ Sym{1, 2, . . . , n} as the vector vσ =

(σ(1), σ(2), . . . , σ(n)) ∈ Rn, then the permutohedron of degree n is the polytope

Πn−1 = conv
{
vσ

∣∣∣σ ∈ Sym{1, 2, . . . , n}
}
.

The (n − 1)-permutohedron Πn−1 is a simple polytope of dimension n − 1. All its
faces are products of lower-dimensional permutohedra. The 2-permutohedron is a
hexagon, the 3-permutohedron is an Archimedean solid with 14 facets, all of which
are squares or hexagons. The facets of the 4-permutohedron are 3-permutohedra or
prisms over hexagons. Its two types of Schlegel diagrams are shown in Figure 1.

Remark 6. The Schlegel diagram construction shows that the vertex-edge graphs
of 3-polytopes are planar; see Theorem 1.

Remark 7. Consider the moment curve m : t 7→ (t, t2, t3, t4) in R4. Taking n
distinct values t1 < t2 < · · · < tn, the convex hull conv{m(t1),m(t2), . . . ,m(tn)} of
the corresponding points is a cyclic 4-polytope on n vertices. As a special feature
the vertex-edge graph of a cyclic 4-polytope is isomorphic to the complete graph.
Since each finite graph is a subgraph of a complete graph, the Schlegel diagram
construction establishes that each finite graph admits a drawing in R3 without self-
intersections. The cyclic polytopes are simplicial.



DRAWING POLYTOPAL GRAPHS 5

Since the geometry of the projection facet is preserved under the projection we
cannot expect to get a “nice” Schlegel diagram right away. For some polytopes
there may be a good choice of a facet and a point beyond, but this choice may
not be obvious. The next section discusses how to find a good Schlegel diagram
interactively.

3.1. Obtaining all Schlegel Diagrams of a Polytope. The Schlegel diagram of a
polytope P depends on the projection facet F and the point v beyond F, the view-
point. To obtain all Schlegel diagrams of a 4-polytope we start with any Schlegel
diagram and describe an interactive method to choose a different projection facet
and a different point beyond. This is implemented in polymake’s interface to
JavaView [21] and JReality [12].

Since each facet is uniquely determined by its vertex set and all vertices are
visible in the Schlegel diagram, we are able to select the vertex set of another facet
in the Schlegel diagram D (P, F). In fact, it suffices to mark sufficiently many
vertices, such that a unique facet containing them remains. In the JavaView and
JReality graphical interfaces the user can mark points, and then press a button to
get a new window with a Schlegel diagram with respect to the facet defined by the
marked points. An error is issued if the facet is not uniquely specified.

It is more subtle to move the point beyond. The simple reason for this is that
it does not appear in the 3-dimensional Schlegel diagram nor its affine span. Thus
it must be moved implicitly. In the beginning we choose a fixed point w in the
relative interior of the projection facet F. And we also choose a vector r such that
w + R≥0r ∩ ∂P = {w}. That is, r points from w towards the set of points beyond F.
For r we can take an outward pointing normal vector of F; see Figure 2.

vr

w

Figure 2. Construction of a Schlegel diagram of the regular octa-
hedron. The viewpoint v lies in the region beyond the projection
facet. It is described by its relative position on the ray w + R≥0r.

Two cases are to be distinguished. First let us assume that the set of points
beyond F is bounded, that is, there is a maximal λ > 0 such that w+ζλr is beyond F
for all ζ ∈ (0, 1). We call ζ the zoom value of the viewpoint v = w+ζλr with respect
to w and r. The zoom value can be changed directly in the graphical interface
to obtain the Schlegel diagrams for viewpoints on the segment w + [0, λ]r; see
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v′ v
w

Figure 3. The construction of the Schlegel diagram of a pentagon
(shaded) on one of its facets (vertical edge). The zoom parameter
allows to move the old viewpoint v to a new viewpoint v′ on the
ray connecting viewpoint and the point w on the facet.

