Efficient monolithic simulation techniques for the stationary Lattice
Boltzmann equation on general meshes

T. Hiibner, S. Turek
Institute for Applied Mathematics, TU Dortmund, Germany

Abstract

In this paper!, we present special discretization and solution techniques for the numerical simula-
tion of the Lattice Boltzmann equation (LBE). In [11] the concept of the generalized mean intensity
had been proposed for radiative transfer equations which we adapt here to the LBE, treating it as an
analogous (semi-discretized) integro-differential equation with constant characteristics. Thus, we com-
bine an efficient finite difference-like discretization based on short-characteristic upwinding techniques
on unstructured, locally adapted grids with fast iterative solvers. The fully implicit treatment of the
LBE leads to nonlinear systems which can be efficiently solved with the Newton method, even for a
direct solution of the stationary LBE. With special exact preconditioning by the transport part due to
the short-characteristic upwinding, we obtain an efficient linear solver for transport dominated config-
urations (macroscopic Stokes regime), while collision dominated cases (Navier-Stokes regime for larger
Re numbers) are treated with a special block-diagonal preconditioning. Due to the new generalized equi-
librium formulation (GEF) we can combine the advantages of both preconditioners, i.e. independence
of the number of unknowns for convection-dominated cases with robustness for stiff configurations. We
further improve the GEF approach by using hierarchical multigrid algorithms to obtain grid-independent
convergence rates for a wide range of problem parameters, and provide representative results for var-
ious benchmark problems. Finally, we present quantitative comparisons between a highly optimized
CFD-solver based on the Navier-Stokes equation (FeatFlow) and our new LBE solver (FeatLBE).

AMS Subject Classifications: 35A25, 656M06, 76D05, 76P05
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discretization, lower triangular matrices, Krylow-methods, multigrid, monolithic solver

1 Introduction

In this paper we consider the Lattice Boltzmann equation (LBE), sometimes also referred to as discrete
velocity model (DVM) in contrast to the Lattice Boltzmann method (LBM) which is thoroughly discussed in
the literature concerning stability [17], model extensions [4], boundary treatment [16], [32] or its connection
to the Navier-Stokes equation [8], [21], [22]. Characteristic for the LBM is working on structured grids
and mainly performing two explicitly decoupled substeps; first, particles stream along lattice vectors to the
neighbouring nodes and, second, the particles are redistributed after collision. This method is unconditionally
stable due to implicit discretization of the collision (see [9]), while the implicitness is removed using a
modified distribution function in case of explicit on-lattice treatment of the advection. These ideas had been
extended to off-lattice Boltzmann schemes as decribed in [1], but the authors explain that the remaining
CFL restriction can be removed only by implicit treatment of the advection term. In fact, the DVM is a
system of partial differential equations (PDE), and talking about modern Numerics for PDE one has to be
aware of recent advances w.r.t. implicit time discretizations, unstructured, locally adapted grids and fast
iterative solvers: They can provide more accurate results with less time steps and less grid points. A fully
implicit, monolithic approach even allows direct stationary solvers in an efficient and robust way.

However, advection implicit Boltzmann schemes appear in only very few places. In [25] Télke has applied
an upwind finite difference discretization of second order on structured grids and used multigrid to solve
the resulting linear equation systems. In [18] Mavriplis also took advantage of the multigrid method after
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trying various iterative solvers for the resulting equation systems and encountering problems due to the
high stiffness of the system and bad conditioning for realistic configurations. In [20] Noble introduced an
implicit discretization of the LBM and successfully treated the resulting nonlinearities with the Newton
method. For the resulting sparse banded matrices he used a solver from LAPACK and demonstrated for his
scheme to be superior to the explicit method, with superlinear scaling of CPU time and memory demands
of the Newton/LAPACK combination. It is obvious that the best direct linear solvers can perform only
up to a certain memory limit, then, at the latest, iterative schemes have to take over. So, most of the
mentioned authors applied on-lattice convection/advection implicit schemes. Here, we treat the LBE as a
special (semi-discretized) integro-differential equation which consists of (linear) partial differential operators
of transport-reaction type with constant characteristics. What is new is that we apply a special, higher
order Finite Difference discretization on unstructured grids and combine it with implicit time discretization
to achieve an efficient monolithic approach which works well especially for steady state problems.

