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Abstract We show that optimal L2-convergence in the finite element method on
quasi-uniform meshes can be achieved if, for some s0 > 1/2, the boundary value
problem has the mapping property H−1+s → H1+s for s ∈ [0, s0]. The lack of
full elliptic regularity in the dual problem has to be compensated by additional
regularity of the exact solution. Furthermore, we analyze for a Dirichlet problem
the approximation of the normal derivative on the boundary without convexity
assumption on the domain. We show that (up to logarithmic factors) the optimal
rate is obtained.

Keywords L2 a priori bounds · duality argument · reentrant corners

1 Introduction

The finite element method (FEM) is a widely used numerical technique for ap-
proximating solutions of boundary value problems. It is based on approximating
the solution by piecewise polynomials of degree k. In the classical case of second
order elliptic equations with an H1-coercive bilinear form, the method is of optimal
convergence order in the H1-norm. An important tool for the convergence analysis
in other norms such as the L2-norm are duality arguments (“Nitsche trick”). The
textbook procedure for optimal order convergence in L2 is to exploit full ellip-
tic regularity for the dual problem. Conversely, this procedure suggests a loss of
the optimal convergence rate in L2 if H2-regularity fails to hold. This occurs, for
example, in polygonal domains with reentrant corners.

Nevertheless, it is possible to recover the optimal convergence rate in L2, if the
exact solution has additional regularity to compensate for the lack of full regularity
of the dual problem. More precisely: In this note, we consider a setting where an
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elliptic shift theorem holds for both the dual and the bidual problem in the range
[−1,−1 + s0] for some s0 ∈ (1/2,1] (see Assumption 1.1) and show that if the
solution is in the Sobolev space Hk+1+(1−s0), then the extra regularity 1− s0 can
be exploited to recover the optimal convergence rate in L2 (up to a logarithmic
factor in the lowest order case k = 1).

In the second part of this note, we consider the convergence in L2 of the normal
derivative on the boundary. We show that the optimal rate O(hk) (up to a logarith-
mic factor in the lowest order case) can be achieved, if the solution is sufficiently
smooth. The proof is based on a local error analysis of the FEM as discussed,
e.g., in [23,24]. Here, we extract error bounds for the flux on the boundary from
an optimal FEM estimate on a strip of width O(h) near the boundary. Although
we present the convergence of the flux for an H1-conforming discretization, the
techniques are applicable to mixed methods, [17], FEM-BEM coupling, [16], and
mortar and DG methods, [18,25]. In fact, the results of the present work lead to
a sharpening of [18], where convexity of the domain was assumed to avoid the
analysis of a suitable additional dual problem. The techniques employed here are
in part similar to those developed in [18]. Nevertheless, they are also significantly
different since we have opted to forego the direct use of anisotropic norms and
instead rely on weighted Sobolev norms and the embedding result of Lemma 2.1.

The analysis of the optimal convergence of fluxes has attracted some attention
recently. Besides our own contributions [16,17,18], we mention the works [2,3,13]
where similar results have been obtained by different methods.

1.1 Notation

For bounded Lipschitz domains Ω ⊂ R
d with boundary Γ := ∂Ω, we employ

standard notation for Sobolev spaces Hs(Ω), [1,21]. We will formulate certain
regularity results in terms of Besov space: for s > 0, s 6∈ N, and q ∈ [1,∞] the
Besov space Bs2,q(Ω) is defined by interpolation (the “real” method, also known as
K-method as described, e.g., in [21,22]) as

Bs2,q(Ω) = (H⌊s⌋(Ω), H⌈s⌉(Ω))θ,q, θ = s− ⌊s⌋.
Integer order Besov spaces Bn2,q(Ω) with n ∈ N are also defined by interpolation:

Bn2,q(Ω) = (Hn−1(Ω),Hn+1(Ω))1/2,q, n ∈ N.

To give some indication of the relevance of the second parameter q in the definition
of the Besov spaces, we recall the following (continuous) embeddings:

Hs+ε(Ω) ⊂ Bs2,1(Ω) ⊂ Hs(Ω) ⊂ Bs2,∞(Ω) ⊂ Hs−ε(Ω) ∀ε > 0.

Of importance will be the distance function δΓ and the regularized distance func-
tion δ̃Γ given by

δΓ (x) := dist(x, Γ ), δ̃Γ (x) := h+ dist(x,Γ ). (1.1)

Later on, the parameter h > 0 will be the mesh size of the quasi-uniform trian-
gulation. Also of importance will be neighborhoods SD of the boundary ∂Ω given
by

SD := {x ∈ Ω | δΓ (x) < D}, (1.2)

with particular emphasis on the case D = O(h).
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1.2 Model problem

We let Ω ⊂ R
d, d ∈ {2, 3}, be a bounded Lipschitz domain with a polygo-

nal/polyhedral boundary and let (1.3) be our model problem:

−∇ · (A(x)∇u) = f in Ω, u = 0 on ∂Ω. (1.3)

We assume that A and f are sufficiently smooth. Moreover A is pointwise sym-
metric positive definite, and A(x) ≥ α0 I for some α0 > 0 and all x ∈ Ω. As usual,

(1.3) is understood in a weak sense, i.e., for a right-hand side f ∈
(
H1

0 (Ω)
)′

the

boundary value problem (1.3) reads: Find u ∈ H1
0 (Ω) such that

a(u, v) :=

∫

Ω

A∇u · ∇v = 〈f, v〉 ∀v ∈ H1
0 (Ω). (1.4)

We denote by T : (H1
0 (Ω))′ → H1

0 (Ω) the solution operator. We emphasize that
the choice of boundary conditions (here: homogeneous Dirichlet boundary con-
ditions) is not essential for our purposes. Essential, however, is the following as-
sumption:

Assumption 1.1 There exists s0 ∈ (1/2,1] such that the solution operator f 7→
Tf for (1.4) satisfies

‖Tf‖H1+s0 (Ω) ≤ C‖f‖
(H

1−s0
0 (Ω))′

≤ C‖f‖L2(Ω).

Here and in the following 0 < c, C < ∞ denote generic constants that do not
depend on the mesh-size but possibly depend on s0. We also use . to abbreviate
≤ C.

Remark 1.2 The present problem is symmetric. As a consequence certain dual
problems that will be needed below coincide with the primal problem. This will
simplify the presentation but is not essential. Inspection of the procedure below
shows that we need Assumption 1.1 for the dual problem and the bidual problem
with weighted right-hand side.

Let T be an affine simplicial quasi-uniform triangulation of Ω with mesh size h
and Vh := Sk,10 (T ) ⊂ H1

0 (Ω) the continuous space of piecewise polynomials of
degree k. This space has the following well-known properties:

(i) Existence of a quasi-local approximation operator: The Scott-Zhang operator
Ikh : H1(Ω) → Sk,1(T ) of [20] satisfies:

– If u ∈ H1
0 (Ω) then Ikhu ∈ Vh = Sk,10 (T ).

– Ikh is quasi-local and stable: ‖∇Ikhu‖L2(K) . ‖∇u‖L2(ωK), where ωK is
the patch of elements sharing a node with K.

– Ikh has approximation properties:

‖∇j(u− Ikhu)‖L2(K) . hl+1−j‖∇l+1u‖L2(ωK), j ∈ {0, 1}, 0 ≤ l ≤ k.
(1.5)

(ii) For every v ∈ B
3/2
2,∞(Ω) ∩H1

0 (Ω) there holds

inf
z∈Vh

‖v − z‖H1(Ω) ≤ h1/2‖v‖
B

3/2
2,∞(Ω)

.

(This follows from property (i) and an interpolation argument using the K-
method).
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(iii) The space Vh satisfies standard elementwise inverse estimates: for integer
0 ≤ j ≤ m ≤ k

|v|Hm(K) ≤ Ch−(m−j)|v|Hj(K) ∀v ∈ Vh. (1.6)

The Galerkin method for (1.4) is then: Find uh ∈ Vh such that

a(uh, v) = 〈f, v〉 ∀v ∈ Vh. (1.7)

Remark 1.3 The restriction to simplicial triangulations is not essential. Our pri-
mary motivation for this restriction is that in this case the space Vh is known to
have the above approximation properties, the inverse estimates, and moreover it
has the “superapproximation property” that underlies the local error analysis as
presented in [24, Sec. 5.4].

2 Regularity

2.1 Preliminaries

A key mechanism in our arguments that will allow us to exploit additional regu-
larity of a function is the following embedding theorem.

Lemma 2.1 The following estimates hold, if Ω ⊂ R
d is a bounded Lipschitz do-

main and z sufficiently regular.

‖δ̃−1/2+ε
Γ z‖L2(Ω) ≤ ‖δ−1/2+ε

Γ z‖L2(Ω) ≤ Cε‖z‖H1/2−ε(Ω), ε ∈ (0, 1/2], (2.1)

‖δ̃−1/2
Γ z‖L2(Ω) ≤ C| lnh|1/2‖z‖

B
1/2
2,1 (Ω)

, (2.2)

‖δ̃−1/2−ε
Γ z‖L2(Ω) ≤ Cεh

−ε‖z‖
B

1/2
2,1 (Ω)

, ε > 0, (2.3)

‖z‖L2(Sh) ≤ Ch1/2‖z‖
B

1/2
2,1 (Ω)

, h > 0, (2.4)

‖z‖L2(Γ ) ≤ C‖z‖
B

1/2
2,1 (Ω)

. (2.5)

Proof The estimate involving δΓ in (2.1) can be found, e.g., in [10, Thm. 1.4.4.3]
and (2.4) is shown in [14, Lemma 2.1]. The estimates (2.2), (2.3), (2.5) follow from
1D Sobolev embedding theorems for L∞ and locally flattening the boundary Γ
in the same way as it is done in the proof of [14, Lemma 2.1]. For example, for
(2.5) we note that a local flattening of the boundary Γ and the 1D embedding
‖v‖2L∞(0,1) . ‖v‖L2(0,1)‖v‖H1(0,1) imply ‖z‖2L2(Γ ) . ‖z‖L2(Ω)‖z‖H1(Ω). This im-
plies the estimate ‖z‖L2(Γ ) . ‖z‖

B
1/2
2,1 (Ω)

by [21, Lemma 25.3]. We recall that for

half-spaces, the upper bound (2.5) can be directly found in [22, Thm. 2.9.3], see
also the comment in [21, Sec. 32, Eq. (32.8)]. ⊓⊔

One of several applications of Lemma 2.1 is that it allows us to transform negative
norms into weighted L2-estimates:
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Lemma 2.2 For ε ∈ (0, 1/2] and sufficiently regular z there holds

‖δβΓ z‖(H1/2−ε(Ω))′ ≤ Cε‖δβ+1/2−ε
Γ z‖L2(Ω), −1 < β ≤ 0, (2.6)

‖δ̃−1
Γ z‖

(B
1/2
2,1 (Ω))′

≤ C| lnh|1/2‖δ̃−1/2
Γ z‖L2(Ω). (2.7)

Proof Firstly, we show (2.6):

‖δβΓ z‖(H1/2−ε(Ω))′ = sup
v∈H1/2−ε(Ω)

〈δβΓ z, v〉
‖v‖H1/2−ε(Ω)

= sup
v∈H1/2−ε(Ω)

〈δβ+1/2−ε
Γ z, δ

−1/2+ε
Γ v〉

‖v‖H1/2−ε(Ω)

≤ Cε‖δβ+1/2−ε
Γ z‖L2(Ω),

where, in the last step, we employed (2.1) of Lemma 2.1. Secondly, (2.7) follows by
the same type of arguments, where the application of (2.1) is replaced with that
of (2.2). ⊓⊔

2.2 Regularity

We recall the following variant of interior regularity of elliptic problems:

Lemma 2.3 Let Ω be a bounded Lipschitz domain and z ∈ H1+β(Ω), β ∈ (0, 1],
solve

−∇ · (A∇z) = f in Ω.

Then, for a constant C > 0 depending only on ‖A‖C0,1(Ω), α0, β, and Ω

‖δ1−βΓ ∇2z‖L2(Ω) ≤ C
(
‖δ1−βΓ f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.

Proof The upper bound follows from local interior regularity for elliptic problems
(see [19, Lemma 5.7.2] or [9, Thm. 8.8]) and a Besicovitch covering argument, see,
e.g., [6, Section 1.5.2] and [15, Chapter 5]. We refer also to [12, Lemma A.3] where
a closely related result is worked out in detail. ⊓⊔

2.2.1 Refined regularity for polygons and polyhedra

It is worth pointing out that neither the structure of the boundary Γ nor the
kind of boundary conditions play a role in Lemma 2.3. One possible interpreta-
tion of Lemma 2.3 is that z could lose the H2-regularity anywhere near Γ . For
certain boundary conditions such as homogeneous Dirichlet conditions and piece-
wise smooth geometries Γ the solution fails to be in H2 only near the points of
nonsmoothness of the geometry. With methods similar to those of Lemma 2.3 one
can show the following, stronger result:

Lemma 2.4 Let Ω be a (curvilinear) polygon in 2D or a (curvilinear) polyhedron
in 3D. Denote by E the set of all vertices of Ω in 2D and the set of all edges of
Ω in 3D. Let δE be the distance from E. Let z ∈ H1+β(Ω), β ∈ (0, 1], solve (1.3).
Then, for a constant C depending only on α0, ‖A‖C0,1(Ω), β, and Ω,

‖δ1−βE ∇2z‖L2(Ω) ≤ Cβ
(
‖δ1−βE f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.
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Proof Follows from local considerations as in Lemma 2.3. The novel aspect is the
behavior near the boundary away from the vertices (in 2D) and the edges (in
3D). This is achieved with an adapted covering theorem of the type described in
Theorems A.5, A.6. The key feature of these coverings is that they allow us to
reduce the considerations to balls B = Br(x) and stretched balls B̂ = B(1+ε)r(x)
(with fixed ε > 0) with r ∼ dist(x,E) and the following properties: either x ∈ Ω

with B̂r(x) ⊂ Ω or x ∈ Γ and B̂ ∩ Ω is a half-ball. Local elliptic regularity
assertions can then be employed for each ball B. ⊓⊔

Lemma 2.4 assumes that a loss of H2-regularity occurs at any point of non-
smoothness of Γ . However, the set of “singular” vertices or edges can be further
reduced. For example, in 2D for A = Id, it is well-known that only the vertices
of Ω with interior angle greater than π lead to a loss of full H2-regularity. It will
therefore be useful to introduce the closed set Ms of boundary points associated
with a loss of H2-regularity. Before introducing this set, we point out that this set
is a subset of the vertices and edges:

Definition 2.5 (H2-regular part and singular part of the boundary) Let
Ω be a polygon (in 2D) or a polyhedron (in 3D) with vertices A and edges E.

1. A vertex A ∈ A of Ω is said to be H2-regular, if there is a ball Bε(A) of radius
ε > 0 such that the solution u of (1.3) satisfies u|Bε(A)∩Ω ∈ H2(Ω) whenever

f ∈ L2(Ω) together with the a priori estimate ‖u‖H2(Bε(A)∩Ω) ≤ C‖f‖L2(Ω).

2. In 3D, an edge e ∈ E of Ω with endpoints A1, A2 is said to be H2-regular if the
following condition is satisfied: There is c > 0 such that for the neighborhood
S = ∪x∈eBc dist(x,{A1,A2})(x) of the edge e we have the regularity assertion

u|S∩Ω ∈ H2 for the solution u of (1.3) whenever f ∈ L2(Ω) together with the
a priori estimate ‖u‖H2(S∩Ω) ≤ C‖f‖L2(Ω).

Denote by Ar ⊂ A the set of H2-regular vertices and by Er ⊂ E the set of H2-
regular edges. Correspondingly, let As := A \ Ar and Es := E \ Er be the set of
vertices and edges, respectively, associated with a loss of H2-regularity. Define the
singular set Ms as

Ms := As
⋃

Es ⊂ Γ. (2.8)

With the notion of the singular set in hand, we can formulate the following regu-
larity result:

Lemma 2.6 Let Ω be a polygon or a polyhedron. Let Ms be the singular set as
defined in Definition 2.5. Then the following is true for any solution z ∈ H1

0 (Ω)
of (1.3): If z ∈ H1+β(Ω) for some β ∈ (0, 1], then with δMs

:= dist(·,Ms), there
holds for some C > 0 depending only on α0, ‖A‖C0,1(Ω), β, and Ω,

‖δ1−βMs
∇2z‖L2(Ω) ≤ Cβ

(
‖δ1−βMs

f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.

Proof The proof is based on local considerations as in Lemma 2.4. We recall that
not all vertices and edges (in 3D) are included in the singular set Ms. This is ac-
counted for by a further refinement of the covering employed. We restrict ourselves
to the 3D situation. Using finite coverings provided by Theorem A.6, one may re-
strict the attention to balls Br = Br(x) and stretched balls B̂ = B(1+ε)r(x) (with
fixed ε > 0) with r ∼ dist(x,Ms) where one of the following additional properties
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is satisfied: a) x ∈ Ω with B̂ ⊂ Ω; b) x ∈ Ar and B̂∩Ω is a solid angle; c) x ∈ ∪Er
and B̂ ∩ Ω is a dihedral angle; d) x lies in the interior of a face and B̂ ∩ Ω is a
half-ball. We emphasize that we do not need to consider balls Br(x) with x ∈ As
or x ∈ Es since the covering provided by Theorem A.6 is such that for every such
x there is a neighborhood Ux of x that is covered by (countably many) balls whose
radii tend to 0 as their centers approach x.

⊓⊔

2.2.2 Shift theorems for locally supported right-hand sides

We have the following continuity results for the solution operator T for our model
problem (1.3):

Lemma 2.7 Let Assumption 1.1 be valid. Then T : (H1
0 (Ω))′ → H1

0 (Ω) satisfies

‖Tf‖
B

3/2
2,∞(Ω)

≤ C‖f‖
(B

1/2
2,1 (Ω))′

, (2.9)

‖Tf‖H3/2+ε(Ω) ≤ Cε‖δ1/2−εΓ f‖L2(Ω), 0 < ε ≤ s0 − 1/2. (2.10)

In particular, if f ∈ L2(Ω) with supp f ⊂ Sh, then

‖Tf‖
B

3/2
2,∞(Ω)

≤ Ch1/2‖f‖L2(Ω), (2.11)

‖Tf‖H3/2+ε(Ω) ≤ Cεh
1/2−ε‖f‖L2(Ω), 0 < ε ≤ s0 − 1/2. (2.12)

Proof We follow the arguments of [18, Lemma 5.2]. The starting point for the
proof of (2.9) is that interpolation and Assumption 1.1 yield with θ ∈ (0, 1)

T : ((H1−s0
0 (Ω))′, (H1

0 (Ω))′)θ,∞ → (H1+s0(Ω), H1(Ω))θ,∞ = B
1+s0(1−θ)
2,∞ (Ω).

