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A parallel Newton-Krylov method for optimal control
of the monodomain model in cardiac electrophysiology

Karl Kunisch, Chamakuri Nagaiah and Marcus Wagner

1. Introduction.

The present paper is concerned with a parallel numerical method for the solution of an optimal control problem
involving the monodomain equations of cardiac electrophysiology. Here the electrical behavior of the cardiac
tissue is described by a single parabolic reaction-diffusion equation, which is coupled with an ODE. In their
strong form, these equations may be stated as follows: 01)

∂v

∂t
+ Iion(v, w)− div

(
σi∇v

)
= Ie for a. a. (x, t) ∈ Ω × [ 0 , T ] ; (1.1)

∂w

∂t
+G(v, w) = 0 for a. a. (x, t) ∈ Ω × [ 0 , T ] ; (1.2)

nTσi∇v = 0 for all (x, t) ∈ ∂Ω× [ 0 , T ] ; (1.3)

v(x, 0) = v0(x) and w(x, 0) = w0(x) for a. a. x ∈ Ω . (1.4)

In this model, the heart muscle is assumed to occupy the spatial domain Ω ⊂ Rd. The anisotropic electrical
properties of the heart tissue are described by a single conductivity tensor σi, and the variables v = v(x, t),
w = w(x, t) and Ie = Ie(x, t) represent the transmembrane electrical potential, a so-called gating variable,
which is related to the ion transport through the cell membranes, and the extracellular stimulation current,
respectively. Since the heart tissue stays electrically isolated in the absence of a conductive bath, we impose
weighted Neumann boundary conditions. Together with appropriate specifications of the ionic current Iion
and the function G within (1.2), this system forms a well-accepted simplification for the full bidomain
model of the electrical heart activity. 02) While conserving a number of essential features of the bidomain
model, e. g. excitability phenomena, the monodomain equations can be solved at a much lower computational
expense. 03)

A strong motivation for the study of optimal control problems in relation with the equations of cardiac
electrophysiology comes from the phenomenon of cardiac arrhythmia, a life-threatening situation, which is
still recognized as a significant challenge for the clinical practice as well as for physiological research. The
termination of a cardiac arrhythmia is best achieved by application of a strong electrical shock, a process called
defibrillation. 04) From the viewpoint of applied mathematics, it is important to go beyond direct numerical
simulation of typical defibrillation situations 05) by determining an applied electrical field as a control, to which
the system responds according to specifications which are specified in an appropriately chosen cost functional.
In this regard, a possible goal of optimization could be the dampening of sharp gradients of the transmembrane
potential v or even the dampening of the transmembrane potential at all.

01) For an introduction into the monodomain equations and the underlying bidomain model, see [ Sundnes/Lines/Cai/

Nielsen/Mardal/Tveito 06 ] , pp. 30 ff., and the references therein.
02) Cf. [ Nielsen/Ruud/Lines/Tveito 07 ] and [ Potse/Dubé/Richer/Vinet/Gulrajani 06 ] .
03) Due to the high spatio-temporal resolution required for resolving the wavefront propagation in the heart, the numerical

solution of the full bidomain model is highly expensive, cf. e. g. [ Vigmond/Weber dos Santos/Prassl/Deo/Plank

08 ] and [ Weber dos Santos/Plank/Bauer/Vigmond 04 ] . Most time is consumed by the solution of the elliptic

part of the model, cf. [ Plank/Liebmann/Weber dos Santos/Vigmond/Haase 07 ] , which is absent in the

monodomain approximation.
04) [ Keener/Sneyd 09 ] , pp. 583 ff. and 604 ff.
05) [ Anderson/Trayanova/Skouibine 00 ] .
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Based on these considerations, the following optimal control problem has been selected for numerical solution:

(P) F (v, w, Ie) =
1
2

∫ T

0

∫
Ωobs

v(x, t)2 dx dt+
α

2

∫ T

0

∫
Ωcon

Ie(x, t)2 dx dt −→ inf ! (1.5)

subject to the state equations (1.1)− (1.4) in their weak formulation (see (2.1)− (2.3) below) and

the control restrictions
∣∣ Ie(x, t) ∣∣ 6 R for a. a. (x, t) ∈ Ωcon × [ 0 , T ] as well as (1.6)

Ie(x, t) ≡ 0 for a. a. (x, t) ∈
(

Ω \ Ωcon

)
× [ 0 , T ] , (1.7)

with α > 0 and R > 0. In problem (P), v and w are the state variables while Ie acts as a locally supported
distributed control. The objective functional consists of a data term, which enforces the dampening of excitation
waves of the transmembrane potential v, and a quadratic regularization term for the control variable. The
behavior of v will be observed within a subdomain Ωobs ⊂ Ω, and the control will be applied at a subdomain
Ωcon ⊂ Ω of comparatively small measure. The control restriction (1.6) reflects the obvious fact that one
cannot apply arbitrarily large electrical stimulations to living tissue without damaging it. For Iion and G, we
specify the Rogers-McCulloch model (see Subsection 2.b) below).
Two case studies, corresponding to different initial conditions for v, will be performed. In our first experiment,
we aim for dampening of a single excitation wave. In this particular case, the authors already obtained
numerical results using a different, non-parallel implementation. 06) Consequently, the problem can serve as
a test case for measuring the efficiency of the parallelized approach. In our second experiment, the initial
condition corresponds to a situation of cardiac arrhythmia, which is characterized by the presence of a re-
entrant excitation wave, and the goal is to terminate this wave. In both cases, we work on a two-dimensional
spatial domain. An important feature for the choice of the numerical test cases is the size of the subdomain
Ωcon, on which the control is exercised. Achieving the design objective, in our case the extinction of waves, is
increasingly more difficult as the size of Ωcon is decreased.
As in other PDE constrained optimization problems, the discretization of the first-order necessary optimality
conditions results in a nonlinear system of considerable size and complexity. In the literature, systems of this
type have been accessed with higher-order optimization techniques, 07) adaptive techniques 08) as well as with
parallelization strategies. 09) In the present investigation, pursuing the strategy “optimize before discretize”, 10)

we combine a Krylov method for the solution of the primal and adjoint equations with an inexact Newton
method for the minimization of the reduced cost functional 11) and focus on the parallelization of the algorithm,
which reduces the computation time to 4.2 % compared to the sequential code. In our second case study, this
approach has been combined with a receding horizon strategy, which allows for long-time simulations. As
a result, the re-entrant wave has been completely removed after a simulation time of 180 ms, which took
approximately 1.25 hours of CPU time on a cluster with 32 processors.
Concerning the optimal control of the monodomain or even the bidomain equations, fairly little work is available
in the literature as yet. The analysis of (P) with the Rogers-McCulloch model was given in [ Kunisch/Wagner