In the following, we consider the continuous Lattice Boltzmann equation to approximate the Navier-Stokes
equation as in [21], namely
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for the particle distribution function f;(x, ¢) with single-time relaxation on a typical timescale 7 and properly
discretized phase space. In two dimensions, one set of discrete lattice vectors, that satisfies mass, momentum
and energy conservation and has the needed symmetry (see [21]), is the D2Q9 model with the following lattice
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The parameter ¢ determines the speed of sound, ¢, = ¢/ V3, of the system, the viscosity v is included via
v = 7 in the DVM (see [25]) and the distributions are summed up to get the moments of density and

velocity:
p=Zf¢ : po-u=zeifi

The Mach number Ma = U/c, is supposed to determine an additional error component of the system,
namely the compressibility error of order O(Ma?) (see [7], [22]). The equilibrium term f¢? of the incom-
pressible model (i.e. pgp = 1, see [8]) introduces a nonlinear coupling of the distributions, if an implicit
time-discretization is used:
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We want to emphasize that the parameter ¢ appears as a linear scaling factor to the differential operator,
and quadratic in the collision term through 7. This means that for small ¢ and large viscosity v the equation
is transport dominated, while increasing ¢ makes it collision dominated, the same for decreasing v. We
will discuss the interplay between ¢, h, and v (see Sec. 2.4) which we discovered to be significant in the
simulations since it vastly influences the approximation.

2 Discretization of the Lattice Boltzmann equation

Our approach to the discretization of the LBE will be covered by four main parts in this section. The first
two parts represent special techniques from Numerics for PDE: Implicit time discretization will be described
in Section 2.1; the second aspect is high order spatial discretization on unstructured grids which will be
described in Section 2.2. The next part shortly describes the boundary treatment while in Section 2.4 we
finally discuss the connection between spatial discretization and the choice of parameter ¢ and how the
combination of both affects the consistency of our model.



2.1 Implicit treatment of the generalized Lattice Boltzmann equation

To overcome typical stability restrictions, we want to treat the LBE in (1) fully implicitly to allow large
time steps or even to solve directly for stationary flow, while a time-stepping scheme is needed only for
configurations with high Reynolds number and for fully nonstationary flow problems. Therefore, we consider
the following PDE describing the continuous Lattice Boltzmann equation in the generalized form

afi+ei-Vf¢=%(ffq—fi)+gi ,0=0,...,8. (3)

For the direct stationary treatment we set a = 0 and g; = 0, while we can also consider a nonstationary
formulation by modification of the values, e.g.
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which corresponds to the implicit Euler time-stepping scheme. Here, we concentrate on the stationary case,
« = 0, while the first order implicit Euler approach and higher order schemes like Crank-Nicholson will be
discussed along with nonstationary flow problems in a forthcoming paper [13]. For the stationary approach,
the collision term on the right hand side of equation (3) becomes part of the system of algebraic equations to
be solved. The collisions cause in every grid-point a coupling of the distributions in each direction, as part
of a system matrix it means a 9x9 collision block each. Due to the nonlinearity in the equilibrium term, we
have furthermore to apply a nonlinear solver in the stationary solution procedure. For this purpose we have
to linearize the f{? terms (in the way of u? ~ u-u°) for calculating the Jacobian matrix in each Newton
iteration step (see Section 3.1)
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with @ix = ©(i, k, 7, c,u) and coefficients D;j resulting from (u = (uy, u2)?):
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We summarize that due to the equilibrium term f;? in the collisions, we have to solve a system of nonlinear,
coupled algebraic equations including additionally a transport term which can be discretized using Finite
Element /Difference/Volume methods. In our approach, we use finite difference upwinding on unstructured
meshes which will be explained in the next section.

2.2 The ”short-characteristic” discretization procedure

The transport operator in (3) is described in the standard LB method as a trivial streaming process of
particles to neighbouring nodes, but since we allow general meshes, we will discretize it for each of the
8 constant characteristics using finite difference techniques. This task has been performed very efficiently
in [10], [11] using a backward difference scheme of up to second order accuracy. In general the upwind
discretization procedure works on unstructured triangular meshes as follows: With the unity vector ng for
an arbitrary angle 0 (see Fig. 1), the constant characteristics upwinding of first order (to be denoted as
upw1l) yields the difference quotient

f(vo) — f(v1)

hl + O(h1)7

ng - Vf(vo) = f'(vo) =
while the second order scheme (to be denoted as upw2) yields (with hy + he =7 - hy):
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Figure 1: Setting for FD discretization of 1st and 2nd order

