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Abstract

To solve an elliptic PDE eigenvalue problem in practice, typically the finite element discreti-
sation is used. From approximation theory it is known that only the smaller eigenvalues and
their corresponding eigenfunctions can be well approximated by the finite element discretisation
because the approximation error increases with increasing size of the eigenvalue. The number of
well approximable eigenvalues or eigenfunctions, however, is unknown. In this work asymptotic
estimates of these quantities are derived. For example, it is shown that for three-dimensional
problems under certain smoothness assumptions on the data only the smallest O(N?/°) eigen-
values and only the eigenfunctions associated to the smallest ©(N1/4) eigenvalues can be well
approximated by the finite element discretisation, when the N-dimensional finite element spaces
of piecewise affine functions with uniform mesh refinement are used.

To solve the discretised elliptic PDE eigenvalue problem and to compute all well approximable
eigenvalues and eigenfunctions, a new method is introduced which combines a recursive version
of the automated multi-level substructuring (short AMLS) method with the concept of hierarchi-
cal matrices (short H-matrices). AMLS is a domain decomposition technique for the solution of
elliptic PDE eigenvalue problems where, after some transformation, a reduced eigenvalue prob-
lem is derived whose eigensolutions deliver approximations of the sought eigensolutions of the
original problem.

Whereas the classical AMLS method is very efficient for elliptic PDE eigenvalue problems
posed in two dimensions, it is getting very expensive for three-dimensional problems, due to the
fact that it computes the reduced eigenvalue problem via dense matrix operations.

This problem is resolved by the use of hierarchical matrices. H-matrices are a data-sparse
approximation of dense matrices which, e.g., result from the inversion of the stiffness matrix that
is associated to the finite element discretisation of an elliptic PDE operator. The big advantage
of H-matrices is that they provide matrix arithmetic with almost linear complexity. This fast
‘H-matrix arithmetic is used for the computation of the reduced eigenvalue problem. Beside this,
the size of the reduced eigenvalue problem is bounded by a new recursive version of AMLS which
further reduces the costs for the computation and the solution of this problem. Altogether this
leads to a new method which is well-suited for three-dimensional problems and which allows us
to compute a large amount of eigenpair approximations in optimal complexity.



Zusammenfassung

Elliptische PDE Eigenwertprobleme werden in der Praxis typischerweise mithilfe der Finite-
Element-Diskretisierung gelost. Aus der Approximationstheorie ist bekannt, dass nur die kleins-
ten Eigenwerte und die zugehorigen Eigenfunktionen sich gut durch die Finite-Element-Diskre-
tisierung approximieren lassen, da der entsprechende Approximationsfehler mit der Grofie des
Eigenwertes wachst. Resultate beziiglich der Anzahl der gut approximierbaren Eigenwerte und
Eigenfunktionen sind bisher aber noch unbekannt. In dieser Arbeit werden Abschéitzungen
hergeleitet, die es erlauben diese Groéflen asymptotisch zu beschreiben. So wird zum Beispiel
gezeigt, dass fiir drei-dimensionale Probleme (unter bestimmten Glattheitsbedingungen der
Daten) nur die kleinsten ©(N?/5) Eigenwerte und die Eigenfunktionen zu den kleinsten ©(N1/4)
Eigenwerten gut durch die Finite-Element-Diskretisierung approximierbar sind, wenn N-dimen-
sionale Finite-Element-Raume mit stiickweise affinen Funktionen bei gleichméafliger Gitterver-
feinerung verwendet werden.

Um das diskretisierte elliptische PDE Eigenwertproblem zu lésen und um alle gut approx-
imierbaren Eigenwerte und Eigenfunktionen zu berechnen, wird in dieser Arbeit eine neue
Methode vorgestellt, welche eine rekursive Version der Automated Multi-Level Substructuring
(kurz AMLS) Methode mit dem Konzept der hierarchischen Matrizen (kurz H-Matrix) kom-
biniert. AMLS ist eine Gebietszerlegungsmethode zum Lésen elliptischer PDE Eigenwertprob-
leme, bei der nach einer bestimmten Problemtransformation ein reduziertes Figenwertproblem
aufgestellt wird. Die Eigenlosungen des reduzierten Problems liefern schliefllich Approximatio-
nen der gesuchten Eigenlosungen des Ausgangsproblems.

Die klassische AMLS Methode ist sehr effizient fiir PDE Eigenwertprobleme definiert auf einem
zwei-dimensionalen Gebiet, jedoch wird die Methode sehr teuer fiir drei-dimensionale Probleme,
da in AMLS das reduzierte Problem mittels vollbesetzter Matrixoperationen berechnet wird.

In dieser Arbeit wird dieses Effizienzproblem von AMLS durch den Einsatz von hierarchis-
chen Matrizen gelost. H-Matrizen sind kosteneffiziente Approximation von vollbesetzten Ma-
trizen, welche beispielsweise auftreten bei der Invertierung der Steifigkeitsmatrix der Finite-
Element-Diskretisierung elliptischer PDE Operatoren. Der grofie Vorteil von H-Matrizen ist,
dass diese eine Matrixarithmetik mit fast linearer Komplexitéat ermoglichen. Diese schnelle H-
Matrixarithmetik wird verwendet um das reduzierte Problem zu berechnen. Dariiber hinaus wird
die Grofle des reduzierten Problems durch eine neue rekursive Version von AMLS beschrankt,
was die Kosten fiir das Aufstellen und das Losen des reduzierten Problems weiter verringert.
Insgesamt fiihrt dies zu einer neuen Methode, welche sehr gut geeignet ist um drei-dimensionale
elliptische PDE Eigenwertprobleme zu 16sen und welche eine Vielzahl von Eigenpaar Approxi-
mationen in optimaler Komplexitit berechnet.
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1. Introduction

This work focuses on the efficient solution of the continuous eigenvalue problem

1.1
u=0 on dN (1.1)

{ Lu=Mu in €,
where  is a bounded d-dimensional domain (d=2,3) with a Lipschitz boundary 092 and L is a
uniformly elliptic second order partial differential operator in divergence form

d

0 0
Lu = —div(AVu) + cu = — Z a <aiju> +cu
ii=1 81’1 al'j

with L>(Q)-functions a;j, ¢ where A := (aij)gjzl and ¢ > 0, and where eigenvalues A € C and
associated eigenfunctions u # 0 are sought. Partial differential equation (short PDE) eigenvalue
problems of the form (1.1) arise in many fields of physical and engineering application, and
their efficient solution is of high importance, especially for costly three-dimensional real-world

problems.
In contrast to the common boundary value problem
{ Lu=f 1in Q, (1.2)

u=0 on o

where for a fixed right-hand side f € L?(Q) a suitable solution u is sought, the eigenvalue problem
(1.1) is non-linear since both the eigenvalue A and the eigenfunction w are unknown. For this
reason the analysis and the solution of eigenvalue problem (1.1) is much more challenging than
it is for boundary value problem (1.2). The Fredholm-Riesz-Schauder theory has to be applied
in order to show that eigenvalue problem (1.1) possesses, after some reformulation, a countable
family of weak eigensolutions

()‘ja Uj);il € Ryg X H& (Q) \ {0} with )‘j < )‘j—i-l' (13)

In the most cases, the eigensolutions (1.3) cannot be computed analytically, they have to be
computed numerically. In practice typically the finite element discretisation is applied for this
purpose: Using an N-dimensional finite element space denoted by Vi C H&(Q) and spanned by
its basis functions (@EN))Z»]L, the continuous eigenvalue problem is discretised and an algebraic
eigenvalue problem of the form

(1.4)

find (A®, 2™) € R x RN \ {0} with
KN () — A@) JfN) ()

11



1. Introduction

is derived with symmetric sparse matrices K™, M®™ € RV*N and with eigenpairs

()\;N>=x;’N));v=l €Roo x Vy\ {0} with ATY < AP (1.5)

()

The discrete eigensolutions (A ¥ ("

suj ') are then used for the approximation of the sought con-

tinuous eigensolutions (\;,u;) when N — oo, and where the functions u;-N) € Vn are defined by
u;-N) = Zf\il(acgm)z o™ for j=1,...,N.

Using the finite element discretisation for the solution of eigenvalue problem (1.1), two elemen-
tary questions arise which are covered in this work: The first question is which of the discrete
eigensolutions ()\;N), ué»N)) provide good approximations for the sought continuous eigensolutions
(1.3). From approximation theory (see, e.g., [9, 64]) it is known that only the smaller eigenvalues
Aj and their corresponding eigenfunctions u; can be well approximated by the finite element
space V because the approximation error increases with increasing size of the eigenvalue. To
the best of the author’s knowledge, results on the number of well approximable eigensolutions
are not available in literature. However, based on the error estimates presented in [64], the au-
thor could derive in this work asymptotic bounds for these quantities. To derive these bounds,
it is essential to show that the eigenvalues \; are asymptotically described by \; € ©( JR 4), This
result is proved as well in this work and is new to the best of the author’s knowledge. Altogether,
it is shown that, for example, for three-dimensional problems under certain smoothness assump-
tions on the data only the first ©(N?/5) eigenvalues and only the first ©(N'/*) eigenfunctions
can be well approximated by the finite element discretisation using the finite element spaces
(VN)nen of piecewise affine functions with uniform mesh refinement.

Hence, in this work we are only interested in computing a portion of the smallest eigenpairs
of the discrete problem (1.4), e.g., the first

neS:CN2/5 eN or neS:CN1/4 eN

eigenpairs with some constant C' > 0. The computation of the remaining eigenpairs of (4.4),
that are associated associated to larger eigenvalues, is not reasonable because typically they do
not provide useful approximations for the continuous eigensolutions (1.3).

The second question, which is the focus of this work, is how for a given finite element space
Vi all well approximable eigenvalues and eigenfunctions can be efficiently computed. In practice
the eigenpairs ()\;N), :E;N))?Sl of the discrete problem (1.4) are typically computed by a classical
approach, i.e., by some iterative algebraic eigensolver (such as the Lanczos method [8] or the
subspace iteration [10]) which is coupled with a preconditioner or a linear solver. Such classical
approaches are well suited if the number of sought eigensolutions nes is rather small, e.g., if
nes = 5. Another approach for the solution of eigenvalue problem (1.4), which is very efficient
when a large amount of eigenpairs is sought, is the so-called automated multi-level substructuring
(short AMLS) method.

The AMLS method is an efficient substructuring method for the solution of elliptic PDE
eigenvalue problems, which was mainly developed by Bennighof and co-authors [14, 16, 47].
The idea behind AMLS is to substructure the domain €2 of eigenvalue problem (1.1) recursively
into several subdomains that are separated by interfaces. On each of these subdomains and
interfaces certain eigenvalue problems are defined which are induced by the global problem, and

12



which are typically small and easy to solve. In the next step, from each of these subproblems
a few eigensolutions are computed which are meant to represent the global problem on the
corresponding subdomain or interface. The computed eigensolutions of the subproblems are
then used to form a subspace onto which the global eigenvalue problem is projected. The
projection results in a reduced eigenvalue problem of smaller size which is typically easy to solve,
and whose eigenpairs finally provide approximations of the sought nes eigensolutions of the global
problems (1.1) and (1.4).

The AMLS method has proven to be very efficient for solving large-scale eigenvalue problems
arising in structural engineering analysis (see, e.g., [15, 47, 55]). Especially when a large number
of eigenpair approximations is required, AMLS has shown to be more efficient than classical
approaches (cf. [42]). Since the computational costs of AMLS increase only slightly with the
number of sought eigenpairs, AMLS can compute a large number of eigenpairs at once. A very
popular classical approach, which is commonly used in structural engineering analysis, is the
shift-invert block Lanczos (short block-SIL) algorithm [36]. Breakthrough calculations could be
presented in [55] when AMLS has been benchmarked against block-SIL within a vibro-acoustic
analysis of an automobile body, and when AMLS running on a commodity workstation has been
several times faster than block-SIL running on a supercomputer.