Next, we recognize as in [18, Lemma 5.2] (cf. [22, Thm. 1.11.2] or [21, Lemma 41.3])

((H1−s0
0 (Ω))′, (H1

0(Ω))′)θ,∞ = ((H1−s0
0 (Ω),H1

0 (Ω))θ,1)
′

⊃ ((H1−s0(Ω),H1(Ω))θ,1)
′ = (B

1−s0(1−θ)
2,1 (Ω))′.

Setting θ = 1 − 1/(2s0) ∈ (0, 1/2], we get (B
1−s0(1−θ)
2,1 (Ω))′ = (B

1/2
2,1 (Ω))′ and

B
1+s0(1−θ)
2,∞ (Ω) = B

3/2
2,∞(Ω). The assertion (2.10) follows from the Assumption 1.1

and (2.6) with β = 0. For the bound (2.11), we argue as in the proof of Lemma 2.2
and use (2.4), see also [18, Lemma 5.2]. Finally, the proof of (2.12) follows from
(2.10) and the assumed support properties of f . ⊓⊔

We will also require mapping properties of the solution operator T in weighted
spaces:

Lemma 2.8 Let Assumption 1.1 be valid. Then for v ∈ L2(Ω)

‖T (δ̃−1
Γ v)‖

B
3/2
2,∞(Ω)

≤ C| lnh|1/2‖δ̃−1/2
Γ v‖L2(Ω), (2.13)

‖T (δ̃−1
Γ v)‖H3/2+ε(Ω) ≤ Cεh

−ε‖δ̃−1/2
Γ v‖L2(Ω), ε ∈ (0, s0 − 1/2], (2.14)

‖T (δ−1+2ε
Γ v)‖H3/2+ε(Ω) ≤ Cε‖δ−1/2+ε

Γ v‖L2(Ω), ε ∈ (0, s0 − 1/2]. (2.15)
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Proof The results follow by combining Lemmas 2.2 and 2.7. ⊓⊔

For the analysis of the FEM error on the neighborhood Sh, we need a refined
version of interior regularity for elliptic problems. The following result is very
similar to [18, Lemma 5.4] and closely related to Lemma 2.3:

Lemma 2.9 Let z solve the equation

−∇ · (A∇z) = v in Ω.

Then there exist CA (depending only on α0, ‖A‖C0,1(Ω) and Ω) and c1 > 0 (de-

pending only on Ω) such that for z ∈ B
3/2
2,∞(Ω), we have

‖δ1/2Γ ∇2z‖L2(Ω\Sh) ≤ CA

[√
| lnh|‖z‖

B
3/2
2,∞(Ω)

+ ‖
√
δΓ v‖L2(Ω\Sc1h)

]
. (2.16)

If the right-hand side v satisfies additionally supp v ⊂ Sh and furthermore z = Tv,
then there are constants CA (depending only on α0, ‖A‖C0,1(Ω), and Ω) and c > 1,

c̃ > c′ > 1 (depending only on Ω) such that for all sufficiently small h > 0:

(i) If z ∈ B
3/2
2,∞(Ω) then ‖δ1/2Γ ∇2z‖L2(Ω\Sc̃h) ≤ CA

√
| lnh|‖z‖

B
3/2
2,∞(Ω)

.

(ii) For every α > 0 there holds

‖δαΓ∇3z‖L2(Ω\Sc̃h)≤CA
[
‖δα−1
Γ ∇2z‖L2(Ω\Sc′h)

+ ‖A‖C1,1(Ω)‖δαΓ∇z‖L2(Ω\Sc′h)

]
.

(iii) If z ∈ H3/2+ε(Ω) for some ε ∈ (0, 1/2), then for some CA,ε > 0 (depending
on α0, ‖A‖C0,1(Ω), Ω, and ε) there holds

‖∇2z‖L2(Ω\Sc̃h) ≤ CA,εh
−1/2+ε‖z‖H3/2+ε(Ω).

(iv) If Assumption 1.1 is valid, then for some C > 0 depending only on the
solution operator T and CA,ε of (iii) we have ‖∇2z‖L2(Ω\Sc̃h) ≤ C‖v‖L2(Ω).

Proof of (2.16), (i), (ii): [18, Lemma 5.4] is formulated for −∆. However, the
essential property of the differential operator ∆ that is required is just interior
regularity. Hence, the result also stands for the present, more general elliptic op-
erator (with the appropriate modifications due to the fact that the coefficient A
is allowed to be non-constant). In the interest of generality, we have also tracked
in (2.16) the dependence on the right-hand side v, which was not done in [18,
Lemma 5.4]. A full proof can be found in Appendix C.

Proof of (iii): This follows again by local considerations similar to those em-
ployed in the proof of [18, Lemma 5.4] and the obvious bound δΓ ≥ h on Ω \ Sc̃h.
A full proof can be found in Appendix C.

Proof of (iv): In view of (iii), we have to estimate ‖z‖H3/2+ε(Ω). By the support

properties of v, the bound (2.12) yields ‖z‖H3/2+ε(Ω) ≤ Ch1/2−ε‖v‖L2(Ω). Inserting
this in (iii) gives the result. ⊓⊔
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3 FEM L2-error analysis

Let uh be the FEM approximation and denote by e = u−uh the FEM error. The
standard workhorse is the Galerkin orthogonality

a(e, v) = a(u− uh, v) = 0 ∀v ∈ Vh. (3.1)

We start with a weighted L2-error:

Lemma 3.1 Let Assumption 1.1 be valid. Assume that a function z ∈ H1
0 (Ω)

satisfies the Galerkin orthogonality

a(z, v) = 0 ∀v ∈ Vh.

Then

‖δ−1/2+ε
Γ z‖L2(Ω) ≤ Cεh

1/2+ε‖z‖H1(Ω), ε ∈ (0, s0 − 1/2], (3.2)

‖δ̃−1/2
Γ z‖L2(Ω) ≤ Ch1/2| lnh|1/2‖z‖H1(Ω). (3.3)

Proof The proof follows standard lines. Define ψ = T (δ−1+2ε
Γ z), which solves

〈v, δ−1+2ε
Γ z〉 = a(v,ψ) ∀v ∈ H1

0 (Ω).

Then we have by Galerkin orthogonality for arbitrary Iψ ∈ Vh

‖δ−1/2+ε
Γ z‖2L2(Ω) = a(z, ψ) = a(z, ψ − Iψ) ≤ C‖z‖H1(Ω)‖ψ − Iψ‖H1(Ω).

From (2.15) in Lemma 2.8, we have ‖ψ‖H3/2+ε(Ω) ≤ Cε‖δ−1/2+ε
Γ z‖L2(Ω) so that

with the approximation properties of Vh we get

inf
Iψ∈Vh

‖ψ − Iψ‖H1(Ω) ≤ Cεh
1/2+ε‖δ−1/2+ε

Γ z‖L2(Ω).

This shows (3.2). For (3.3), we proceed similarly using the regularity assertion
(2.13) and the approximation property of Vh. ⊓⊔

Corollary 3.2 Let Assumption 1.1 be valid and the solution u be in Hs(Ω), s ≥ 1.
Then the FEM error e = u− uh satisfies for ε ∈ (0, s0 − 1/2]

‖δ−1/2+ε
Γ e‖L2(Ω) ≤ Cεh

µ−1/2+ε‖u‖Hµ(Ω), µ := min{s, k + 1}.

The following Theorem 3.3 shows that the optimal rate of the L2-convergence of
the FEM can be achieved also for non-convex geometries if the solution has some
additional regularity:

Theorem 3.3 Let Assumption 1.1 be valid. Let the exact solution u satisfy the
extra regularity u ∈ Hk+2−s0(Ω). Then the FEM error u− uh satisfies

‖u− uh‖L2(Ω) . hk+1‖u‖Hk+2−s0(Ω). (3.4)

More generally, if u ∈ Hs(Ω), s ∈ [1, k + 2− s0], then

‖u− uh‖L2(Ω) . hs−1+s0‖u‖Hs(Ω), 1 ≤ s ≤ k + 2− s0. (3.5)
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Proof of (3.4): We proceed along a standard duality argument. To begin with,
we note that the case s0 = 1 is classical so that we may assume s0 < 1 for the
remainder of the proof. Set ε := s0−1/2 ∈ (0, 1/2) by our assumption 1/2 < s0 <
1. Let w = Te and let wh ∈ Vh be its Galerkin approximation. Quasi-optimality
and the use of (2.6) give us the following energy error estimate:

‖w − wh‖H1(Ω) . inf
v∈Vh

‖w − v‖H1(Ω) . h1/2+ε‖w‖H3/2+ε(Ω)

. h1/2+ε‖e‖(H1/2−ε(Ω))′ . h1/2+ε‖e‖L2(Ω). (3.6)

The Galerkin orthogonalities satisfied by e and w − wh and a weighted Cauchy-
Schwarz inequality yield for the Scott-Zhang interpolant Ikhu

‖e‖2L2(Ω) = a(e,w) = a(e,w − wh) = a(u− Ikhu,w − wh) (3.7)

≤ C‖δ̃−1/2+ε
Γ ∇(u− Iu)‖L2(Ω)‖δ̃1/2−εΓ ∇(w − wh)‖L2(Ω). (3.8)

We get by a covering argument and (2.6) of Lemma 2.1

‖δ̃−1/2+ε
Γ ∇(u− Ikhu)‖L2(Ω) . hk‖δ̃−1/2+ε

Γ ∇k+1u‖L2(Ω)

. hk‖∇k+1u‖H1/2−ε(Ω). (3.9)

It should also be noted at this point that in (3.9), the weight δ̃
−1/2+ε
Γ can be

considered as constant in each element K. For the contribution ‖δ̃1/2−εΓ ∇(w −
wh)‖L2(Ω) in (3.8), we have to analyze the Galerkin error w − wh in more detail,
which will be done with the techniques from the local error analysis of the FEM.
We split Ω into Sch∪(Ω\Sch) where c > 0 will be selected sufficiently large below.
For fixed c > 0, the L2-norm on Sch can easily be bounded with (3.6) by

‖δ̃1/2−εΓ ∇(w − wh)‖L2(Sch) . h1/2−ε‖∇(w − wh)‖L2(Ω) . h‖e‖L2(Ω). (3.10)

The term ‖δ̃1/2−εΓ ∇(w − wh)‖L2(Ω\Sch) requires more care. Obviously, δ̃
1/2−ε
Γ .

δ
1/2−ε
Γ on Ω \ Sch. We have to employ the tools from the local error analysis in

FEM. The Galerkin orthogonality satisfied by w−wh allows us to use techniques
as described in [24, Sec. 5.3], which yields the following estimate for arbitrary balls
Br ⊂ Br′ with the same center (implicitly, r′ > r +O(h) is assumed in (3.11))

‖∇(w − wh)‖L2(Br) . ‖∇(w − Ikhw)‖L2(Br′ )
+

1

r′ − r
‖w − wh‖L2(Br′ )

. (3.11)

By a covering argument (which requires r′ − r ∼ cδΓ (x), where x is the center
of the ball Br, and c is sufficiently small) these local estimates can be combined
into a global estimate of the following form, where for sufficiently small c1 > 0 (c1
depends only on Ω and the shape regularity of the triangulation but is independent
of h):

‖δ1/2−εΓ ∇(w − wh)‖L2(Ω\Sch) . (3.12)

‖δ1/2−εΓ ∇(w − Ikhw)‖L2(Ω\Scc1h) + ‖δ−1/2−ε
Γ (w − wh)‖L2(Ω\Scc1h

).

This estimate implicitly assumed c1ch > 2h, i.e., at least two layers of elements
separate Γ from Ω \ Sc1ch. We now fix c > 2/c1. The first term in (3.12) can



On optimal L2- and surface flux convergence in FEM (extended version) 11

easily be bounded by standard approximation properties of Ikh , Lemma 2.3, and
Assumption 1.1:

‖δ1/2−εΓ ∇(w − Ikhw)‖L2(Ω\Scc1h
) . h‖δ1/2−εΓ ∇2w‖L2(Ω)

.h
[
‖δ1/2−εΓ e‖L2(Ω) + ‖w‖H3/2+ε(Ω)

]
. h‖e‖L2(Ω).

In the last step, we have to deal with the term ‖δ−1/2−ε
Γ (w − wh)‖L2(Ω\Scc1h) of

(3.12). Lemma 3.1 and (3.6) imply

‖δ−1/2−ε
Γ (w − wh)‖L2(Ω\Scc1h) . h−2ε‖δ−1/2+ε

Γ (w − wh)‖L2(Ω)

. h−2εh1/2+ε‖w − wh‖H1(Ω) . h‖e‖L2(Ω). (3.13)

Here we have used the quasi-optimality of the Galerkin approximation with respect
to the H1-norm.

Proof of (3.5): The above arguments show that the regularity of u enters in the
bound (3.9). For u ∈ H1(Ω), the stability properties of the Scott-Zhang operator
Ikh show

‖δ̃−1/2+ε
Γ ∇(u− Ikhu)‖L2(Ω) . h−1/2+ε‖u‖H1(Ω). (3.14)

Hence, a standard interpolation argument that combines (3.9) and (3.14) yields

‖δ̃−1/2+ε
Γ ∇(u− Ikhu)‖L2(Ω) . h−1/2+ε+s−1‖u‖Hs(Ω) for s ∈ [1, k + 2− s0]. Com-

bining this estimate with the above control of ‖δ̃1/2−εΓ ∇(w−wh)‖L2(Ω) yields the
desired bound in the range s ∈ [1, k + 2− s0]. ⊓⊔

4 FEM L
2-error analysis on piecewise smooth geometries

The convergence analysis of Theorem 3.3 did not make explicit use of the fact
that a piecewise smooth geometry is considered; the essential ingredient was As-
sumption 1.1 (which, of course, is related to the geometry of the problem). This

is reflected in our use of δ̃Γ , which measures the distance from the boundary Γ .
One interpretation of this procedure is that one assumes of the dual solution w
(and, in fact, also of the solution of the “bidual” problem employed to estimate

‖δ̃−1/2+ε
Γ (w−wh)‖L2(Ω) in Theorem 3.3) that it may lose H2-regularity anywhere

near Γ . However, for piecewise smooth geometries in conjunction with certain
homogeneous boundary conditions (here: homogeneous Dirichlet conditions), this
loss of H2-regularity is restricted to a much smaller set, namely, a subset of ver-
tices in 2D and a subset of the skeleton (i.e., the union of vertices and edges) in
3D. This set is given by Ms in Definition 2.5. For this set Ms, we introduce the
distance function

δMs
:= dist(·,Ms), δ̃Ms

:= h+ δMs
. (4.1)

Theorem 4.1 Let Ω be a polygon (in 2D) or a polyhedron (in 3D). Let Ms be
the set of vertices (in 2D) or edges and vertices (in 3D) associated with a loss of
H2-regularity for (1.3) as given in Definition 2.5. Let Assumption 1.1 be valid. Let
Iu ∈ Vh be arbitrary. Then we have

‖u− uh‖L2(Ω) ≤ Ch‖δ̃s0−1
Ms

∇(u− Iu)‖L2(Ω).
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Proof We may assume s0 < 1 since the case s0 = 1 corresponds to the standard
duality argument with full elliptic regularity and set ε := s0 − 1/2 ∈ (0, 1/2). The
key observation is that, starting from the duality argument (3.7), one can replace

the weight function δ̃
−1/2+ε
Γ in (3.8) with any positive weight function. Taking as

the weight function δ̃
−1/2+ε
Ms

, we get

‖e‖2L2(Ω) . ‖δ̃−1/2+ε
Ms

∇(u− Iu)‖L2(Ω)‖δ̃1/2−εMs
∇(w − wh)‖L2(Ω). (4.2)

The estimate of w − wh in the weighted norm is done similarly as in the proof of
Theorem 3.3, taking into account the improved knowledge of the regularity of w.
With SMs,ch := {x ∈ Ω | δMs

(x) < ch} we have the trivial bound

‖δ̃1/2−εMs
∇(w − wh)‖L2(Ω) (4.3)

. ‖δ̃1/2−εMs
∇(w − wh)‖L2(SMs,ch) + ‖δ̃1/2−εMs

∇(w − wh)‖L2(Ω\SMs,ch)
,

where the parameter c will be selected sufficiently large below. The first term in
(4.3) is estimated in exactly the same way as in (3.10) and produces

‖δ̃1/2−εMs
∇(w − wh)‖L2(SMs,ch)

≤ Ch‖e‖L2(Ω).

The second term in (4.2) again requires the techniques from the local error anal-
ysis of the FEM, this time with the appropriate modifications to account for the
boundary conditions. Inspection of the arguments in [24, Sec. 5.3] shows that the
key estimate (3.11) extends up to the boundary in the following sense:

‖∇(w− wh)‖L2(Br∩Ω) . ‖∇(w − Ikhw)‖L2(Br′∩Ω) +
1

r′ − r
‖w − wh‖L2(Br′∩Ω);

(4.4)
besides the implicit assumption r′ > r +O(h), the balls Br and Br′ are assumed
to have the same center x and satisfy one of the following conditions:

1. Br′ = Br′(x) ⊂ Ω;
2. x ∈ ∂Ω and Br′(x) ∩Ω is a half-disk;
3. x is a vertex of Ω;
4. (only for d = 3) x lies on an edge e and Br′(x)∩Ω is a dihedral angle (i.e., the

intersection of ∂(Br′(x)∩Ω) with ∂Ω is contained in the two faces that share
the edge e.