This means we discretize a one dimensional differential equation along the characteristic 3. Analogously,
the LB differential operator will be discretized (scaled by parameter ¢) as:
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Due to the upwind discretization using information from ”backward” nodes, one is inclined to think that one
can directly solve this transport equation starting from the inflow boundary and ”traversing” the domain.
In fact, as described in [11], for each constant characteristic, resp., lattice vector e;, it is possible to find a
numbering of the grid nodes so that the resulting discretization matrix is lower triangular. This procedure
has to be conducted once for each direction in preprocessing. Afterwards, whenever one has to solve a
transport step (for example in preconditioning), it is possible without actually inverting a matrix but by
simple backward insertion of the solution starting at the inflow boundary. Instead of describing the actual
algorithm, which is based on topological sorting from the field of graph theory (see [2], [11]), we will visualize
the result of the renumbering. After applying the according permutation matrices to the 8 transport parts
situated on the block-diagonal of the system matrix, we see a change of the original allocation. Those
entries, that belong to the finite difference discretization of the differential operator, are permutated into a
lower triangular allocation in the matrix (Fig. 2). The off-diagonals contain the collision term. Additionally,
exploiting the grid information we can implement this discretization in a matrix-free style, i.e. we can
calculate all matrix entries including the finite difference and collision coefficients ”on-the-fly”.

2.3 Boundary treatment

The boundary treatment is in our case quite simple as we are using unstructured meshes. These are adapted
to the geometry of our domain, therefore we can easily place our boundary nodes on the wall. To impose
macroscopic quantities like velocity up. as Dirichlet boundary conditions we use the scheme from [16]:

€; - Upc
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To achieve natural boundary conditions, i.e. a free-slip boundary, we use a different approach. It is similar
to copying the distributions from a boundary layer before the free-slip nodes, as in the case of a structured
lattice. In our case we apply constant extrapolation of the f;, with ¢ = 1,....8, from the domain in the
direction being orthogonal to the wall. In the same way we proceed in corners where we have ”pairs” of
distributions f;, f—; both going into (or out of) the domain, in the case of a convex, resp., concave wall



GO PP

70

Figure 2: Matrix allocation: ordering by space index for each direction (left) vs. effect of renumbering
algorithm in a symbolic representation (right)

(see [12]). For the stationary solution of the LBE we have to treat the boundary implicitly and include
the dependence of the bounce-back distributions into the system matrix. This is necessary for the efficient
treatment of the occuring nonlinearities as for example in the Newton scheme.

2.4 Convergence w.r.t. mesh size h and sound speed constant c

In common Lattice Boltzmann literature the parameter c is referred to as the unit of velocity, which couples
grid length and timestep size through Az = c¢At (see [17]) and which is generally set to one. In our case we
neither have a uniform grid spacing, nor a timestep when we solve the stationary LB equation on general
meshes. Nevertheless we found that the choice of ¢ influences significantly the accuracy and computational
efficiency of our model. Starting the work on this topic it was not clear how to set the parameter ¢, which
appears throughout our discretization. The idea to choose ¢ as big as possible to reduce the Mach number
proved to be wrong in the end. Looking at the equations from the viewpoint of asymptotical analysis for the
LBE gave some hints that we must choose ¢ depending on h (see [14], [15], [22]). Without the dependence
of the two variables we would not achieve a consistent approximation of the Navier-Stokes equation in the
asymptotic limit. Additionally, the order of our FD discretization of the differential operator is supposed
to determine our choice, i.e. h = O((1/c)?) for first order upwind, resp., h = O((1/¢)3/?) for second order
upwind. Only then we can achieve the desired quadratic convergence O(£?) against the Navier-Stokes solution
1

with € = . Corresponding numerical studies are presented in Section 5.2 and can be found in [12].

3 Solvers for the Lattice Boltzmann equation

3.1 Nonlinear solution method

Because of the terms (e;-u)? and u? in the collision term we have a system of nonlinear algebraic equations,
denoted as
Nx)x=g

with x representing the solution vector for the distributions f;. The nonlinearity can be solved by simple
(damped) fixed-point iteration

X" =x" L ON(E")"THNE)X" —g) , w>0
or - more efficiently - using the Newton method. To that purpose we write the system in residual form

R(x) = N(x)x —g =0.



The Jacobian [%} is then used in the following iterative scheme:
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The Jacobian’s coefficients in our model can be determined analytically: Summing up the partial derivatives
of equation (4) yields:
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So, the derivation simply results in a scaling by 2 in each quadratic term.