Figure 3. If, however, there is no such maximal λ the interval of ζ is mapped from
(0, 1) to (0,+∞) by ζ 7→ ζ

1−ζ .
Other Schlegel diagrams are obtained by dragging individual points in the pro-

jection. There are surely different ways to move the viewpoint in the entire re-
gion beyond the projection facet by interpreting the dragging of the vertices of the
Schlegel diagram. Our choice proved to be intuitive and very useful for our ap-
plications. It works as follows. If a vertex of the projection facet F is dragged,
the current viewpoint v and the point w are moved in opposite directions; see Fig-
ure 4 (left). If, however, a point π(x) is moved, where x is a vertex not belonging
to F, only the viewpoint v is modified. Then the dragged point becomes the projec-
tion of x in the modified Schlegel diagram; see Figure 4 (right). Since we require
that v can only be moved parallel to F, this uniquely defines the new viewpoint v′ as
the intersection of the line through x and π(x) with the affine hyperplane through v
which is parallel to F.

v

v′

move

v

v′

move

Figure 4. A pentagon with its Schlegel diagram on one of its
facets. The movement of the vertices in the Schlegel diagram is
translated into movement of the viewpoint, which does not ap-
pear in the diagram. The movement depends on whether the point
moved lies on the projection facet (left) or not (right).

This approach allows to produce all possible Schlegel diagrams. In the im-
plementation it is always verified that the new viewpoints lead to valid Schlegel
diagrams, that is, the new viewpoints remain to be points beyond F.
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4. Pseudo-PhysicalModels

So far we were concerned with the visualization of (low-dimensional) polytopes,
where we had natural ways of visualizing, either directly or via Schlegel diagrams.
In higher dimensions or if only the face poset of a polytope is given (but no coordi-
nates) other techniques are required. In the following we concentrate on visualizing
the vertex-edge graph of a polytope. At least if the polytope is simple this can be
expected to be fruitful in view of Theorem 3.

A frequently followed approach is via models copied from physics. This way
often nice drawings can be obtained since the inherent symmetry properties of
physical laws tend to retain the abstract symmetry of a graph in its drawings. An-
other great advantage of such pseudo-physical models is that forces may be added
to improve an existing model. On the other hand, evolution in time of the pseudo-
physical model has to be approximated and convergence to a stable state is not
guaranteed due to the discretization of time; for a more thorough discussion see
Fruchtermann and Reingold [9] or Tollis et al. [27, Chapter 10].

4.1. Attracting and Repellent Forces. We want to visualize a finite graph G =

(V, E). The naive idea is to assign random coordinates to each node v ∈ V and
then to let some “forces” act on the points until an equilibrium is reached. The
neighbors of a node v ∈ V form the set N(v) = {w ∈ V | {v,w} ∈ E}, its closed
neighborhood is N[v] = N(v) ∪ {v}.

At a given time each node of G is represented by some point in R3. In the
formulae below we will identify each node with its coordinates in 3-space. Firstly
we define a repellent force −δrep

‖w−v‖3 (w−v) pushing v away from any non-neighboring
node w ∈ V(G) \ N[v]. One may think of this repellent force as resulting from
a (kind of) negative electronic charge carried by the vertices. Then δrep is the
electrostatic constant in the repellent force. On the other hand, the edge {v,w}
for each adjacent node w ∈ N(v) pulls v towards w like a stretched spring. Thus
an attracting force of

(
1

`{v,w}
− 1
‖w−v‖

)
(w − v) acts on v, where `{v,w} is the desired

length of the spring modeling the edge {v,w}. Depending on the situation this
desired length may be constant (for instance, if no coordinates are known) or it
may reflect some geometric properties (such as the Euclidean distance in some
high-dimensional space). Note that the exact formulation of the attracting and
repelling forces described above does not strictly reflect some physical model but
also takes into account experimental fine tuning. Summing up the attracting and
repelling forces for v yields

(1) fv =
∑

w∈V\N[v]

−δrep

‖w − v‖3
(w − v) +

∑
w∈N(v)

(
1

`{v,w}
− 1
‖w−v‖

)
(w − v) .

This defines a discrete vector field on the finite point set representing the node
set V .