The reason for the restriction of the location of the centers of the balls is that
the procedure presented in [24, Sec. 5.3] relies on Poincaré inequalities so that
the number of possible shapes for the intersections Br′ ∩ Ω should be finite. A
covering argument (see Theorem A.5 for the 2D case and Theorem A.6 for the
3D situation) then leads to the following bound with an appropriate c1 > 0 (here,
c > 0 is implicitly assumed sufficiently large):

‖δ̃1/2−εMs
∇(w − wh)‖L2(Ω\SMs,ch) . (4.5)

‖δ̃1/2−εMs
∇(w − Ikhw)‖L2(Ω\SMs,cc1h) + ‖δ̃−1/2−ε

Ms
(w − wh)‖L2(Ω\SMs,cc1h).
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The first term in (4.5) can be estimated with the improved regularity assertion of
Lemma 2.6 to produce (with appropriate c2 > 0 and the implicit assumption on c
that cc1c2 > 2)

‖δ̃1/2−εMs
∇(w − Ikhw)‖L2(Ω\SMs,cc1h) . h‖δ̃1/2−εMs

∇2w‖L2(Ω\SMs,cc1c2h)

.h
[
‖δ̃1/2−εMs

e‖L2(Ω) + ‖w‖H3/2+ε(Ω)

]
. h‖e‖L2(Ω).

For the second term in (4.5) we note that −1/2−ε < 0 so that δ̃
−1/2−ε
Ms

≤ δ̃
−1/2−ε
Γ .

This leads to

‖δ̃−1/2−ε
Ms

(w − wh)‖L2(Ω\SMs,cc1h) . ‖δ̃−1/2−ε
Ms

(w − wh)‖L2(Ω)

. ‖δ̃−1/2−ε
Γ (w − wh)‖L2(Ω) . h−2ε‖δ̃−1/2+ε

Γ (w − wh)‖L2(Ω);

the term h−2ε‖δ̃−1/2+ε
Γ (w−wh)‖L2(Ω) has already been estimated in (3.13) in the

desired form. ⊓⊔

The regularity requirements on the solution u can still be slightly weakened. As
written, the exponent s0 − 1 is related to the global regularity of the dual solution
w. However, the developments above show that a local lack of full regularity of the
dual solution w (and the bidual solution) needs to be offset by additional local
regularity of the solution. To be more specific, we restrict our attention now to
the 2D Laplacian, i.e., A = Id. In this case, the situation can be expressed as
follows with the aid of the singular exponents αj := π/ωj , where ωj ∈ (π, 2π) is
the interior angle at the reentrant vertices Aj , j = 1, . . . , J .

Corollary 4.2 Let Ω ⊂ R
2 be a polygon and let A = Id. Let δj := dist(·, Aj),

j = 1, . . . , J , for the J reentrant corners. Set δ̃j := h + δj . Let ωj be the interior
angle at Aj and αj = π/ωj . Fix βj > 1− αj arbitrary. Then for any Iu ∈ Vh

‖u− uh‖L2(Ω) . h
J∑

j=1

‖δ̃−βj

j ∇(u− Iu)‖L2(Ω).

Proof The proof follows by an inspection of how the regularity of the solution
w = Te of the dual problem enters the proof of Theorem 4.1. By, e.g., [10] the
solution w = Te is in a weighted H2-space with

‖
J∏

j=1

δ
βj

j ∇2w‖L2(Ω) . ‖e‖L2(Ω), (4.6)

and Assumption 1.1 holds with any s0 < minj αj . The regularity assertion (4.6)

suggests to choose
∏J
i=1 δ̃

βi

i as the weight in the proof of Theorem 3.3. Inspection
of the procedure in the proof of Theorem 4.1 then leads to the result. ⊓⊔

We extract from this result another corollary that we will prove useful in the
numerical results. We formulate it in terms of (standard, unweighted) Sobolev
regularity in order to emphasize the difference in regularity requirements of the
solution near the reentrant corners and away from them:
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Corollary 4.3 Assume the hypotheses of Corollary 4.2. Let s > 1 and si > 1,
i = 1, . . . , J . Let U := Ω \∪Ui, for some neighborhoods Ui of the reentrant vertices
Ai. Let u ∈ Hsi(Ui), i = 1, . . . , J and u ∈ Hs(U). Then for arbitrary ε > 0

‖u− uh‖L2(Ω) ≤ Cεh
τ , τ := min(1 + k, s, min

j=1,...,J
(−1 + αj + sj − ε)).

Proof The approximant Iu in Corollary 4.2 may be taken as any standard nodal
interpolant or the Scott-Zhang projection. Then standard estimates and Corol-
lary 4.2 produce with the choice βj := 1 − αj + ε for arbitrary small but fixed
ε > 0:

‖u− uh‖L2(Ω) . h min
j=1,...,J

{hmin{k,s−1}, h−βj+sj−1}

. min
j=1,...,J

{hmin{k+1,s}, hαj+sj−1−ε}.

⊓⊔

5 Optimal L
2(Sh)-convergence

Additional regularity of the solution also allows us to prove that the error on the
strip Sh of width O(h) near Γ is of higher order:

Theorem 5.1 Let Assumption 1.1 be valid. Then the FEM error u− uh satisfies

‖u− uh‖L2(Sh) . hk+3/2(1 + δk,1| lnh|)‖u‖Bk+3/2
2,1 (Ω)

,

‖u− uh‖L2(Sh) . hs+3/2(1 + δk,1| lnh|)‖u‖Bs+3/2
2,∞ (Ω)

, s ∈ (0, k),

‖u− uh‖L2(Sh) . h3/2(1 + δk,1| lnh|)‖u‖B3/2
2,1 (Ω)

,

where δk,1 is the Kronecker symbol. The implies constant depends on the shape
regularity of the triangulation, Ω, and the coefficient A. Specifically, it depends on
α0 and ‖A‖C0,1(Ω) and, in the case k > 1, additionally on ‖A‖C1,1(Ω).

Remark 5.2 1. The regularity requirementB
k+3/2
2,1 (Ω) can be weakened: it suffices

that u be in B
k+3/2
2,1 (SD) in a fixed neighborhood SD of Γ and in Hk+1(Ω).

See [16] for the details of a closely related problem.

2. Since B
s+3/2
2,∞ (Ω) ⊃ Hs+3/2(Ω), the assertions for s ∈ (0, k) can be weakened

by replacing ‖u‖
B

s+3/2
2,∞ (Ω)

with ‖u‖Hs+3/2(Ω) on the right-hand side. Only for

the limiting cases s = 0 and s = k, we require the stronger requirement u ∈
B
s+3/2
2,1 (Ω) ⊂ Hs+3/2(Ω).

Proof The structure of the proof is very similar to that of Theorem 3.3. The
main difference arises from the fact that the right-hand side of the dual problem
is supported by the thin neighborhood Sh, and this support property has to be
exploited.
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Let e = u−uh. Let χSh
be the characteristic function of Sh. Let w = T (χSh

e)
and wh ∈ Vh its Galerkin approximation. Again, Galerkin orthogonality for u−uh
and w − wh implies

‖e‖2L2(Sh) = 〈e, χe〉 = a(e,w) = a(e,w − wh) = a(u− Ikhu,w − wh)

≤ C‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω)‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω), (5.1)

where ε ≥ 0 is arbitrary (in fact, ε ∈ R would be admissible). We flag at this point
already that we will select ε = 0 for k = 1 and ε > 0 arbitrary (but sufficiently
small) for k > 1. Each of the two factors in (5.1) is estimated separately.

1. step: For the first factor in (5.1) we use approximation properties of the
Scott-Zhang operator Ikh together with Lemma 2.1 to get for j ∈ {0, . . . , k}

‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω) . hj‖δ̃−1/2−ε

Γ ∇j+1u‖L2(Ω),

. hj




| lnh|1/2‖∇j+1u‖

B
1/2
2,1 (Ω)

if ε = 0

h−ε‖∇j+1u‖
B

1/2
2,1 (Ω)

if ε > 0.
(5.2)

With the Kronecker symbol δ0,ε, we have shown for j ∈ {0, 1, . . . , k}

‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω) . hjh−ε(1 + δ0,ε| lnh|1/2)‖u‖Bj+3/2

2,1 (Ω)
. (5.3)

Since the Scott-Zhang operator Ikh is defined on H1(Ω) irrespective of boundary
conditions, we may use an interpolation argument to lift the restriction to integer
values j. Specifically, the reiteration theorem (cf., e.g., [21, Thm. 23.6]) asserts

that the Besov space B
s+3/2
2,∞ (Ω), which we have defined by interpolation between

(integer order) Sobolev spaces, coincides with the interpolation space between
Besov spaces, viz.,

B
s+3/2
2,∞ (Ω) = (B

3/2
2,1 (Ω), B

k+3/2
2,1 (Ω))s/k,∞ (equivalent norms).

Hence, we may decompose for arbitrary t > 0 a function u ∈ B
s+3/2
2,∞ (Ω), s ∈ (0, k),

as u = u − u1 + u1 with u1 ∈ B
k+3/2
2,1 (Ω) and u0 := u − u1 ∈ B

3/2
2,1 (Ω) together

with

‖u0‖B3/2
2,1 (Ω)

≤ Cts/k‖u‖
B

s+3/2
2,∞ (Ω)

, ‖u1‖Bk+3/2
2,1 (Ω)

≤ Cts/k−1‖u‖
B

s+3/2
2,∞ (Ω)

.

Writing u− Ikhu =
(
u0 − Ikhu0

)
+

(
u1 − Ikhu1

)
we can use (5.3) with j = k for the

second term in brackets and j = 0 for the first term in brackets to get with the
choice t = hk

‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω) . hsh−ε(1 + δ0,ε| lnh|1/2)‖u‖Bs+3/2

2,∞ (Ω)
. (5.4)

Combining the estimates (5.3) with j = 0 and j = k and (5.4) for s ∈ (0, k) we
arrive at

‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω) (5.5)

. (1 + δ0,ε| lnh|1/2)h−ε





hs‖u‖
B

s+3/2
2,1 (Ω)

, s = 0,

hs‖u‖
B

s+3/2
2,∞ (Ω)

, s ∈ (0, k),

hs‖u‖
B

k+3/2
2,1 (Ω)

, s = k.
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2. step: The second factor in (5.1) requires more work. We start with a regu-
larity assertion for w that exploits the support properties of χSh

e and follows from
(2.11) and (2.12):

‖w‖
B

3/2
2,∞(Ω)

. h1/2‖χSh
e‖L2(Ω), (5.6)

‖w‖H3/2+ε(Ω) . h1/2−ε‖χSh
e‖L2(Ω), ε ∈ (0, s0 − 1/2]. (5.7)

We obtain an energy error estimate for w − wh in the standard way by using
quasi-optimality, the approximation properties of Vh, and the regularity assertion
(5.6):

‖w − wh‖H1(Ω) . inf
v∈Vh

‖w − v‖H1(Ω) . h1/2‖w‖
B

3/2
2,∞(Ω)

. h‖χSh
e‖L2(Ω). (5.8)

Lemma 3.1 is applicable with z = w − wh; hence, obtain with (5.8)

‖δ−1/2+ε
Γ (w − wh)‖L2(Ω) . h3/2+ε‖χSh

e‖L2(Ω), ε ∈ (0, s0 − 1/2], (5.9)

‖δ̃−1/2
Γ (w − wh)‖L2(Ω) . h3/2| lnh|1/2‖χSh

e‖L2(Ω). (5.10)

The bound (5.1) informs us that control of w − wh in a weighted H1-norm is re-
quired. In this direction, we first write for a constant c > 0 that will be determined
later sufficiently large

‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω)

≤ ‖δ̃1/2+εΓ ∇(w − wh)‖L2(Sch) + ‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω\Sch)

≤ Ch1/2+ε‖∇(w − wh)‖L2(Ω) + ‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω\Sch)

(5.8)
≤ Ch3/2+ε‖χSh

e‖L2(Ω) + ‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω\Sch). (5.11)

We emphasize that ε = 0 is allowed in (5.11). It remains to control ‖δ̃1/2+εΓ ∇(w−
wh)‖L2(Ω\Sch). This is done again with the same arguments from the local error
analysis as in the proof of Theorem 3.3. The estimate (3.12) holds verbatim, i.e.,

‖δ1/2+εΓ ∇(w − wh)‖L2(Ω\Sch) (5.12)

. ‖δ1/2+εΓ ∇(w − Ikhw)‖L2(Ω\Scc1h) + ‖δ−1/2+ε
Γ (w − wh)‖L2(Ω\Scc1h

).

We emphasize that ε = 0 is admissible in (3.12). As in the proof of Theorem 3.3,
the constant c will be selected in dependence of various inverse estimates that are
applied. Combining (5.9), (5.10), (5.11), (5.12) we see that we have shown

‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω) (5.13)

.

{
h3/2+ε‖χSh

e‖L2(Ω) + ‖δ̃1/2+εΓ ∇(w − Ikhw)‖L2(Ω\Sc1ch) if ε > 0,

h3/2| lnh|1/2‖χSh
e‖L2(Ω) + ‖δ̃1/2Γ ∇(w − Ikhw)‖L2(Ω\Sc1ch) if ε = 0.

3. step: We estimate the approximation error ‖δ̃1/2+εΓ ∇(w− Ikhw)‖L2(Ω\Sc1ch). At
this point the cases k = 1 and k > 1 diverge: since w solves a homogeneous elliptic
equation on Ω \ Sc1ch (if c1c > 1), interior regularity is available so that higher
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order approximation can be brought to bear if k > 1 in contrast to the case k = 1.
We start with the simpler case k = 1.

The case k = 1: From standard approximation results for Ikh , the inverse esti-
mate of Lemma 2.9, (i), and (5.6) we get for a constant c2 ∈ (0, 1) (implicitly, we
assume that c is so large that c2c1ch > 2h)

‖δ̃1/2Γ ∇(w − Ikhw)‖L2(Ω\Sc1ch) . h1‖δ̃1/2Γ ∇2w‖L2(Ω\Sc2c1ch)

. h| lnh|1/2‖w‖
B

3/2
2,∞(Ω)

. h3/2| lnh|1/2‖χSh
e‖L2(Ω). (5.14)

Inserting (5.5) (with ε = 0) with the combination of (5.14) and (5.13) (again
with ε = 0) in (5.1) yields the desired final estimate for the case k = 1 if we fix
c = 2/(c1c2).

The case k > 1: We fix an ε ∈ (0, s0 − 1/2] arbitrary. From standard ap-
proximation results for Ikh , the inverse estimates of Lemma 2.9, and the regularity
assertion (5.7) we get (again for suitable constants c2, c3 ∈ (0, 1) and the implicit
assumption that c is such that c3c2c1c is sufficiently large)

‖δ̃1/2+εΓ ∇(w − Ikhw)‖L2(Ω\Sc1ch) . h2‖δ̃1/2+εΓ ∇3w‖L2(Ω\Sc2c1ch)

Lem. 2.9,(ii)
. h2

[
‖δ̃−1/2+ε
Γ ∇2w‖L2(Ω\Sc3c2c1ch) + ‖δ̃1/2+εΓ ∇w‖L2(Ω\Sc3c2c1ch)

]

. h2−1/2+ε
[
‖∇2w‖L2(Ω\Sc3c2c1ch) + ‖∇w‖L2(Ω\Sc3c2c1ch)

]

Lem. 2.9,(iv)
. h2−1/2+ε‖χSh

e‖L2(Ω). (5.15)

Combining this with (5.5) produces in (5.1) the desired final estimate for the case
k > 1. ⊓⊔

From Theorem 5.1 we can extract optimal convergence estimates for the flux error
‖∂n(u− uh)‖L2(Γ ):

Corollary 5.3 Let Assumption 1.1 be valid. Then with the Kronecker symbol δk,1

‖∂nu− ∂nuh‖L2(Γ ) . (1 + δk,1| lnh|)





hk‖u‖
B

k+3/2
2,1 (Ω)

,

hs‖u‖
B

s+3/2
2,∞ (Ω)

, s ∈ (0, k),

‖u‖
B

3/2
2,1 (Ω)

.

Proof Structurally, the proof follows [18, Cor. 6.1] in that estimating the error on
Γ is transferred to an estimate on the strip Sh. The triangle inequality gives

‖∂n(u− uh)‖L2(Γ ) ≤ ‖∂n(u− Ikhu)‖L2(Γ ) + ‖∂n(Ikhu− uh)‖L2(Γ ). (5.16)

The two terms in (5.16) are estimated separately.
1. step: We claim that

‖∂n(u− Ikhu)‖L2(Γ ) .





hk‖u‖
B

k+3/2
2,1 (Ω)

hs‖u‖
B

s+3/2
2,∞ (Ω)

, s ∈ (0, k),

‖u‖
B

3/2
2,1 (Ω)

.

(5.17)
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We will only show the limiting cases u ∈ B
k+3/2
2,1 (Ω) and u ∈ B

3/2
2,1 (Ω); the inter-

mediate cases follow by an interpolation argument similar to the one used in the
proof of Theorem 5.1. For the case of maximal regularity, we use an elementwise
multiplicative trace inequality for the elements abutting Γ to get

‖∂n(u− Ikhu)‖L2(Γ ) . hk/2
√

‖∇k+1u‖L2(S2h)h
(k−1)/2

√
‖∇k+1u‖L2(S2h)

. hk−1/2‖∇k+1u‖L2(S2h)

(2.4)
. hk‖∇k+1u‖

B
1/2
2,1 (Ω)

. hk‖u‖
B

k+3/2
2,1 (Ω)

.

For the case of minimal regularity, u ∈ B
3/2
2,1 (Ω) we first note that we obtain from

(2.5) that ‖v‖L2(Γ ) . ‖v‖
B

1/2
2,1 (Ω)

. Using this and inverse estimates, we get

‖∂n(u− Ikhu)‖L2(Γ ) ≤ ‖∂nu‖L2(Γ ) + ‖∂nIkhu‖L2(Γ )

. ‖∇u‖
B

1/2
2,1 (Ω)

+ h−1/2‖∇Ikhu‖L2(Sh)

Ikhstable

. ‖∇u‖
B

1/2
2,1 (Ω)

+ h−1/2‖∇u‖L2(S2h)

(2.4)
. ‖∇u‖

B
1/2
2,1 (Ω)

.

2. step: The term ‖∂n(Ikhu − uh)‖L2(Γ ) in (5.16) is controlled with inverse
estimates and Theorem 5.1 as follows:

‖∂n(Ikhu− uh)‖L2(Γ ) . h−1/2‖∇(Ikhu− uh)‖L2(Sh) . h−3/2‖Ikhu− uh‖L2(Sh)

. h−3/2‖u− Ikhu‖L2(Sh) + h−3/2‖u− uh‖L2(Sh).

The term ‖u− Ikhu‖L2(Sh) can be controlled with the approximation properties of

Ikh in the desired fashion: ‖u − Ikhu‖L2(Sh) . h‖∇u‖L2(S2h) . h3/2‖∇u‖
B

1/2
2,1 (Ω)

.