However, when AMLS is applied to a discrete eigenvalue problem it computes only approx-
imations of the discrete eigenpairs whereas classical approaches, like block-SIL, compute these
eigenpairs almost numerically exact. This seems to be disadvantageous, but since in our setting
discrete eigenvalue problems result always from a finite element discretisation of a continuous
problem, all eigenpairs of the discrete problem are related to a discretisation error. Hence, as
long as the projection error caused by AMLS is of the same order as the discretisation error,
the computed eigenpair approximations of AMLS are of comparable quality as the eigenpairs
computed by some classical approach.

Although AMLS has proven to be very efficient, one problem is the computation of the above-
mentioned interface eigenvalue problems via dense matrix operations. When AMLS is applied
to three-dimensional problems the complexity is dominated by this part.

In this work a new method is presented which combines a recursive version of the AMLS
method with the concept of hierarchical matrices (short H-matrices). The new method is called
H-AMLS has been already introduced in [31] by the author. The H-matrices [38, 39], which are
used, are a data-sparse approximation of dense matrices which e.g. result from the inversion
[13, 29] or the LU-factorisation [12, 29, 34, 59] of the stiffness matrix from the finite element
discretisation of an elliptic PDE operator. The big advantage of H-matrices is that they provide
matrix arithmetic with almost linear complexity [33, 35]. In the new method this fast H-matrix
arithmetic is used for the computation of the interface eigenvalue problems. This allows us
to treat also three-dimensional problems efficiently. Furthermore, it is essential in the AMLS
method that the size of the reduced eigenvalue problem is kept small. This is achieved by a new
recursive formulation of AMLS. This approach leads to a new method where all previously ex-
pensive steps of AMLS are performed in almost linear complexity O(N log® N) where N denotes
the size of eigenvalue problem (1.4). The remaining bottleneck is more of a theoretical nature:
In order to set up the reduced eigenvalue problem and to extract the eigenvectors from the
reduced problem, the H-AMLS method involves H-matrix times vector multiplications which
accumulate to costs of the order O(nesNVlog® N), and it involves the usual scalar product which
is accumulating to at most O(n2,N) multiplications or additions. However, these operations

13



1. Introduction

have very small constants involved so that their effect on practical computations is hardly vis-
ible. In numerical experiments it is observed that the computational costs of H-AMLS stay in
O(nesN) for very large-scale problems, i.e., optimal complexity is reached. Furthermore, the
different steps of the H-AMLS method are very well parallelisable. To benefit from the multiple
cores of today’s workstations and compute servers, the H-AMLS method has been parallelised
for shared memory systems. Last but not least, this work introduces an additional improvement
step for H-AMLS which further improves the accuracy of the computed eigenpair approxima-
tions. Altogether, this leads to a very efficient eigensolver for elliptic PDE eigenvalue problems
which is, in particular, well suited for problems posed in three dimensions.

The remainder of this work is organised as follows: In Chapter 2 the elliptic PDE eigenvalue
problem (1.1) is analysed and results concerning the existence and the regularity of eigensolu-
tions are presented. After this, in Chapter 3 the solution of eigenvalue problem (1.1) is discussed.
This chapter includes a detailed analysis of the finite element discretisation where a priori error
estimates for the eigenvalue and eigenfunction approximation are presented, and where asymp-
totic results concerning the number of well approximable eigenvalues and eigenfunctions are
derived. The results of Chapter 2 and 3 are summarised in Chapter 4 where the underlying
problem setting is specified. In Chapter 5 a description of the classical AMLS method is given,
where the method is first explained and motivated in a continuous setting and then described
in an algebraic setting to show how AMLS is applied in practice. Furthermore, it is outlined in
Chapter 5 why the classical AMLS method is getting expensive for three-dimensional problems.
In Chapter 6 a short introduction to H-matrices is given and in Chapter 7 the new H-AMLS
method is presented. For numerical experiments an efficient implementation of H-AMLS is
important, especially for the parallelisation on shared memory systems. The issue of implemen-
tation and parallelisation is discussed in detail in Chapter 8. Finally, in Chapter 9 numerical
results are presented where H-AMLS is applied to three-dimensional problems and the approxi-
mation error, the computational time and the parallel performance of the method are analysed.
The results of this work are summarised in Chapter 10 and an outlook is given.

To improve the readability, certain topics of this work are discussed in the appendix: In
Appendix A abstract variational eigenvalue problems are analysed using the Fredholm-Riesz-
Schauder theory, and in Appendix B results from the theory of Sobolev spaces are briefly recalled.
The results of Appendix A and B are used in Chapter 2 when the elliptic PDE eigenvalue problem
is analysed. Finally, in Appendix C results on the asymptotic distribution of the eigenvalues A;
are derived, and in Appendix D error estimates for the finite element discretisation are provided.
Appendix C and D are the foundation of Chapter 3 when the number of well approximable
eigensolutions is discussed.

14



2. Analysis of Elliptic PDE Eigenvalue
Problems

This chapter is focused on the analysis of the elliptic PDE eigenvalue problem

(2.1)
for all x € 902

{ L[u(z) = Au(z) forall z € Q,
0

where Q C R? is a bounded Lipschitz domain and L is a uniformly elliptic second order partial
differential operator in divergency form

Llu)(z) = — div(AVu)(z) + c(z)u(z) (2.2)
d
=— Z (98371 (aw(:r)ai]u(x)> + c(x)u(x) for all x € Q

ij=1
with sufficiently smooth L*°(Q2)-functions a;j, ¢ where A := (aij)gjzl and ¢ > 0.

Definition 2.1 (Ellipticity) The partial differential equation (2.1) and the associated operator

L in (2.2) are called elliptic if for all x € Q the matriz A(x) = (aj (a:))jjzl
definite, i.e., that the eigenvalues of A(x) are positive. An elliptic operator L and the associated
partial differential equation are called uniformly ! elliptic if the eigenvalues of A(x) are uniformly

bounded from below by a positive constant, i.e., if it holds

: o TA(@)¢
min ‘= f T et
v ret ceki\(0) €7

18 symmetric positive

Even though eigenvalue problem (2.1) is non-linear, its analysis is based in principle on the
analysis of the linear PDE problem

{ Lu](z) = f(x) for all z € Q, (2.3)

u(z) =0 for all z € 90

where for a fixed right-hand side f € L?(Q) a suitable solution u is sought. Since boundary
value problem (2.3) possesses for each f € H}(2) a unique weak solution uy € Hj () a solution
operator T : H}(Q) — H}(Q) is induced which allows to reformulate the weak formulation of
eigenvalue problem (2.1) as an eigenvalue problem of an operator. The key in the analysis is
to show that the solution operator 7' is compact, which allows to apply the Fredholm-Riesz-
Schauder theory in order to characterise the spectrum of the operator T'. This approach finally

Tt is noted that in literature the definition of uniform ellipticity slightly differs: For example, in [37] the same
definition for uniform ellipticity is used as here, whereas in [32] it is required that the ratio of maximum to
minimum eigenvalue of the matrix A(z) is bounded for z € Q.
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2. Analysis of Elliptic PDE Eigenvalue Problems

makes the elliptic PDE eigenvalue problem (2.1) accessible and it can be shown that it possess a
countable family of weak eigensolutions. To improve the readability of this chapter, this approach
is discussed in detail in Appendix A where variational eigenvalue problems are discussed in a
general setting and where the Fredholm-Riesz-Schauder theory for compact operators is briefly
recalled. The results derived in Appendix A are finally used in this chapter for the analysis of
problem (2.1).

The remainder of this chapter is organised as follows: It is started in Section 2.1 with the
analysis of boundary value problem (2.3), where the weak formulation of (2.3) is derived which
guarantees the existence of a unique weak solution. In Section 2.2 the weak formulation of
eigenvalue problem (2.3) is derived whose special structure allows to prove, based on the results
derived in Appendix A, the existence of a countable family of weak eigensolutions. Beside
this, in Section 2.2 the regularity of the weak eigenfunctions is discussed, i.e., it is discussed
how the smoothness of the eigenfunctions depends on the smoothness of the domain and the
coefficients of the PDE operator. Finally, in Section 2.3 an example is discussed in order to
get a better understanding of the presented existence and regularity results for elliptic PDE
eigenvalue problems.

Remark 2.2 The restriction to homogeneous Dirichlet boundary conditions u = 0 on I' := 0Q
in (2.1) is not essential in this work, it only simplifies the analysis. Beside homogeneous Dirichlet
boundary conditions the elliptic PDE eigenvalue problem Lu = Au in  can be equipped with
various other boundary conditions (cf. [37, Chapter 11]), for example with:

e Homogeneous Neumann boundary conditions (AR)TVu = 0 on T' where 7 is the exterior
normal field on the boundary T (cf. Remark B.12).

e Mized boundary conditions of the form w =0 on T'p and (Ai1)TVu =0 on I'y, where T'p
and 'y are parts of the boundary I' with positive (d — 1)-dimensional measure such that it
holdsT =TpUTyN and Tp NIy = 0.

Throughout the whole chapter, if not differently noted, it is assumed that Q ¢ R is a bounded
domain with a Lipschitz boundary 0f).

2.1. Analysis of the Boundary Value Problem

The equations (2.3) are also referred to as the classical formulation of the boundary value
problem, and the aim is to find a sufficiently smooth function u : @ — R which is fulfilling (2.3).

Definition 2.3 (Classical Solution) A function u is called classical solution of the boundary
value problem (2.3) if u € C%(Q) N C%(Q) and if u fulfils both equations in (2.3) point-wise.

However, finding such a classical solution can be difficult. The classical formulation of the
boundary value problem, respectively the underlying function space

Vi={uel*()NC’Q) : u=0on N},

are rather unsuitable to derive satisfying results on existence or uniqueness of a solution. Instead
of searching for solutions in the function space V' it is often advantageous to search for solutions
in a larger and less smooth function space, and to weaken the classical formulation slightly. The
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2.1. Analysis of the Boundary Value Problem

space which will be used instead is the Sobolev space H}(Q2) = {¢ € H'(Q) : ¢|an = 0}, i.e.,
the space of L?()-functions which posses the first weak derivative and which vanish at the
boundary 02 (cf. Appendix B.3). The resulting weak formulation of boundary value problem
(2.3) provides additional structure which allows us to derive results on existence, uniqueness
and regularity of a corresponding weak solution.

To derive the weak formulation of problem (2.3) the following identity is used: Let the func-
tions w € C1(Q) and v € C§°(Q2) be given then we obtain by partial integration in the variable
7; (note that Q C R is assumed to be a bounded Lipschitz domain) the identity

ow(x) L av(a:)wx .
/Qv(x) oz, dz = s (x) d (2.4)

where it is noted that in (2.4) no boundary integral occurs since v € C§°(£2) and correspondingly
the integrand vanishes close to the boundary 0. Hence, assuming a;; € C1(9) it holds for a
function u € C?(Q) that

/Q o(2) 2 <aij(x)a“(x)> do = — [ 2@ y2uD) 4 (2.5)

axi 890]- Q 83:1 K 8.13]'

If we assume that boundary value problem (2.3) has a classical solution u € V', and if we multiply
the identity Lu = f from (2.3) by some test function v € C§°(£2) and integrate over 2 we obtain
from (2.5) that the classical solution fulfils

/ fvdr = —/ div(AVu)v dz + / cuv do = / Vol AVu dz +/ cuv dx. (2.6)
Q Q Q Q Q

It follows that a function w € V is a classical solution of problem (2.3) if and only if u is a
solution of the problem

find v € V such that @7)
a(u,v) = l(v) YveCFQ) .
with the bilinear form and the linear functional
a(u,v) = / Vul AV + cuv dz and l(v) := / fo dz. (2.8)
Q Q

Note that the assumption a;; € C1(€), which is needed for the classical formulation of the
boundary problem, can be weakened for problem (2.7) since a(-,-) is also well defined for a;; €
L>*(Q) and ¢ € L*(f2). Furthermore, the bilinear form a(-,-) and the linear functional [(-) are
also well defined on the Sobolev space H{ (€2). Correspondingly, problem (2.7) can be generalised
in the following way: Instead of searching for solutions in the space V C H&(Q) we search for
solutions in the larger and less smooth Hilbert space HJ (), and solve the variational problem

{ find uw € H}(Q) such that (2.9)

a(u,v) = l(v) Yo e HQ)

which is called the weak formulation or the variational formulation of boundary value problem
(2.3). Since the space C5°(Q) is dense in H}(f2), and because a(-,-) and () are continuous
(see proof of Theorem 2.5) it is equivalent to use in (2.9) test functions v € H{(Q) instead of
v e C§°(Q).
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2. Analysis of Elliptic PDE Eigenvalue Problems

Definition 2.4 (Weak Solution) A solution u € HZ(Q) of problem (2.9) is called a weak
solution of the boundary value problem (2.3).