3.2 Iterative linear solvers

We need to solve a linear system Ax = b (x representing the discrete solution vector of all f;) in each
nonlinear step, having obtained a matrix A from the described discretization procedure. Direct solvers
like LAPACK or UMFPACK are efficient for smaller problems, but scale badly with increasing number of
unknowns, so that iterative methods have to be used for many gridpoints. Therefore, the simple (damped)
Richardson iteration

x(H) = x( _5(Ax™ —b) | >0

is a quite general candidate. This well-known, but usually very slow defect correction method, especially in
the case of an ill-conditioned matrix A, can be accelerated by additional preconditioning

x( D) = x() _ 501 (Ax™ —p)

where C should be easy to invert, and at the same time it should be similar to A so that C~'A ~ I. Due
to our special discretization we can obtain both properties using preconditioning by the transport part (”tr-
pre”) in the following. With our special numbering technique we can directly invert C' consisting of lower
triangular blocks and, in the case of a convection dominated system, we improve the condition number of
C~ ' A significantly and independently of the mesh size. Another property of "tr-pre” is a strong clustering
of the eigenvalues (see [12] for details), which is very favourable for Krylov-space methods like Bi-CGSTAB
[30] and GMRES [23]. Unfortunately, for collision dominated configurations the positive effects diminish,
therefore it makes sense to use the collision operator for preconditioning. Instead of numbering the unknowns
according to the propagation direction, we ”collect” in each grid point 4 its 9 unknowns fg,..., fi. Thus,
we bring the offdiagonal matrix-entries onto the diagonal which then consists of a 9x9 block for each node.
Consequently, a block-Jacobi (?bl-jac”) preconditioner can be constructed by simply calculating the inverse
of each 9x9 system. Unfortunately, the alternative numbering does not preserve the lower triangular form
of the transport blocks. This preconditioner does not include the transport part and the condition of C~1 A
would therefore strongly depend on the mesh size. Finally, in the case of level-dependent convergence rates,
an additional option is to apply the solver in a multigrid framework. To this purpose we need a set of
hierarchical grids and transfer operations for prolongation and restriction which will be described in Section
5.5.

4 Generalized equilibrium formulation (GEF) of the LBE

In [11],[28] the concept of the generalized mean intensity (GMI) had been successfully combined with a
direct transport solver to treat radiative transfer problems. The idea is to convey this technique from that
integro-differential equation to the LBE: In this case we cannot improve the storage cost like in the GMI
approach due to the varying coefficients @;;,. What we can do, though, is to combine the advantages of an
efficient transport solver on the one hand with special preconditioning to deal with stiff problems due to
dominant collision on the other hand.



In the following, we illustrate the procedure which is possible also for time-stepping variants of (3) (see
also [13]). We start from the discretized LBE and denote by Ty fr ~ afy +er - Ve + %fk Then, the
equation

kakzéf,fq—kgk k=0,...,8 (6)
can be formally rewritten as
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and for each i = 0,...,8 we multiply with the corresponding weights &;;; from equation (4) which yields:
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Summing up over k finally gives us for each equilibrium term f;?:
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This means that in order to solve equation (6), we first solve for the terms f{? and afterwards we obtain the
fi from a simple post-processing step according to equation (7). Thus, we have obtained the following new
linear system in matrix form:
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So, the resulting system matrix contains the transport steps in an inverse manner, which means that
we obtain an implicit matrix only as we do not calculate the actual inverses T[l, but we only apply the
inverse to a vector which is equivalent to solving a linear system to a given right hand side. Due to our
special discretization and the lower triangular form of the transport matrices Ti_l7 the whole procedure is
very cost efficient. Hovewer, the new additional benefit of this GEF approach is that for the same reason
we can apply additional preconditioning to the system, by collecting the entries in the 9x9 diagonals which
are known since diag(T; ") = diag(T;)~* with T; lower triangular. These diagonal entries consist in part of
the ©(i, k, 7, ¢, u), so we expect an additional stabilizing effect in the case of large ¢, while the solution of
the GEF even without preconditioning should perform well for transport dominated configurations due to
its explicit construction.

5 Numerical tests

5.1 Testcases and hierarchical grids

As testcases we choose three different ”classical” problems from the field of CFD with varying difficulty level.
First, we compare with the given analytical solution for Rotating Couette flow from [6]. Then, additional
simulations are performed for the Flow around Cylinder benchmark (see [24]), resp., for the Driven Cavity
problem at various Reynolds numbers (as in [18]). Due to the lack of analytical solutions, we compare against
Navier-Stokes reference values computed by FeatFlow [27] on a highly refined mesh.