The contribution ‖u− uh‖L2(Sh) is estimated with the aid of Theorem 5.1. ⊓⊔

6 Extension of the results of [18]

The arguments of the present paper are similar to those underlying [18], in spite of
the fact that we did not employ the anisotropic norms that we introduced in [18]
but instead worked with weighted Sobolev spaces. A feature of the analysis here
that was not present in [18] is our FEM error analysis in Lemma 3.1 for a weighted
L2-estimate, which, in turn, relies on the regularity assertions of Lemma 2.8 for
problems with data in weighted spaces. This additional technical issue was cir-
cumvented in [18] by assuming convexity of Ω so that optimal order L2-estimates
could be cited from the literature. The present analysis provides the necessary
technical tools to remove this simplification in [18], where a more complex mortar
setting is analyzed. It is possible to make use of weighted L2-estimates similar to
those of Lemma 3.1 in the setting of [18]. For that, regularity results of the type
provided in Lemma 2.8 have to be used. The outcome of this refinement is that the
main results of [18], namely, [18, Thm. 2.1], which provides L2-estimates on strips
of width O(h) around the skeleton, and [18, Thm. 2.5], which provides optimal
order approximations for the mortar variable, hold true if the geometry is such
that Assumption 1.1 is valid. We will not provide the details of the arguments here
and refer to [11, Appendix B] instead. Nevertheless, for future reference we record
the end result:
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Theorem 6.1 In [18, Thms. 2.1, 2.5], the assumption of convexity of Ω can be
replaced with [18, Assumption (5.2)].

7 Numerical results

We consider the simple model equation −∆u = f in Ω ⊂ R, d ∈ {2, 3} with inho-
mogeneous Dirichlet boundary conditions. These are realized numerically by nodal
interpolation of the prescribed exact solution u, and the data f is also computed
from u. In the case of a non-smooth solution, we use a suitable quadrature formula
on finer meshes to guarantee that the L2-error is accurately evaluated.

7.1 Two-dimensional results

We use a sequence of uniformly refined triangular meshes, where each element is
split into four triangles.

7.1.1 Lowest order discretization

We consider two typical domains for reentrant corners. We start with the L-
shaped domain (−1, 1)2 \ [0, 1]× [−1, 0] and then consider a slit domain (−1, 1)2 \
((0, 1)× {0}). In both cases, the prescribed solution is given in polar coordinates
by u(r,φ) = rα sin(aφ) where α, a are given parameters. For non-integer α, we
have u ∈ B1+α

2,∞ (Ω) by [4, Thm. 2.1]. Moreover, we test the influence of the position

(x0, y0) of the weak singularity at r = 0 by defining r2 := (x−x0)2+(y−y0)2. We
note that irrespective of the location (x0, y0) of the singularity on the boundary
Γ , we have u ∈ B1+α

2,∞ (Ω) ⊂ H1+α−ε(Ω) for any ε > 0.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
81 6.1585e-03 - 6.8141e-03 - 6.2506e-03 -

289 2.6986e-03 1.19 2.5648e-03 1.41 2.1211e-03 1.56
1.089 1.1123e-03 1.28 8.8428e-04 1.54 6.7413e-04 1.65
4.225 4.4037e-04 1.34 2.9202e-04 1.60 2.0903e-04 1.69

16.641 1.7107e-04 1.36 9.4164e-05 1.63 6.4027e-05 1.71
66.049 6.5689e-05 1.38 2.9909e-05 1.65 1.9471e-05 1.72

263.169 2.5030e-05 1.39 9.4012e-06 1.67 5.8930e-06 1.72
1.050.625 9.4877e-06 1.40 2.9328e-06 1.68 1.7774e-06 1.73
4.198.401 3.5834e-06 1.40 9.0968e-07 1.69 5.3475e-07 1.73

Table 7.1 L-shaped domain, k = 1: Influence of the position of singularity for α = 0.75.

For the L-shaped domain, the shift parameter s0 can be taken to be any s0 <
2/3. From the theoretical results in Section 3, we therefore expect the error decay
to have a rate of at least min(2, 1+α−1/3) uniformly in the position (x0, y0) of the
singularity. Table 7.1 shows the numerical results for α = 0.75 and a = 2/3π, for
which min(2, 1+α−1/3) = 1.417. As it can be seen for (x0, y0) = (0, 0), we observe
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a good agreement with Theorem 3.3. However for the locations (x0, y0) = (0.5,0)
and (x0, y0) = (0, 1), the rates are substantially better. This can be explained by
the more refined analysis of Section 4. Using Corollary 4.3, we expect an improved
convergence rate of 1.75 for these cases.

α = 10/9 α = 4/3 α = 3/2
DOFs L22-error rate L2-error rate L2-error rate

81 6.5660e-03 - 8.6776e-03 - 8.9932e-03 -
289 2.3309e-03 1.49 2.8523e-03 1.61 2.8151e-03 1.68

1.089 7.3413e-04 1.67 8.2870e-04 1.78 7.8034e-04 1.85
4.225 2.2257e-04 1.72 2.3073e-04 1.84 2.0751e-04 1.91

16.641 6.5650e-05 1.76 6.2539e-05 1.88 5.3910e-05 1.94
66.049 1.9056e-05 1.78 1.6688e-05 1.91 1.3835e-05 1.96

263.169 5.4810e-06 1.80 4.4099e-06 1.92 3.5256e-06 1.97
1.050.625 1.5690e-06 1.80 1.1580e-06 1.93 8.9467e-07 1.98
4.198.401 4.4822e-07 1.81 3.0279e-07 1.94 2.2641e-07 1.98

Table 7.2 L-shaped domain, k = 1: Influence of exponent α for a = 2/3π and (x0, y0) = (0, 0).

Table 7.2 shows the results for (x0, y0) = (0, 0) and α ∈ {10/9,4/3, 3/2}. From
Theorem 3.3, we expect convergence rates of 1.78, 2, and 2, respectively. The
observed numerical rates of 1.81, 1.94, and 1.98 are quite close.

The situation is similar for the slit domain where the regularity of the dual
problem is even further reduced. It corresponds to a limiting case of our theory,
which, strictly speaking, we did not cover, since the parameter s0 of Assumption 1.1
may be taken to be any s0 < 1/2. Nevertheless, one expects from Theorem 3.3 a
convergence rate close to min{2, 1 + α − 1/2}. For α = 0.75 this is 1.25, which is
visible in Table 7.3 for the case (x0, y0) = (0, 0). Again, the better convergence
behavior for (x0, y0) = (0.5,0) and (x0, y0) = (0, 1) can be explained by the the-
ory of Corollary 4.3, which predicts 1 + α = 1.75. Table 7.4 shows the results for
(x0, y0) = (0, 0) and α ∈ {10/9,4/3, 3/2}. From Theorem 3.3, we expect conver-
gence rates of 1.61, 1.83 and 2, respectively. The observed numerical rates of 1.65,
1.86, and 1.96 are reasonably close to these predictions.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
97 6.1391e-03 - 1.1088e-02 - 1.0692e-02 -

348 2.8187e-03 1.12 4.1329e-03 1.42 3.8553e-03 1.47
1.315 1.2351e-03 1.19 1.4164e-03 1.54 1.3388e-03 1.53
5.109 5.3338e-04 1.21 4.7830e-04 1.57 4.4562e-04 1.59

20.137 2.2846e-04 1.22 1.4725e-04 1.70 1.4420e-04 1.63
79.953 9.7267e-05 1.23 4.6683e-05 1.66 4.5843e-05 1.65

318.625 4.1233e-05 1.24 1.4761e-05 1.66 1.4401e-05 1.67
1.272.129 1.7428e-05 1.24 4.3773e-06 1.75 4.4861e-06 1.68
5.083.777 7.3524e-06 1.25 1.3285e-06 1.72 1.3889e-06 1.69

Table 7.3 Slit domain, k = 1: Influence of the position of singularity for α = 0.75.
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α = 10/9 α = 4/3 α = 3/2
DOFs L2-error rate L2-error rate L2-error rate

97 5.7534e-03 - 7.3549e-03 - 7.5901e-03 -
348 1.9412e-03 1.57 2.2414e-03 1.71 2.1664e-03 1.81

1.315 6.2583e-04 1.63 6.4849e-04 1.79 5.8638e-04 1.89
5.109 1.9689e-04 1.67 1.8251e-04 1.83 1.5450e-04 1.92

20.137 6.1446e-05 1.68 5.0718e-05 1.85 4.0197e-05 1.94
79.953 1.9191e-05 1.68 1.4021e-05 1.85 1.0396e-05 1.95

318.625 6.0229e-06 1.67 3.8699e-06 1.86 2.6803e-06 1.96
1.272.129 1.9023e-06 1.66 1.0682e-06 1.86 6.8978e-07 1.96
5.083.777 6.0474e-07 1.65 2.9514e-07 1.86 1.7730e-07 1.96

Table 7.4 Slit domain, k = 1: Influence of exponent α for a = 1/2π and (x0, y0) = (0, 0)

7.1.2 Second order finite elements

In this subsection, we test the performance of quadratic finite elements for the L-
shaped domain. We use the same type of solution as before and vary the parameter
α for (x0, y0) = (0, 0), i.e., the re-entrant corner. Here we expect from our theory a
convergence rate of min(3, α+1−1/3). For α ∈ {2.175,2.275,2.375}, the observed
numerical rates, which are visible in Table 7.5, are very close to the theoretically
predicted ones.

α = 2.175 α = 2.275 α = 2.375
DOFs L2 error rate L2 error rate L2 error rate

289 2.7565e-04 - 2.4570e-04 - 2.2177e-04 -
1.089 5.1121e-05 2.43 4.1696e-05 2.56 3.3912e-05 2.71
4.225 7.5320e-06 2.76 5.7319e-06 2.86 4.3221e-06 2.97

16.641 1.1051e-06 2.77 7.8407e-07 2.87 5.4888e-07 2.98
66.049 1.5938e-07 2.79 1.0553e-07 2.89 6.8762e-08 3.00

263.169 2.2723e-08 2.81 1.4044e-08 2.91 8.5292e-09 3.01
1.050.625 3.2138e-09 2.82 1.8538e-09 2.92 1.0497e-09 3.02

Table 7.5 L-shaped domain, k = 2: Influence of α for a = 2/3π and (x0, y0) = (0, 0).

7.2 Three-dimensional results

In the three dimensional setting, we consider a Fichera corner Ω := (−1, 1)3\[0, 1]3
and prescribe the smooth solution u(x, y, z) := sin((x + y)π) cos(2πz). The inho-
mogeneous Dirichlet conditions are realized by nodal interpolation. The discretiza-
tion is based on trilinear finite elements on hexahedra and uniform refinements.
Although the dual problem lacks full regularity, Theorem 3.3 asserts that this
can be compensated by extra s0 regularity of the primal solution to maintain full
second order convergence in L2.

Table 7.6 shows that we observe numerically already for coarse discretizations
the predicted convergence order two, and the theoretical results are confirmed.

We point the reader to Appendix E for a further numerical results.
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DOF L2-error rate
316 0.075444 -

3.032 0.017182 1.96
26.416 0.0039376 2.04

220.256 0.00094597 2.02
1.798.336 0.00023208 2.01

14.532.992 5.7491e-05 2.00

Table 7.6 Fichera corner, k = 1: L2-error for a smooth solution.



On optimal L2- and surface flux convergence in FEM (extended version) 23

A Coverings

In this appendix, the distance dist(x,M) for some set M appears frequently. For
notational convenience, we set dist(x, ∅) = 1 to include the degenerate caseM = ∅.

We quote from [18, Lemma A.1]:

Lemma A.1 Let Ω ⊂ R
d be bounded open and M = M be a closed set. Fix

c ∈ (0, 1) and ε ∈ (0, 1) such that

1− c(1 + ε) =: c0 > 0. (A.1)

For each x ∈ Ω, let Bx := Bc dist(x,M)(x) be the closed ball of radius c dist(x,M)

centered at x, and let B̂x := B(1+ε)cdist(x,M)(x) denote the stretched (closed) ball
of radius (1 + ε)cdist(x,M) also centered at x.

Then there exists a countable set xi ∈ Ω, i ∈ N, and a constant N ∈ N

depending solely on the spatial dimension d with the following properties:

1. (covering property) ∪i∈NBxi ⊃ Ω;

2. (finite overlap on Ω) for each x ∈ Ω, there holds card{i |x ∈ B̂xi} ≤ N .

Proof [18, Lemma A.1] assumed that M ⊂ Ω. However, an inspection of the proof
shows that this is not necessary.

Before we proceed with variants of the covering result of Lemma A.1, we introduce
the notation of sectorial neighborhoods relative a singular set M :

Definition A.2 (sectorial neighborhood) Let e, M ⊂ R
d and c̃ > 0. Then

Se,M,c̃ := ∪x∈eBc̃ dist(x,M)(x)

is a sectorial neighborhood of the set e relative to the singular set M .

We are interested in coverings of lower-dimensional manifolds by balls whose cen-
ters are located on these manifolds:

Lemma A.3 Let d ∈ N and 1 ≤ d′ < d. Let ω ⊂ R
d′ and let Ω ⊂ R

d be the
canonical embedding of ω into R

d, i.e., Ω := ω × {0} × · · · × {0} ⊂ R
d. Assume

the hypotheses and notation of Lemma A.1. Then there are c̃ > 0, N > 0, and a
collection of balls Bxi , i ∈ N, as described in Lemma A.1 such that

(i) (covering property for Ω) ∪i∈NBxi ⊃ Ω.
(ii) (covering property for a sectorial neighborhood of Ω) ∪i∈NBxi ⊃ SΩ,M,c̃.
(iii) (finite overlap property on R

d) for each x ∈ R
d, there holds card{i |x ∈

B̂xi} ≤ N .

Proof We employ the result of Lemma A.1 for the lower-dimensional manifold ω
noting that Bx ∩ ω is a ball in R

d′ . In order to be able to ensure the covering
condition for the sectorial neighborhood of Ω stated in (iii), we introduce the
auxiliary balls B′

x := Bc/2 dist(x,M)(x) of half the radius. Applying Lemma A.1

with these balls B′
x and the stretched balls B̂x therefore produces a collection of

centers xi ∈ Ω, i ∈ N, such that

1. B′
xi

∩Ω covers Ω;
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2. for the stretched balls B̂xi , we have a finite overlap property on Ω:

∀x ∈ Ω : card{i |x ∈ B̂xi} ≤ N. (A.2)

We next see that the balls B̂xi even have the following, stronger finite overlap
property:

∀x ∈ R
d : card{i | x ∈ B̂xi} ≤ N. (A.3)

To see this, define the infinite cylinders Ĉxi := {x |πd′(x) ∈ B̂xi ∩ Ω}, where πd′

is the canonical projection onto the hyperplane {x = (x1, . . . , xd) ∈ R
d |xd′+1 =

· · · = xd = 0}. Clearly, B̂xi ⊂ Ĉxi . These infinite cylinders have a finite overlap
property by (A.2) as can be seen by writing any x ∈ R

d in the form x = (πd′(x), x
′)

for some x′ ∈ R
d−d′ and then noting that x ∈ Ĉxi implies πd′ (x) ∈ B̂xi ∩Ω.

Is remains to see that the balls Bxi cover a sectorial neighborhood of Ω. To
that end, we note that the balls B′

xi
cover Ω. Furthermore, for each x ∈ Ω,

we pick xi such that x ∈ B′
xi

⊂ Bxi . Since the radius of Bxi is twice that of
B′
xi

, we even have Bc/2 dist(xi,M)(x) ⊂ Bxi . Furthermore, by c ∈ (0, 1), we have
0 < (1− c/2) dist(xi,M) ≤ dist(x,M) ≤ (1 + c/2) dist(xi,M). Therefore, there is
c̃ > 0 such that Bc̃ dist(x,M)(x) ⊂ Bxi and thus

∪x∈ΩBc̃ dist(x,M)(x) ⊂ ∪iBxi .

⊓⊔

We next show covering theorems for polygons and polyhedra. In the interest of
clarity of presentation, we formulate two separate results. Before doing so, we point
out that balls with center located on the boundary of the polygon/polyhedron Ω
will feature importantly so that the intersection of this ball with Ω will be of
interest. We therefore introduce the following notions:

Definition A.4 (solid angles and dihedral angles)

1. Let Ω ⊂ R
2 be a Lipschitz polygon. Let A be a vertex where the edges e1, e2

meet. We say that the set Bε(A)∩Ω is a solid angle, if ∂(Bε(A) ∩Ω) ∩ ∂Ω is
contained in {A} ∪ e1 ∪ e2.

2. Let Ω ⊂ R
3 be a Lipschitz polyhedron. Let A be a vertex of Ω. We say that

the set Bε(A) ∩ Ω is a solid angle, if ∂(Bε(A) ∩ Ω) ∩ ∂Ω is contained in the
union of {A} and the edges and faces meeting at A.

3. Let Ω ⊂ R
3 be a Lipschitz polyhedron. Let e be an edge of Ω, which is shared

by the faces f1, f2. Let x ∈ e. We say that the set Bε(x)∩Ω is a dihedral angle,
if ∂(Bε(x) ∩Ω) ∩ ∂Ω is contained in e ∪ f1 ∪ f2.

Theorem A.5 Let Ω ⊂ R
2 be a bounded Lipschitz polygon with vertices Aj, j =

1, . . . , J , and edges E. Let M ⊂ {A1, . . . , AJ}. Set A′ := {A1, . . . , AJ} \M and fix
ε ∈ (0, 1).

(i) There is a sectorial neighborhood SA′,M,c̃ of the vertices A′ and a constant
c ∈ (0, 1) such that SA′,M,c̃ is covered by balls Bi := Bcdist(xi,M)(xi) with

centers xi ∈ A′. Furthermore, the stretched balls B̂i := B(1+ε)cdist(xi,M)(xi)

are solid angles and satisfy a finite overlap property on R
2.
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(ii) Fix a sectorial neighborhood U := SA′,M,c′ of the vertices A′. For each edge
e ∈ E, there is a sectorial neighborhood Se,M,c̃ and a constant c ∈ (0, 1) such
that Se,M,c̃ \ U is covered by balls Bi = Bcdist(xi,M)(xi) whose centers xi

are located on e. Furthermore, the stretched balls B̂i = B(1+ε)cdist(xi,M)(xi)

satisfy a finite overlap property on R
2 and are such that each B̂i ∩ Ω is a

half-disk.
(iii) Fix a sectorial neighbood U := SE,M,c′ of the edges E. There is c ∈ (0, 1) such

that Ω \ U is covered by balls Bi = Bc dist(xi,M)(xi) such that the stretched

balls B̂i = B(1+ε)cdist(xi,M)(xi) are completely contained in Ω and satisfy a

finite overlap property on R
2.