11 ] , comprising a rigorous proof of the well-posedness of the control-to-state mapping as well as of the first-
order optimality conditions. 12) The studies [ Nagaiah/Kunisch/Plank 09 ] and [ Nagaiah/Kunisch 11 ]
are concerned with the numerical solution of control problems closely related with (P). In these papers, the
calculations have been performed on a two-dimensional spatial domain as well. To the best of our knowledge, the

06) Cf. [ Nagaiah/Kunisch/Plank 09 ] and [ Nagaiah/Kunisch 11 ] .
07) [ Hinze/Kunisch 01 ] .
08) We mention e. g. [ Hintermüller/Hoppe 08 ] , [ Meidner/Vexler 07 ] and [ Nagaiah/Kunisch 11 ] .
09) [ Biros/Ghattas 05 ] .
10) A detailed comparison between the “discretize before optimize” and the “optimize before discretize” approaches to the

solution of (P) in the case Ω ⊂ R1 has been provided in [ Nagaiah/Kunisch/Plank 10 ] .
11) See e. g. [ Biegler/Ghattas/Heinkenschloss/Keyes/van Bloemen Waanders 07 ] .
12) Under analytical viewpoints, a related control problem involving the FitzHugh-Nagumo model and Dirichlet boundary

conditions has been studied in [ Brandão/Fernández-Cara/Magalhães/Rojas-Medar 08 ] .
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present work is the first attempt at a parallelized numerical solution of control problems for the monodomain
system.
The paper is organized as follows. In Section 2, we state the weak formulation of the monodomain system
together with the Rogers-McCulloch model and provide an existence and uniqueness theorem. In Section 3,
we start with the precise statement of the control problem (P), subsequently turning to the formulation of
the necessary optimality conditions and the description of the first variation of the reduced cost functional. In
Section 4, we describe the numerical approach, comprising the semi-discretization of the primal and adjoint
equations in space, the solution of the resulting ODE system by decoupling, the iteration scheme for the
update of the control variable as well as the parallel implementation. Short remarks about the receding horizon
strategy will be included. Section 5 is devoted to the description of the numerical experiments as well as to
the presentation and discussion of the results. Finally, the parallel algorithm will be listed in an appendix.

Notations.

We denote by L
p(Ω) the space of functions, which are in the pth power integrable ( 1 6 p < ∞), or are

measurable and essentially bounded (p = ∞), and by W
1,p(Ω) the Sobolev space of functions ψ : Ω → R

which, together with their first-order weak partial derivatives, belong to the space Lp(Ω) ( 1 6 p < ∞). For
spaces of Bochner integrable mappings, e. g. L2[ ( 0 , T ) , W 1,2(Ω)

]
, we refer to [ Kunisch/Wagner 11 ] ,

p. 29 f. ΩT is an abbreviation for Ω× [ 0 , T ] . The gradient ∇ is always taken only with respect to the spatial
variables x. 1A denotes the characteristic function of the set A ⊆ Ω. The abbreviation “(∀) t ∈ A” has to
be read as “for almost all t ∈ A” or “for all t ∈ A except a Lebesgue null set”, and the symbol o denotes,
depending on the context, the zero element or the zero function of the underlying space.

2. The two-dimensional monodomain model.

a) Weak formulation of the monodomain equations.

The rigorous analysis of the optimal control problem (P) is based on a weak solution concept for the mono-
domain equations (1.1)− (1.4). The weak formulation of the system reads as follows:∫

Ω

( ∂v
∂t

+ Iion(v, w)
)
ψ dx+

∫
Ω

∇ψTσi∇v dx =
∫

Ω

Ie ψ dx ∀ψ ∈W 1,2(Ω) (∀) t ∈ [ 0 , T ] ; (2.1)∫
Ω

( ∂w
∂t

+G(v, w)
)
ψ dx = 0 ∀ψ ∈ L2(Ω) (∀) t ∈ [ 0 , T ] ; (2.2)

v(x, 0) = v0(x) and w(x, 0) = w0(x) (∀)x ∈ Ω . (2.3)

Definition 2.1. (Weak solution of the monodomain system) 13) Let T > 0. A pair (v, w) is called a
weak solution of the monodomain system (2.1) − (2.3) on [ 0 , T ] iff v and w satisfy the system on [ 0 , T ] in
the distributional sense and obey the initial conditions. Moreover, the functions belong to the spaces

v ∈ C0[ [ 0 , T ] , L2(Ω)
]
∩ L2[ ( 0 , T ) , W 1,2(Ω)

]
∩ Lp(ΩT ) with 2 6 p 6 6 ; (2.4)

w ∈ C0[ [ 0 , T ] , L2(Ω)
]
. (2.5)

b) The Rogers-McCulloch model for the ionic current.

In the literature, a variety of ionic models describing the cardiac electrical phenomena have been proposed.
For the present study, we specify a simplified two-variable model, namely the Rogers-McCulloch model. 14) In
this model, the ionic current term is the sum of a cubic polynomial in v and the multiplicative coupling term

13) See [ Bourgault/Coudière/Pierre 09 ] , p. 472, Definition 26.
14) Cf. [ Rogers/McCulloch 94 ] . It can be understood as a slight generalization of the most frequently considered

FitzHugh-Nagumo model.
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η1 v w while the effects of the ion transport through the cell membranes will be described in a cumulative way
through a single gating variable w. More precisely, Iion and G are expressed as

Iion(v, w) = η0 · v
(

1− v

vth

)(
1− v

vpk

)
+ η1 v w (2.6)

G(v, w) = η2

(
η3 w −

v

vpk

)
, (2.7)

where η0, η1, η2, η3 > 0 are positive coefficients, vth > 0 is a threshold potential, and vpk > 0 is a peak
potential. Consequently, the gating variable obeys the linear ODE

∂w

∂t
+ η2 η3 w =

η2

vpk
v . (2.8)

c) Existence and uniqueness of weak solutions.