In order to facilitate convergence we add inertia and viscosity to our dynamical
system. Adding inertia means to take the first derivative of the motion of each node
into account. Adding viscosity means to systematically decrease the total energy
of the system. This will be achieved by scaling down the inertia by a constant δvisc.
The dynamics are modeled by a rather crude discretization of time. This can result
in convergence problems, which may be avoided by using more advanced numer-
ics. However, for the scope of this paper a simple discretization will suffice.
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Let vi denote the coordinate vector of a node v at time i. Then the new coordinate
vector vi+1 is given by

vi+1 = vi + fvi + δvisc(vi − vi−1) .

As a start configuration choose any random distribution of the nodes on the unit
sphere with inertia zero. The simulation is run till the absolute fluctuation

max
v∈V(G)

‖vi − vi+1‖
2

drops below some fixed threshold. So far the pseudo-physical model is quite stan-
dard, and it does not reflect any special properties of polytopal graphs.

Example 8. Bern, Eppstein et al. [3, 8] construct 3-dimensional zonotopes with
central 2D-sections of quadratic size with respect to the number of zones (the data
defining a zonotope). These 3-zonotopes are remarkable since naively one might
expect only a linear number of vertices in any section of a “typical” 3-dimensional
zonotope. Their duals are dual 3-zonotopes with n zones and a 2-dimensional
affine image (a 2D-shadow) with Ω(n2) vertices. Koltun [29, Problem 3] asked
for a generalization, that is, dual d-zonotopes with n zones and 2D-shadows of
size Ω(nd−1) (for fixed d). Note that there is a trivial upper bound of O(nd−1)
for the size of a maximal 2D-shadow since dual d-zonotopes correspond to affine
(d − 1)-dimensional hyperplane arrangements. Such dual d-zonotopes with 2D-
shadow of size Ω(nd−1) exist by [23]. A 3-dimensional example is used in Figure 5
to illustrate the use of different desired edge lengths in the spring embedder. This is
a particularly challenging case for our pseudo-physical model because of the great
length differences.

Figure 5. A dual 3-zonotope embedded with its original coordi-
nates (left) and two spring embeddings of its graph (center and
right). In the center drawing all edges are given the same desired
edge lengths, on the right an attempt to embed each edge with its
original length.

However, one can modify such a pseudo-physical model by inventing further
forces. Here we will pursue how to visualize the vertex-edge graph G = Γ(P)
of a polytope P ⊂ Rd if additionally a linear objective function λ : Rd → R is
given. Without loss of generality we can assume that λ projects a point x ∈ Rd

to its last coordinate xd. The effect of the additional force fF may be interpreted
as a (vertical) linear field: Every vertex v ∈ G tries to adopt its x3-coordinate v3
(relative to the other vertices) according to its (relative) value with respect to λ.
To this end the center of gravity v̄ = 1

|V |
∑

v∈V v of all vertices V = V(G) and the
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average value λ̄ = 1
|V |

∑
v∈V λ(v) is computed. Then the additional vertical force (e3

being the third unit vector) (
(λ(v) − λ̄) − (v − v̄)3

)
e3 ,

scaled by some constant δlin, is added to the Equation (1).
All the constants mentioned, such as δrep, δvisc, and δlin, are non-negative. They

must often be chosen interactively in order to balance the forces according to es-
thetic needs; this functionality is provided by polymake’s interfaces to JavaView
and JReality.

Example 9. The Klee-Minty cube [19, 15] is a d-dimensional polytope which is
combinatorially isomorphic to the regular d-cube. It is defined as the set of admis-
sible solutions of the linear program (maximizing xd) given by the 2d inequalities

(2)
0 ≤ x1 ≤ 1

1
3 xi ≤ xi+1 ≤ 1 − 1

3 xi for 1 ≤ i < d.

The Klee-Minty cube has an ascending path of length 2d, that is, there exists a
directed path of length 2d in its graph such that any vertex of this path has greater
xd-value than its predecessor. This provides an example of a polytope with an
exponentially long (with respect to the number of defining halfspaces) ascending
path and thus a “bad case” for the simplex algorithm; see Figure 6 (left).