Proof The assertion (i) is almost trivial and only included to emphasize the struc-
ture of the arguments. Assertions (ii), (iii) follow from suitable applications of
Lemmas A.3 and A.1. ⊓⊔

The 3D variant of Theorem A.5 is formulated in Theorem A.6. We emphasize that
the “singular” set M need not be the union of all edges and vertices but can be
just a subset. We also emphasize that it is not necessarily related to the notion of
“singular set” in Definition 2.5, although it is used in this way. The key property of
the covering balls is again such that the centers are either a) in Ω (in which case
the stretched ball is contained in Ω); or b) on a face (in which case the stretched

ball B̂i is such that B̂i ∩ Ω is a half-ball); or c) on an edge in which case B̂i ∩Ω
is a dihedral angle (see Definition A.4); or d) in a vertex in which case B̂i ∩ Ω is
a solid angle (see Definition A.4).

Theorem A.6 Let Ω ⊂ R
3 be a Lipschitz polyhedron with faces F , edges E, and

vertices A. Let MA ⊂ A and ME ⊂ E. Let M =M =MA ∪ME and fix ε ∈ (0, 1).
Let A′ := {A ∈ A |A 6∈M} be the vertices not in M and E ′ := {e ∈ E | e∩M = ∅}
be the edges not abutting M . Then:

(i) (non-singular vertices) There is a sectorial neighborhood SA′,M,c̃ of the ver-
tices in A′ and a constant c ∈ (0, 1) such that SA′,M,c̃ is covered by balls
Bi := Bcdist(xi,M)(xi) with centers xi ∈ A′. Furthermore, the stretched balls

B̂i := B(1+ε)cdist(xi,M)(xi) are solid angles and satisfy a finite overlap prop-

erty on R
3.

(ii) (non-singular edges) Fix a sectorial neighborhood U := SA′,M,c′ of A′. For
each edge e ∈ E ′, there is a sectorial neighborhood Se,M,c̃ and a constant
c ∈ (0, 1) such that Se,M,c̃ \ U is covered by balls Bi = Bc dist(xi,M)(xi)

whose centers xi are located on e. Furthermore, the stretched balls B̂i =
B(1+ε)cdist(xi,M)(xi) satisfy a finite overlap property on R

3 and B̂i ∩Ω is a
dihedral angle.

(iii) (faces) Fix a sectorial neighbood U := SE,M,c′ of E. There is a sectorial neigh-
borhood SF ,M,c̃ and a constant c ∈ (0, 1) such that SF ,M,c̃ \ U is covered by
balls Bi = Bc dist(xi,M)(xi) with centers xi ∈ ∂Ω. Furthermore, the stretched

balls B̂i = B(1+ε)cdist(xi,M)(xi) satisfy a finite overlap property on R
3 and

B̂i ∩Ω is a half-ball.
(iv) (interior) Fix a sectorial neighbood U := SF ,M,c′ of F , where F is the set

of faces. Then there is c ∈ (0, 1) such that Ω \ U is covered by balls Bi =
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Bcdist(xi,M)(xi) with centers xi ∈ Ω. Furthermore, the stretched balls B̂i =

B(1+ε)cdist(xi,M)(xi) satisfy a finite overlap property on R
3 and B̂i ⊂ Ω.

Proof Follows from Lemmas A.3 and A.1. ⊓⊔
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B Details for the extension of the results of [18].

The arguments used in the proof of Theorem 5.1 rely on techniques developed in
[18]. A feature of the analysis here that was not present in [18] is the bidual problem

with right-hand side δ̃−1
Γ (w−wh) that allowed us to estimate w−wh in a weighted

space. This technical issue was circumvented in [18] by assuming convexity of
Ω so that optimal order L2-estimates could be cited from the literature. The
corresponding bidual problem can be analyzed in the mortar setting of [18] as well.
The end result is then Theorem B.1, which states that the convexity assumption
in [18] can be relaxed to the validity of Assumption 1.1 for the Poisson problem,
i.e., [18, (5.2)].

In the interest of brevity, we employ in this appendix the notation of [18] and
assume the reader’s familiarity with [18].

It will be useful to write Hs
pw(Γ ) for the space given by the broken Sobolev

norm on the skeleton Γ , i.e., the Sobolev norm is understood facewise. Further-
more, we will write ‖·‖H1 for the brokenH1-norm, i.e., ‖·‖2H1 =

∑
i ‖·‖2H1(Ωi)

. We

also introduce the L2-projection ΠL2

Mh
: L2(Γ ) →Mh and recall that, since Mh is

a product space based on the faces, it inherits from [18, (A2)] the approximation
property

‖z −ΠL2

Mh
z‖L2(Γ ) ≤ Chs‖z‖Hs

pw(Γ ), s ∈ [0, k]. (B.1)

The main result is:

Theorem B.1 In [18, Thms. 2.1, 2.5], the assumption of convexity of Ω can be
replaced with [18, Assumption (5.2)].

Proof We will only sketch the modifications entailed by the weakenend regularity
assumptions.

Proof of [18, Thm. 2.1]: The starting point is the error representation [18,
(6.2)], which consists of three terms:

a(w − wh, u− Phu) + b(w − wh, λ− µh) + b(u− Phu, λw − µ̃h), (B.2)

where µh, µ̃h ∈Mh are arbitrary. The first term in (B.2) can be estimated as in [18,
Proof of Thm. 2.1] in view of the generalization of [18, Lemma 5.5] given below as
Lemma B.3. The third term in (B.2) can again be estimated as in [18, (6.4)] since
Lemma B.2 below provides the estimate infµ̃h∈Mh

‖λw−µ̃h‖L2(Γ ) . h1/2‖v‖L2(Ω).
The second term in (B.2) requires a modification of the procedure in [18, (6.3)].

Taking µh = ΠL2

Mh
λ in [18, (6.3)] yields

b(w − wh, λ−ΠL2

Mh
λ) =

∫

Γ

[w − wh](λ−ΠL2

Mh
λ)

=

∫

Γ

([w − wh]−ΠL2

Mh
[w − wh])(λ−ΠL2

Mh
λ)

. h1/2‖[w − wh]‖H1/2
pw (Γ )

‖λ−ΠL2

Mh
‖L2(Γ )

. h1/2‖w − wh‖H1‖λ−ΠL2

Mh
λ‖L2(Γ )

. h1/2+k‖w − wh‖H1‖λ‖Hk
pw(Γ );
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the last step followed from (B.1). The proof is completed with the aid of Lemma B.2
and the trace estimate ‖λ‖Hk

pw(Γ ) . ‖u‖
B

k+3/2
2,1 (Ω)

.

Proof of [18, Thm. 2.5]: The proof stands as given in [18]. ⊓⊔

Lemma B.2 Assume that Ω satisfies [18, Assumption (5.2)]. Then, for v ∈
L2(Sh) ⊂ L2(Ω) and w := TD(v) and the corresponding Lagrange multiplier λw
defined facewise by λw|γl = −∂nw|Ωs(l)

and the corresponding mortar approxima-
tion wh of w there holds:

√∑

i

‖w − wh‖2H1(Ωi)
= ‖w − wh‖H1 . h‖v‖L2(Ω), (B.3)

‖λw −ΠL2

Mh
λw‖L2(Γ ) . h1/2‖v‖L2(Ω). (B.4)

Proof We start with the proof of (B.3). It results from standard convergence theory
for mortar methods as follows. [18, Assumption (5.2)] provides w ∈ H3/2+ε(Ω) for
some ε > 0 together with ‖w‖H3/2+ε(Ω) ≤ C‖v‖H−1/2+ε(Ω). The Lagrange multi-
plier λw is given facewise by the expression λw|γl = −∂nw|Ωs(l)

∈ Hε(γl) together
with the estimate ‖λw‖Hε

pw(Γ ) . ‖v‖H−1/2+ε(Ω). The standard convergence theory

for mortar methods (as worked out, e.g., in [8, Prop. 2.3]) then gives

‖w − wh‖H1 . h1/2+ε‖w‖H3/2+ε(Ω) . h1/2+ε‖v‖H−1/2+ε(Ω).

The proof of (B.3) is complete if we can show that

‖v‖H−1/2+ε(Ω) . h1/2−ε‖v‖L2(Ω). (B.5)

This last estimate exploits supp v ⊂ Sh and follows by interpolation arguments
similar to those employed in the proof of [18, Lemma 5.2]: Define θ = 1−2ε (we as-

sume ε < 1/2). Then H−1/2+ε(Ω) = (H1/2−ε(Ω))′ =
((
L2(Ω), B

1/2
2,1 (Ω)

)
θ,2

)′
=

(
(B

1/2
2,1 (Ω))′, L2(Ω)

)
θ,2

, so that the interpolation inequality yields ‖v‖H−1/2+ε(Ω) .

‖v‖θ
(B

1/2
2,1 (Ω))′

‖v‖1−θL2(Ω). The argument is completed by noting in view of supp v ⊂
Sh that

‖v‖L2(Ω) ≤ ‖v‖L2(Ω) and ‖v‖
(B

1/2
2,1 (Ω))′

≤ C
√
h‖v‖L2(Ω),

so that ‖v‖H−1/2+ε(Ω) . h(1−θ)/2‖v‖L2(Ω) . h1/2−ε‖v‖L2(Ω). This proves (B.5).

The bound (B.4) follows from (B.1) and ‖λw−ΠL2

Mh
λw‖L2(Γ ) ≤ Chε‖λw‖Hε

pw(Γ ) .

hε‖w‖H3/2+ε(Ω) . hε‖v‖H−1/2+ε(Ω). An appeal to (B.5) finishes the proof. ⊓⊔

We generalize [18, Lemma 5.5]:

Lemma B.3 [generalizations of [18, Lemma 5.5]] Assume that Ω satisfies [18,
Assumption (5.2)]. Then, for v ∈ L2(Sh) ⊂ L2(Ω) and w := TD(v) and the
mortar approximation wh of w, there holds

‖∇(w− wh)‖L2(Γ ;L1) ≤ Ch3/2(1 + δk,1| lnh|)‖v‖L2(Ω).
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Proof Inspection of the proof of [18, Lemma 5.5] shows that we have to estimate
the following two terms:

T1 :=

∫ c̃h

τ=0

‖∇(w − wh)‖L2(γτ ) and T2 :=

∫ D

τ=c̃h

‖∇(w − wh)‖L2(γτ ).

Estimating T1: Inspection of the proof of [18, Lemma 5.5] shows that

T1 ≤
√
h‖∇(w − wh)‖L2(S(0,c̃h)) ≤

√
h‖∇(w− wh)‖L2(Ωi).

We conclude together with (B.3)

T1 ≤ Ch3/2‖v‖L2(Ω).

We now turn to estimating T2. As in the proof of [18, Lemma 5.5], we consider
the lowest order case k = 1 and the higher order cases k > 1 separately.

Estimating T2 for k = 1: Inspection of the proof of [18, Lemma 5.5] gives
(cf. [18, eqn. (5.13)])

∫ D

τ=c̃h

‖∇(w− wh)‖L2(γτ ) dτ (B.6)

. | lnh|1/2
(
‖δ1/2Γ ∇(w − I1hw)‖L2(C′\Sc1h) + ‖δ−1/2

Γ (w − wh)‖L2(C′\Sc1h)

)
.

The term w − I1hw is estimated as in the proof of [18, Lemma 5.5] with the
aid of (weighted) H2-regularity asserted in [18, Lemma 5.4] and the estimate
‖w‖

B
3/2
2,∞(Ω)

.
√
h‖v‖L2(Ω) of [18, Lemma 5.2]. In total, we get

‖δ1/2Γ ∇(w − I1hw)‖L2(C′\Sc1h) . | lnh|1/2h3/2‖v‖L2(Ω).

The second contribution of the right-hand side of (B.6) has to be treated with
more care than in the proof of [18, Lemma 5.5], where the convexity of Ω was
conveniently exploited in order to control ‖w − wh‖L2(Ω); more precisely, we do

not have full H2-regularity but only the limited shift theorem of [18, Assump-

tion (5.2)]. In order to control the term ‖δ−1/2
Γ (w −wh)‖L2(C′\Sc1h) appearing on

the right-hand side of (B.6), we proceed by yet another duality argument. Let

ψ := TD(δ̃−1
Γ (w−wh)), where δ̃Γ is the regularized distance function δ̃Γ ∼ h+δΓ .

Note that δ̃Γ ∼ δΓ on C′ \ Sc1h. Denote by λψ the Lagrange multiplier for ψ,
i.e., λψ |γl = −∂nψ|Ωs(l)

. From Lemma B.4 we have for some ε > 0 given by the
stipulated shift theorem ([18, Assumption (5.2)])

‖ψ‖
B

3/2
2,∞(Ω)

. | lnh|1/2‖δ̃−1/2
Γ (w − wh)‖L2(Ω), (B.7)

‖λψ‖Hε
pw(Γ ) + ‖ψ‖H3/2+ε(Ω) . h|−ε‖δ̃−1/2

Γ (w − wh)‖L2(Ω). (B.8)

The pair (ψ, λψ) solves the following saddle point problem:

a(z, ψ) + b(z, λψ) = (z, δ̃−1(w − wh)) ∀z ∈ {z ∈
∏

i

H1(Ωi) | z|∂Ω = 0},

(B.9a)

b(ψ, q) = 0 ∀q ∈
∏

i

H
1/2
00 (γi). (B.9b)
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The Galerkin orthogonality satisfied by w − wh reads for arbitrary Iψ ∈ Vh

a(w − wh, Iψ) + b(Iψ, λw) = 0.

Hence, we get by taking z = w − wh in (B.9a)

‖δ̃−1/2
Γ (w − wh)‖2L2(Ω) = a(w − wh, ψ) + b(w − wh, λψ) (B.10)

= a(w − wh, ψ − Iψ)− b(Iψ, λw) + b(w − wh, λψ).

We estimate |a(w − wh, ψ − Iψ)| . ‖w − wh‖H1‖ψ − Iψ‖H1 . Since Iψ ∈ Vh and
[ψ] = 0:

|b(Iψ, λw)| = b(ψ − Iψ, λw −ΠL2

Mh
λw)| . ‖ψ − Iψ‖L2(Γ )‖λw −ΠL2

Mh
λw‖L2(Γ )

≤ ‖ψ − Iψ‖1/2L2(Ω)‖ψ − Iψ‖1/2H1 h
ε‖λw‖Hε

pw(Γ ),

where, in the last step, we employed the multiplicative trace inequality and the
approximation property (B.1). For the term b(w −wh, λψ), we employ again that
[w] = 0 and that wh ∈ Vh to get

b(w − wh, λψ) =

∫

Γ

[w − wh](λψ −ΠL2

Mh
λψ)

=

∫

Γ

([w − wh]−ΠL2

Mh
[w − wh])(λψ −ΠL2

Mh
λψ)

. h1/2‖[w − wh]‖H1/2
pw (Γ )

hε‖λψ‖Hε
pw(Γ ).

Noting ‖[w−wh]‖H1/2
pw (Γ )

. ‖w−wh‖H1 we obtain by inserting the above estimates

in (B.10)

‖δ̃−1/2(w − wh)‖2L2(Ω) .

‖w − wh‖H1‖ψ − Iψ‖H1 + ‖ψ − Iψ‖1/2L2 ‖ψ − Iψ‖1/2H1 h
ε‖λw‖Hε

pw(Γ )

+ h1/2‖w − wh‖H1hε‖λψ‖Hε
pw
.

The terms involving ψ−Iψ are estimate with the aid of Lemma B.5 and the bound
‖ψ‖

B
3/2
2,∞(Ω)

given in (B.7); the terms ‖w − wh‖H1 are controlled in (B.3); using

‖λw‖Hε
pw(Γ ) . ‖v‖H−1/2+ε(Ω) and (B.7) for ‖λψ‖Hε

pw(Γ ) we get

‖δ̃−1/2(w − wh)‖L2(Ω) .

h3/2| lnh|1/2‖v‖L2(Ω) + h1| lnh|1/2‖v‖L2(Ω)h
ε‖v‖H−1/2+ε(Ω) + h3/2hεh−ε‖v‖L2(Ω).

Now the result follows from (B.5).
Estimating T2 for k > 1: We proceed similarly to the case k = 1. The

difference is that (cf. [18, (5.12)]) we need to control

h−ε‖δ−1/2+ε
Γ (w − wh)‖L2(C′\Sc̃1h).

As in the case k = 1, we set up a dual problem with solution ψ = TD(δ̃−1+2ε
Γ (w−

wh)) and corresponding Lagrange multiplier λψ . By Lemma B.4 (and trace esti-
mates) we have the regularity assertions

‖λψ‖Hε
pw(Γ ) + ‖ψ‖H3/2+ε(Ω) . ‖δ̃−1/2+ε

Γ (w − wh)‖L2(Ω). (B.11)
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Proceeding in the same manner as in the case k = 1, we arrive at

‖δ̃−1/2+ε(w − wh)‖2L2(Ω)

. ‖w − wh‖H1‖ψ − Iψ‖H1 + ‖ψ − Iψ‖1/2L2 ‖ψ − Iψ‖1/2H1 h
ε‖λw‖Hε

pw(Γ )

+ h1/2‖w − wh‖H1hε‖λψ‖Hε
pw
.

The regularity assertions (B.11) as well as the approximation properties of Lemma B.5

yield ‖δ̃−1/2+ε(w − wh)‖L2(Ω) . h3/2+ε‖v‖L2(Ω) and hence

h−ε‖δ−1/2+ε
Γ (w − wh)‖L2(C′\Sc̃1h) . h3/2‖v‖L2(Ω).