From [ Kunisch/Wagner 11 ] , we take the following existence and uniqueness theorem for the weak mono-
domain system (2.1)− (2.3):

Theorem 2.2. (Existence and uniqueness of weak solutions in relation to feasible controls) 15)

Assume that Ω ⊂ R2 is a bounded strong Lipschitz domain, and σi : cl (Ω) → R2×2 is a symmetric, positive
definite matrix function with L∞(Ω)-entries, which obeys a uniform ellipticity condition. Then for any choice
of initial values v0 ∈ L

2(Ω), w0 ∈ L
4(Ω) and right-hand side Ie ∈ L

∞[ ( 0 , T ) , L2(Ω)
]
, the monodomain

system (2.1) − (2.3) admits a unique weak solution (v, w) in the sense of Definition 2.1. on [ 0 , T ] . The
solution satisfies the a priori estimate

‖ v ‖2
C0
[

[ 0 , T ) , L2(Ω)
] + ‖ v ‖2

L2
[

( 0 , T ) ,W 1,2(Ω)
] + ‖ v ‖4L4(ΩT ) + ‖ ∂v/∂t ‖4/3

L4/3
[

( 0 , T ) ,
(
W 1,2(Ω)

)∗ ]
+ ‖w ‖2

C0
[

[ 0 , T ) , L2(Ω)
] + ‖ ∂w/∂t ‖2

L2
[

( 0 , T ) ,
(
W 1,2(Ω)

)∗ ]
6 C ·

(
1 + ‖Φ0 ‖2L2(Ω) + ‖W0 ‖4L4(Ω) + ‖ Ie ‖2

L2
[

( 0 , T ) , L2(Ω)
] ) . (2.9)

Proof. Note first that [ Kunisch/Wagner 11 ] , p. 5 f., Theorems 2.5.− 2.8., remain valid even in the two-
dimensional case Ω ⊂ R2. Then we must only check whether the functions Iion and G satisfy the growth
conditions from [ Kunisch/Wagner 11 ] , p. 4, Assumption 2.3., 4). Obviously, Iion(v, w) = F1(v) + F2(v)w,
and G(v, w) = G1(v) + g2 w with the continuous functions

F1(v) =
η0

vth vpk
v3 − η0 (vpk + vth)

vth vpk
v2 + η0 v ; F2(v) = η1 v ; G1(v) = − η2

vpk
v (2.11)

and g2 = η2 η3. Using Young’s inequality, we find with p = 4:∣∣F1(v)
∣∣ 6

( 2 η0

3
+
η0 (vpk + vth)

3 vth vpk

)
+
( η0

vth vpk
+

2 η0 (vpk + vth)
3 vth vpk

+
η0

3

)
| v |p−1 ; (2.13)∣∣F2(v)

∣∣ = η1 | v |(p−2)/2 ;
∣∣G1(v)

∣∣ 6
η2

2 vpk
+

η2

2 vpk
| v |p/2 . (2.14)

In order to confirm the remaining condition, we abbreviate

H(v, w) = % Iion(v, w) v +G(v, w)w =
% η0

vth vpk
v4 − % η0 (vpk + vth)

vth vpk
v3 + % η0 v

2 + % η1 v
2 w (2.15)

− η2

vpk
v w + η2 η3 w

2 .

Considering the estimates∣∣ v w ∣∣ > − 1
2 %

% | v |2 − 1
2
|w |2 ;

∣∣ v2 w
∣∣ > −ε1

2
| v |4 − 1

2 ε1
|w |2 ; (2.16)

∣∣ η0 (vpk + vth)
vth vpk

v3
∣∣ > − 1

4 (ε2)4

( η0 (vpk + vth)
vth vpk

)4

− 3 (ε2)4/3

4
| v |4 , (2.17)

15) Cf. [ Kunisch/Wagner 11 ] , p. 5, Theorems 2.5. and 2.6., and p. 6, Theorem 2.8.
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which have been obtained using the generalized Cauchy’s and Young’s inequalities with arbitrary ε1, ε2 > 0, 16)

we arrive at

H(v, w) >
( % η0

vth vpk
− ε1

2
− 3 (ε2)4/3

4

)
| v |p +

(
η0 + η2 η3 −

η2

2 % vpk
− η2

2 vpk
− 1

2 ε1

) (
% | v |2 + |w |2

)
(2.18)

− 1
4 (ε2)4

( η0 (vpk + vth)
vth vpk

)4

,

and by appropriate choice first of ε1 and ε2 and subsequently of %, it may be accomplished that on the right-
hand side of (2.17), the first coefficient becomes positive and the second one becomes negative. The proof is
complete.

Remark. The compatibility condition
∫

Ω
Ie(x, t) dx = 0 (∀) t ∈ [ 0 , T ] , which would be a mandatory

assumption for the solvability of the full bidomain system, 17) plays no role for the existence of solutions
of the monodomain equations.

3. The optimal control problem.

a) Statement of the problem.

More precisely, the control problem (1.5)− (1.7) may be stated as follows:

F (v, w, Ie) =
1
2

∫ T

0

∫
Ωobs

v(x, t)2 dx dt+
α

2

∫ T

0

∫
Ωcon

Ie(x, t)2 dx dt −→ inf ! (3.1)

E1(v, w, Ie) =
∫

Ω

( ∂v(t)
∂t

+ Iion(v(t), w(t))− Ie(t)
)
ψ dx (3.2)

+
∫

Ω

∇ψTσi∇v(t) dx = 0 ∀ψ ∈W 1,2(Ω) (∀) t ∈ [ 0 , T ] ;

E2(v, w) =
∫

Ω

( ∂w(t)
∂t

+G(v(t), w(t))
)
ψ dx = 0 ∀ψ ∈ L2(Ω) (∀) t ∈ [ 0 , T ] ; (3.3)

E3(v) = v(x, 0)− v0(x) = 0 (∀)x ∈ Ω ; (3.4)

E4(w) = w(x, 0)− w0(x) = 0 (∀)x ∈ Ω ; (3.5)

Ie ∈ C =
{
z ∈ L∞

[
( 0 , T ) , L2(Ω)

] ∣∣ | z(x, t) | 6 R (∀) (x, t) ∈ Ωcon × [ 0 , T ] ;

z(x, t) ≡ 0 (∀) (x, t) ∈
(

Ω \ Ωcon

)
× [ 0 , T ]

}
. (3.6)