Note that a weak solution is by definition an element of Hg (), but not necessarily of C?(€2);
and that a classical solution is by definition an element of V, but not necessarily of H}(€2).
However, if there is a weak solution u fulfilling (2.9) with u € H}(2) NC?(2) and if a;; € C1(Q)
then from (2.6) follows that [,(Lu — f)v dz = 0 for all v € C§°(Q2). Since C§°(Q) is dense in
L?(Q) we have Lu = f, i.e., u is also a classical solution of (2.3) with u € V. Vice versa, if
u € V is a classical solution of (2.3) with u € H(2) NV then it follows that u is a solution
of problem (2.7) and hence a solution of (2.9), i.e., u is also a weak solution. In this sense the
weak formulation (2.9) and the classical formulation (2.3) of the elliptic eigenvalue problem are
equivalent.

The big advantage of the weak formulation is that it inherits additional structure which allows
to derive results on existence and uniqueness of a weak solution:
Theorem 2.5 Let the partial differential operator L in (2.2) be uniformly elliptic and
a;j € L>(Q) fori,j=1,...,d and c¢e L>(Q) with ¢(z) > 0 almost everywhere in .
Then the variational problem (2.9) has for every f € L?(Q) a unique solution u € H} () with
lully < Cl[fllo

where C' > 0 is a constant independent of f.

Proof: The existence of a unique solution follows directly from the Lax-Milgram theorem
(cf. Appendix A.3). First of all, it is checked if the corresponding assumptions on the linear
functional {(-) and the bilinear form a(-,-) are fulfilled (cf. Theorem A.18).

I(+) is continuous on H{(€):

The linear functional I(+) in (2.8) is bounded on H}(€2) for each f € L?(Q) since

1) = [ foda] < 1 flllello < 17kl Vo € T3(@)

a(-,-) is continuous on H} () x H}():
For the bilinear form a(-,-) defined in (2.8) we have for u,v € H}(Q) that

n 0
la(u,v)| < Z HainLOO(Q)Ha;L,
ij=1 ’

HTU llellz [[ullol[v]]
Cl| 1,00 u v
oll 3z, o+ @ llufloliviio

n
< > llagllz=@lulli ol + llell =@y lullillvll < Cpllull o]
ij=1
with some Cp > 0 independent of u and v. Hence, the bilinear form a(-,-) is continuous.
a(-,-) is HE(Q)-elliptic:

Since the partial differential operator L in (2.2) is uniformly elliptic it follows from Definition
2.1 that there exists a constant Cg > 0 such that for all ¢ € R? it holds

TA()E>CpeTe  Vazeq.
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Using ¢ = Vu for u € H(Q), and that c¢(x) > 0 almost everywhere in {2, we obtain
a(u,u) = / Vul AVu dx + / cu® dx > CE/ VulVu dz = Cplul3. (2.10)
Q Q Q

Note that || - ||y and |- |, are equivalent norms in H3(Q) since  is bounded (cf. Theorem
B.17). Correspondingly, we obtain from (2.10) that there exists a constant Cz > 0 such that
a(u,u) > Cpllul|? for all u € HZ(Q) which proofs the ellipticity of af(-,-).

Since H}(€2) is a Hilbert space and the bilinear form a(-,-) is symmetric, all assumptions of
Theorem A.18 are fulfilled. Correspondingly for each f € L?(€) in (2.9) exists a unique solution
uy € H}(2) which allows us to define a solution operator

T:L*(Q) — H)(Q)  with  f— uy. (2.11)

As in the proof of Lemma A.20 it can be shown that the operator T is continuous, in particular
it holds [lus|l1 < C5fllo- ]

Based on the analysis of the boundary value problem (2.3), in the next section the elliptic
PDE eigenvalue problem (2.1) is analysed.

2.2. Analysis of the Eigenvalue Problem

In the first part of this section the weak formulation of the elliptic PDE eigenvalue problem
(2.1) is derived which is nearly equivalent to the classical formulation. Similar to the previous
section, the weak formulation of the eigenvalue problem inherits a special structure which allows
us to derive results on the existence of weak eigensolutions. In the second part of this section
the smoothness of the weak eigenfunctions is discussed.

2.2.1. Existence of Eigensolutions

The weak formulation of eigenvalue problem (2.1) is derived in the same way as the weak for-
mulation of the boundary value problem (2.3): Assume that eigenvalue problem (2.1) possesses
a classical eigensolution u € V' \ {0} with eigenvalue A € C. Multiplying Lu = Au by a test
function v € C§°(12), integration over {2 and applying partial integration (2.5) we obtain that

/ Auv dr = —/ diV(AVu)v dx —I—/ cuv der = / Vol AVu dz —I—/ cuv dx,
Q Q Q Q Q

which is leading (as in the previous section) to the variational problem

(2.12)

find (A, u) € C x H}(Q)\ {0} such that
a(u,v) = A(u,v)o Vv e HHQ)

with bilinear form a(-,-) from (2.8) and the L?(Q2) inner product (u,v) := [, uv dz. Problem
(2.12) is the weak formulation of the elliptic PDE eigenvalue problem (2.1).

The existence result presented in the following theorem is based on Corollary A.23 and Ap-
pendix A.3 where variational eigenvalue problems are discussed in a more general setting. The
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key in the corresponding existence proof is to show that the solution operator T : H}(Q) —
H(Q) [i.e., the operator from (2.11) restricted to H{ ()] of the variational problem (2.9) is
compact, which allows us to characterise the spectrum of T" by the Fredholm-Riesz-Schauder
theory (see Appendix A.3), which finally proves the existence of eigensolutions of the variational
eigenvalue problem (2.12).

Theorem 2.6 (Existence of Eigensolutions) Let the partial differential operator L in (2.2)
be uniformly elliptic and

a;j € L) fori,j=1,...,d and ce L>*(Q) with ¢(x) > 0 almost everywhere in Q.
Then the variational eigenvalue problem (2.12) possesses a countable family of eigensolutions
(M), € R x HE()\ {0} (2.13)
with eigenvalues \; ordered® such that Aj < Njy1. In particular, it holds:

i) All eigenvalues \j are positive real and we have A; 7% .

ii) The eigenspace E(\;) C H}(Y) of the eigenvalue \;, which is defined by
E(\) = span{u € HIQ) : a(u,v) = A\j(u,v)g Yve H&(Q)}, (2.14)

is finite-dimensional.

iii) If it holds N\j # Ay then the corresponding eigenfunctions w; and uy are orthogonal with
respect to a(-,-) and (-,-)o, i.e., we have a(uj,uy) =0 and (uj, ur)o = 0.

iv) The eigenfunctions (uj);.il form a basis of H&(Q) and without loss of generality it can be
assumed that all eigenfunctions are orthonormal with respect to a(-,-) or (-, -)o.

Proof: In the proof of Theorem 2.5 it is shown that the bilinear form a(-, -) is symmetric, contin-
uous and elliptic. Furthermore, bilinear form (-, -)o fulfils assumption i) and ii) of Precondition
A.19 since (-, ) is the inner product of H}(£2). Furthermore, for all in H{ (£2) bounded sequences
(uj)jen there exists a subsequence (uj, )geny which is Cauchy w.r.t. |- |o = (-, ~)(1)/2 since the
embedding of H{(Q) in L?*(Q) is compact, and hence assumption iii) of Precondition A.19 is
fulfilled as well. Moreover, H}(f2) is a infinite-dimensional Banach space. Correspondingly, all
assumptions of Corollary A.23 are satisfied and thus the statement of this theorem is proven.
|

Theorem 2.6 answers the question of the existence of eigensolutions of the elliptic PDE eigen-
value problem (2.1): If the assumptions of Theorem 2.6 are fulfilled, the weak formulation (2.12)
of the eigenvalue problem possesses a countable family of weak eigensolutions ()\j,uj)j-’;l. In
the case that the eigenfunction u; € H}(Q) belongs as well to the space C?(2), then the weak
eigensolution (\;,u;) is also a classical solution of the original PDE eigenvalue problem (2.1).

2Eigenvalues are repeated in (2.13) according to their geometric multiplicity (the geometric multiplicity is the
dimension of the corresponding eigenspace).

20



2.2. Analysis of the Eigenvalue Problem

Remark 2.7 (Subspace Eigenvalue Problem) Let S be a closed subspace of H} () and let
the assumptions of Theorem 2.6 be fulfilled. Because of S C HE(Q) the bilinear forms a(-,-) and
(,-)o from (2.12) can be restricted to S x S, and hence the variational problem

find (A%, u%) € R x S\ {0} such that
{ ( ) \ {0} (2.15)

a(u®,v) = X (u¥,v)g Vves

is well defined. Note that S forms together with the norm of H&(Q) a Banach space since S is a
closed subspace in HE(Q). Furthermore, all the properties of the bilinear forms a(-,-) and (-, -)o
which have been checked in the proof of Theorem 2.6 hold as well for the bilinear forms restricted
to S x S. As in the proof of Theorem 2.6 we conclude from Corollary A.23 that the variational
eigenvalue problem (2.15) possesses a countable family of eigensolutions

(A0 )0, €Rog x S\{0}  with AT < AP, (2.16)

with positive eigenvalues and where N = dim S. Furthermore, the eigenfunctions (ujS)N:1 form

a basis of S which can be assumed, without loss of generality, to be orthonormal with respect to

a(-,-) or (- -)o-

2.2.2. Regularity Results

Another important question of elliptic PDE eigenvalue problems concerns the smoothness of
the eigenfunctions. In particular, one is interested in how the smoothness (in the sense of
Sobolev spaces) of the eigenfunctions (2.13) is linked to the smoothness of the domain and of
the coefficients of the PDE operator. These so-called regularity properties of the eigenfunctions
are important, especially, when the variational problem (2.12) gets discretised, and a priori error
estimates between the exact and the approximated eigensolutions have to be derived (cf. Section
3.2). In the following two relevant regularity results are presented.

Theorem 2.8 (Regularity I) Consider a fizedt € N. Let Q be a bounded domain with bound-
ary of class C*' and let the partial differential operator L in (2.2) be uniformly elliptic with
c(x) > 0 almost everywhere in Q. Moreover, it is assumed that the coefficients of the PDE
operator L fulfil

D%a;; € L*(Q2) forall |of <tandalli,j=1,...,d,
D% e L>*(Q2) forall |a| <t—1.

Then the results of Theorem 2.6 become wvalid, and for each weak eigensolution (\,u) of the
variational problem (2.12) it holds that u € H'T(Q). In particular, we have E(\) C H**(Q) N
HE(Q).

Proof: The results of Theorem 2.6 are valid since the assumptions made here are stronger. The
regularity result u € H'**(Q) follows from [37, Theorem 9.1.16 and Theorem 11.1.5]. [

Theorem 2.8 shows how smoothness properties of the eigenfunctions are linked to the smooth-
ness of the domain and the PDE operator, and how raising the smoothness assumptions on the
data results in the regularity of the eigenfunctions in higher order Sobolev spaces. It can be
even shown that the eigenfunctions of problem (2.12) are analytic if corresponding smoothness
assumptions are made on the data:
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Precondition 2.9 (Analytic Data) Let L be a partial differential operator of the form (2.2)
and Q C R¢ the underlying domain where the following assumptions are fulfilled:

Assumptions on the Domain

It is assumed that Q C R? is a bounded Lipschitz domain with analytic boundary (cf. Definition
B.10 and Definition B.11).