⊓⊔

Lemma B.4 (Generalization of [18, Lemma 5.2]) Let δ̃Γ be the regularized

distance function. Then for the operator TD we have for w := TD(δ̃−1
Γ v) (and

ε > 0 sufficiently small):

‖w‖
B

3/2
2,∞(Ω)

≤ C| lnh|1/2‖δ̃−1/2
Γ v‖L2(Ω), (B.12)

‖w‖H3/2+ε(Ω) ≤ Cεh
−ε‖δ̃−1/2

Γ v‖L2(Ω). (B.13)

For w = TD(δ̃−1+2ε
Γ v) we have

‖w‖H3/2+ε(Ω) ≤ C‖δ̃−1/2+ε
Γ v‖L2(Ω). (B.14)

Proof The proof is done with the same arguments as those of Lemma 2.8. ⊓⊔

We need an approximation result for the approximation from the constrained space
Vh for functions that do not permit nodal interpolation.

Lemma B.5 (approximation from constrained space) Let the constrained
space Vh be defined in [18, (2.4b)] and assume hypotheses [18, (A1), (A2)]. Define

the operator P̃h as in [18, (4.2)] but replace the interpolation operator Ik by a (sub-

domainwise) Scott-Zhang operator Ik,SZh (cf. [20]) that conforms to the boundaries

of the subdomains Ωi, i = 1, . . . ,M . Then P̃h is defined on Hs(Ω) ∩ H1
0 (Ω) for

s ≥ 1, it maps into Vh, and has the approximation properties

√∑

i

‖v − P̃hv‖2H1(Ωi)
≤ Chs−1‖v‖Hs(Ω),

‖v − P̃hv‖L2(Ω) ≤ Chs‖v‖Hs(Ω), 1 ≤ s ≤ k + 1,
√∑

i

‖v − P̃hv‖2H1(Ωi)
≤ Chs−1‖v‖Bs

2,∞(Ω),

‖v − P̃hv‖L2(Ω) ≤ Chs‖v‖Bs
2,∞(Ω), 1 < s < k + 1, s 6∈ N.
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Proof We only show the first estimates as the estimates with Bs2,∞(Ω)-regularity

follow by interpolation arguments. It suffices to study the contributionEkΠh[I
k,SZv]

to the operator P̃h. We recall that by the multiplicative trace inequality ‖w‖2L2(∂Ωi)
.

‖w‖L2(Ωi)‖w‖H1(Ωi) and the simultaneous approximation properties of Ik,SZ in

L2 and H1 we have ‖v − Ik,SZv‖L2(∂Ωi) ≤ Chs−1/2‖v‖Hs(Ωi). Exploiting the

L2-stability of the mortar projection Πh, we get the bound

‖EkΠh[Ik,SZv]‖H1(Ωi) . h−1h1/2‖[Ik,SZv]‖L2(∂Ωi)

. h−1/2‖v − Ik,SZv‖L2(∂Ωi) . hs−1‖v‖Hs(Ωi).

⊓⊔
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C Details concerning Lemma 2.9

The following lemma is an expanded version of Lemma 2.9. It is closely related to
Lemma 2.3 with β = 1/2 there. The essential difference is that we replace the norm
‖z‖H3/2(Ω) with the weaker norm ‖z‖

B
3/2
2,∞(Ω)

at the expense of a factor | lnh|1/2.

Lemma C.1 Let the bounded Lipschitz domain Ω ⊂ R
d, d ∈ {2, 3}. Assume that

w ∈ B
3/2
2,∞(Ω) is a solution of

−∇ · (A∇w) = v.

(i) There exist constants C (depending only on the lower bound α0 for the eigen-
values of A, the norm ‖A‖C0,1(Ω), and Ω) and c1 > 0 (depending only on

Ω) such that with the distance function δΓ

‖
√
δΓ∇2w‖L2(Ω\Sh) ≤ C

√
| lnh|‖w‖

B
3/2
2,∞(Ω)

+ C‖
√
δΓ v‖L2(Ω\Sc1h). (C.1)

In particular, if v|Ω\Sc1h
= 0 then ‖

√
δΓ∇2w‖L2(Ω\Sh) ≤ C

√
| lnh|‖w‖

B
3/2
2,∞(Ω)

.

(ii) Let c′ > 0 be fixed. Assume v|Ω\Sc′h
= 0. Then there exist c̃, c2 > 0 (depend-

ing only on Ω) such for every α > 0

‖δαΓ∇3w‖L2(Ω\Sc̃h) ≤ CA,Ω

[
‖δα−1
Γ ∇2w‖L2(Ω\Sc2h) (C.2)

+ ‖A‖C1,1(Ω)‖δαΓ∇w‖L2(Ω\Sc2h)

]
;

the constant CA,Ω depends on the coercivity constant α0 and ‖A‖C0,1(Ω) as
well as Ω.

(iii) Let c′ > 0 be fixed. Assume v|Ω\Sc′h
= 0. Assume that w ∈ H3/2+ε(Ω) for

some ε ∈ (0, 1/2). Then there exists ĉ > 0 (depending only on Ω and c′) such
that

‖∇2w‖L2(Ω\Sĉh) ≤ CA,εh
−1/2+ε‖w‖H3/2+ε(Ω),

where CA,ε depends on α0, ‖A‖C0,1(Ω), and ε.

Proof
Proof of (i): We may restrict our attention to a local situation near a part of the
boundary. The boundary Γ can locally be described by a graph φ. That is, in a
suitable coordinate system, we can define cylinders

Cδ = {(x, φ(x) + t) | δ < t < D + δ, x ∈ B},
C′
δ = {(x, φ(x) + t) | δ < t < D′ + δ, x ∈ B′},

where δ < D < D′ and B, B′ are two concentric balls with B ⊂⊂ B′. Furthermore,
for δ = 0 we assume C′

0 ⊂ Ω. In particular, {(x, φ(x)) |x ∈ B′} ⊂ Γ . We also note
that t ∼ dist((x, φ(x) + t), Γ ).

Let C′′
δ be a third cylinder of the form C′′

δ = {(x, φ(x)+ t) : δ < t < D′′ + δ, x ∈
B′′} where B ⊂⊂ B′′ ⊂⊂ B′ and D < D′′ < D′. Let χ ∈ C∞(Rd) be such that
χ|C′′

0
≡ 1 and χ|Ω\C′

0
≡ 0. To simplify the notation, we assume that the functions

w, A, v are given in a coordinate system commensurate with the coordinate system
describing the cylinders Cδ, C′

δ, viz., w evaluated at a point (x, φ(x) + t) ∈ C′
δ is
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given by w(x, φ(x) + t). A translation in the last variable defines the function w̃
by w̃(x, φ(x) + t) := w(x, φ(x) + t+ 2δ). We note

−∇ ·
(
Ã∇w̃

)
= ṽ in C′

−2δ; (C.3)

here (again in the coordinate system used to describe the cylinders) Ã(x, φ(x) +
t) = A(x, φ(x) + t+ 2δ) and ṽ(x, φ(x) + t) = v(x, φ(x) + t+ 2δ).

1. step: We show (if δ is sufficiently small)

‖w̃‖H3/2(C′′

0 ) ≤ CA,Ω

[√
| ln δ|‖w‖

B
3/2
2,∞(Ω)

+ δ‖ṽ‖L2(C′

−δ)

]
, (C.4)

where CA,Ω depends on Ω, the coercivity constant α0 and ‖A‖c0,1(Ω).

Using the characterization of H3/2(C′
0) = (H1(C′

0),H
2(C′

0))1/2,2 in terms of
the K-functional, we write (cf. also [5, p.193, eqn. (7.4)])

‖χw̃‖2H3/2(C′

0)
=

∫ 1

t=0

(
t−1/2K(t, χw̃)

)2 dt

t

=

∫ ε

t=0

(
t−1/2K(t, χw̃)

)2 dt

t
+

∫ 1

t=ε

(
t−1/2K(t, χw̃)

)2 dt

t
.(C.5)

The second integral in (C.5) can be estimated by

∫ 1

t=ε

(
t−1/2K(t, χw̃)

)2 dt

t
≤

∫ 1

t=ε

dt

t
sup
t>0

(
t−1/2K(t, χw̃)

)2
≤ ln ε‖χw̃‖2

B
3/2
2,∞(C′

0)
.

For the first integral in (C.5) we employ interior regularity estimates for solutions
of second order elliptic equation with vanishing right-hand side. Specifically, (C.3)
and interior regularity (see, e.g., [9, Thm. 8.8 and proof]) give (here, we assume
that δ is sufficiently small)

‖χw̃‖H2(C′

0)
≤ CA

[
δ−1‖w̃‖H1(C′

−δ)
+ ‖ṽ‖L2(C′

−δ)

]
,

where the constant CA depends only on the coercivity constant α0 and ‖A‖C0,1(Ω).

Hence, estimatingK(t, χw̃) = infv∈H2 ‖χw̃−v‖H1(C′

0)
+t‖v‖H2(C′

0)
≤ t‖χw̃‖H2(C′

0)
,

we obtain
∫ ε

t=0

t−2K2(t, χw̃) dt ≤ ε‖χw̃‖2H2(C′

0)
≤ CA

[
εδ−2‖w̃‖2H1(C′

−δ)
+ ε‖ṽ‖2L2(C′

−δ)

]
.

We conclude

‖χw̃‖2H3/2(C′

0)
≤ C

[
εδ−2‖w̃‖2H1(C′

−δ)
+ ε‖ṽ‖2L2(C′

−δ)
+ ln ε‖χw̃‖2

B
3/2
2,∞(C′

0)

]
(C.6)

≤ CA,Ω
{[
εδ−2 + ln ε

]
‖w‖2

B
3/2
2,∞(C′

0)
+ ε‖ṽ‖2L2(C′

−δ)

}
,

where, in the last step we have employed that multiplication by a smooth function
and translation are bounded operations on Sobolev (and therefore also Besov)
spaces; the constant CA,Ω depends on Ω, α0, and ‖A‖C0,1(Ω). Selecting ε = δ2

shows ‖χw̃‖H3/2(C′

0)
≤ CA,Ω

[√
| ln δ|‖w‖

B
3/2
2,∞(Ω)

+ δ‖ṽ‖L2(C′

−δ)

]
from which we

get (C.4) in view of the support properties of χ.
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Step 2: Let z solve, for a fixed ρ > 0 and a parameter r ≤ 1, the equation

−∇ ·
(
Ã∇z

)
= f in a ball Br(1+ρ) of radius r(1 + ρ).

We claim: For a constant CA,ρ > 0 that depends solely on the coercivity constant
α0, ‖A‖C0,1(Ω), and ρ there holds

‖∇2z‖L2(Br) ≤ CA,ρ
[
‖f‖L2(Br(1+ρ)) + ‖∇z‖L2(Br(1+ρ)) + r−1/2|z|H3/2(Br(1+ρ))

]
,(C.7)

‖∇2z‖L2(Br) ≤ CA,ρ
[
‖f‖L2(Br(1+ρ)) + r−1‖∇z‖L2(Br(1+ρ))

]
. (C.8)

We point out that theH3/2-seminorm in (C.7) is defined in terms of the Aronstein-
Slobodeckij norm for scaling reasons. The bounds (C.7), (C.8) follow from interior
regularity in the following way.

Scaling the ball Br(1+ρ) to a ball B̂1+ρ of radius 1 + ρ leads to an equation of
the form

−∇ ·
(
Â∇ẑ

)
= r2f̂ in a ball B̂1+ρ of radius (1 + ρ), (C.9)

where Â and f̂ are the coefficient and the right-hand side in the scaled variables.
We note that

‖∇jÂ‖L∞(B̂1+ρ)
∼ rj‖∇jÃ‖L∞(Br(1+ρ)), j ∈ N0.

Then standard interior regularity (see, e.g., [9, Thm. 8.8]) gives

‖∇2ẑ‖L2(B̂1)
≤ CA,ρ

[
r2‖f̂‖L2(B̂1+ρ)

+ ‖ẑ‖H1(B̂1+ρ)

]
, (C.10)

where the constant CA,ρ depends only on the coercivitiy constant of Â, the norm

‖Â‖C0,1(B1+ρ), and ρ. In view of r ≤ 1 and the fact that the operator Ã is ob-
tained from A by an affine change of variables (a translation and an orthogonal

transformation) we bound ‖Â‖C0,1(B̂1+ρ)
≤ C‖A‖C0,1(Ω) and get

‖∇2ẑ‖L2(B̂1)
≤ CA,ρ

[
r2‖f̂‖L2(B̂1+ρ)

+ ‖ẑ‖H1(B̂1+ρ)

]
, (C.11)

for a constant CA,ρ that depends only on ρ, the coercivity constant of A, and
‖A‖C0,1(Ω). Since the constant functions are in the kernel of the operator −∇ ·
(Â∇z) it is easy to conclude with a Poincaré inequality that (C.11) implies

‖∇2ẑ‖L2(B̂1)
≤ CA,ρ

[
r2‖f̂‖L2(B̂1+ρ)

+ ‖∇ẑ‖L2(B̂1+ρ)

]
. (C.12)

Scaling this equation back to Br(1+ρ) yields the desired bound (C.8). For the proof

of (C.7), we have to bring in the H3/2-seminorm. Let π ∈ P1 be arbitrary. Then
the function ẑ − π satisfies in view of the fact that ∇π is constant

−∇ ·
(
Â∇(ẑ − π)

)
= r2f̂ +∇ ·

(
Â∇π

)
= r2f̂ + (∇ · Â) · ∇π =: f̃ .
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(We employed the convention that the divergence operator ∇· in the expression

∇ · Â acts on columns of Â). Applying (C.11) to this equation (and replacing r2f̂

with f̃ and ẑ with ẑ − π) yields

‖∇2ẑ‖L2(B̂1)
≤ ‖ẑ − π‖H2(B̂1)

≤ CA,ρ

[
‖f̃‖L2(B̂1+ρ)

+ ‖ẑ − π‖H1(B̂1+ρ)

]

≤ CA,ρ
[
r2‖f̂‖L2(Br(1+ρ)) + r‖∇π‖L2(B̂1+ρ)

+ ‖ẑ − π‖H3/2(B̂1+ρ)

]

≤ CA,ρ
[
r2‖f̂‖L2(Br(1+ρ)) + r‖∇ẑ‖L2(B̂1+ρ)

+ ‖ẑ − π‖H3/2(B̂1+ρ)

]
.

Infimizing over all π ∈ P1 yields

‖∇2ẑ‖L2(B̂1)
≤ CA,ρ

[
r2‖f̂‖L2(B̂1+ρ)

+ r‖∇ẑ‖L2(B̂1+ρ)
+ |ẑ|H3/2(B̂1+ρ)

]
. (C.13)

Scaling back to Br(1+ρ) yields (C.7), if we note the scaling properties of the
Aronstein–Slobodeckij seminorm.

3. step: Applying the result of step 2 to the function w̃ yields

‖∇2w̃‖L2(Br) ≤ CA,ρ
[
‖∇w̃‖L2(Br(1+ρ)) + r−1/2|w̃|H3/2(B(1+ρ)r)

+ ‖ṽ‖L2(Br(1+ρ))

]

(C.14)
for all balls Br such that B(1+ρ)r ⊂ C′

−2δ. Using, for example, the Besicovitch cov-
ering theorem [7], we can cover C0 by overlapping balls Bri(xi) with centers xi and
radii ri ∼ δΓ (xi) such that the stretched balls Bri(1+ρ)(xi) have a finite overlap
property (see [18, Lemma A.1] for details). A covering argument and afterwards
(C.4) then show

‖
√
δΓ∇2w̃‖L2(C0) ≤ CA,Ω

[
‖w̃‖H3/2(C′′

0 ) + ‖
√
δΓ∇w̃‖L2(C′

0)
+ ‖

√
δΓ ṽ‖L2(C′

0)

]

≤ CA,Ω
[√

| ln δ|‖w‖
B

3/2
2,∞(Ω)

+ δ‖ṽ‖L2(C′

−δ
) + ‖

√
δΓ ṽ‖L2(C′

0)

]
,

where the constant CA,Ω depends only on the coercivity constant α0, ‖A‖C0,1(Ω),
and Ω.

Since w̃ and ṽ are obtained by a translation, we arrive at

‖
√
δΓ∇2w‖L2(C2δ) ≤ CA,Ω

[√
| ln δ|‖w‖

B
3/2
2,∞(Ω)

+ ‖
√
δΓ v‖L2(Ω\Sc2δ)

]

for a suitable c2 that depends solely on the Lipschitz character of Γ . Taking δ ∼ h
produces the desired result.

Proof of (ii): The estimate merely expresses interior regularity for solutions
of elliptic equations with vanishing right-hand side. It follows from (C.8) and a
covering argument. More precisely, as in Step 2, we start from

−∇ · (A∇z) = f in a ball Br(1+ρ) of radius r(1 + ρ).

Differentiating this equation once gives for α ∈ N
d with |α| = 1

−∇ · (A∇Dαz) = Dαf +∇ · (DαA)∇z in a ball Br(1+ρ) of radius r(1 + ρ),
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where again the divergence operator in the expression ∇ · (DαA) acts on the
columns of DαA. We get from (C.8) by considering all α ∈ N

d with |α| = 1

‖∇3z‖L2(Br) ≤

CA,ρ

[
‖∇f‖L2(Br(1+ρ)) + r−1‖∇2z‖L2(Br(1+ρ)) + ‖∇2A‖L∞(Br(1+ρ))‖∇z‖L2(Br(1+ρ))

]
.

A covering argument then produces the claim since f is assumed to satisfy f ≡ 0
on Ω \Sc′h in the statement (ii). We also note that ‖∇2A‖L∞(Ω) can be bounded
by ‖∇A‖W 1,∞(Ω).

Proof of (iii): Our starting point is the above Step 2: We claim that for the
function z satisfying (C.9) we have

‖∇2z‖L2(Br) ≤ CA
[
‖f‖L2(Br(1+ρ)) + ‖∇z‖L2(Br(1+ρ)) + r−1/2+ε|z|H3/2+ε(Br(1+ρ))

]
,

(C.15)
where the H3/2+ε-seminorm is again an Aronstein-Slobodeckij norm, and the con-
stant CA depends only on the coercivity constant α0, ‖A‖C0,1(Ω), and ε ∈ (0, 1/2).