We suppose that the data satisfy the assumptions of Theorem 2.2. The numbers T > 0, α > 0 and R > 0 are
fixed. The functions Iion(v, w) and G(v, w) will be specified according to the Rogers-McCulloch model from
Subsection 2.b). The domains of definition and the ranges of the operators F , E1, ... , E4 are chosen as follows:

F : X1 × X2 × X3 → R with (3.7)

X1 = L
2[ ( 0 , T ) , W 1,2(Ω)

]
; X2 = L

2[ ( 0 , T ) , L2(Ω)
]

; X3 = L
∞[ ( 0 , T ) , L2(Ω)

]
;

E1 : X1 × X2 × X3 → L
4/3[ ( 0 , T ) ,

(
W

1,2(Ω)
)∗ ] ; (3.8)

E2 : X1 × X2 → L
2[ ( 0 , T ) ,

(
L

2(Ω)
)∗ ] ; (3.9)

E3 : X1 → L
2(Ω) ; (3.10)

E4 : X2 → L
2(Ω) . (3.11)

Theorem 3.1. (Existence of global minimizers) Under the assumptions of Theorem 2.2., the problem
(P) admits a global minimizer (v̂, ŵ, Îe) ∈ X1 × X2 × X3.

16) [ Evans 98 ] , p. 622.
17) See [ Veneroni 09 ] , p. 852.
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Proof. This is an immediate consequence of [ Kunisch/Wagner 11 ] , p. 17 f., Theorem 3.3., since the set
C of admissible controls according to (3.6) can be considered as a closed, convex, weak∗-sequentially compact
subset of L∞

[
( 0 , T ) , L2(Ωcon)

]
, which may be continuously imbedded into L

∞[ ( 0 , T ) , L2(Ω)
]

by zero
extension.

b) The first-order necessary optimality conditions.

We search for weak local minimizers according to the following definition:

Definition 3.2. (Weak local minimizer) A triple (v̂, ŵ, Îe), which is feasible in (P), is called a weak local
minimizer of (P) iff there exists a number ε > 0 such that for all admissible (v, w, Ie) the conditions

‖ v − v̂ ‖X1
6 ε , ‖w − ŵ ‖X2

6 ε , ‖ Ie − Îe ‖X3
6 ε (3.12)

imply the relation F (v̂, ŵ, Îe) 6 F (v, w, Ie).

The existence of at least one weak local minimizer for (P) is confirmed by Theorem 3.1. After introduction of
the Lagrange function (3.13)

L(v, w, Ie, p1, p2, p3, p4) = F (v, w, Ie) + 〈 p1 , E1(v, w, Ie) 〉 + 〈 p2 , E2(v, w) 〉 + 〈 p3 , E3(v) 〉 + 〈 p4 , E4(w) 〉

with multipliers p1 ∈ L
4[ ( 0 , T ) , W 1,2(Ω)

]
, p2 ∈ L

2[ ( 0 , T ) , L2(Ω)
]
, and p3, p4 ∈

(
L

2(Ω)
)∗ , we obtain

the following system of first-order necessary optimality conditions for (P):

Theorem 3.3. (Necessary optimality conditions for (P) ) Assume that Ω ⊂ R2 is a bounded domain
with C

2,ε-boundary, 0 < ε 6 1, and σi : cl (Ω) → R2×2 is a symmetric, positive definite matrix function
with W

1,∞(Ω)-coefficients whose boundary values belong even to C
1,ε(∂Ω). σi satisfies a uniform ellipticity

condition. Further, let the initial values belong to the following spaces: v0 ∈W 2,2(Ω), w0 ∈ L∞(Ω). 18)

If a triple (v̂, ŵ, Îe) ∈ L2[ ( 0 , T ) , W 1,2(Ω)
]
× L

2[ ( 0 , T ) , L2(Ω)
]
× L

∞[ ( 0 , T ) , L2(Ω)
]

is a weak local
minimizer of (P), then there exist multipliers p1 = p ∈ Lr

[
( 0 , T ) , W 2,r(Ω)

]
∩ W

1,r[ ( 0 , T ) , Lr(Ω)
]

and
p2 = q ∈ C

1[ ( 0 , T ) , Lr(Ω)
]
∩ C

0[ [ 0 , T ] , Lr(Ω)
]
, 4 < r < 6, satisfying together with (v̂, ŵ, Îe) the

optimality condition 19)∫ T

0

∫
Ωcon

(
α Îe(x, t)− p(x, t)

) (
Ie(x, t)− Îe(x, t)

)
dx dt > 0 ∀ Ie ∈ C (3.14)

as well as the adjoint system

− ∂p

∂t
−∇·

(
σi∇p

)
+
∂Iion
∂v

(v̂, ŵ) p = −∂G
∂v

(v̂, ŵ) q − 1Ωobs
· v̂ ; (3.15)

− ∂q

∂t
+
∂G

∂w
(v̂, ŵ) q = −∂Iion

∂w
(v̂, ŵ) p ; (3.16)

nT σi∇p = 0 ∀ (x, t) ∈ ∂Ω× [ 0 , T ] ; p(x, T ) = 0 (∀)x ∈ Ω ; q(x, T ) = 0 (∀)x ∈ Ω , (3.17)

where

∂Iion
∂v

(v̂, ŵ) =
3 η0

vth vpk
v̂2 − 2 η0(vpk + vth)

vth vpk
v̂ + η0 + η1 ŵ ;

∂G

∂v
(v̂, ŵ) ≡ − η2

vpk
; (3.18)

∂G

∂w
(v̂, ŵ) ≡ η2 η3 ;

∂Iion
∂w

(v̂, ŵ) = η1 v̂ . (3.19)

The functions p and q solve the adjoint system in the weak as well as in the strong sense.
18) The assumptions, which ensure the solvability of the adjoint system, have been taken over from [ Kunisch/ Wagner

11 ] , p. 19, Theorem 3.5. They may be surely further relaxed since the cited theorem is based on a maximal regularity

result.
19) For the multipliers p3 and p4 from (3.13), the zero functions may be chosen.
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Proof. Denote the integrand within the objective by r(v, w, Ie) = 0.5 v2 +0.5α Ie2. We may apply [ Kunisch/

Wagner 11 ] , p. 20, Theorem 3.7., since ∂r(v̂, ŵ)/∂v = 1Ωobs
v̂ can be imbedded into the space L∞

[
[ 0 , T ] ,

W
1,2(Ω)

]
↪→ L

r(ΩT ) for arbitrary 4 < r < 6, and the same is true for ∂r(v̂, ŵ)/∂w = o. Consequently, the
optimality condition and the adjoint system take the claimed form. Note that, in (3.14), the integration may
be restricted to Ωcon since all feasible controls vanish outside of this subdomain.