Assumptions on the PDE operator
L is a PDE operator of the form (2.2) and it is assumed that:

i) The matriz A(z) := (a;; (:c))jjzl is symmetric for all x € Q and it holds

T T
0 < apip = inf  max & Al)e < sup max £ A@)¢

- ———— =! Gmax < OO.
2eQ gerd\{0} ETE T geq ceri\{oy  ETE

i1) It holds c(x) > 0 for all x € Q.
i11) The coefficients of L are infinitely differentiable, i.e., it holds

a;j € C*(Q) fori,j=1,...,d and c e C™(Q).

iv) There exist constants Ca,Ce,vA,7e € Rsg such that for all n € Ny it holds

n N 1/2 .
| Aln,o0 1= H { > o |D*AJ? } < Canl(ya)
laj=n Le=(Q)
nl o 9 1/2 n
[cln,o0 = H { > o1 1P } < Cen! (7e)
|a|=n L>=(Q)

where | D*A(z)| is defined as the spectral norm of the matrix D*A(z) := (Do‘aij(x))?jzl.
In particular, this means that the PDE operator L is uniformly elliptic and that its coefficient

functions are analytic.

The requirements of Precondition 2.9 are fulfilled, for example, when Q C R¢ is a bounded
domain with a boundary which is a graph of a polynomial function, and when L is a PDE
operator of the form (2.2) with polynomial coefficients functions, where A(z) := (a;; (m))gjzl is
symmetric and ¢(x) > 0 for all x € Q, and where the eigenvalues of A(x) are uniformly bounded
from above and below by positive constants.

Theorem 2.10 (Regularity II) Let the domain Q2 and the partial differential operator L fulfil
Precondition 2.9. Then the results of Theorem 2.6 become valid, and any eigenfunction of the
variational eigenvalue problem (2.12) is analytic. In particular, we have E(\) C NHL(Q) and

each weak eigensolution of (2.12) is also a classical solution of the PDE eigenvalue problem
(2.1).

Proof: Note that from assumption iv) of Precondition 2.9 it follows that ¢ € L°°(£2) and
a;j € L*(€), and hence, together with the other assumptions of this theorem, it follows that
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the results of Theorem 2.6 become valid. Furthermore, in [41] and [64, Theorem 3.1] it is proven
that the eigenfunctions of (2.12) are analytic. More precisely, in [64, Theorem 3.1] it is shown
that F(\) ¢ H*(Q) for all & € N. From Sobolev’s embedding theorem (cf. Theorem B.22)
it follows that E(\) C CF(Q) for all k& € Np. Since it additionally holds E(\) C H(Q) we
conclude that E(\) C C*(Q) N H(Q). Furthermore, because of E(\) C C¥(Q) for all k € Ny
it follows that E(\) C C%(Q) N C%(Q), i.e., each weak eigensolution (), u) of problem (2.12) is
also a classical solution of (2.1). ]

To get a better understanding of the presented results for elliptic PDE eigenvalue problems,
in the next section an example is discussed.

2.3. Laplace Eigenvalue Problem on the Unit Cube

We consider the Laplace eigenvalue problem defined on the d-dimensional unit cube

—Au=Xu in Q= (0,1)4
u=Au in (0,1)4, (2.17)
u=0 on 0f.
The weak formulation of this eigenvalue problem is given by
find (\,u) € R x H}(Q)\ {0} such that
(2.18)

JoVul'Vo dz = X\ [yuv dz Vv € H}(Q).

According to Theorem 2.6 problem (2.18) has a countable family of eigensolutions (2.13) with
positive eigenvalues, where the corresponding eigenfunctions form a basis of H&(Q)

Due to the rectangular structure of the domain €2 and the simple form of the PDE operator L,
eigenvalue problem (2.17) is one of the rare examples where the eigensolutions can be computed
analytically. This is done as follows: First we determine the eigensolutions in the one-dimensional
case. For this purpose, we consider the homogeneous linear differential equation —u"(x1) —
cu(zy) = 0 in z; € (0,1) with boundary conditions u(0) = 0 = wu(1) where ¢ > 0 is some
constant. All solutions of this problem are given by

u(wl):{o if c ¢ {afn? : a1 € N},

for 1 € [0,1
asin(y/czy) if ce€ {ajr? : oy € N} 1efo1

where a € R is some arbitrary constant. It follows that for d = 1 all eigenfunctions of the PDE
problem (2.17) are given by

{asin(ay7z1) : o1 € N,a € R\ {0}}. (2.19)

Since the domain © = (0,1) and the PDE operator L = —A fulfil the regularity assumptions®
of Theorem 2.10 we conclude that each weak eigensolution (\,u) of problem (2.18) is also a
classical eigensolution of (2.17) with u € C*(Q) N H}(£), and hence all eigenfunctions of the
variational problem (2.18) are given as well by (2.19). From Theorem 2.6 iii) we obtain that

3Note that the regularity assumptions of Theorem 2.10 on the boundary 99 are only fulfilled for problem (2.18)
when d = 1, since we only have 9Q € C°*.
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the eigenfunctions {sin(aymz1) : a1 € N} are orthogonal on Hj(Q2) with © = (0,1), and
from Theorem 2.6 iv) we conclude that these orthogonal eigenfunctions form a basis of H}(€2).
From [25, Chapter II, Section 1] it follows that the d-fold tensor product of the one-dimensional
orthogonal basis functions forms an orthogonal basis of Hg(Q) with Q = (0,1)%, i.e., the function

system {uq(z) : @ € N}, with multi-index o = (e, ..., aq) and
d
ua () == Hsin(amxi) for x = (21,...,2q4)" €[0,1]%, (2.20)
i=1

is orthogonal and complete in H}(€2). An easy calculation shows that for all a € N¢ the functions
uq(x) are eigenfunctions of the PDE problem (2.17) with the associated eigenvalues

g i= 72 Z o?, (2.21)

and because of u, € H}(S) it follows that (A\a,us) is also an eigensolution of (2.18). In
particular, all eigensolutions of (2.18) are described by (Aq,%a)qend. The reason is as follows:
Assume that there exists an additional eigenfunction u € HZ(f) of problem (2.18) which is
linear independent to the eigenfunctions u, with o € N?. Then we can assume, without loss of
generality, that u is orthogonal in H}(£2) to u, for all a € N%. However, this is in contradiction
to the completeness of the function system (uq)qend-

Note that it holds u, € C(Q) N H}(Q), and that the eigenvalues A, tend to infinity (as it
is claimed by Theorem 2.6) if a; — oo for some i € {1,...,d}. Furthermore, we observe that
for d > 1 the dimension of the eigenspaces F(\,) can be larger than one. For example, if in
the three-dimensional case the indices a1, as, ag € N are pairwise different, then there exist
at least 6 linear independent eigenfunctions (e.g., U(ay,az,a3)r Y(aras,az)s etc.) which share the
same eigenvalue A = 72(a? + a3 + o3).
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In contrast to the example given in (2.18), in general the variational eigenvalue problem (2.12)
cannot be solved analytically, it has to be solved numerically. For this purpose the Ritz-Galerkin
discretisation is introduced: In the Ritz-Galerkin discretisation the variational eigenvalue prob-
lem (2.12) gets discretised by the use of some finite dimensional subspace, and an algebraic
eigenvalue problem is obtained. Depending on the properties of the used subspace, the dis-
crete eigenpairs of the algebraic problem are approximating the sought eigensolutions of the
variational problem (2.12).

The remainder of this chapter is organised as follows: In Section 3.1 the Ritz-Galerkin discreti-
sation is described, and in Section 3.2 corresponding approximation properties are discussed and
general error estimates are presented. In Section 3.3 the well-known finite element spaces are
recalled, which are based on a triangulation of the domain €2 with some underlying mesh width
h > 0 and which consist of piecewise polynomial functions of degree p € N. These finite element
spaces are very well suited, and widely used in practice, as a concrete choice for the underlying
subspace of the Ritz-Galerkin discretisation. The Ritz-Galerkin discretisation combined with
the finite element space is called finite element discretisation, and in Section 3.4 corresponding
a priori error estimates for the eigenvalue and eigenfunction approximation are presented which
are explicit in the underlying discretisation parameters A and p. Furthermore, the important
issue is discussed how many eigenvalues and eigenfunctions can be well approximated by a given
finite element space.

3.1. Ritz-Galerkin Discretisation of the Eigenvalue Problem

The basic idea of the Ritz-Galerkin discretisation is to replace the infinite-dimensional space
H{ () of the variational problem (2.12) by some suitable finite-dimensional subspace V}, with

Vi C HY(Q) and N, :=dimV}, < oco.

The index h > 0 used for the subspace V}, will get relevant in the next section where A is used to
indicate a family of finite-dimensional subspaces (V},)~0 which are approximating the underlying
Sobolev space H{ () for h — 0, and where h will refer to some mesh width parameter.

Since it holds V}, C Hg(Q) the bilinear forms a(-,-) and (-, -)o from (2.12) can be restricted to
Vi X V3, and hence the finite-dimensional variational problem

{ find (A, uM) e R x ¥, \ {0} such that 1)

a(u®™ v) = XM () v, VYoveV,
is well defined. The transition of the variational eigenvalue problem (2.12) to the eigenvalue

problem (3.1) is called Ritz-Galerkin discretisation or short Galerkin discretisation. In literature
sometimes problem (3.1) itself is also referred to as the Ritz-Galerkin discretisation of problem
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(2.12). Furthermore, the Galerkin discretisation is called conforming since the space V}, is a
subset of H}(Q).

Since the subspace V}, C H&(Q) is finite-dimensional, it follows that V}, is closed, and we
conclude from Remark 2.7 that under the assumptions of Theorem 2.6 the discrete variational
eigenvalue problem (3.1) has N}, eigensolutions of the form

h h . h h
(A uf) M e Rog x Vi \ {0} with A/ <A (3.2)
where all eigenvalues are positive. The eigensolutions (3.2) are called Ritz-Galerkin eigenso-
lutions (associated to subspace V}) of eigenvalue problem (2.12). In this context, we refer to
h)

(3.1) and ()\§ ,ug-h)) as the discrete problem and the discrete eigensolution, and refer to (2.12)

and (\j,u;) as the continuous problem and the continuous eigensolution. Furthermore, the

h)

eigenspaces for the discrete eigenvalues )\g- are defined by

Eh(/\yl)) = span{u eV & oa(u,v) = )\;h)(u,v)o Vove Vh}.

For the actual computation of the discrete eigensolutions a basis of the subspace V}, is needed
which shall be given in the following by (gpl(h))f.v:’a. Using this basis each v(®) € V}, can be
uniquely represented by an suitable coefficient vector (") e RMV: via,

Np,
oM = Z%('h) cpl(.h) and " = (l‘gh), . 7335\}/2 )T e RV,

The above representation leads to the so-called prolongation operator

Np,
PRV = Vi HY(Q) with o™ s Y2 (3.3)
i=1
which is bijective. Representing u(® in (3.1) by its coefficient vector " — ie., it holds

u™) = Pz(") — we can reformulate the Ritz-Galerkin discretisation (3.1) as
find (A", (") € R x R¥ \ {0} such that

SN (@l oyl = A0 S (oW oy i =1, N

This finally leads to the generalised algebraic eigenvalue problem

(3.4)

find (A, 2(M) € R x RN \ {0} with
KM p() = \(R) pp(h) p(h)

with the symmetric and positive definite matrices

N N
KR . ( (sogh),wgh))) " RVXNE and MW .= <((p§h)’(p£h))o) h

€ RVw*Nu  (3.5)
i,j=1

1,j=1

The matrix K is called system matriz or stiffness matriz, and M™ is called mass matriz.
The eigenvalue problems (3.4) and (3.1) are equivalent in the sense that

()\(h),x(h)) is an eigenpair of (3.4) <= ()\(h),Pa:(h)) is an eigenpair of (3.1). (3.6)
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3.2. Approximation Properties of the Ritz-Galerkin Discretisation

The aim of the Ritz-Galerkin discretisation is to approximate the sought eigensolutions (\,u)
of the continuous problem (2.12) by the eigensolutions (A", u(") of the discrete problem (3.1),
i.e., that the corresponding discretisation errors A — A" and u — u(® of the eigenvalues and
eigenfunctions shall tend to zero. For this purpose, a family of finite-dimensional subspaces
(Vi)n=o C H(Q) is needed which is approximating the underlying Sobolev space Hg () in the
sense that

lim inf |lu—o®|; =0 for all u € Ha (). (3.7)
h—0 o eV,

In the following basic approximation properties of the Ritz-Galerkin discretisation are presented,
and it is discussed under which assumptions the discrete eigenvalues and eigenfunctions of prob-
lem (3.1) converge to its continuous counterparts of problem (2.12).