Figure 6. The Klee-Minty 3-cube (with its realization given by
Equation (2)) and an ascending Hamiltonian path on the left.
On the right two embedding of its graph, first without additional
forces, then with an additional vertical force determined by the
linear objective function R3 → R : x 7→ x3.

We choose the 3-dimensional Klee-Minty cube to illustrate the effect of the ver-
tical force governed by the linear objective function R3 → R : x 7→ x3. Of course,
a 3-dimensional polytope may be visualized directly; see Figure 6 (left). However,
Figure 6 (center and right) exhibits the effect of the additional vertical force: The
drawing in the center does not reflect the particular realization of the Klee-Minty
cube, the embedding on the right on the other hand clearly shows the ascending
Hamiltonian path.

Example 10. We want to visualize the product ∆2 × C3 of a triangle and the 3-
dimensional unit-cube. This is a 5-dimensional simple polytope. We choose a
linear objective function λ : R5 → R such that λ evaluates to distinct values on the
vertices of ∆2, but does not distinguish in between the vertices of C3. For example
let λ(x) = l1x1 + l2x2 for random values l1, l2 ∈ R. Hence for a vertex v of ∆2 all
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vertices of the type “v times any vertex of C3” are embedded with the same x3-
coordinate by the vertical force. Figure 7 depicts a spring embedding of the graph
of ∆2 × C3 without additional forces on the left, and on the right with λ taken into
account. The image on the right clearly shows the three (flat horizontal) copies
of C3 corresponding to the three vertices of ∆2, which in turn provide the second
factor of the three “edge times cube” facets of ∆2 ×C3.

Figure 7. Two embeddings of the graph of the product of a tri-
angle and the 3-cube. The product ∆2 × C3 has six “triangle ×
square” facets (emphasized on the left) and three “edge × cube”
facets (emphasized on the right).

4.2. Rubber Bands. In the following we take a different approach to embedding
of graphs in R3. Rather than working with a dynamic model as in Section 4.1, we
present a classical method due to Maxwell [20] and Cremona [6]. Here a graph G
is embedded into R3 by solving a system of linear equations. This method requires
some nodes Φ already embedded in R3. The graph G will be embedded in the affine
subspace spanned by the nodes in Φ. Hence it is often useful to require that Φ

contains at least four nodes which span the whole space. Further we assume G to
be connected, since we may embed different connected components individually.

We picture an edge e ∈ E(G) as a spring, or a rubber band, of length zero
(if not stretched); the edge e has an individual spring constant δe. After fixing
coordinates for the nodes in Φ we let the rubber bands pull the remaining nodes to
an equilibrium. This equilibrium is attained by minimizing the total energy E of
the system of rubber bands. To this end let v1, v2, and v3 be the coordinates in R3 of
a node v ∈ V(G) and the energy of a rubber band representing an embedded edge e
is δe‖e‖2. Hence we have

E =
∑

e∈E(G)

δe‖e‖2 =
1
2

∑
v∈V(E)

∑
w∈N(v)

δ{v,w}

∥∥∥∥∥∥∥∥
v1 − w1
v2 − w2
v3 − w3


∥∥∥∥∥∥∥∥

2

.

The total energy E is a quadratic function in 3|V(G) \ Φ| variables v1, v2, and v3
for all v ∈ V(G) \Φ and thus E has a unique minimum. Partial differentiation with
respect to v1 yields

∂E
∂v1

= 2
∑

w∈N(v)

δ{v,w}(v1 − w1) ,



DRAWING POLYTOPAL GRAPHS 11

Figure 8. Non-regular realization of the icosahedron obtained
from its graph via the rubber band method. The rubber band em-
bedding of the graph is visualized as the shadow of the edges of
the icosahedron.

and likewise for v2 and v3. Requiring equilibrium, that is, ∂E
∂v1

= ∂E
∂v2

= ∂E
∂v3

= 0 for
all v ∈ V(G) \ Φ, amounts to solving a system of 3|V(G) \ Φ| linear equations to
determine the values of v1, v2, and v3 for all v ∈ V(G) \ Φ.

This technique was applied by Tutte [28] to construct crossing free embeddings
of connected planar graphs into R2 with straight edges. Here v3 is set to zero for
all nodes v to obtain an embedding in R2.