Corollary 3.4. (Pointwise formulation of the optimality condition) 20) The optimality condition (3.14)
from Theorem 3.3. implies the following condition, which holds a. e. pointwise:(

α Îe(x, t)− p(x, t)
)
Îe(x, t) = Min

−R6 γ6R

(
α Îe(x, t)− p(x, t)

)
γ (∀) (x, t) ∈ Ωcon × [ 0 , T ] (3.20)

and Îe(x, t) = 0 elsewhere. Consequently, we have for almost all (x, t) ∈ Ωcon × [ 0 , T ] :

Îe(x, t) =


−R

∣∣ p(x, t) < −αR ;
p(x, t)/α

∣∣ p(x, t) ∈ [−αR , αR ] ;
R

∣∣ p(x, t) > αR .

(3.21)

To sum up, the system of the first-order necessary optimality conditions consists of the initial-boundary value
problem (1.1)− (1.4) for the state equations, the terminal-boundary value problem (3.15)− (3.17) for the
adjoint equations and the optimality condition (3.21).

c) The reduced cost functional.

In view of Theorem 2.2., problem (P) admits a well-defined control-to-state mapping C 3 Ie 7−→
(
v(Ie),

w(Ie)
)
. Consequently, the objective (3.1) within (P) may be rewritten as

F̃ (Ie) =
1
2

∫ T

0

∫
Ωobs

v
(
Ie(x, t)

)2
dx dt+

α

2

∫ T

0

∫
Ωcon

Ie(x, t)2 dx dt . (3.22)

As a consequence of the first-order necessary optimality conditions, the first variation δ+F̃ of the reduced cost
functional at a weak local minimizer Îe 7−→

(
v(Îe), w(Îe)

)
may be represented as

〈
δ+F̃ (Îe) , Ie − Îe

〉
=
∫ T

0

∫
Ωcon

(
α Îe(x, t)− p(x, t)

) (
Ie(x, t)− Îe(x, t)

)
dx dt , (3.23)

where p is a multiplier related to
(
v(Îe), w(Îe), Îe

)
according to Theorem 3.3. 21)

4. The numerical approach.

a) Semi-discretization in space of the primal and adjoint equations.

For the following calculations, we introduce a spatial grid and a sequence of uniform time steps. In order
to solve the system of the first-order necessary optimality conditions, we will consider first a semi-discrete
analogue of the full system, discretizing in space using a standard finite element method with piecewise-linear
continuous elements. Recall the weak formulation of the monodomain equations, which is given by〈 ∂v

∂t
+ Iion(v, w)− Ie , ψ

〉
= −

〈
σi∇v , ∇ψ

〉
∀ψ ∈W 1,2(Ω) (∀) t ∈ [ 0 , T ] ; (4.1)〈 ∂w

∂t
, ψ
〉

= −
〈
G(v, w) , ψ

〉
∀ψ ∈ L2(Ω) (∀) t ∈ [ 0 , T ] ; (4.2)

v(x, 0) = v0(x) (∀)x ∈ Ω ; w(x, 0) = w0(x) (∀)x ∈ Ω . (4.3)

20) [ Kunisch/Wagner 11 ] , p. 20, Corollary 3.8.
21) Cf. [ Ito/Kunisch 08 ] , p. xii f., and [ Kunisch/Wagner 11 ] , p. 28 f., Proof of Theorem 3.7., Step 4.
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Introducing a finite-dimensional subspace Vh ⊂ W
1,2(Ω) ⊂ L

2(Ω), which is generated by the set {ωj }Nj=1

of piecewise linear basis functions adapted to the spatial grid, the approximate solutions of (4.1)− (4.3) can
be expressed as v(x, t) ≈

∑N
j=1 vj(t)ωj(x) and w(x, t) ≈

∑N
j=1 wj(t)ωj(x). The control variable will be

discretized with respect to the same basis as Ie(x, t) ≈
∑N

j=1 Ie,j(t)ωj(x). Consequently, from (4.1)− (4.3)
we get the following system of Ritz equations:

M
dv

dt
= −Av− Iion(v,w) + MIe ; (4.4)

dw

dt
= −η2 η3w +

η2

vpk
v ; v(0) = v0 ; w(0) = w0 , (4.5)

where v = v(t), w = w(t) and Ie = Ie(t) are the vectors of Ritz coefficients, M = { 〈ωj , ωk 〉 }Nj,k=1 is the mass

matrix, A = { 〈σi∇ωj , ∇ωk 〉 }Nj,k=1 is the stiffness matrix, v0, w0 are spatial discretizations of the initial
values, and the components of the vector Iion(v,w) are given by

Iion(v,w)k =
〈
Iion

(∑N
j=1 vj(t)ωj(x) ,

∑N
j=1 wj(t)ωj(x)

)
, ωk

〉
. (4.6)

Analogously, let us consider the adjoint system in its weak formulation:〈 ∂p
∂t
− ∂Iion

∂v
(v̂, ŵ) p− ∂G

∂v
(v̂, ŵ) q − 1Ωobs

· v̂ , ψ
〉

=
〈
σi∇p , ∇ψ

〉
∀ψ ∈W 1,2(Ω) (∀) t ∈ [ 0 , T ] ; (4.7)〈 ∂q

∂t
, ψ
〉

=
〈 ∂G
∂w

(v̂, ŵ) q +
∂Iion
∂w

(v̂, ŵ) p , ψ
〉
∀ψ ∈ L2(Ω) (∀) t ∈ [ 0 , T ] ; (4.8)

p(x, T ) = 0 (∀)x ∈ Ω ; q(x, T ) = 0 (∀)x ∈ Ω . (4.9)

Inserting the approximate solutions p(x, t) ≈
∑N

j=1 pj(t)ωj(x) and q(x, t) ≈
∑N

j=1 qj(t)ωj(x) into (4.7)−
(4.9), we get the semi-discrete form of the adjoint equations, namely

M
dp

dt
= Ap +

∂Iion
∂v

(v,w)Mp− η2

vpk
Mq−Mobsv ; (4.10)

dq

dt
= η2 η3 q +

∂Iion
∂w

(v,w)p ; p(T ) = o ; q(T ) = o . (4.11)

Here p = p(t) and q = q(t) are the vectors of the Ritz coefficients, Mobs = {1Ωobs
· 〈ωj , ωk 〉 }Nj,k=1

is
the restriction of the mass matrix to the observation domain, extended by zero outside, and the numbers
∂Iion(v,w)/∂v and ∂Iion(v,w)/∂w are given by

∂Iion
∂v

(v,w) =
∂Iion
∂v

(∑N
j=1 vj(t)ωj(x) ,

∑N
j=1 wj(t)ωj(x)

)
;

∂Iion
∂w

(v,w) = η1

(∑N
j=1 vj ωj

)
. (4.12)

Consequently, the semi-discretization of the primal and adjoint equations results in a system of four coupled
ODEs, depending on the spatial variables as a parameter, together with initial and terminal conditions.

b) Solution of the coupled ODE system.