Remark 3.1 The notation (Vi)p>o which is used to indicate a family of subspaces is an abbre-
viation and has to be interpreted as follows: We consider a family of subspaces (Vi)ney where
U is some arbitrary subset of (0,00) where 0 is an accumulation point of U.

The first observation which can be made in the analysis of the Ritz-Galerkin discretisation
is that the infinitely many eigensolutions of the continuous problem (2.12) are faced only with
finitely many eigensolutions of the discrete problem (3.1). Correspondingly a uniform approxi-
mation of all eigensolutions (\,u) of the continuous problem by eigensolutions (A, u(") of the
discrete problem is not possible. It is only possible to characterise a fixed eigenvalue A and a
fixed eigenfunction u of (2.12) as an accumulation point of discrete eigenvalues {\*) : h > 0}
and discrete eigenfunctions {u(h) : h > 0}, and to estimate the corresponding approximation
errors. However, before corresponding convergence results are discussed in detail, certain varia-
tional principles are presented which allow to characterise the eigenvalues and eigenfunctions of
the continuous and discrete problem as various extrema of the Rayleigh quotient

R(u) :=a(u,u) / (u,u)o with u € H}(Q) \ {0}.

Throughout the whole section we will assume that the eigensolutions of the continuous problem
(2.12) and of the discrete problem (3.1) are ordered as in (2.13) and (3.2) by the size and the
geometric multiplicity of the eigenvalues, i.e., it holds

(Aj,uj);";l € Rug x HY () \ {0} with A\; < \j4+1 for j € N,

(Al );V:hl € Rug x Vi, \ {0} with A < A, for j=1,...,N), — L.

Arranging the eigensolutions in this order enables the following well-known variational principles
which can be found for example in [5] or [7].
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3. Solving Elliptic PDE FEigenvalue Problems

Minimum-Maximum Principle:

Aj = min max R(u) = max R(u) for j =1,2,3,...,
H;CH}(Q) ueH;\{0} u€span{ut,...,u; }\{0}
with dim H;=j
)\g-h) = min max R(u) = max R(u) for j =1,..., Ny.
HJ(.h)CVh uEH](.h)\{O} uESpan{ugh),...,u;m}\{O}

with dim " =j

Minimum Principle:

If it is additionally assumed (without loss of generality) that the eigenfunctions of the continuous
and discrete problem are chosen orthonormal with respect to (-, +)o, i.e., we have

a(ui, U,j) = )\j(ui,uj)o = )\jdij for all 1,] € N
a(ugh),u§h)) = )\;h) (ugh),ugh))o = )\gh)éij foralli,j =1,..., Ny,
then it holds
A= min  R(u) = R(uw), Aj = min  R(u) = R(u,) for j =2,3,4,...,
ueH} (2)\{0} ’ wEHYO\(0), ’
for st 1
(h) : (h) (h) . () .
Ay = R(u)=R , A = R(u) = R(u; f =2,...,N,
1= Jmin  R(u) (u”) = min R(u) (u;"”) or j h
a(u,ugh))—o
for i=1,...,7—1

From the Minimum-Maximum principle directly follows that
A <A for j =1, N

Furthermore, the Minimum-Maximum principle helps to prove the following convergence result
of the Ritz-Galerkin discretisation.

Theorem 3.2 (Qualitative Convergence Results) Let the assumptions of Theorem 2.6 be
valid and let the family of finite-dimensional subspaces (Vi)p>o C H&(Q) fulfil approximation
property (3.7). Then it holds:

i) The discrete eigenvalues are approximating the continuous ones, i.e., it holds

AP 2205 foralljeN,
it) Consider for some fixed j € N a sequence of discrete eigenfunctions (ughi) )iEN with ug-h") €
Ep, (A§hi)) and ||u§hi)||1 = 1 where h; ~=°%5 0. Then there ezists a subsequence (ug-hi’“) )keN

which converges in H}(Q) to an eigenfunction u; € E()\;) and we have

~ h; k ~
i — ™ 2250 and g =1.
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3.2. Approximation Properties of the Ritz-Galerkin Discretisation

Proof: The result for the convergence of the eigenvalues follows directly from the Minimum-
Maximum principle, the approximation property (3.7) of V},, and the continuity of the Rayleigh
quotient R(-). The result for the convergence of the eigenfunctions is a combination of [37,
Theorem 11.2.11] and the convergence result for the eigenvalues described in i). [

In the following the convergence rate of the eigenvalue and eigenfunction approximation is
discussed. Note that dim E()\;) = dim Eh()\g-h)) does not necessarily need to hold. In the case
that dim E()\;) > 1 it can happen that the multiple eigenvalue \; gets approximated by several
discrete eigenvalues which differ from each other. However, if the eigenvalue A; is simple (i.e.,

it holds dim E(A;) = 1) then the eigenvalues )\g-h) are the only discrete eigenvalues that are

converging to A; for A — 0 and it holds dim Eh(/\g.h)) = 1 when h is sufficiently small. This

issue eases the error analysis of simple eigenvalues and typically leads to better error estimates
than when A; is a multiple eigenvalue. For this reason, in literature the error analysis is often
restricted to the case of simple eigenvalues A; which will be done here as well. For error estimates
associated to multiple eigenvalues it is referred, for example, to [7].

Theorem 3.3 (Quantitative Convergence Results) Let the assumptions of Theorem 2.6
be valid and let the family of finite-dimensional subspaces (Vi,)n=0 C H(Q) fulfil approzimation
property (3.7). Furthermore, let (X\j,u;) be a continuous eigensolution with dim E(\;) =1 and
lujlli = 1 with some fized j € N. Then there exists a constant C > 0 and discrete eigenfunctions

Téh) € Eh()\g-h)) such that for all h > 0 sufficiently small it holds:

: .\ : o (h)2
i) |)‘] )‘j | < CU(}L)HGthHUy CAFe
.. ~(h .

i) =@V < O it fuy— o™y,

v eV,

Proof: The error estimates follow directly from [37, Theorem 11.2.19 and Theorem 11.2.20]
where it is noted that e* in [37, Theorem 11.2.19] has been chosen to e* := e/||e||3. Further-
more, it is noted that the eigenvalues )\;h) are the only discrete eigenvalues that converge to A;
for h — oo since dim E();) = 1, and that according to Theorem A.16 the index of \; is equal to
1. Correspondingly all assumptions of [37, Theorem 11.2.19 and Theorem 11.2.20] are fulfilled.

As it can be seen in Theorem 3.3 the errors of the eigenvalue and the eigenfunction approx-
imation depend both on inf )y, [lu; — vM||1, ie., on the approximability of the continuous
eigenfunction u; by the underlying subspace Vj, of the Ritz-Galerkin discretisation. In practice
typically the finite element spaces are used as a concrete choice for V},, where the discretisation
parameter h refers to the mesh width of the corresponding triangulation (cf. Section 3.3). A
priori error estimates of the Ritz-Galerkin discretisation, which are explicit in the underlying
mesh width h of the used finite element space Vj, can then easily be derived by combining ap-
propriate regularity results of the continuous eigenfunctions (which describe their smoothness)
with corresponding approximation properties of the finite element space. For example, assuming
that V4, fulfils the approximation property

inf flu—o®™|; < Ch llull 2 () for all u € H?(Q) (3.8)
’l)(h)EVh
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3. Solving Elliptic PDE FEigenvalue Problems

with some constant C' > 0 independent of A (which is valid, e.g., for the finite element space
Vi, = X,ll o from Theorem 3.11), and combining this with the regularity result of Theorem 2.8
one obtains from Theorem 3.3 the following error estimates:

Corollary 3.4 Let the assumptions of Theorem 2.8 be valid for t = 1 and let the family of
finite-dimensional subspaces (Vi)p>0 C H} () fulfil approximation property (3.8). Furthermore,
let (A\j,uj) be a continuous eigensolution with dim E()\;) = 1 and |u;]i = 1 with some fized

j € N. Then there exists a constant C > 0 and discrete eigenfunctions ﬂg-h) € Eh()\g-h)) such that
for all h > 0 sufficiently small it holds

N A" < or?and  fuy-@ | < Ch

For the error estimate of u; — ug-h) better results are obtained in the L?(£2)-norm:

Theorem 3.5 Let the same assumptions as in Corollary 3.4 be fulfilled. Then there exists a
constant C' > 0 and discrete eigenfunctions ah e Eh(/\g»h)) such that for oll h > 0 sufficiently

J
small it holds
luj — @V < Ch2

Proof: The error estimate follows directly from [37, Theorem 11.2.22]. Note that the eigenval-
ues )\§h) are the only discrete eigenvalues that converge to \; for h — oo since dim E();) = 1,
and that according to Theorem A.16 the index of ); is equal to 1. Furthermore, the needed
HZ-regularity of the bilinear form a(, -) follows from [37, Theorem 9.1.16], and E(\;) C H?(Q)
follows from Theorem 2.8. Correspondingly, all assumptions which are made in [37, Theorem

11.2.22] are fulfilled. u

Note that the constant C' which is involved in the error estimates of Theorem 3.3 — Theorem 3.5
in general depends on each individual eigenvalue A;. Furthermore, the discretisation parameter
h has to be sufficiently small in order that the corresponding convergence rates for )\gh) and ugh)
become valid. This means that in practice these convergence rates get only visible when h < Apax
where hpax > 0 is fixed maximal mesh width which depends on the size of the corresponding
eigenvalue \; and its spectral separation. This issue is discussed in detail in Section 3.4 for
the well-known finite element spaces which are typically used in practice as concrete choice for
the subspace V}. But first of all, the finite element spaces are briefly recalled in the following
section.

3.3. Introduction of Finite Element Spaces

To apply the Ritz-Galerkin discretisation and to compute the discrete eigensolutions ()\(h), x(h))
[respectively the eigensolutions (A, u(™)] of the algebraic eigenvalue problem (K" M(h)
from (3.4), a basis (gpgh))fihl of the underlying subspace V}, is needed. Using an arbitrary basis,
however, might be disadvantageous, since in that case the stiffness matrix K" ¢ R¥»*Nn and
the mass matrix M® e RNe*No from (3.5) are possibly dense, i.e., that for the most of the
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3.3. Introduction of Finite Element Spaces

Figure 3.1.: Triangulation of a polygonal domain (middle): admissible (left), non-admissible
(right) with so-called hanging nodes (i.e., vertices of triangles lay on edges of other triangles).

indices 7,5 =1,... ,N(™ the matrix entries
(K™Y, = a(¢§h),¢§h)) _ /Q(vsog'h))TA(V(pl(’h)) n C@gh) o™ dz, (3.9)
M0 = (o = [ 6" da (3.10)

are different to zero. A dense matrix structure is costly: For example, the matrix-vector multi-
plication Kz results in costs of the order O(N?) with N := Nj. Correspondingly, if N*)
is getting large the Ritz-Galerkin discretisation with a general basis is getting unfeasible, and
hence a basis is needed such that K", M) become sparse. The following observation shows
how the basis functions have to be chosen:

Lemma 3.6 Denote I; := supp(gpl(-h)) \ asupp(cpl(-h)

the matrixz entries Kl(Jh) and Mg”) are zero if it holds I; N I; = ().

) the interior of the basis function gpl(-h) then

Proof: Since the integration in (3.9) and (3.10) can be reduced to I; N I; the matrix entries
Kz(]h) and Mi(Jh) become zero in the case that I; N I; = 0. -

The finite element spaces, which are discussed in the following, are based on the observation
made in Lemma 3.6. The finite element spaces are spanned by basis functions with a small local
support and are in general very well suited, and widely used in practice, for the Ritz-Galerkin
discretisation of scalar elliptic partial differential equations, and hence for the discretisation
of eigenvalue problem (2.12). The Ritz-Galerkin discretisation using finite element spaces for
V3, is simply called finite element method (short FEM) or finite element discretisation. In the
following main principles of finite element spaces are summarised and approximation properties
are presented. For ease of representation the discussion is restricted to the very important class
of simplicial finite element spaces. More information on finite elements can be found, e.g., in
[23], [24] and [37].