As seen in Fig. 1, our spatial discretization is designed for general (triangular) grids. Thereby, we have 3
degrees of freedom (DOF) per element for the 1st order upwinding, and for the 2nd order upwinding we
have 3 additional unknowns in the edge midpoints. Starting from a coarse mesh we get one further level
of refinement - and successively a mesh hierarchy used in a multigrid algorithm - simply by connecting the
edge midpoints. Thus, we divide each element into 4 new ones. In Fig. 3 we present a structured grid on
the unit square, used for the Driven Cavity testcase, together with another less structured grid which we use
for the Rotating Couette flow. Furthermore, in Fig. 4 a sequence of grids is shown which is locally adapted
around the inner boundary component. On these grids we calculate the Flow around Cylinder benchmark.
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Figure 3: Structured and unstructured grid for Driven Cavity and Rotating Couette flow
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Figure 4: Hierarchical sequence of refined, locally adapted grids for Flow around Cylinder

To better approximate the forces acting on the circular cylinder, we have more elements gathered around the
cylinder than at the channel’s outflow region. Nevertheless, the upwind discretization is carried out similarly
on all three meshes.



5.2 Results for the spatial accuracy

To verify the accuracy of our discretization techniques (see Section 2.4) we compute the relative Lo-error of
velocity u for all three testcases, using either the given analytical or CFD reference solution. We choose an
initial grid width k¢ and sound constant c¢g. During grid refinement we fix the ratio of both according to
the order of discretization, i.e. h; - (¢;)® = ho - co (upwl), resp., hy - (¢;)3/? = hg - ¢ (upw?2). In Fig. 5 we
plot the theoretical slope of quadratic convergence, the points in the slope indicating the distance between
successive levels of refinement. The results show a good accordance with the theory, neglecting the initial
results as we are interested mainly in the asymptotic behaviour. Compared to the 1st order upwinding, the
2nd order discretization obviously reduces the error significantly with less grid refinement steps, at the cost
of bigger choice of c.

Although the asymptotic behaviour is clear, it is not obvious which initial ¢y to choose. That is why
we continue with the numerical analysis, now varying ¢ for each fixed h;. The plots show (see Figs. 6, 7)
the existence of a (unique) optimal choice, say a copt, for each testcase and refinement level. Using a finer
mesh also increases the copt = Copt(h). Furthermore, cop: is getting smaller for increasing Re (see Fig. 8),
so it shifts together with the viscosity v of the simulated medium. This faces us two problems, one is that
for both, increasing Re and smaller ¢, the nonlinearity is more difficult to solve. The other is the increased
compressibility error for larger Mach numbers. As remedy it is common to use multiple-relaxation-time
models (MRT, see [3], [4], [5], [17]) which are subject of our current research and which will also be included
in a forthcoming paper. So far we could derive a rule of thumb for the choice of ¢ in each testcase, which
is also relevant for the linear and nonlinear solvers. We should keep in mind that small ¢ means transport
dominated equations, while big ¢ means dominant collisions. On the other hand, c,,: seems to be in an
intermediate range, where neither effect really dominates the other.
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Figure 5: Comparison with theoretical (quadratic) convergence using fixed ratio ¢ - h

5.3 Convergence results for the nonlinear solver

In this section we present the results for treating the nonlinearity, hereby comparing the performance of the
fixed point iteration with the Newton scheme. We provide the number of nonlinear iterations for Driven
Cavity at Re = 100 and Re = 600 in Table 1, and in Table 2 results for the Flow around Cylinder benchmark
at Re = 2 and Re = 20 which is more difficult due to the lower viscosity (see [24]). We find that the fixed
point iteration is only able to cope with small nonlinearities without problems (the choice of bigger ¢ also
positively influences the solver). For higher values of Re, resp., lower viscosities some appropriate damping
has to be applied to ensure convergence. Also, increasing the number of grid points N means more nonlinear
iterations. In contrast, the Newton scheme performs well in all cases and needs only few iterations to reduce
significantly the nonlinear defect (similar to [26]).
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Re 100 Re 600
grid points fixed point Newton fixed point Newton

c=1
289 15 4 27 6
1089 20 5 34 6
4225 24 5 59 8
c=10
289 8 4 21 4
1089 12 4 21 5
4225 17 4 36 6
c=100
289 5 3 22 3
1089 7 3 22 3
4225 10 4 22 4

Table 1: Driven Cavity with upw?2: No. of iterations to reduce the nonlinear defect by 106

Re 2 Re 20
grid points fixed point Newton fixed point Newton
c=1

572 13 4 22 5

2184 15 4 23 5

8528 16 4 23 5
c=10

572 11 4 20 4

2184 14 4 26 5

8528 16 4 46 5
¢=100

572 6 3 20 3

2184 11 4 21 4

8528 15 4 118 6

Table 2: Flow around cylinder with upw?2: No. of iterations to reduce the defect by 10~°

5.4 Convergence results for the linear solver

We test the described linear solvers and preconditioners for all our configurations at various Reynolds num-
bers. The direct stationary solution of (3) proved to be too difficult to solve for the simple Richardson solver
for interesting configurations. In this section we will focus therefore on presenting the results for the used
Krylov-space methods, starting with the Driven Cavity configuration at Re = 10. More details can be found
in [12].