Assume that Ie
(k) =

(
I

(k)
e,j (t)

)N
j=1

corresponds to a given approximation Ie(k)(x, t)
∑N

j=1 I
(k)
e,j (t)ωj(x) for the

control variable. Then, by modification of a well-established approach from the numerics of the bidomain
equations, 22) we decouple the equations within the system (4.4), (4.5), (4.10), (4.11) as follows. To solve first
(4.4)− (4.5) at a given spatial point x in forward direction, let us assume that the values v(k),(n) = v(k)(t(n))
and w(k),(n) = w(k)(t(n)) have been already calculated. Then we get first w(k),(n+1) = w(k)(t(n+1)) by an
explicit Euler step as

w(k),(n+1) = w(k),(n) + ∆t
( η2

vpk
v(k),(n) − η2 η3w

(k),(n)
)
, (4.13)

22) We refer e. g. to [ Plank/Liebmann/Weber dos Santos/Vigmond/Haase 07 ] and [ Trangenstein/Kim 04 ] .
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and subsequently v(k),(n+1) = v(k)(t(n+1)) is obtained from the ODE

M
dv(k)

dt
= −Av(k) − Iion(v(k),w(k),(n+1)) + Ie

(k) , (4.14)

by performing one step of a linearly implicit Runge-Kutta method, namely a Rosenbrock method. 23) In our
computations, the method ROS2 has been employed. 24) The realization of this method results in a system
of linear equations, to which an iterative Krylov solver is applied. In the present study, the Bi-CGSTAB
method 25) with Jacobi preconditioning is used.
Now we turn to the backward solution of (4.10)− (4.11) at x. Again, assuming that p(k),(n+1) = p(k)(t(n+1))
and q(k),(n+1) = q(k)(t(n+1)) are already known, we calculate first q(k),(n) = q(k)(t(n)) by

q(k),(n) = q(k),(n+1) −∆t
(
η2 η3 q(k),(n+1) +

∂Iion
∂w

(v(k),(n+1),w(k),(n+1))p(k),(n+1)
)
, (4.15)

and then p(k),(n) = p(k)(t(n)) is obtained from the ODE

M
dp(k)

dt
= Ap(k) +

∂Iion
∂v

(v(k),(n+1),w(k),(n+1))Mp(k) − η2

vpk
Mq(k),(n+1) −Mobsv

(k),(n+1) (4.16)

by application of one step of the Rosenbrock method described above. We end up with a quadruple
(
v(k),w(k),

p(k), q(k)
)
, which corresponds to the current approximation Ie

(k) for the optimal control.

c) Iterative solution of the optimality system.

The solution of the optimality system will be obtained by application of an inexact Newton method to the
reduced cost functional (3.22). 26) The criterion for the termination of this algorithm after the kth iteration is

∥∥ δ+F̃ (Ie(k))
∥∥
L2
(

Ωcon×[ 0 , T ]
) 6 10−3 ·

(
1 + | F̃ (Ie(k)) |

)
or

∣∣ F̃ (Ie(k))− F̃ (Ie(k−1))
∣∣ 6 10−5 (4.17)

which, in view of (3.23), corresponds to the fulfillment of the optimality condition (3.21) provided that the
calculated control Ie(k)(x, t) =

∑N
j=1 I

(k)
e,j (t)ωj(x) is feasible. The algorithm may be summarized as follows:

Step 0. Initialize Ie
(1) and k ← 1.

Step 1. Using Ie
(k), calculate w(k) and v(k) by solving (4.13) and (4.14) forward in time.

Step 2. Using w(k) and v(k), calculate q(k) and p(k) by solving (4.15) and (4.16) backward in time.
Step 3. Update the approximation of the control by performing the inexact Newton step mentioned above,

set Ie
(k) ← Ie

(k+1).
Step 4. If Ie

(k) satisfies (4.17) then terminate else set k ← k + 1 and go to Step 1.

In the experiments below, the feasibility of the optimal control has been confirmed a posteriori.

d) The receding horizon strategy.

In order to allow for longer control horizons without excessively prolonging computing times we use a receding
horizon strategy, which can also be thought of as a time-domain decomposition technique. For this purpose the
time interval [ 0 , T ] is subdivided in subdomains according to [Ti , Ti+1 ] with i = 0, ... , n, where Ti = i T/n.
The receding horizon strategy then consists in successively solving optimal control problems (3.1)− (3.6) with
[ 0 , T ] replaced by [Ti , Ti+1 ] , where, for i = 0, ... , n, the initial conditions (3.4)− (3.5) are chosen such that
the optimal states at t = Ti from the domain [Ti−1 , Ti ] are taken as initial condition for the time interval

23) Cf. [ Hairer/Wanner 02 ] , pp. 102 ff.
24) [ Lang 01 ] , pp. 47− 57.
25) Introduced first in [ van der Vorst 92 ] , this became a standard method.
26) A detailed description of the method may be found in [ Nagaiah/Kunisch 11 ] , pp. 56 f. and 65.
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[Ti , Ti+1 ] . While this procedure violates the Bellman principle and will not give the optimal solution for the
global problem on [ 0 , T ] , it can be shown that under appropriate conditions it is effective in achieving the
design objective. 27) In our case this objective will consist in the termination of a re-entrant wave.

e) Parallel implementation.