3.3.1. Simplicial Finite Elements

The construction of finite element spaces and its basis functions starts with the subdivision of
the domain € into a finite number of small subsets T; € Q for ¢ = 1,...,¢ with some ¢t € N.
These small subsets T; are called finite elements and are the foundation of the corresponding
basis functions respectively their supports. The subdivision of € is called triangulation' and is
denoted by T = {T1,...,T;}. In the following it is assumed that the triangulation consists of
simplices with the following properties.

!The term triangulation is used independently of the underlying spatial dimension d and independently of the
concrete shape of T;, i.e., also when in the case of d = 3 cubes are used for T; C 2.
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Definition 3.7 (Admissible Triangulation) A triangulation T = {T1,...Ti} of the domain
Q C R? is called admissible if it holds:

i) Each T; C R? is an open d-simplex (i.e., an interval, a triangle or a tetrahedron for d = 1,2
or3),

i) Q=i Ti with T;NT; = fori # j,

iii) Every vertez, edge, face of T; is either a subset of O or a vertex, edge, face of another T
with i # j.

According to Definition 3.7 an admissible triangulation is only possible when Q@ C R? is a
polytope?. For the sake of simplicity, we assume in the following that  has such a shape and
that d < 3.

3.3.2. Simplicial Finite Element Spaces

In order to construct a family of finite element spaces (V3,)n>0 [cf. Remark 3.1] which is ap-
proximating the Sobolev space H}(f2) [as needed in (3.7) for the Ritz-Galerkin discretisation]
a family of admissible triangulations {7 }x~¢ is needed. The discretisation parameter h of the
triangulations 7}, is chosen in the following such that h equals the value h(7;,) where

h(Th) == max{ hr : T e 77L} and hp = diam(T),

i.e., the parameter h explicitly refers to the mesh width of 7;,. The finite element spaces are
defined as follows:

Definition 3.8 (Finite Element Space) Let T;, be an admissible triangulation of Q0 consist-
ing only of d-simplices (cf. Definition 3.7). Then the associated simplicial finite element spaces
are defined by

X) .= Xg—h = {U c L*(Q) : v €Pp for all T € ’E},

Xp o= X};—h = {UGCO(Q) : vp € Py for allTE'ﬁl} for p > 1,

where P, is the space of polynomials in R? of total degree p € Ny which is consisting of all
functions v : R* = R of the form

v(x) = Z Caxit .. xl? for z € R? with a € N¢ and ¢, € R.
lal<p

Hence, the spaces XZ consist of piecewise polynomials of total degree p € Ny which are continuous
for p > 1. The relation between X} and Sobolev space H!(Q) is as follows:

Theorem 3.9 For p > 1 it holds X§ c H' ().

2A polytope is a bounded set of points in R? that has flat sides, i.e., for d = 2 it is a polygon and for d = 3 it is
a polyhedron.
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Proof: This result follows directly from [24, Theorem 5.1]. |

For the Ritz-Galerkin discretisation of eigenvalue problem (2.12) a finite-dimensional subspace
Vi, C H§(€) is required. Theorem 3.9 guarantees the inclusion X§ C H'(€2) for p > 1, however, a
subspace V}, is needed consisting of functions that are zero on 0€2. For this purpose the following
finite element spaces are introduced

Xpo = {veX) ivpa=0} = Xjn H(Q)  forp>1. (3.11)

3.3.3. Approximation Properties of Finite Element Spaces

Using V), = X]Z,O for the Ritz-Galerkin discretisation of eigenvalue problem (2.12), one is in-
terested if approximation property (3.7) is fulfilled, and motivated by Theorem 3.3, how well
the eigenfunctions u € HE(Q) of the continuous problem (2.12) can be approximated by the
finite element space XQO. The approximability of u depends on its smoothness which can be
guaranteed, e.g., by the regularity result of Theorem 2.8: Depending on certain smoothness
assumptions on the data it holds u € H*(Q) for some suitable k& > 2. Thus, one is interested in
error estimates between the spaces X%O and H*(Q), which are typically derived by constructing
an interpolation operator I fl' :CY(Q) — XZ and by estimating the approximation error of v — I gv
for v € C°(Q) (see, e.g., [24]). Because of the Sobolev’s embedding theorem (Theorem B.22) it
holds H*(€2) € C°(Q2) for k > 2 and d < 3, and hence the error estimates of v—I7v are also valid
for v € H¥(Q). The described approach results in error estimates which are summarised in The-
orem 3.11, however, an additional assumption has to be made on the triangulations associated
to the finite element spaces:

Definition 3.10 (Regular Family of Triangulations) A family of admissible triangulations
{Th}n>0 is called regular ([24, Section 17]) if it holds:

i) There exists a constant o > 0 such that

% <o forallT €T, and all T, € {Th}ns0

where pr := sup{diam(B) : B is a ball with B C T'}.

1) It holds inf{h(T) : T € {Tntn =0, i.e., the mesh width of the triangulations approaches
) >0 e, g pp
zero.

Theorem 3.11 (Approximation Properties) Let Q C R? be a bounded polytopal domain
and d < 3. Furthermore, let {Tn}n>0 be a regular family of triangulations of Q consisting only
of d-simplices with h = h(Ty,), and let Xﬁ and XQO be the associated finite element spaces with
p > 1. Then there exists a constant C' > 0 independent of h such that for t € {0,1} and k € N
with 2 < k < p—+1 it holds

inf  Jlu—o®|; < ChFHulp for all u € H*(Q)

v(h) ex?
inf Jlu—o®|, < CAFHul,  for all uw e HF(Q) N H(Q).
v(h)EXfMO

Proof: The result for k = p+ 1 follows directly from [24, Theorem 17.1] and by using Sobolev’s
embedding theorem. The results for £ < p + 1 follow from the error estimate associated to the
polynomial degree p := k — 1 and using the relation X} c XJ. [ ]
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Figure 3.2.: Triangulation of the unit square with 9 inner nodal points that are associated to
the finite element space X}L’O. Furthermore, the nodal basis function gol(h) € Xfl o> associated to

the nodal point in the centre, has been illustrated (right) and its support (left).

3.3.4. The Nodal Basis of the Finite Element Space

Last but not least a basis (%(h) )ZN:h1 of XQO is needed such that the stiffness matrix K" and the
mass matrix M become sparse. Such a basis is derived as follows: Each triangulation Tj of 0 is
associated with certain nodal points lNJl(-h) € Qwithi=1,..., N, such that each function v € Xﬁ
is uniquely described by the point values v(h)(ggh)) fori=1,... ,Nj. These nodal points are
allocated to the simplices T' € Ty, and their number Nj, depends on the polynomial degree p > 1
and the spatial dimension. Due to the continuity condition X} C C%(Q) for p > 1 the nodal
points have to coincide with the vertices of the simplices T (for p > 1), and with certain edge
points of T' (for p > 2), and possibly with certain inner points of T (see, e.g., [24, Section 6] for
details). Using these nodal points the so-called nodal basis (gb(h))f-vzhl of X} can be defined which

Eh) € X} satisfying gé(h)(l;g-h)) =0 fori,j=1,..., N,

is uniquely described by these functions ¢ ;

Considering only the inner points

{bl(-h) : izl,...,Nh} = U {th):ggh)géaﬁ}

7;:17"'7Nh

that are not element of the boundary 0f2, one defines the nodal basis (%(h)) ZN:hl of X} , which is

uniquely described by these functions w(h) € X}, satisfying go(h)(bg-h)) =0 fori,j=1,...,Np.

7 )
(h) Np

By construction the basis functions (¢, ’);.", have a small local support (cf. Figure 3.2) where

h —
supp(ef) < |J T,
TET,
with b €T

which results in sparse matrices K™ and M (cf. Lemma 3.6).

3.3.5. Isoparametric Finite Elements

So far it has been assumed that the domain © C R¢ is a polytope. However, finite element spaces
are not restricted to such domains and can be extended to domains with a curved boundary. A
well suited approach for this purpose are the so-called isoparametric finite elements (see, e.g.,
[23, 24, 37]) which are briefly described in the following.

Isoparametric finite elements generalise simplicial finite elements and the associated definition
of an admissible triangulation 7 as follows: Instead of assuming in Definition 3.7 that each finite
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B B _Fr,

Figure 3.3.: Mapping of the reference element 7 (unit simplex) to the simplex finite element
T1 and to the isoparametric finite element 15 where Fr, is affine and Fr, not.

element T € T is a d-simplex, it is only required that 7T is an image of the d-dimensional unit
simplex T (so-called reference element). In particular it has to hold that

i) each finite element T € T is described by an diffeomorphism Fr : T — T,

ii) element maps of elements that share an edge or a face (or a higher-dimensional simplex at
their surface) possess the same parametrization on that edge or face (or a higher-dimensional
simplex).

If the element maps Fp are affine, then the simplicial finite elements from Definition 3.7
are obtained, otherwise one obtains elements with a curved boundary (cf. Figure 3.3). Using
the isoparametric finite elements the definition of the finite element space Xﬁ,o is generalised:
Let 7, be an admissible triangulation of €2 consisting of isoparametric finite elements then the
associated finite element space XZO is defined by

XZO = {v e C'(Q) : vpobp € P, forall T € 771} NH(Q) forp > 1. (3.12)

When certain assumptions are made on the element maps Frp of a family of admissible isopara-
metric triangulations {7} }r~0, then the approximation properties presented in Theorem 3.11 can
be retained for the finite element space X],DL o from (3.12). These assumptions basically generalise
the definition of a regular triangulation fémily for polytopal domains (cf. Definition 3.10) to
domains with curved boundaries with isoparametric finite elements, and in literature exist dif-
ferent approaches for doing this (see, e.g., [37, Section 8.6] and [24, Chapter VI]). More details
are presented in detail in the following section.

3.4. Approximation Properties of the Finite Element Discretisation

In Section 3.2 general approximation properties of the Ritz-Galerkin discretisation have been
discussed. Depending on the properties of the finite-dimensional subspace V}, the discrete eigen-
values )\S-h) and eigenfunctions ug-h) of problem (3.1) are approximating the sought continuous
eigenvalues \; and eigenfunctions u; of problem (2.12). In Theorem 3.3 corresponding error
estimates of \; — )\;h) and u; — ug-h) can be found. In this section approximation properties of
the finite element discretisation are discussed, i.e., of the Ritz-Galerkin discretisation using the

finite element spaces Xzo(cf. Section 3.3). More precisely, in this section error estimates of

Aj— /\E.h) and uj — u§h) are presented which will depend on the discretisation parameters h and
p, the spatial dimension d, the size of the eigenvalue \; and its spectral separation. Further-
more, the following important issue is discussed: In Section 3.2 it was already highlighted that
the discretisation parameter h has to be sufficiently small (cf. Theorem 3.3 — Theorem 3.5) in

(h) (h

order that the predicted convergence rates of A ; and u; ) become valid. In practice this means
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that the corresponding convergence rates get only visible when h < hpax (cf. [9]) with a fixed
maximal mesh width Apax > 0. In this section this maximal mesh width will be (asymptoti-
cally) quantified. Directly connected to the question on the maximal mesh width Apax — or
respectively, the minimal dimension Ny, of the finite element space Xz,o — is the question how
many eigenvalues and how many eigenfunctions can be well approximated by the finite element
discretisation using a given finite element space XZ,O. Under certain assumptions it is obtained
that, for example, in the three-dimensional case for the continuous problem (2.12) the smallest
CN, 5/ > eigenvalues and the eigenfunctions associated to the smallest C' IV, ,1/ 4 eigenvalues can be
well approximated by the finite element method using the space X]ll,o (space of piecewise affine
functions) where N;, = dim X,ll’o.

Throughout this section we will use the following precondition.