To see this, we check the derivation of (C.13). We see that one can (marginally)
modify the arguments to obtain instead of (C.13) the estimate

‖∇2ẑ‖L2(B̂1+ρ)
. r2‖f̂‖L2(B̂1+ρ)

+ r‖∇ẑ‖L2(B̂1+ρ)
+ |ẑ|H3/2+ε(B̂1+ρ)

,

where the implied constant depends on ρ, α0, ‖A‖C0,1(Ω), and ε. Scaling back to
Br(1+ρ) yields

r2‖∇2z‖L2(Br(1+ρ)) . r2‖f‖L2(Br(1+ρ))+rr‖∇z‖L2(Br(1+ρ))+r
3/2+ε|z|H3/2+ε(B̂r(1+ρ))

,

which leads to (C.15). We now use f ≡ 0 on Ω \Sc′h and use these estimates with
w in place of z. A covering argument then gives

‖∇2w‖L2(Ω\Sĉh) . ‖∇w‖L2(Ω\Sc′h)
+ h−1/2+ε‖w‖H3/2+ε(Ω).

This concludes the proof of (iii). ⊓⊔
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D Details of [24, Sec. 5.3]

By and large, we follow the arguments of [24, Sec. 5.3] and adapt them as needed.
In what follows, T is a quasi-uniform mesh with mesh size h. We consider the

bilinear form

a(u, v) :=

∫

Ω

A∇u · ∇v

where the matrix A is sufficiently smooth and pointwise symmetric positive defi-
nite.

D.1 The interior case

In this subsection, we assume that Vh = Sk,1(T ).
For balls Bd of radius d, it will be convenient to introduce the notation

‖|u|‖1,Bd
:= |u|H1(Bd) +

1

d
‖u‖L2(Bd).

We start with making the notion of “superapproximation” more precise:

Lemma D.1 (superapproximation on balls) Let Bd ⊂ Ω be a ball of radius
d. Let ω ∈ C∞ with suppω ⊂ Bd/2 and

‖∇jω‖L∞ ≤ Cd−j , j = 0, . . . , k. (D.1)

Then for every u ∈ Vh the interpolant I(ω2u) ∈ Sk,1(T ) ∩H1
0 (Bd) satisfies

|ω2u− I(ω2u)|H1(Bd) ≤ C
h

d
‖|u|‖1,Bd

, (D.2)

1

d
‖ω2u− I(ω2u)‖L2(Bd) ≤ C

(
h

d

)2

‖|u|‖1,Bd
. (D.3)

We assume implicitly that d > h is sufficiently large.

Proof Since suppω ⊂ Bd/2 and d is large compared to h, we have supp I(ω2u) ⊂
Bd. For each element K we have the estimates

‖ω2u− I(ω2u)‖L2(K) + h‖∇(ω2u− I(ω2u))‖L2(K) ≤ Chk+1‖∇k+1(ω2u)‖L2(K).

Inductively, we see that ‖∇j(ω2)‖L∞ ≤ Cd−j for j = 0, . . . , k. Using the fact that
u is piecewise polynomial of degree k we conclude

‖(∇k+1(ω2u)‖L2(K) ≤ C

k∑

j=0

d−(k+1−j)‖∇ju‖L2(K).

An inverse estimate produces in view of h/d . 1

‖ω2u− I(ω2u)‖L2(K) + h‖∇(ω2u− I(ω2u))‖L2(K) ≤ Ch
h

d

[
1

d
‖u‖L2(Bd) + |u|H1(Bd)

]

≤ Ch
h

d
‖|u|‖1,Bd

.

⊓⊔
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The next result shows an inverse estimate for “discrete harmonic” functions:

Lemma D.2 Let uh ∈ Vh satisfy

a(uh, v) = 0 ∀v ∈ Vh with supp v ⊂ Bd (D.4)

for a ball Bd ⊂ Ω of radius d (implicitly assumed sufficiently large compared to
h). Then

‖∇uh‖L2(Bd/2) ≤ Cd−1‖uh‖L2(Bd).

Proof Select a cut-off function ω with suppω ⊂ Bd and (D.1) as well as χ ≡ 1 on
Bd/2.

We write for arbitrary χ ∈ Vh with suppχ ⊂ Bd
∫

Ω

ω2A∇uh · ∇uh =

∫

Ω

A∇uh · ∇(ω2uh)−
∫

Ω

2uhω∇ω ·A∇uh

=

∫

Ω

A∇uh · ∇(ω2uh − χ)−
∫

Ω

2uhω∇ω ·A∇uh.

We conclude from Lemma D.1 with χ = I(ω2uh) there and Young’s inequality

∫

Ω

ω2A∇uh · ∇uh .
h

d
‖∇uh‖L2(Bd)‖|uh|‖1,Bd

+
1

d2
‖uh‖2L2(Bd).

We conclude

‖∇uh‖L2(Bd/2) .

√
h

d
‖|uh|‖1,Bd

+
1

d
‖uh‖L2(Bd).

Iterating the argument yields

‖∇uh‖L2(Bd/4) .
h

d
‖|uh|‖1,Bd

+
1

d
‖uh‖L2(Bd).

Finally, a standard inverse estimate produces

‖∇uh‖L2(Bd/4) .
1

d
‖uh‖L2(Bd),

which is the desired final bound. ⊓⊔

We now show the main result:

Theorem D.3 Let u ∈ H1(Ω) and uh ∈ Vh be such that

a(u− uh, v) = 0 ∀v ∈ Vh with supp v ⊂ Bd

for a ball Bd ⊂ Ω of radius d (implicitly assumed sufficiently large compared to
h). Then

‖∇(u− uh)‖L2(Bd/4) ≤ C inf
χ∈Vh

‖|u− χ|‖1,Bd
+ Cd−1‖u− uh‖L2(Bd) (D.5)

≤ C inf
χ∈Vh

‖∇(u− χ)‖L2(Bd) + Cd−1‖u− uh‖L2(Bd). (D.6)
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Proof The second bound (D.6) follows from (D.5) by an application of the (second)
Poincaré inequality.

Let ω ∈ C∞ with suppχ ⊂ Bd be such that ω ≡ 1 on Bd/2 and assume (D.1).
Define

ũ := ωu

and let ũh ∈ Vh ∩H1
0 (Bd) be its Galerkin approximation on Vh ∩B1

0(Bd), i.e.,

a(ũ− ũh, v) = 0 ∀v ∈ Vh ∩H1
0 (Bd).

Then it is classical (and easy to see) that
∫

Bd

∇ũh · (A∇ũh) ≤
∫

Bd

∇ũ · (A∇ũ).

In particular, we get

|ũh|H1(Bd) ≤ C|ũ|H1(Bd) . ‖|u|‖1,Bd
. (D.7)

Next, we write
u− uh = (ũ− ũh) + (ũh − uh) in Bd/2 (D.8)

and estimate each of the two terms separately. For the first one, we employ (D.7)
to get

‖∇(ũ− ũh)‖L2(Bd/2) . ‖∇ũ‖L2(Bd) . ‖|u|‖1,Bd
. (D.9)

For the second term in (D.8), we observe that ũh−uh is discrete harmonic in Bd/2
(in fact, almost in Bd) since

a(ũh − uh, v) = a(ũ− u, v) = 0 ∀v ∈ Vh ∩H1
0 (Bd/2).

Therefore, Lemma D.2 is applicable and yields in view of ω ≡ 1 on Bd/2:

‖∇(ũh − uh)‖L2(Bd/4) ≤ Cd−1‖ũh − uh‖L2(Bd/2)

≤ Cd−1‖ũh − u‖L2(Bd/2) + Cd−1‖u− uh‖L2(Bd/2)

= Cd−1‖ũh − ũ‖L2(Bd/2) + Cd−1‖u− uh‖L2(Bd/2),

where in the last step we exploited ũ|Bd/2
= u|Bd/2

due to ω|Bd/2
≡ 1. Since ũh,

ũ ∈ H1
0 (Bd), a Poincaré inequality together with (D.7) produces

‖∇(ũh − uh)‖L2(Bd/4) . ‖∇(ũh − ũ)‖L2(Bd) + d−1‖u− uh‖L2(Bd/2)

. ‖|u|‖1,Bd
+ d−1‖u− uh‖L2(Bd/2) (D.10)

Combining (D.9) and (D.10) yields again with ω ≡ 1 on Bd/2

‖∇(u− uh)‖L2(Bd/4) ≤ ‖∇(ũ− ũh)‖L2(Bd/4) + ‖∇(ũh − uh)‖L2(Bd/4) (D.11)

. ‖|u|‖1,Bd
+ d−1‖u− uh‖L2(Bd).

The final step consists in noting for arbitrary χ ∈ Vh that u−uh = (u−χ)+(χ−uh)
so that an application of (D.11) applied to u− χ yields

‖∇(u− uh)‖L2(Bd/4) . ‖|u− χ|‖1,Bd
+ d−1‖u− uh‖L2(Bd).

⊓⊔
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D.2 The boundary case

We now check to what extent the above results extend up to the boundary. We
Let Γ be (a part of) the boundary ∂Ω. We denote by

Dd = Bd ∩Ω
semiballs of radius d, where the implict assumption is always that the center of
Dd lies on Γ . Another implicit assumption in the following is that for all semiball
appearing in the following, we assume

∂Dd ∩ ∂Ω ⊂ Γ

We define ‖|u|‖1,Dd
:= |u|H1(Dd) +

1
d‖u‖L2(Dd). We employ a space Vh which sat-

isfies
Vh ⊂ Sk,1(T ), v|Γ = 0 ∀v ∈ Vh. (D.12)

We employ the following observation: For a semiball Dd ⊂ Bd (same center) as
described above, ω ∈ C∞

0 (Bd), and u ∈ Vh, we have ωu ∈ H1
0 (Dd).

Compared to Lemma D.4, the cut-off function ω may be ≡ 1 near parts of Γ :

Lemma D.4 (superapproximation on semiballs) Assume (D.12). Let Dd ⊂
Ω be a semiball of radius d. Let ω ∈ C∞(Rn) with suppω ⊂ Bd/2 and (D.1). Then

for every u ∈ Vh the interpolant I(ω2u) ∈ Sk,1(T ) ∩H1
0 (Dd) satisfies

|ω2u− I(ω2u)|H1(Dd) ≤ C
h

d
‖|u|‖1,Dd

, (D.13)

1

d
‖ω2u− I(ω2u)‖L2(Dd) ≤ C

(
h

d

)2

‖|u|‖1,Dd
. (D.14)

We assume implicitly that d > h is sufficiently large.

Proof Follows by the same arguments as in Lemma D.1. ⊓⊔
The next result shows an inverse estimate for “discrete harmonic” functions:

Lemma D.5 Assume (D.12). Let uh ∈ Vh satisfy

a(uh, v) = 0 ∀v ∈ Vh with supp v ⊂ Dd (D.15)

for a semiball Dd ⊂ Ω of radius d (implicitly assumed sufficiently large compared
to h). Then

‖∇uh‖L2(Dd/2) ≤ Cd−1‖uh‖L2(Dd).

Proof Again, this follows by tracing the arguments in the proof of Lemma D.5. ⊓⊔
Theorem D.6 Assume (D.12). Let u ∈ H1(Ω) with u|Γ = 0 and uh ∈ Vh be
such that

a(u− uh, v) = 0 ∀v ∈ Vh with supp v ⊂ Dd

for a semiball Dd ⊂ Ω of radius d (implicitly assumed sufficiently large compared
to h). Then

‖∇(u− uh)‖L2(Dd/4) ≤ C inf
χ∈Vh

‖|u− χ|‖1,Dd
+ Cd−1‖u− uh‖L2(Dd)

≤ C inf
χ∈Vh

‖∇(u− χ)‖L2(Dd) + Cd−1‖u− uh‖L2(Dd).

Proof The second inequality follows again from a Poincaré inequality (the first
one, this time). The first inequality follows again from tracing the arguments of
the proof of Theorem D.3. ⊓⊔
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E Detailed numerics

E.1 Slit domain

The geometry is a slit domain

Ω = ΩS := (−1, 1)2 \ [0, 1)× {0}.

The exact solution is given by

|x− x0|α sin(aπφ)

for different choices of the parameters α and x0 (and a).
The inhomogeneous Dirichlet boundary conditions are realized by nodal inter-

polation. The equation considered is

−∆u = f.

Starting from a coarse mesh, we perform a sequence of uniform (red) refinements.
We consider a lowest order discretization, i.e., k = 1.

Strictly speaking, the slit domain is not covered by our theory. Also not cov-
ered by our theory are the variational crimes associated with approximating the
inhomogeneous Dirichlet data. Nevertheless, we expect the convergence behavior
detailed in Corollary 4.3 to be an good description of the actual convergence be-
havior. We assume that the global regularity of the solution u is described by
s = 1+ α (actually, it is 1 + α− ε for all ε > 0). Corollary 4.3 then lets us expect
for the two cases x0 = (0, 0) and x0 6= (0, 0) the following convergence rates:

x0 = (0, 0) =⇒ τ = min{2, 1 + α,−1 + 1/2 + (1 + α)} = min{2, 1/2 + α}
x0 6= (0, 0) =⇒ τ = min{2, 1 + α,−1 + 1/2 +∞} = min{2, 1 + α}

In the following Tables E.1–E.7, we vary the parameter α. In each table sepa-
rately we vary the location. The locations under investigation are (x0, y0) = (0, 0),
(x0, y0) = (0.5, 0) and (x0, y0) = (0, 1). We observe that the theoretical conver-
gence rates are mostly achieved in our numerical simulations.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
97 2.9124e-02 - 3.8405e-02 - 3.0468e-02 -

348 1.5745e-02 0.89 1.0451e-02 1.88 1.2883e-02 1.24
1.315 8.1422e-03 0.95 4.8926e-03 1.10 5.2831e-03 1.29
5.109 4.1322e-03 0.98 2.1508e-03 1.19 2.0814e-03 1.34

20.137 2.0799e-03 0.99 8.1046e-04 1.41 7.9896e-04 1.38
79.953 1.0430e-03 1.00 3.0969e-04 1.39 3.0187e-04 1.40

318.625 5.2221e-04 1.00 1.1780e-04 1.39 1.1288e-04 1.42
1.272.129 2.6125e-04 1.00 4.1750e-05 1.50 4.1903e-05 1.43
5.083.777 1.3066e-04 1.00 1.4985e-05 1.48 1.5472e-05 1.44

Table E.1 Slit domain, k = 1: Influence of the position of singularity for α = 0.5.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
97 1.1642e-02 - 1.6577e-02 - 1.6031e-02 -

348 5.6371e-03 1.05 6.5153e-03 1.35 6.0796e-03 1.40
1.315 2.6059e-03 1.11 2.3569e-03 1.47 2.2272e-03 1.45
5.109 1.1835e-03 1.14 8.4203e-04 1.48 7.8285e-04 1.51

20.137 5.3296e-04 1.15 2.7392e-04 1.62 2.6776e-04 1.55
79.953 2.3888e-04 1.16 9.1902e-05 1.58 9.0042e-05 1.57

318.625 1.0679e-04 1.16 3.0823e-05 1.58 2.9942e-05 1.59
1.272.129 4.7666e-05 1.16 9.6773e-06 1.67 9.8788e-06 1.60
5.083.777 2.1257e-05 1.16 3.1032e-06 1.64 3.2407e-06 1.61

Table E.2 Slit domain, k = 1: Influence of the position of singularity for α = 2/3.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
97 6.1391e-03 - 1.1088e-02 - 1.0692e-02 -

348 2.8187e-03 1.12 4.1329e-03 1.42 3.8553e-03 1.47
1.315 1.2351e-03 1.19 1.4164e-03 1.54 1.3388e-03 1.53
5.109 5.3338e-04 1.21 4.7830e-04 1.57 4.4562e-04 1.59

20.137 2.2846e-04 1.22 1.4725e-04 1.70 1.4420e-04 1.63
79.953 9.7267e-05 1.23 4.6683e-05 1.66 4.5843e-05 1.65

318.625 4.1233e-05 1.24 1.4761e-05 1.66 1.4401e-05 1.67
1.272.129 1.7428e-05 1.24 4.3773e-06 1.75 4.4861e-06 1.68
5.083.777 7.3524e-06 1.25 1.3285e-06 1.72 1.3889e-06 1.69

Table E.3 Slit domain, k = 1: Influence of the position of singularity for α = 0.75.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
97 4.1949e-03 - 3.0111e-04 - 2.9784e-04 -

348 1.4605e-03 1.52 9.9257e-05 1.60 9.3618e-05 1.67
1.315 4.8756e-04 1.58 2.9679e-05 1.74 2.8033e-05 1.74
5.109 1.5909e-04 1.62 8.6201e-06 1.78 8.0205e-06 1.81

20.137 5.1667e-05 1.62 2.2994e-06 1.91 2.2266e-06 1.85
79.953 1.6874e-05 1.61 6.2533e-07 1.88 6.0606e-07 1.88

318.625 5.5687e-06 1.60 1.6832e-07 1.89 1.6270e-07 1.90
1.272.129 1.8596e-06 1.58 4.3035e-08 1.97 4.3240e-08 1.91
5.083.777 6.2798e-07 1.57 1.1235e-08 1.94 1.1403e-08 1.92

Table E.4 Slit domain, k = 1: Influence of the position of singularity for α = 1.01.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
97 5.7534e-03 - 2.8888e-03 - 2.8799e-03 -

348 1.9412e-03 1.57 9.1606e-04 1.66 8.6618e-04 1.73
1.315 6.2583e-04 1.63 2.6267e-04 1.80 2.4731e-04 1.81
5.109 1.9689e-04 1.67 7.2833e-05 1.85 6.7463e-05 1.87

20.137 6.1446e-05 1.68 1.8673e-05 1.96 1.7871e-05 1.92
79.953 1.9191e-05 1.68 4.8621e-06 1.94 4.6455e-06 1.94

318.625 6.0229e-06 1.67 1.2518e-06 1.96 1.1921e-06 1.96
1.272.129 1.9023e-06 1.66 3.0913e-07 2.02 3.0311e-07 1.98
5.083.777 6.0474e-07 1.65 7.7720e-08 1.99 7.6552e-08 1.99

Table E.5 Slit domain, k = 1: Influence of the position of singularity for α = 10/9.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
97 7.3549e-03 - 6.3401e-03 - 6.3849e-03 -

348 2.2414e-03 1.71 1.8792e-03 1.75 1.7790e-03 1.84
1.315 6.4849e-04 1.79 5.0365e-04 1.90 4.6905e-04 1.92
5.109 1.8251e-04 1.83 1.3007e-04 1.95 1.1878e-04 1.98

20.137 5.0718e-05 1.85 3.1798e-05 2.03 2.9443e-05 2.01
79.953 1.4021e-05 1.85 7.8665e-06 2.02 7.2227e-06 2.03

318.625 3.8699e-06 1.86 1.9356e-06 2.02 1.7642e-06 2.03
1.272.129 1.0682e-06 1.86 4.6924e-07 2.04 4.3055e-07 2.03
5.083.777 2.9514e-07 1.86 1.1524e-07 2.03 1.0519e-07 2.03

Table E.6 Slit domain, k = 1: Influence of the position of singularity for α = 4/3.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
97 7.5901e-03 - 7.6006e-03 - 7.6553e-03 -

348 2.1664e-03 1.81 2.1751e-03 1.81 2.0530e-03 1.90
1.315 5.8638e-04 1.89 5.6614e-04 1.94 5.2238e-04 1.97
5.109 1.5450e-04 1.92 1.4246e-04 1.99 1.2877e-04 2.02

20.137 4.0197e-05 1.94 3.4615e-05 2.04 3.1388e-05 2.04
79.953 1.0396e-05 1.95 8.5086e-06 2.02 7.6403e-06 2.04

318.625 2.6803e-06 1.96 2.0921e-06 2.02 1.8651e-06 2.03
1.272.129 6.8978e-07 1.96 5.1307e-07 2.03 4.5726e-07 2.03
5.083.777 1.7730e-07 1.96 1.2691e-07 2.02 1.1258e-07 2.02

Table E.7 Slit domain, k = 1: Influence of the position of singularity for α = 1.5.
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E.2 L-shaped domain

The geometry is an L-shaped domain:

Ω = ΩL := (−1, 1)2 \ [0, 1)× (−1, 0].