In the numerical treatment of the monodomain as well as of the full bidomain equations, parallelization
has been proven to be an efficient approach in order to achieve acceptable computational times for realistic
simulations. 28) It turns out that the optimization method described above is well-suited for parallelization as
well. The localized structure of the method allows for a spatial domain decomposition within the solution of the
primal and adjoint equations as well as within the solution of their linearizations required for the calculation
of the inexact Newton update.
For the implementation, we used the package DUNE, 29) a C++ based programming environment for the
solution of different classes of PDEs. For the parallel grid generation, the internal parallel Yasp grid has been
used, which supports various levels of overlapping grids. In our calculations, we used a zero level, i. e., non-
overlapping grids. The subdomains were assigned to the processors in a one-to-one mapping. Our discretization
routines are based on the DUNE-PDELab discretization module. The coupling of the subdomains through
the values of the unknown solutions at the interfaces has been further relaxed by introduction of additional
communication steps during the solution of the algebraic systems. In the parallel computations, the above
mentioned Bi-CGSTAB method with Jacobi preconditioning has been used. The complete parallel algorithm
is given in the appendix.

5. Numerical results.

a) Dampening of an excitation wave: parallel efficiency.

We choose Ω = [ 0 , 1 ] × [ 0 , 1 ] ⊂ R2 and T = 4. The control domain Ωcon = Ωcon,1 ∪ Ωcon,2 consists of
the disjoint areas Ωcon,1 = [ 0.320 , 0.400 ] × [ 0.450 , 0.550 ] and Ωcon,2 = [ 0.600 , 0.680 ] × [ 0.450 , 0.550 ] .
The observation domain is obtained as the complement of a neighborhood of Ωcon. More precisely, defining
Ω̃con,1 = [ 0.280 , 0.420 ] × [ 0.430 , 0.570 ] and Ω̃con,2 = [ 0.580 , 0.720 ] × [ 0.450 , 0.550 ] , we take Ωobs =
Ω \

(
Ω̃con,1 ∪ Ω̃con,2

)
. The positions of the subdomains are depicted in Figure 5.1. Moreover, the regularization

parameter is chosen as α = 0.0006, and the uniform bound for the controls as R = 2000. For the intracellular
conductivity tensor, the constant matrix 30)

σi(x) ≡
(

3 · 10−3 0
0 3.1525 · 10−4

)
(5.1)

has been chosen. Within the Rogers-McCulloch model, the parameters are specified as follows: η0 = 1.5,
η1 = 4.4, η2 = 0.012, η3 = 1.0, vth = 13 and vpk = 100. The quantities are given in the following units: [T ] =
[ ∆t ] = ms, [ (σi)kl ] = Ω−1cm−1, [ η0 ] = [ η1 ] = S cm−2, [ η2 ] = [ η3 ] = 1, [ v ] = [ v0 ] = [ vth ] = [ vpk ] = mV,
[w ] = 1 and [ Ie ] = [R ] = µA. The excitation wave is modeled by the choice of the initial values

v0(x) = 101.00 · 1Ωexc(x) ; w0(x) ≡ 0 , (5.2)

where Ωexc = [ 0.498 , 0.502 ] × [ 0.498 , 0.504 ] ⊂ Ωobs.
27) [ Chen/Allgöwer 98 ] and [ Ito/Kunisch 02 ] .
28) See e. g. [ Colli Franzone/Pavarino 04 ] , [ Pavarino/Scacchi 08 ] , [ Plank/Liebmann/Weber dos Santos/

Vigmond/Haase 07 ] and [ Vigmond/Boyle/Leon/Plank 09 ] .
29) Described in [ Bastian/Blatt/Dedner/Engwer/Klöfkorn/Kornhuber/Ohlberger/Sander 08 ] .
30) These values as well as the parameters for the Rogers-McCulloch model have been taken from [ Colli Fran-

zone/Deuflhard/Erdmann/Lang/Pavarino 06 ] , p. 952, Table 4.1. Note that the same parameters have been

used within the experiments in [ Nagaiah/Kunisch 11 ] .
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For the discretization, we used a uniform quadrilateral spatial grid with 129 × 129 nodes and 100 time steps
with uniform length ∆t = 0.04. The parallel computations have been carried out with the cluster GHOST
located at the TU Graz. 31) It is a 64-bit Linux cluster with two nodes, each of them consisting of 8 quad-core
AMD Opteron processors 8356 (2.3 GHz) with 256 GB RAM, a dedicated gigabit ethernet link for the shared
file system and two bundled gigabit ethernet links for the communication between the parallel jobs. In the
calculations, only a single node has been used. 32)

The results of our experiments will be summarized in Table 5.1. The average of the CPU time elapsed for
a single primal solve and the CPU time for the first calculation of the Newton update, respectively, will be
shown in columns 2 and 4 while the total CPU time consumed for the solution of (P) will be shown in column
6. We give the CPU times in percents related to the single-processor experiment. Besides, we show the parallel
efficiency according to e = T (1)/(N T (N) ) where N is the number of processors.

single primal solve first Newton step complete solution

N CPU time (aver.) efficiency CPU time efficiency CPU time (total) efficiency

1 100.0 1.0000 100.0 1.0000 100.0 1.0000

2 52.0 0.9619 52.3 0.9563 54.1 0.9239

4 26.2 0.9539 26.6 0.9395 29.2 0.8557

8 13.2 0.9434 13.6 0.9186 15.4 0.8116

16 6.7 0.9372 6.9 0.9084 7.9 0.7933

32 3.4 0.9102 3.5 0.8813 4.2 0.7346

b) Termination of a re-entrant wave.

In our second experiment, we work on the domain Ω = [ 0 , 2 ] × [ 0 , 2 ] ⊂ R2. According to the receding
horizon strategy, the initial endtime T1 = 4 has been increased in steps of ∆T = 4 until T45 = T = 180.
The control domain Ωcon = Ωcon,1 ∪ Ωcon,2 consists again of two disjoint parts, namely the strips Ωcon,1 =
[ 0.400 , 0.500 ] × [ 0.000 , 0.650 ] and Ωcon,2 = [ 1.300 , 1.400 ] × [ 0.000 , 1.000 ] . Defining the neighborhoods
Ω̃con,1 = [ 0.350 , 0.550 ] × [ 0.000 , 0.700 ] and Ω̃con,2 = [ 1.250 , 1.450 ] × [ 0.000 , 1.050 ] , the observation
domain will be described as Ωobs = Ω \