Precondition 3.12 (FEM Setting) We consider the variational eigenvalue problem (2.12)
and its Ritz-Galerkin discretisation (3.1) associated to a family of finite-dimensional subspaces
(Vi) h=o with V}, C H&(Q), where the following assumption are made:

a) Assumptions on the data

We assume that Precondition 2.9 is fulfilled, in particular this means that L is a uniformly
elliptic PDE operator with analytic coefficients and that Q C R? is a bounded Lipschitz domain
with analytic boundary.

b) Assumptions on the numbering of the eigensolutions

We assume that the eigensolutions of the continuous problem (2.12) and the discrete problem
(3.1) are ordered by the size and the geometric multiplicity of the eigenvalues, i.e., for the
corresponding eigensolutions

L €Rso x Vi \ {0} (3.13)

h) (h
(Ao )2, € Rog x HY()\ {0} and (A, uf")
holds A; < Ajy1 for j € N and A" < X% for j = 1,... Ny, = 1 where N, := dim V.
Furthermore, we assume (without loss of generality) that the eigenfunctions of the continuous
problem are orthonormal in L*(S)), i.e., it holds

a(ui,uj) = /\j(ui, U,j)() = Ajéij for all ¢,j € N.

c¢) Assumptions on the subspaces (Vi)p>0

We assume that the finite element spaces Vi, = X%O from (3.12) are used for the Ritz-Galerkin
discretisation with some fixed polynomial degree p > 1, where the associated family of admissible
triangulations {Tp}n>0 uses the isoparametric finite elements described in Section 3.3.5, which
admits domains with curved boundary. For the corresponding element maps it is assumed that
for each T € Ty the element map Fr : T — T can be written as Fr = Ry o Ap, where Ap
s affine and the maps Ar, Ry fulfil for constants Ca,Cr,vr > 0 independent of T € T, and
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3.4. Approximation Properties of the Finite Element Discretisation

independent of h = h(Ty) that:

i) |IDArllw < Cahr,  |(DA7) Yoo < Cahz',  |(DRr) o <Cr  (3.14)

where hp := diam(T") and D denotes the total derivative.
nl 1/2
i) |Rlpco = H { o |DR|? }

where |D*R(x Z |D*R;(x)|* and R; are the component functions of R.

< Crn!(yr)" for all n € Ny,
L= (Ap(T))

laj=n

Remark 3.13 i) The assumptions made in Precondition 3.12 c) on the triangulations {Tp } n>0
appear technically, however, they generalise Definition 3.10: In the case that ) is a polytope
and all element maps Fr are affine (i.e., Ry is the identity mapping) then the requirements
on Ar in (3.14) are equivalent with the requirements on a regular family of triangulations
from Definition 3.10. Furthermore, the assumptions made on Ry imply that Rp is an
analytic diffeomorphism (cf. inverse function theorem ).

ii) A family of triangulations {Tp } >0 satisfying Precondition 3.12 c¢) can be obtained as follows
(cf. [64]): Let Traero be a fized triangulation (possibly with curved elements) with analytic
element maps Frp : T — T that resolve the geometry of Q. Furthermore, consider a regular
family of triangulations {’7' Yiso (cf- Definition 5.10) of the reference element T (unit sim-
plex). Then tmangulatzons Tr, of Q satisfying Precondition 3.12 c¢) are obtained by mapping
the triangulations 77 ofT with the macro element maps Fr: T — T.

The error estimates of \; — A§h) and u; — ug-h) which are presented in the following have been

original derived in [64]. However, in this work the estimates of [64] have been slightly adjusted

(cf. Appendix D) with a special focus on the necessary conditions on h such that the predicted

convergence rates get visible. Furthermore, certain assumptions on the asymptotic behaviour

of the eigenvalues have been made in [64] in order to derive the error estimates: Firstly, it

is assumed that there exists a constant C, > 0 independent of j such that j < C’b)\d/ 2

secondly, it is assumed that the spectral gap is bounded by Ai();) > CeAj d/2, see (C.8) for
details, where ¢, > 0 is a constant independent of j (which has been motivated under quite
technical assumptions for a special case). In this work, however, it could be shown that in
general there exist constants Cy,c, > 0 independent of j (cf. Theorem C.2) such that the
eigenvalues of problem (2.12) can be bounded by

, and

IN

.\ 2/d
X < j < CAY? and <3)

2/
Aj < () for all j € N. (3.15)
Cy

Cy

Although result (3.15) was not hard to establish it is not described (to the best of the author’s
knowledge) in literature in this form. Furthermore, it could be shown in this work that in

general the spectral gap of the eigenvalues can be bounded by Aq()\;) > cg)\j_d/ ? with some
constant ¢, > 0 independent of j when assumptions on a certain remainder term are fulfilled (cf.
Theorem C.4). Especially result (3.15) opens up the possibility to discuss not only the minimal
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dimension of a finite element space to well approximate a given eigenvalue or eigenfunction,
but also allows to measure asymptotically the number of well approximable eigenvalues and
eigenfunctions by the finite element method using a given finite element space. The correspond-
ing results are summarised in the following, however, the analysis and proofs can be found in
Appendix C (asymptotic distribution of eigenvalues) and Appendix D (preliminary work FEM
approximation).

Corollary 3.14 (Summary I) Consider the variational eigenvalue problem (2.12) and its Ritz-
Galerkin discretisation (3.1), and assume in the following that Precondition 3.12 is satisfied and
that j € {1, e ,Nh}.

FEigenvalue Approximation:

Let Clyy, Ciye > 0 be some sufficiently small constants and let the mesh width h of the finite

i size
element space Vi, be chosen such that one of the following conditions is fulfilled

2p
o RTd < CRY, (3.16)
.o 2p p+% EV
ii) hPX; < Cgire- (3.17)

Then it holds

(h) 2 2
ARy Coh \ %P Ah 20!
0< ﬂAij <Cj ( 2 ) + <\/;> with €)= —— =25 (3.18)
g

VA h+o (min{A;,1})3

where Cy, Cs,0 > 0 are constants independent® of j, h, p.

Eigenfunction Approximation:

Assume additionally that all continuous eigenvalues are simple, i.e., it holds
/\1<)\2<)\3<..., (319)
and assume for j € N (in view of Theorem C.4) that the spectral gap satisfies

Ai — A1 -4

min ———— > g, 2 with j, := max{j,2 3.20
ety 2% al b2} (3:20)
for some constant cs > 0 independent of j. Furthermore, let CEL, CEF > 0 be some sufficiently
small constants and let the mesh width h of the finite element space Vi, be chosen such that one

of the following conditions is fulfilled

2p
) RPTd < CFf, (3.21)

i) AT < o (3.22)

— size*

Then there exist a discrete eigenfunction ﬂ;h) € by ()\;h)) such that

. N(h) =~ ~ P
HU/] — u] ”1 < 03 1 + % )\1+%l hmin{p,Q} 1 < CQh >p n \/Eh} .
v 7 min{l, A} cg 7 N \h+to op

(3.23)

where Co, 53, C~'4,a > 0 are constants independentt of j, h, p.

3The constants Ca, Cs depend on CLY and CLy, respectively.
4The constants Cs,Cs depend on CEY and CEY, respectively, and the constant o is the same as in (3.18).
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3.4. Approximation Properties of the Finite Element Discretisation

Proof: The proof can be found in the end of Appendix D. [ |

For reasons of simplification the error analysis of the eigenfunction approximation has been
restricted to the case that all continuous eigenvalues are simple. This restricting is quite strong,
however, similar error estimates can be derived for the general case by combining the approxima-
tion properties between the continuous eigenfunctions and the finite element space V}, (which are
described in [64]) with general results of the Ritz-Galerkin discretisation for multiple eigenvalues
(which can found, e.g., in [6] and [48]).

Furthermore, it is noted that result (3.15) allows to derive a priori error estimates for the
eigenvalue and eigenfunction approximation which are independent of the size of the (associated)
eigenvalue, and which depend instead on the corresponding index®: For example, from (3.23)
and (3.15) error estimate

lu; — @ a2 1 [ Coh N [\ h\”
e Ll / ! :1+5 pmin{p,2} - 2 J A
Tl = (G5 rin ai\nvo) “la) o

is derived with constants Cs, 5{,,, CN'jt, o > 0 independent of j, h, p.

The error estimates of Corollary 3.14 (and Theorem D.4) reveal the asymptotic dependence
of the approximation error on the discretisation parameters h and p, on the size (and index) of
the eigenvalue, and on the spectral gap. However, the error estimates become valid only when
the mesh width A of V}, is small enough to fulfil the conditions (3.16), (3.17), (3.21) or (3.22). In
particular, we observe that only the smallest eigenvalues A; and their associated eigenfunctions
u;j can be well approximated by the finite element method: On one side the approximation error
increases with increasing size of the eigenvalue, and on the other side, even more crucial, the
necessary conditions on the mesh width A can be fulfilled more easily by the smallest eigenvalues.

Remark 3.15 (Refining the FEM Space) In the concrete application of FEM the mesh width
h is fized. However, if the finite element space should be further refined the question arises which

type of refinement is more efficient: Is it more efficient to (locally) reduce the mesh width h ( “h-

refinement”), or to (locally) increase the polynomial degree p (“p-refinement”), or to do both of

it. Under the assumption that dimVj, € O((p/h)?) the observation of (3.18) and (3.23) shows

that the p-refinement is more advantageous regarding a small dimension since (provided that h

is sufficiently small) the discretisation error is decreasing exponentially in p.

The conditions on the mesh width A in Corollary 3.14 allow to decide if an eigenvalue or
eigenfunction of the continuous problem (2.12) is well approximable by the finite element method.
In this context the question arises what is the maximal possible mesh width or the minimal
dimension of a finite element space to well approximate a given eigenvalue or eigenfunction
and, furthermore, how many eigenvalues and eigenfunctions can be well approximated by a
given finite element space Vj. These questions are answered in the following by Theorem 3.17,
but before, to ease the discussion, it is explicitly defined when an eigensolution is called well
approximable.

Definition 3.16 (Well Approximable) In view of Corollary 3.14 we call an eigenvalue of
the continuous problem (2.12) as “well approximable by (the finite element method using the

5In this section the index of an eigenvalue A; and eigenfunction u; denotes always the numbering index j (not
to be confused with the index of an eigenvalue defined in Theorem A.12).
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finite element space) Vi, if condition (3.16) or condition (3.17) is fulfilled. Analogically, we call
an eigenfunction of problem (2.12) as well approximable by V}, if condition (3.21) or (3.22) is
valid.

In particular, this means that if an eigenvalue or eigenfunction is called well approximable the
approximation error can be bounded by the right-hand side of (3.18) and (3.23).

Corollary 3.17 (Summary II) Consider the variational eigenvalue problem (2.12) and its
Ritz-Galerkin discretisation (3.1), and assume that Precondition 3.12 is fulfilled. Furthermore,

assume that h < h.gm, for some hgm, > 0 and that the dimension of the finite element space
Vi, is bounded® by

1
C*SN}LSC

7d for all h with 0 < h < hugymp- (3.24)

For the following results concerning the eigenfunction approximation it is additionally assumed
that all eigenvalues are simple and that the spectral gap fulfils condition (3.20).

Mazimal Mesh Width of the Finite Element Space:

If we denote by hiy (j) and ki) (X)) the mazimal mesh width of Vi, in order to well approzimate

max

the continuous eigenvalue A\j = A, and by hiy, (7)) and hiy, (X) the mazimal mesh width to well

approrimate the associated ezgenfunctzon u; = u then these quantities are given by

- 2p+d - p+d
EV () __ EV EF [\ __ EF
hmax( ) - C’idx] 2pd and hmax( ) - idx J pd ’
2p+d p+d
REY (A) = CEY. A" & and  hFE_(\) = OB A 2
max size max size

CEF CBY  CEF > ( independent of j, \, h.

with suitable constants CLY, CEL, CEY., CEF

Minimal Dimension of the Finite Element Space:

If we denote by NEY () and NEY (X\) the minimal dimension of V}, in order to well approzimate
the continuous eigenvalue A\j = X, and by NEI (j) and NEL (X) the minimal dimension to well

approzimate the associated eigenfunction u; = u then these quantities are asymptotically given
by

d d
NE () = @(j”?p) and  NEE(j) = @(j”p ) (3.25)
d+d2 g+£
NEY (\) = G)()\? 4p> and  NEF (\) = e(v 2 ) (3.26)

Mazximal Number and Size of Well Approzimable Figensolutions:

If we denote by jiY (Np,) the maximal index of the continuous eigenvalues and by jEE (Ny) the

5The assumption (3.24) is not very restrictive. The assumption (3.24) is fulfilled, for example, when the triangu-
lations {ﬁ}h>o associated to finite elementA space V4, are constructed as described in Remark 3.13 ii) whereby
the triangulation of the reference element 7' (unit simplex) is refined using uniform grids.
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mazximal index of the continuous eigenfunctions which are well approzimable by Vy, then these
quantities are asymptotically given by

2p P
-]r?l\;,x( ) - ®< 2p+d> and jmax<Nh) - @<Nf:f+d ) (327)

If we denote by \EY. (N}p,) the mazimal size of the continuous eigenvalues which are well approz-
imable by Vi, and by A% (Ny) the maximal size of the eigenvalues associated to the continuous

etgenfunctions which are well approximable by Vi, then these quantities are asymptotically given
by

_Ap _2p
ABY () = 9<N,{l<2p+d> ) and A _(N,) = @(th(p*d) ) . (3.28)
Proof: The proof can be found in the end of Appendix D. [ |

From Corollary 3.17 follows that, for example, the eigenvalue A; is well approximable by all
finite element spaces X} ; when the underlying mesh width is fulfilling A < kY, (j) or when the

max

dimension of the finite element space is fulfilling Ny, > CNEY (j)/c [cf. proof of Corollary 3.17]
for suitable constant C, ¢ > 0 independent of j, h. The results of Corollary 3.17 are summarised
In Table 3.1 and Table 3.2 for the dimensions d = 1, 2,3 where the important space X}z o (space

of piecewise affine functions) is highlighted.