The same method can also be used to prove the difficult direction of Steinitz’
Theorem (Theorem 1): The construction of a 3-polytope from a given planar, 3-
connected graph. In the following we sketch the idea. Let G be a 3-connected
planar graph. Then G or its dual graph G∗ possesses a triangular face. This can
be derived from Euler’s theorem and double counting. It suffices to prove that G
or G∗ is the vertex-edge graph of some 3-polytope P because the polar dual of P
has the dual graph as its vertex-edge graph. So we can safely assume that G has
a triangular face. Fix its nodes in general position in R2. Now we embed G in R2

using Tutte’s rubber band method. According to Maxwell [20] such an embedding
may be lifted into R3, that is, there exists a convex function R2 → R which is
linear on the faces of the planar embedding of G. The polytope P with G at its
graph is the convex hull of the lifted nodes of G. Since we fixed the coordinates of
a triangular face of G to begin with our rubber band method, no new edges arise
in the convex hull P and G = Γ(P) holds. See Figure 8 for a realization of the
icosahedron obtained from its graph via the rubber band method. For a detailed
proof see Richter-Gebert [22, Sect. 13.1].

Notice that Tutte’s rubber band embedding of G is a Schlegel diagram of the
lifted polytope P (with a viewpoint at infinity).

5. Applications

In contrast to what we discussed so far we will now study the visualization of
geometric objects which are more loosely connected to polytopes. In most cases we
will deal with visualizing graphs by the pseudo-physical approach from Section 4.1
with additional forces which are specific to the application intended.
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5.1. Tight Spans of Finite Metric Spaces. Let δ : T × T → R≥0 be a metric
on a finite set T = {t1, . . . , tn} of taxa. Then one can associate to it the convex
polyhedron

Pδ =
{
x ∈ Rn

∣∣∣ xi + x j ≥ δ(ti, t j) for all i, j
}
.

Because of δ(ti, ti) = 0 the polyhedron Pδ is contained in the positive orthant Rn
≥0,

and hence it is pointed, that is, it does not contain any affine line. Moreover, Pδ
is always non-empty and unbounded, since the ray R≥0(M, . . . ,M) is contained
in Pδ, where M is the maximal value attained by the metric δ. The polytopal
subcomplex of all those faces which are bounded, the bounded subcomplex of Pδ,
is denoted by T (Pδ). Bandelt and Dress [2] introduced the name tight span for
these objects, but they already showed up earlier as the injective envelope of a
metric space in the work of Isbell [14]. Note that the bounded subcomplex of an
unbounded polyhedron is always contractible. Tight spans of finite metric spaces
are dual to regular subdivisions of second hypersimplices.

The interest in this construction comes from the following simple observation.

Proposition 11. The polytopal complex T (Pδ) is 1-dimensional, that is, it consists
of edges only, if and only if the metric d is tree-like.

Here a metric is called tree-like if it arises from a finite tree, that is, a connected
graph without cycles, with non-negative weights associated to the edges. Between
any two nodes in a tree there is a unique shortest path, and hence, by adding up all
the weights on a shortest path, this gives a distance function on the set of nodes.
As there are no cycles, there are no proper triangles, and the triangle inequality is
trivially satisfied. The tight span of such a tree-like metric itself (essentially) is the
tree. Moreover, the whole construction of the tight span depends on the metric in
a continuous way. Hence, a tight span is a geometric object which can be used to
measure in how far a given metric is tree-like. This very property can be exploited
for an interesting application.

The goal of phylogenetics, as a subject in biology, is to determine evolutionary
kinship among species or individual organisms. Methods include the inspection
of fossil samples, the morphological analysis of extinct and existing species, and
the study of ontogenetic development on organisms. One approach, which became
feasible with the advent of modern sequencing techniques, is to extract genetic
distance information from alignments of DNA or amino acid sequences. Again
there is a choice of mathematical models which try to associate a tree with the
given sequences. But the beauty of the tight span approach lies in the possibility to
detect whether it makes sense to associate any tree with the given metric to begin
with. In this sense tight span based techniques are less biased than several other
methods.