The exact solution is given by

|x− x0|α sin(aπφ)

for different choices of the parameters α, x0, and a.

E.2.1 Lowest order discretization k = 1

Structurally, the situation is similar to the situation in Section E.1. From Corol-
lary 4.3, we expect the following convergence rates:

x0 = (0, 0) =⇒ τ = min{2, 1 + α,−1 + 2/3 + (1 + α)} = min{2, 2/3 + α}
x0 6= (0, 0) =⇒ τ = min{2, 1 + α,−1 + 2/3 +∞} = min{2, 1 + α}

Also in this case the numerical rates depicted in Tables E.8–E.13 are very close to
the rates expected by our theory.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
81 1.1719e-02 - 1.0132e-02 - 9.5383e-03 -

289 5.4059e-03 1.12 4.0619e-03 1.32 3.4014e-03 1.49
1.089 2.3165e-03 1.22 1.4839e-03 1.45 1.1426e-03 1.57
4.225 9.5790e-04 1.27 5.1844e-04 1.52 3.7569e-04 1.60

16.641 3.8922e-04 1.30 1.7681e-04 1.55 1.2222e-04 1.62
66.049 1.5663e-04 1.31 5.9408e-05 1.57 3.9513e-05 1.63

263.169 6.2682e-05 1.32 1.9762e-05 1.59 1.2720e-05 1.64
1.050.625 2.5002e-05 1.33 6.5263e-06 1.60 4.0824e-06 1.64
4.198.401 9.9525e-06 1.33 2.1437e-06 1.61 1.3072e-06 1.64

Table E.8 L–domain, k = 1: Influence of the position of singularity for α = 2/3.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
81 6.1585e-03 - 6.8141e-03 - 6.2506e-03 -

289 2.6986e-03 1.19 2.5648e-03 1.41 2.1211e-03 1.56
1.089 1.1123e-03 1.28 8.8428e-04 1.54 6.7413e-04 1.65
4.225 4.4037e-04 1.34 2.9202e-04 1.60 2.0903e-04 1.69

16.641 1.7107e-04 1.36 9.4164e-05 1.63 6.4027e-05 1.71
66.049 6.5689e-05 1.38 2.9909e-05 1.65 1.9471e-05 1.72

263.169 2.5030e-05 1.39 9.4012e-06 1.67 5.8930e-06 1.72
1.050.625 9.4877e-06 1.40 2.9328e-06 1.68 1.7774e-06 1.73
4.198.401 3.5834e-06 1.40 9.0968e-07 1.69 5.3475e-07 1.73

Table E.9 L–domain, k = 1: Influence of the position of singularity for α = 0.75.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
81 4.6216e-03 - 1.8387e-04 - 1.6841e-04 -

289 1.6860e-03 1.45 6.0370e-05 1.61 5.0364e-05 1.74
1.089 5.4867e-04 1.62 1.8034e-05 1.74 1.3883e-05 1.86
4.225 1.7284e-04 1.67 5.1378e-06 1.81 3.6942e-06 1.91

16.641 5.2963e-05 1.71 1.4253e-06 1.85 9.6399e-07 1.94
66.049 1.5970e-05 1.73 3.8870e-07 1.87 2.4842e-07 1.96

263.169 4.7758e-06 1.74 1.0474e-07 1.89 6.3437e-08 1.97
1.050.625 1.4238e-06 1.75 2.7971e-08 1.90 1.6086e-08 1.98
4.198.401 4.2471e-07 1.75 7.4181e-09 1.91 4.0561e-09 1.99

Table E.10 L–domain, k = 1: Influence of the position of singularity for α = 1.01.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
81 6.5660e-03 - 1.7641e-03 - 1.6229e-03 -

289 2.3309e-03 1.49 5.5465e-04 1.67 4.6837e-04 1.79
1.089 7.3413e-04 1.67 1.5847e-04 1.81 1.2424e-04 1.91
4.225 2.2257e-04 1.72 4.3172e-05 1.88 3.1761e-05 1.97

16.641 6.5650e-05 1.76 1.1458e-05 1.91 7.9588e-06 2.00
66.049 1.9056e-05 1.78 2.9916e-06 1.94 1.9695e-06 2.01

263.169 5.4810e-06 1.80 7.7249e-07 1.95 4.8311e-07 2.03
1.050.625 1.5690e-06 1.80 1.9789e-07 1.96 1.1771e-07 2.04
4.198.401 4.4822e-07 1.81 5.0393e-08 1.97 2.8532e-08 2.04

Table E.11 L–domain, k = 1: Influence of the position of singularity for α = 10/9.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
81 8.6776e-03 - 3.8962e-03 - 3.6446e-03 -

289 2.8523e-03 1.61 1.1374e-03 1.78 1.0008e-03 1.86
1.089 8.2870e-04 1.78 3.0272e-04 1.91 2.5331e-04 1.98
4.225 2.3073e-04 1.84 7.7239e-05 1.97 6.2153e-05 2.03

16.641 6.2539e-05 1.88 1.9331e-05 2.00 1.5073e-05 2.04
66.049 1.6688e-05 1.91 4.7956e-06 2.01 3.6440e-06 2.05

263.169 4.4099e-06 1.92 1.1852e-06 2.02 8.8167e-07 2.05
1.050.625 1.1580e-06 1.93 2.9260e-07 2.02 2.1389e-07 2.04
4.198.401 3.0279e-07 1.94 7.2263e-08 2.02 5.2069e-08 2.04

Table E.12 L–domain, k = 1: Influence of the position of singularity for α = 4/3.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2-error rate L2-error rate L2-error rate
81 8.9932e-03 - 4.7178e-03 - 4.4942e-03 -

289 2.8151e-03 1.68 1.3287e-03 1.83 1.2166e-03 1.89
1.089 7.8034e-04 1.85 3.4367e-04 1.95 3.0580e-04 1.99
4.225 2.0751e-04 1.91 8.5903e-05 2.00 7.5035e-05 2.03

16.641 5.3910e-05 1.94 2.1227e-05 2.02 1.8321e-05 2.03
66.049 1.3835e-05 1.96 5.2331e-06 2.02 4.4827e-06 2.03

263.169 3.5256e-06 1.97 1.2917e-06 2.02 1.1011e-06 2.03
1.050.625 8.9467e-07 1.98 3.1955e-07 2.02 2.7158e-07 2.02
4.198.401 2.2641e-07 1.98 7.9238e-08 2.01 6.7212e-08 2.01

Table E.13 L–domain, k = 1: Influence of the position of singularity for α = 1.5.
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E.2.2 Second order discretization k = 2

All calculations are performed for x0 = (0, 0) and a = 2/3. Only the singularity
parameter α is varied.

Here, we expect the convergence rate

τ = min{3,−1 + 2/3 + (1 + α)} = min{3, 2/3 + α}.

Table E.14 shows the numerical results for the second order case in which the
received rates are close to the theoretical expected once.

α = 2/3 α = 3/4 α = 1.01 α = 10/9
DOFs L2-error rate L2-error rate L2-error rate L2-error rate

289 3.1686e-03 - 1.6898e-03 - 4.8115e-04 - 5.9011e-04 -
1.089 1.2099e-03 1.39 6.0844e-04 1.47 1.4003e-04 1.78 1.5596e-04 1.92
4.225 4.6505e-04 1.38 2.1881e-04 1.48 3.7277e-05 1.91 3.8312e-05 2.03

16.641 1.8057e-04 1.36 8.0073e-05 1.45 9.9546e-06 1.90 9.3965e-06 2.03
66.049 7.0635e-05 1.35 2.9545e-05 1.44 2.6951e-06 1.89 2.3314e-06 2.01

263.169 2.7771e-05 1.35 1.0960e-05 1.43 7.4481e-07 1.86 5.8950e-07 1.98
1.050.625 1.0955e-05 1.34 4.0799e-06 1.43 2.1075e-07 1.82 1.5257e-07 1.95

α = 4/3 α = 3/2 α = 2.175 α = 2.275
DOFs L2-error rate L2-error rate L2-error rate L2-error rate

289 6.1433e-04 - 5.5363e-04 - 2.7565e-04 - 2.4570e-04 -
1.089 1.5136e-04 2.02 1.3540e-04 2.03 5.1121e-05 2.43 4.1696e-05 2.56
4.225 3.3604e-05 2.17 2.8521e-05 2.25 7.5320e-06 2.76 5.7319e-06 2.86

16.641 7.7002e-06 2.13 6.2123e-06 2.20 1.1051e-06 2.77 7.8407e-07 2.87
66.049 1.8014e-06 2.10 1.3642e-06 2.19 1.5938e-07 2.79 1.0553e-07 2.89

263.169 4.2916e-07 2.07 3.0106e-07 2.18 2.2723e-08 2.81 1.4044e-08 2.91
1.050.625 1.0374e-07 2.05 6.6649e-08 2.18 3.2138e-09 2.82 1.8538e-09 2.92

α = 2.375
DOFs L2-error rate

289 2.2177e-04 -
1.089 3.3912e-05 2.71
4.225 4.3221e-06 2.97

16.641 5.4888e-07 2.98
66.049 6.8762e-08 3.00

263.169 8.5292e-09 3.01
1.050.625 1.0497e-09 3.02

Table E.14 L-shaped domain, k = 2: Influence of α for a = 2/3π and (x0, y0) = (0, 0).



On optimal L2- and surface flux convergence in FEM (extended version) 49

E.3 Fichera corner

E.3.1 Smooth solution

The geometry is
Ω = ΩF := (−1, 1)3 \ [0, 1]3.

The discretization is done on lowest order hexahedral elements, regularly refined.
The exact solution is prescribed to be the smooth solution

u(x, y, z) = sin((x+ y)π) cos(2πz).

DOFs L2 error rate
316 0.075444 —

3.032 0.017182 1.96
26.416 0.0039376 2.04

220.256 0.00094597 2.02
1.798.336 0.00023208 2.01

14.532.992 5.7491e-05 2.00

Table E.15 Fichera cube.

E.3.2 Solution of point singularity type

In the next calculations, the exact solution is given by

u = rα,

where r = dist(x, x0) measures the distance from the point x0, which is varied.
The L2-error is computed with a tensor product Gauss rule (5 points in each
coordinate direction).

x0 = (−1,−1,−1), α = 0.55 x0 = (0, 0.5, 0), α = 0.55 x0 = (0, 0.5, 0), α = 2/3
DOFs L2-error rate L2-error rate L2-error rate

316 0.00073994 — 0.00069287 — 0.00074102 —
3.032 0.00016401 2.00 0.00023565 1.43 0.00023 1.55

26.416 3.9176e-05 1.98 6.8242e-05 1.72 6.2591e-05 1.80
22.0256 9.6835e-06 1.98 1.9077e-05 1.80 1.6589e-05 1.88

1.798.336 2.4305e-06 1.97 5.2412e-06 1.85 4.3418e-06 1.92
14.532.992 6.1407e-07 1.98 1.44225e-06 1.87 1.1264e-06 1.94

Table E.16 Fichera cube



50 T. Horger et al.

References

1. Adams, R.A.: Sobolev Spaces. Academic Press (1975)
2. Apel, T., Pfefferer, J., Rösch, A.: Finite element error estimates for Neumann boundary

control problems on graded meshes. Comput. Optim. Appl. 52(1), 3–28 (2012). DOI
10.1007/s10589-011-9427-x. URL http://dx.doi.org/10.1007/s10589-011-9427-x

3. Apel, T., Pfefferer, J., Rösch, A.: Finite element error estimates on the boundary with
application to optimal control. Math. Comp. 84, 33–80 (2015)

4. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol.
II, pp. 641–789. North Holland (1991)

5. DeVore, R., Lorentz, G.: Constructive Approximation. Springer Verlag (1993)
6. Evans, L.: Partial Differential Equations. American Mathematical Society (1998)
7. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press

(1992)
8. Flemisch, B., Melenk, J.M., Wohlmuth, B.I.: Mortar methods with curved interfaces.

Appl. Numer. Math. 54(3-4), 339–361 (2005). DOI 10.1016/j.apnum.2004.09.007. URL
http://dx.doi.org/10.1016/j.apnum.2004.09.007

9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order.
Grundlagen der mathematischen Wissenschaften 224. Springer (1977)

10. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman (1985)
11. Horger, T., Melenk, J., Wohlmuth, B.: On optimal L2- and surface flux convergence in

FEM (extended version). Tech. rep. (2015). URL http://arxiv.org/abs/1501.03003
12. Khoromskij, B., Melenk, J.: Boundary concentrated finite element methods. SIAM J.

Numer. Anal. 41(1), 1–36 (2003)
13. Larson, M., Massing, A.: L2 -error estimates for finite element approximations

of boundary fluxes. Tech. rep., http://arxiv.org/abs/1401.6994 (2014). URL
http://arxiv.org/abs/1401.6994

14. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates
for higher order finite elements for elliptic interface problems. Appl. Nu-
mer. Math. 60(1-2), 19–37 (2010). DOI 10.1016/j.apnum.2009.08.005. URL
http://dx.doi.org/10.1016/j.apnum.2009.08.005

15. Melenk, J.: hp finite element methods for singular perturbations, Lecture Notes in Math-

ematics, vol. 1796. Springer Verlag (2002)
16. Melenk, J., Praetorius, D., Wohlmuth, B.: Simultaneous quasi-optimal convergence rates

in FEM-BEM coupling. Math. Meth. Appl. Sci. (2014). DOI 10.1002/mma.3374
17. Melenk, J., Rezaijafari, H., Wohlmuth, B.: Quasi-optimal a priori estimates for fluxes in

mixed finite element methods and applications to the Stokes–Darcy coupling. IMA J.
Numer. Anal. 34(1), 1–27 (2014)

18. Melenk, J., Wohlmuth, B.: Quasi-optimal approximation of surface based Lagrange mul-
tipliers in finite element methods. SIAM J. Numer. Anal. 50, 2064–2087 (2012)

19. Morrey, C.: Multiple Integrals in the Calculus of Variations. Springer Verlag (1966)
20. Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying bound-

ary conditions. Math. Comp. 54, 483–493 (1990)
21. Tartar, L.: An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of

the Unione Matematica Italiana, vol. 3. Springer, Berlin (2007)
22. Triebel, H.: Interpolation theory, function spaces, differential operators, second edn. Jo-

hann Ambrosius Barth, Heidelberg (1995)
23. Wahlbin, L.: Local behavior in finite element methods. In: P. Ciarlet, J. Lions (eds.)

Handbook of numerical Analysis. Volume II: Finite element methods (Part 1), pp. 353–
522. North Holland (1991)

24. Wahlbin, L.: Superconvergence in Galerkin finite element methods, Lecture Notes in Math-

ematics, vol. 1605. Springer Verlag (1995)
25. Waluga, C., Wohlmuth, B.: Quasi-optimal a priori interface error bounds and a posteriori

estimates for the interior penalty method. SIAM J. Numer. Anal. 51(6), 3259–3279 (2013).
DOI 10.1137/120888405. URL http://dx.doi.org/10.1137/120888405

http://dx.doi.org/10.1007/s10589-011-9427-x
http://dx.doi.org/10.1016/j.apnum.2004.09.007
http://arxiv.org/abs/1501.03003
http://arxiv.org/abs/1401.6994
http://dx.doi.org/10.1016/j.apnum.2009.08.005
http://dx.doi.org/10.1137/120888405


ar
X

iv
:1

50
1.

03
00

3v
2 

 [
m

at
h.

N
A

] 
 2

5 
Fe

b 
20

15

Noname manuscript No.
(will be inserted by the editor)

Insert your title here

Do you have a subtitle?
If so, write it here

First Author · Second Author

Received: date / Accepted: date

Abstract Insert your abstract here. Include keywords, PACS and mathemat-
ical subject classification numbers as needed.

Keywords First keyword · Second keyword · More

1 Introduction

Your text comes here. Separate text sections with

2 Section title

Text with citations [2] and [1].

2.1 Subsection title

as required. Don’t forget to give each section and subsection a unique label
(see Sect. 2).

Paragraph headings Use paragraph headings as needed.

a
2 + b

2 = c
2 (1)

F. Author
first address
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: fauthor@example.com

S. Author
second address

http://arxiv.org/abs/1501.03003v2


2 First Author, Second Author

Fig. 1 Please write your figure caption here

Fig. 2 Please write your figure caption here



Insert your title here 3

Table 1 Please write your table caption here

first second third

number number number
number number number

References

1. Author, Article title, Journal, Volume, page numbers (year)
2. Author, Book title, page numbers. Publisher, place (year)


	1 Introduction
	2 Regularity
	3 FEM L2-error analysis
	4 FEM L2-error analysis on piecewise smooth geometries
	5 Optimal L2(Sh)-convergence
	6 Extension of the results of melenk-wohlmuth12
	7 Numerical results
	A Coverings
	B Details for the extension of the results of melenk-wohlmuth12.
	C Details concerning Lemma ??
	D Details of [Sec. 5.3]wahlbin95
	E Detailed numerics
	1 Introduction
	2 Section title