(
Ω̃con,1 ∪ Ω̃con,2

)
. The positions of the subdomains will be shown in

Fig. 5.1. (b) (Ωobs in blue, Ωcon in red, Ωexc is not depicted). We take the regularization parameter α = 0.001
and the control bound R = 2000. The values of σi as well as of the parameters within the Rogers-McCulloch
model are the same as in Subsection 5.a). In order to generate an initial state, which develops into a re-entrant
wave without application of a control, we calculated a numerical solution (ṽ, w̃) of the monodomain system
with initial values

ṽ0(x) = 101.00 · 1Ωexc(x) ; w̃0(x) ≡ o (5.3)

and the excitation domain Ωexc = [ 0 , 2 ] × [ 0 , 0.002 ] on the time interval [ 0 , 450 ] according to the strategy
described in Subsection 4.b) but using variable time steps. 33) Our experiment has now been initialized with

v0(x) = ṽ(x, 450) ; w0(x) = w̃(x, 450) (5.4)

31) An online documentation is available at http://ghost.tugraz.at/wiki/index.php/Main Page (last accessed:

17.02.2011).
32) Due to the significant loss of performance caused by the low speed of the gigabit communication links between two

nodes.
33) Cf. [ Lang 01 ] , p. 32 f.
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(see Fig. 5.2.). In the discretization, again a uniform quadrilateral spatial grid with 129× 129 nodes and uniform
time steps with length ∆t = 0.04 have been used. The calculations have been performed on the cluster GHOST
described above. For comparison, the evolution of the uncontrolled solution

(
ṽ(x, 450 + t), w̃(x, 450 + t)

)
has

been simulated as well.

In Fig. 5.3., we show in the left column some snapshots of the development of the uncontrolled transmembrane
potential ṽ. The re-entrant wavefront starts at the center of Ω and leaves the domain at the boundaries. In the
middle column, we oppose to ṽ the controlled state v. Even after a simulation time of 113 ms, the excitation
wave has only been partly removed. Its complete removal has been achieved at a simulation time of 180 ms.
The optimal control in the right column shows sharp peaks but remains inactive during the experiment. The
complete simulation, comprising 45 time frames, took approximately 1.25 h of CPU time using 32 processors.

1

Ωobs

Ωexc

↙
↗ ↗

Ωcon,1 Ωcon,2

Ωobs

Ωcon,2

↙
Ωcon,1

↙

1

(a) First experiment. (b) Second experiment.

Fig. 5.1. Locations of the subdomains in the first and second experiment.
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0.0000
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0.36

0.32

0.307

1

(a) v0(x) = ṽ(x, 450). (b) w0(x) = w̃(x, 450).

Fig. 5.2. Initial state for the second experiment, corresponding to a re-entrant wave.

c) Discussion and conclusions.

The numerical experiments showed that the optimal control approach is successful with respect to achieving
the design objective of dampening excitation waves and reentry phenomena. Special attention was payed to
the fact that the control domain is chosen to be small relative to the physiological domain. For the overall
optimization strategy, the computation time has been reduced through parallelization to less than 5 % compared
to the sequential code, while the parallel efficiency ranges about e = 0.75. This is an essential step towards
the treating of the full bidomain model and carrying out optimal control computations in three-dimensional
spatial domains. Even with parallelization, the use of the receding horizon strategy is unevitable for carrying
out numerical optimal control of this kind of systems over time horizons of physiological relevance. We have
tested the stability of the employed receding horizon strategy by applying the computed optimal controls to
the monodomain system, which was perturbed by Gaussian noise added to the right-hand side of the parabolic
equations. Still, the design objectives could be achieved.
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Clearly many problems remain open for future work on this challenging problem. These include the investiga-
tion of the effects of anisotropy on the overall control mechanism, more realistic gating models and geometries,
and relating mathematically imposed constraints, as for instance control constraints, to their physiological
scale and relevance.
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Fig. 5.3. Left: transmembrane potential ṽ(450 + t), uncontrolled. Middle: transmembrane potential v̂(t), controlled.

Right: optimal control Îe(t).
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Appendix.

In the statement of the complete optimization algorithm below, 34) the parallel communication steps are
explicitly mentioned.

Algorithm 1. Parallel line search Newton-CG optimization algorithm.

1: primal variables v, w ; dual variables p, q ; control variable Ie

2: initialize Ie
(1) and k ← 1

3: repeat
4: set w(0) = w0, v(0) = v0; calculate w(k) and v(k) by solving (4.13)− (4.14) forward in time, using Ie

(k)

(communication needed at solution of algebraic equations)
5: set q(T ) = 0, p(T ) = 0; calculate q(k) and p(k) by solving (4.15)− (4.16) backward in time, using w(k)

and v(k) (communication needed at solution of algebraic equations)
6: update the gradient ∇F̃ (k) = −p(k) + α Ie

(k), using the adjoint solution (no communication)
and solve the system ∇2F̃ (k) ∆Ie = −∇F̃ (k) by a linear CG method as follows:

7: repeat
the CG iteration step with the following matrix-vector product procedure: 35)

8: solve the linearized primal equations (communication needed at solution of algebraic equations)
9: evaluate the second derivative ∇2F̃ (k)

10: solve the linearized adjoint equations (communication needed at solution of algebraic equations)
11: compute the action of the Hessian ∇2F̃ (k) on ∆Ie (two more communications per CG step are needed

in order to find the scalar product)
12: until residuum < Min

(
10−3 , ‖∇F̃ (k) ‖

L2
(

Ωcon×[ 0 , T ]
) ) · ‖∇F̃ (k) ‖

L2
(

Ωcon×[ 0 , T ]
)

13: set step length β(k) = 1 and compute optimal β(k) using backtracking method by checking the strong
Wolfe conditions 36) (communication needed at solution of algebraic equations as well as for evaluation of
the cost functional)

14: update Ie
(k+1) ← Ie

(k) + β(k) ∆Ie, using optimal β(k)

15: k ← k + 1
16: until ‖∇F̃ (k) ‖

L2
(

Ωcon×[ 0 , T ]
) 6 10−3 ·

(
1+ | F̃ (k) |

)
or

∣∣ F̃ (k)− F̃ (k−1)
∣∣ 6 10−5 (communication nee-

ded for evaluation of the cost functional)

34) We refer to [ Nagaiah/Kunisch 11 ] , p. 65, Algorithm 1.
35) The following steps 8− 11 correspond to [ Nagaiah/Kunisch 11 ] , p. 57, Steps (a)− (d).
36) [ Nocedal/Wright 06 ] , pp. 33 ff.
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