First we provide the number of iterations to gain 6 digits for the linear defect using a preconditioned
Bi-CGSTAB (see [30]) solver (see Table 3). It gives very good results in those fields our preconditioners were
made for: First, at ¢ = 1 with ”tr-pre”, the very mild dependence of h for transport dominated problems
due to the almost exact preconditioner is shown on all levels. Second, for small numbers of grid points
N with ”bl-jac” preconditioning, this preconditioner is stable with increasing c, however, the results are
highly level dependent. Unfortunately the convergence behaviour can fail unexpectedly, even for moderate
configurations which is known for the Bi-CGSTAB scheme. Therefore, we also implemented a GMRES (see
[23]) solver, taking advantage of its more monotone convergence behaviour. It still provides good results
for transport dominated configurations, resp., for small N. Additionally, we get useful information about
moderate and extreme configurations. While it is obvious that the separate use of "tr-pre” and ”bl-jac”
is not satisfactory, because it does not combine the advantages of both, the results (see Table 4) show
the expected advantageous behaviour of the (preconditioned) GEF approach. For ¢ = 1, the GEF without

11



preconditioning still yields very good convergence on all levels. With our diagonal preconditioning GEF(\) we
gain additionally robustness w.r.t. high values of ¢. This means that our preconditioned GEF combines two
positive effects, which is due to our special discretization technique. Nevertheless it remains the dependence
on h, resp., N, for moderate and large values of ¢. That is why we use multigrid methods to overcome this
last drawback.

upwl upw2
grid points tr-pre bl-jac GEF GEF(\) tr-pre bl-jac GEF GEF(\)
c=1

81 28 71 21 18 26 182 20 17

289 30 135 20 21 36 1000 23 20

1089 44 1000 24 30 43 1000 30 26

4225 52 1000 39 39 54 1000 41 36
c=10

81 110 56 82 51 95 62 110 44

289 100 229 161 88 96 179 148 164

1089 111 716 153 133 141 1000 1000 1000

4225 137 1000 1000 351 143 1000 199 937
c=100

81 1000 75 1000 60 1000 76 1000 92

289 1000 1000 1000 194 1000 349 1000 550

1089 1000 1000 1000 833 1000 1000 1000 1000

4225 1000 1000 1000 1000 1000 1000 1000 1000

Table 3: Driven Cavity at Re = 10, No. of iterations to gain 6 digits, using Bi-CGSTAB

upwl upw2
grid points  tr-pre bl-jac GEF GEF(\) tr-pre bl-jac GEF GEF(\)
c=1

81 42 91 33 28 40 146 34 28

289 48 178 36 31 49 334 37 32

1089 56 336 40 45 63 716 44 42

4225 67 718 49 53 83 1000 56 53
c=10

81 107 66 96 51 109 81 106 55

289 130 154 128 88 138 180 144 90

1089 158 351 158 129 164 423 182 147

4225 190 771 188 174 197 935 209 194
c¢=100

81 235 67 211 67 227 78 246 7

289 360 170 407 155 409 203 502 182

1089 524 400 744 340 619 539 1000 461

4225 714 950 1000 689 838 1000 1000 1000

Table 4: Driven Cavity at Re = 10: No. of iterations to gain 6 digits, using GMRES

5.5 Monolithic multigrid solver for LBE

We have shown already that the GEF solver performs well for configurations with dominating transport
operator, independent of the number of unknowns. Additionally, it becomes robust against large values
of ¢ with the block-diagonal preconditioning, but with level-dependent convergence rates for the relevant,
intermediate range. That is why we implemented a prototypical version of the multigrid method. First,
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we show the results for the Driven Cavity problem again at Re = 10 to compare with Table 4. For this
purpose we had to implement grid-transfer operators: We apply linear and quadratic prolongation for the
1st and 2nd order discretization, respectively. However, so far we use only constant restriction, so that
further optimization is feasible. Moreover, the use of multigrid as preconditioner in GMRES shows better
convergence behaviour compared to the traditional multigrid algorithm. The rates for the latter variant are
unsatisfactory, especially if only few smoothing steps are applied. This behaviour is comparable to [31] and
shows the advantage of Krylov-space methods compared to ”simple iterative schemes” even in a multigrid
framework.