As far as the visualization is concerned several choices can be made. For in-
stance, one can use the plain pseudo-physical model from Section 4.1. However,
this combinatorial visualization does not provide us with images which are mean-
ingful in the context of phylogenetics. For this it is better to set the desired edge
lengths in (1) to edge lengths related to the distance function. It turns out that the
taxa arise as specific vertices of the polyhedron Pδ, and the proper desired edge
length is the distance with respect to maximum norm between two vertices of Pδ.
We call this the approximate metric visualization of a tight span.
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Example 12. Consider a metric δ on eight taxa which happens to be induced by
aligned RNA-samples of eight different species, five of which being algae. The
complete data set is taken from the example file algae.nex which comes with
SplitsTree [13]. Note that the RNA samples used are very short: They come
from 920 bases each. There is more than one way to compute a distance function
from these samples; here we used SplitsTree’s method UncorrectedP to arrive
at a metric given by the upper triangular matrix

0.0 0.026 0.029 0.112 0.078 0.136 0.123 0.141
0.0 0.041 0.121 0.088 0.144 0.132 0.145

0.0 0.099 0.064 0.123 0.121 0.133
0.0 0.1 0.142 0.143 0.156

0.0 0.116 0.118 0.116
0.0 0.159 0.135

0.0 0.136
0.0


,

where the rows and columns are labeled with the following ordered list of taxa:
tobacco, rice, marchantia, chlamydomonas, chlorella, euglena, anacystis nidulans,
olithodiscus.

The left picture in Figure 9 shows a combinatorial visualization of the graph
of T (Pδ). The eight taxa can be associated with vertices of Pδ and hence occur
as nodes of the graph. The colors of the edges visualize the highest dimension of
a bounded face containing that edge. By default “red” refers to dimension 1 and
“blue” to the maximum dimension dimT (Pδ), which equals 4 in this case. The
two shades of purple refer to dimensions 2 and 3, respectively.

The picture to the right is the approximate metric visualization of T (Pδ). No
color coding for the edges in this case. The sample is too small to deduce much
about the evolutionary relationship between the five kinds of algae, but it already
suffices to tell the algae apart from the non-algae species.
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Figure 9. Left: Combinatorial visualizing of the tight span of
five species of algae (chlamydomonas, chlorella, euglena, ana-
cystis nidulans, olithodiscus) and three non-algae (tobacco, rice,
marchantia). Right: Approximate metric visualization of the same
tight span.

The visualization of tight spans used by Sturmfels and Yu is the combinatorial
one [26].
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(1, 0, 0) = (0,−1,−1)

(0, 1, 0)

(0, 1
4 , 1)

-3

-2

-1

0

1

2

-3

-2

-1

0

1

2

-3

-2

-1

0

1

Figure 10. Left: Tropical triangle T (TC), where C is defined in
(4). Right: Tropical 3-permutohedron.

5.2. Tropical Polytopes. Consider a matrix C = (ci j) ∈ Rm×n, and let W =

Rm+n/R(1, 1, . . . , 1,−1,−1, . . . ,−1) be a (quotient) vector space of dimension m +

n − 1. Each point in W is written as a pair (y, z) where y takes the first m coor-
dinates, and z the remaining n. Note that, in the quotient W, the equation (y +

(1, 1, . . . , 1), z − (1, 1, . . . , 1)) = (y, z) holds. Now

(3) TC =
{
(y, z) ∈ W

∣∣∣ yi + z j ≤ ci j
}

is a pointed unbounded convex polyhedron. The bounded subcomplex T (TC) ⊂ W
is the tropical polytope generated by (the rows of) C. The vertices of TC are called
the tropical pseudo-vertices of T (TC) with respect to the rows of C. Among these
there is a unique inclusion-minimal subset which generates the tropical polytope:
the tropical vertices of T (TC). Tropical polytopes are dual to regular subdivisions
of products of simplices. For details on the subject see [7, 16, 5].

As it turns out, projecting TC onto the first m coordinates (or onto the last n coor-
dinates) and clearing the first remaining coordinate (by adding a suitable multiple
of (1, 1, . . . , 1)) yields an affine isomorphism. This way, one has a direct visualiza-
tion in R3 if min(m, n) ≤ 4.