In Tables 5-6, we show the results for the GMRES with multigrid as preconditioner performing 1 cycle with 8
smoothing steps. We additionally compare the multigrid rates with the previous single grid results with fized
GMRES restart level of 16. We have to keep in mind that the GMRES algorithm stores all iteration vectors
which needs a considerable amount of memory for large grids. The results show (almost) independence of
the refinement level for the multigrid (even some improvement for finer levels), while the plain GEF results
degrade for the case ¢ = 100 as expected. The GEF(\) with block-diagonal preconditioning yields significant
improvement here, also for a higher Reynolds number of Re = 100 (see Table 6). If we concentrate on the
moderate range of ¢ = 10, we see that even without this stabilization the rates are quite good, and our
tests indicate further improvement when more smoothing steps s are applied. However, increasing s does
not improve the rates as much as expected, which means some slight aberration from common multigrid
theory which might be due to the non-optimal restriction. The rates seem to improve like O(\/ig) rather

than O(21) (see [12] for details). Moreover, we are not yet completely satisfied with the values for the 2nd
order upwinding, but expect further improvement after implementing a quadratic restriction operator.

upwl upw2
single grid multigrid single grid multigrid
grid points GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF GEF(\)
c=1

289  0.06 0.05 0.05 0.04 0.05 0.08 0.09 0.07
1089 0.12 0.08 0.07 0.06 0.05 0.07 0.14 0.12
4225 0.13 0.14 0.13 0.16 0.13 0.16 0.14 0.17

c=10

289  0.42 0.24 0.17 0.14 0.44 0.32 0.23 0.21
1089 0.46 0.43 0.15 0.14 0.51 0.46 0.15 0.17
4225 0.48 0.51 0.11 0.12 0.55 0.53 0.11 0.14

c=100

289 0.73 0.43 0.37 0.19 0.80 0.51 0.61 0.33
1089 0.83 0.64 0.28 0.19 0.89 0.75 0.51 0.39
4225 0.89 0.79 0.22 0.18 0.94 0.88 0.38 0.35

Table 5: Driven Cavity at Re = 10, convergence rates for multigrid as preconditioner in GMRES

5.6 Results for stationary flow around a 2D cylinder

Finally we use our ”"best” solver configuration within our FeatLBE code to solve the Flow around Cylinder
benchmark at Re = 20 (see plots for the pressure and z-component of the velocity field in Fig. 9). By
line integration of the stress acting on the cylinder one can obtain drag and lift values which are compared
with the reference results from [24] (5.5795 and 0.0106, respectively, and Ap = 0.1175 for the pressure
difference between front and back of the circle). In the LBM, the stress is usually obtained by evaluating the
nonequilibrium distributions f;"“? = f; — f79 (see [19]). Results in Table 8 confirm that this method yields
better results than the force evaluation based on point values of p and the gradient of u, especially on high
refinement levels.

We compare the performance of our new code with FeatFlow [27], using the same coarse mesh, but converting
each quadrilateral into 4 triangular elements (see Fig. 4). Using again the monolithic, stationary approach
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upwl upw2

single grid multigrid single grid multigrid
grid points GEF GEF(\) GEF GEF(\) GEF GEF(\) GEF GEF(\)
c=1

289 0.41 0.29 0.20 0.16 0.48 0.33 0.27 0.23
1089 0.51 0.44 0.17 0.15 0.55 0.46 0.18 0.19
4225  0.54 0.46 0.08 0.08 0.59 0.54 0.14 0.15

c=10

289  0.77 0.50 0.43 0.23 0.82 0.51 0.61 0.35
1089 0.84 0.65 0.28 0.20 0.91 0.78 0.51 0.40
4225 0.90 0.81 0.24 0.19 0.94 0.89 0.42 0.39

¢=100

289  0.89 0.64 0.73 0.24 0.91 0.71 0.87 0.46
1089 0.94 0.75 0.64 0.24 0.97 0.87 0.85 0.52
4225 097 0.86 0.53 0.22 0.99 0.94 0.80 0.55

Table 6: Driven Cavity at Re = 100, convergence rates for multigrid as preconditioner in GMRES

Figure 9: Flow around Cylinder at Re = 20, pressure and x-component of velocity
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for this challenging problem, we start from the Level-1 solution (by interpolation) and use the same stopping
criteria, i.e 1078 for the nonlinear defect, resp., 10~* linear gain each. The total number of unknowns is
higher for FeatLBE because of 9 x f; per node in the D2Q9 model, nevertheless the CPU times (omitting the
coarse grid solver, see Table 7) are already quite comparable to the highly optimized CFD code FeatFlow.
However, the results strongly depend on the kind of discretization and stabilization of the convective terms
(upwinding vs. edge-oriented EOFEM (see [29] for details) so that we expect a huge potential for the future
by using improved numerical methods for LBE, too. At the moment, FeatLBE needs similarly few nonlinear
steps and linear multigrid sweeps of the W-cycle with 16 smoothing steps. The rates for ¢ = 2 are decreasing
compared to ¢ = 1, while the accuracy is increasing; however, findings from Section 5.2 indicate cop: < 5 on
the highest refinement level.

Finally, in order to improve the results, we construct a highly adapted grid which is easily accomplished using
triangular elements (see Fig. 10). We obtain good results for drag and lift, and significant improvements for
the results for Ap with less unknowns. With this methodology, mainly based on the described monolithic
approach with the generalized equilibrium formulation, we also expect for the FeatLBE code even better
linear rates for nonstationary flow at higher Re numbers, if we use high order time-stepping schemes in a
fully implicit approach; the corresponding results will be given in a forthcoming paper.

FeatFlow Upwind EOFEM
grid points  total unkn.  drag lift NL/AVMG CPU drag lift NL/AVMG CPU
16848 42016 5.7460 0.0070 7/6 47 5.5803 0.0101 3/7 32
66976 167232 5.6196 0.0103 6/5 145 5.5789 0.0104 3/6 125
267072 667264 5.5882 0.0108 5/5 443  5.5793 0.0106 3/7 613
FeatLBE c=1 c=2
grid points  total unkn.  drag lift NL/AVMG CPU drag lift NL/AVMG CPU
4264 38376 5.6676 0.0413 4/8 31 5.6490 0.0448 4/11 45
16848 151632 5.5287 0.0121 3/7 139 5.5403 0.0123 3/11 225
66976 602784 5.5398 0.0102 3/7 774 5.5863 0.0103 3/12 1308

Table 7: FeatFlow vs. FeatLBE results for Flow around Cylinder: Drag and lift coefficient, Nonlinear
(NL)/Average multigrid sweeps (AVMG) and CPU time

p,u force eval. fme? force eval.
grid points  drag lift Ap drag lift
c=1

2948 59034 0.0451 0.1240 5.6422 0.0466
11592 59151 0.0209 0.1188 5.5191 0.0226
45968 6.1069 0.0105 0.1177 5.5228 0.0128

183072 6.3378 0.0075 0.1174 5.5284 0.0105
c=2

2948 6.0262 0.0937 0.1314 5.9606 0.0938
11592 5.7718 0.0310 0.1209 5.6453 0.0315
45968 5.7835 0.0134 0.1184 5.5801 0.0143

183072 5.8641 0.0097 0.1178 5.5695 0.0109
c=4

2948 6.2414 0.1266 0.1398 6.2388 0.1267
11592  5.7711 0.0404 0.1231 5.7388 0.0405
45968 5.6735 0.0160 0.1188 5.6080 0.0163

183072 5.6857 0.0110 0.1178 5.5812 0.0114

Table 8: Drag and lift coefficient and pressure difference on highly adapted grid
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Figure 10: Highly adapted triangular grid for the Flow around Cylinder configuration

6 Conclusion and outlook

We have introduced a new approach for the Lattice Boltzmann equation (LBE) by applying highly so-
phisticated, modern techniques from Numerics for PDE: The implicit discretization of both, collision and
advection, on general (unstructured) meshes is supposed to overcome the crucial CFL restriction of standard
LB methods. We have shown that it is possible to treat the LBE in a more general way as a semi-discretized
integro-differential equation, and thus to carry over solution techniques that have been successful in the field
of radiative transfer problems. A new GEF reformulation of the LBE was derived which can combine the
efficiency of direct transport solvers on the one hand with special preconditioning for collision dominated
cases on the other hand leading to a very efficient and robust monolithic solver. The range of problem
parameters was numerically analyzed to obtain a rule of thumb for an appropriate approximation to c,p; for
various flow problems at different Reynolds numbers so that optimal approximation results can be obtained.
Finally the performance was greatly improved using a multigrid algorithm and the achieved convergence
rates are independent of the problem size. The ongoing research is concerned with an analysis of the MRT
model and adjusting the solvers and preconditioners for the modified collision operator. We expect to get
further understanding of the quality of our approximated solution, depending on the (variable) relaxation
rates and choice of parameter ¢, and its interplay with corresponding preconditioning stategies which will
be part of a forthcoming paper. Therein, we will also focus on unsteady flow problems, especially the Flow
around Cylinder benchmark at Re = 100, and higher order time stepping schemes with large, resp., adaptive
choice of At.
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