Example 13. Letting

(4) C =

1 0 0
0 1 0
0 1

4 1


gives the tropical triangle T (TC), where m = n = 3, in Figure 10 (left). Its vertices
correspond to the rows of the matrix C.

Example 14. If we form the (n!×n)-matrix whose rows are the permutation vectors
from Example 5 the construction (3) gives the tropical (n−1)-permutohedron. Fig-
ure 10 (right) shows the tropical 3-permutohedron; the unit grid in the background
is meant to provide a better idea about the spatial proportions.

Since tropical polytopes are so similar to tight spans of finite metric spaces the
same visualization techniques can be applied in higher dimensions. However, for
the tropical polytopes the combinatorial information is usually of interest. This
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Figure 11. Tropical cyclic 4-polytope with six tropical vertices (red).

is why the combinatorial visualization (with constant desired edge length) is pre-
ferred.

Example 15. For M(m, n) = (µi j) ∈ Zm×(n+1) with µi j = i j the bounded subcom-
plex T (TM(m,n)) is the tropical cyclic polytope with m vertices in dimension n [5].
The case m = 6 and n = 4 is shown in Figure 11. The tropical cyclic polytope
T (TM(4,6)) has 126 pseudo-vertices, six of which are tropical vertices.

5.3. pd-Graphs of Simplicial Manifolds. Natural candidates for graphs to as-
sociate with a finite simplicial complex are its 1-skeleton (also called the primal
graph) and its dual graph. They both encode neighborhood information, the adja-
cency of vertices in the primal graph, and the adjacency of facets in the dual graph.
But each carries only incomplete information: The primal graph does not “see” the
facets, that is, we do not know which set of vertices of the graph forms a face (of
dimension higher than one) and which does not. On the other hand, we cannot tell
from the dual graph if facets intersect, unless the intersection is a ridge. Thus it is
sometimes useful to combine the two graphs in a common picture. This allows us
to find a more “accurate” embedding of the graphs since we may be able to make
use of the two kind of adjacency informations at the same time. This approach
will sometimes allow for pictures of not too high-dimensional objects which carry
some geometric meaning.

We define the primal-dual graph, or pd-graph for short, as the disjoint union of
the primal and the dual graph with the following additional edges: A primal node
corresponding to a vertex v and a dual node corresponding to facet F are connected
by an artificial edge if v ∈ F.

Example 16. Consider an abstract simplicial complex K homeomorphic to a solid
whose boundary surface is of genus 2. A priori there are no coordinates for the
vertices of K given, but using our pseudo-physical model (following Section 4.1)
on the pd-graph of K we nevertheless are able to produce a decent picture, clearly
showing the two holes of K; see Figure 12. Here the artificial edges are removed
to show only the primal and the dual graph. If we choose the desired edge lengths
of the artificial edges sufficiently small, then each dual node (corresponding to a
facet F) is pulled into the interior of the simplex defined by the nodes correspond-
ing to the vertices of F.
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Figure 12. pd-graph of a triangulation of a solid surface of
genus 2. The thin edges belong to the primal graph, and the thick
ones to the dual.

Example 17. Figure 13 depicts the unique facet-minimal triangulation of the 4-
cube C4 = [0, 1]4. The triangulation has no additional vertices and 16 facets. The
entire f -vector reads (16, 57, 86, 60, 16). One way to visualize this triangulation
of C4 is to look at the triangulation induced on the boundary of C4 in its Schlegel
Diagram; see Section 3. Schlegel diagrams preserve combinatorial data as well as
geometric information. But they project the polytope to one of its facets, hence
only the boundary is visualized and all the information about the triangulation in
the interior is lost.

Figure 13. pd-graph of the unique facet-minimal triangulation of C4.

Alternatively, we embed the pd-graph of the minimal triangulation of C4 via
the spring embedder. Any image of a higher than 3-dimensional object has to
be admired with care. Nevertheless one can identify the facets of the minimal
triangulation of C4 and the way they intersect in the embedding of the pd-graph in
Figure 13.
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