The maximal mesh widths ALY (M), hEE (X)) and the asymptotic behaviour of the minimal

dimensions NEY (X), NEF (X) have been first derived in [64], however, by explicitly assuming

min min

that there exists a constant C}, > 0 independent of j such that j < C’b)\;l/ . In this work it is
shown that this assumption is fulfilled anyway (cf. Theorem C.2). Furthermore, in this work
the maximal mesh widths and the asymptotic behaviour of the minimal dimensions have been
derived in dependence of the index j of the eigenvalue or eigenfunction. Moreover, the question
on how many eigenvalues and eigenfunctions can be well approximated by a given finite element
space V}, has been answered and how large the (associated) eigenvalue can get in order to be
well approximable.

Remark 3.18 (Sharpness of the Results) i) In [9] first systematic numerical experiments
have been performed [for a 1D and 2D model problem with V}, = X}l o/ in order to investi-
gate the asymptotic sharpness of the error estimates (3.18) and (3.253), and the asymptotic
sharpness” of the mazimal mesh widths hEY. (\) and hEE_(X\). The sharpness of the results
for the eigenfunction approzimation could be largely validated. The measured error of the
etgenvalue approrimation, however, has been asymptotically slightly smaller than predicted
[on the right-hand side of (3.18) the factor j could not be observed], and hE) . .(\) has been
slightly too strict, i.e., the asymptotic convergence rate became visible for mesh widths slightly
larger then hiY . (X). However, the benchmarked model problems exhibit a special structure
(cf. [9]) which facilitate the FEM approzimation of the eigenvalues and eigenfunctions, so
that according to [9] this might be the reason for the slightly better approximation properties.

"Sharpness in the sense that the asymptotic convergence rates of the eigenvalue and eigenfunction approximation
become visible if and only if A < htv, (\) and h < AEE_(N).
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ii) Since all other quantities described in Corollary 3.17 can be derived from hLY. (\) and

hEY < (A) using the estimates (3.15) and (3.24) the asymptotical sharpness of these quantities

max

follows from the sharpness of hEY () and hE: . (N).

max max

i) If in Corollary 3.17 it is assumed that dim Vi, € O(1/h%) instead of dim Vj, € ©(1/h%) then
the statements on the asymptotical behaviour of the minimal dimension, mazximal index
and mazimal size have to be weakened: For the minimal dimension we obtain the same
statements as in (3.25) and (3.26) but only of the form O(...), and for the mazimal index
and the mazimal size we derive the same statements as in (3.27) and (3.28) but only of the

form Q(...). ¢

Remark 3.19 (Analytic Data) For the results presented in Corollary 3.14 and Corollary 3.17
it is essential that the eigenfunctions u of problem (2.12) fulfil w € C*°(Q). By assuming
analytic data (Precondition 2.9) in Precondition 3.12a) the smoothness of the eigenfunctions
can be guaranteed using Theorem 2.10. However, if Precondition 3.12a) is not fulfilled but it can
be guaranteed anyway that for all eigenfunctions u of problem (2.12) it holds u € C*(Q)), then
the results presented in Corollary 3.14 and Corollary 3.17 remain valid (cf. [64] and Appendiz
D).

8See the list of symbols for the definition of the asymptotic notations O(...), ©(...) and Q(...).
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FEM space V}, = X}L,O FEM space V}, = X%O

d=1| d=2| d=3 =1 | d=2 | d=3

[ 2pt1 2p+2 2p+3
NELG) || ey | ey | e @(j 7 ) @(j 7 ) e(j o )
ptl pt2 pt3

NEG) | o) | e | et e(j z ) e(j z ) e(j z )
( 2pt1 apta 6p+9
NEY.(A) || ©(A¥4) | ©(A2) | ©(A15/4) @(A 4p ) e(x 1p ) 8<A Ap )
ptl 2p+4 3p+9
NEE(A) || ©(Al) | o(x3) | e(5) @(Aim > ®<A % ) @(A % )

Table 3.1.: In view of Corollary 3.17 the asymptotical behaviour of the minimal dimension of
the finite element space V}, in order to well approximate an eigenvalue (EV) or an eigenfunction
(EF) of the continuous problem (2.12) by the finite element method.

FEM space V}, = X}L,O FEM space V3, = X}

d=1 \ d:Q\ d=3 d=1 d=2 \ d=3
2r_ 2 2p_
BN | O(N®) | o(N) | o(ni®) | o NFT ) o N ) | o N

i (V) || O(N2) | () | e(n)

Anax (Nh)

/\E;X (Nh)

Table 3.2.: In view of Corollary 3.17 the asymptotical behaviour of the maximal index and
the maximal size of the (associated) eigenvalue to well approximate an eigenvalue (EV) or an
eigenfunction (EF) of the continuous problem (2.12) by the finite element method.
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4. Summary and Problem Description

The objective of this work and the results of the previous chapters can be summarised as follows:
This work is focused on the efficient solution of the continuous eigenvalue problem

{ Lu=MAu in €, (A1)

u=0 on 9N

where Q C R? is a bounded domain (d = 2,3) with Lipschitz boundary 0 and L is a linear
uniformly elliptic second order PDE operator (cf. Definition 2.1) in divergence form

d
Lu= —diV(AVu) +cu=— Z 8?3 <aij£u> + cu
( J

1,7=1

with L (Q)-functions a;;, ¢ where A := (aij)?,jzl and ¢ > 0. To solve problem (4.1) the
corresponding weak formulation

{ find (\,u) € R x H}(Q)\ {0} such that (4.2)

a(u,v) = X(u,v)o Vv e H}Q)

is derived where a(u,v) = fQ Vul AVv + cuv dz is a symmetric elliptic bilinear form (cf. proof
of Theorem 2.5) and (u,v)o = [, uv dz is the inner product of L?(£2). According to Theorem
2.6 the continuous eigenvalue problem (4.2) possesses a countable family of eigensolutions

(N uj) 72, € Rog % HYQ)\ {0} with \; < \jyq (4.3)

with positive real eigenvalues.

Solutions of the continuous eigenvalue problem (4.3) are approximated by discretisation: Using
a conforming finite element space Vi, C H(Q) [e.g., the space XZO from Section 3.3] with
(h)

dimension N, and nodal basis (goz- )i\f:hl the eigenvalue problem (4.2) is discretised by

{ find (A, 2(M) € R x RM \ {0} with 4)

K0 20 — \(0) () ()

(cf. Section 3.1) where the stiffness and mass matrix

Np, Np
K= (a(e®, o) " e RN and M@ = (6, 6")0)

e RVwNu (4.5)
i,j=1

1,j=1

are both sparse, symmetric and positive definite. The eigenvalues of (4.4) are positive real, and
the corresponding eigenpairs are given by

(A, &) 0 e Rog x RY\ {0} with A < AV (4.6)
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As described in Section 3.2 the discrete eigenpairs (4.6) are approximating the continuous
eigensolutions (4.3): According to Theorem 3.2 it holds )\gh) — Aj for h — 0; and for the discrete

eigenfunctions ugh) = ng.h) € V, [with prolongation operator P from (3.3) and assuming that
(hr)

||u§,h)|]1 = 1] exists a subsequence (uj )keN
k—o0

u; € E()\j) when hy, —— 0 [where E()\;) is the eigenspace of \; defined in (2.14)].

However, as discussed in Section 3.4 only the smaller eigenvalues \; and their corresponding
eigenfunctions u; can be well approximated by the finite element space V}, (see, e.g., [9] for exper-
imental studies) because the approximation error increases with increasing size of the eigenvalue.
Furthermore, the eigenvalues A; have to be small enough so that necessary conditions on the
discretisation mesh width A of the finite element space are fulfilled and thus the corresponding
convergence rates become valid (see, e.g., Corollary 3.14). If, for example, the assumptions of
Corollary 3.17 are fulfilled (i.e., analytic data is assumed) then, e.g., for three-dimensional prob-

which converges in H{ () to an eigenfunction

lems only the first @(Ni/ 5) eigenvalues and only the first @(Ni/ 4) eigenfunctions (under the
assumption that all eigenvalues are simple) are well approximable by the finite element method
using the finite element spaces V}, = X}LO. If some of the assumptions of Corollary 3.17 are
not fulfilled it can be expected that even less eigenvalues and less eigensolutions can be well
approximated.

Correspondingly, in the following we are only interested in computing a portion of the smallest
eigenpairs of the discrete problem (4.4), e.g., the first

neSZC'Ni/5 eN or neS:C'N,}L/4 eN
eigenpairs, for some constant C' > 0. The computation of the remaining eigenpairs of (4.4)
associated to larger eigenvalues is not reasonable because typically they do not provide useful
approximations of continuous eigensolutions.

The solution of the algebraic eigenvalue problem (4.4) is typically performed by a classical
approach, i.e., by some iterative algebraic eigensolver such as the Lanczos method [8, 36] or the
subspace iteration [10]. Classical iterative approaches are well suited if the number of sought
eigensolutions neg is rather small, e.g., if nes = 5. However, because we are interested in a large
number of eigensolutions, we will use the AMLS method to solve the eigenvalue problem (4.2),
respectively (4.4). The AMLS method, which is presented in the next chapter, has proven to be
very efficient when a large number of eigensolutions is sought (cf. [42]). If, however, the number
of sought discrete eigenpairs approaches Ny, it is advisable to use instead of AMLS either a
cubic scaling direct method or an iterative method like shift-invert Lanczos (cf. [36]) with a
good shift strategy and an efficient solver for the arising shifted linear systems.
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The so-called automated multi-level substructuring (short AMLS) method is a very efficient
approach to solve an elliptic PDE eigenvalue problem. The AMLS method was mainly developed
by Bennighof and co-authors [14, 16, 47], and is based on the classical component mode synthesis
(short CMS).

The CMS is as a substructuring method which was already developed in 1960 by Hurty [44]
for the solution of large scale eigenvalue problems arising in structural engineering analysis.
The idea behind CMS is to substructure the spatial domain of the PDE eigenvalue problem
into subdomains, and to approximate the sought eigensolutions of the global problem by using
eigensolutions of problems that are defined on the smaller subdomains. The method was further
improved by Craig and Bampton [26], and during the years CMS became very popular and
was studied by many researchers which developed refined versions. An overview over different
CMS versions can be found in [65]. The first mathematical analysis of CMS, however, has been
performed only in the early 1990s by Bourquin and d’Hennezel (see, e.g., [20, 21, 22]).

Bennighof extended and generalised in the AMLS method the single-level substructuring of
CMS to a multi-level version. The procedure of AMLS is as follows: In the first step the spatial
domain of the PDE eigenvalue problem is recursively subdivided into several subdomains. In
the next step, on each of these subdomains and additionally on the interfaces, which are sepa-
rating the subdomains, certain eigenvalue problems are defined that are induced by the global
problem, and which are typically small and easy to solve. From each of these subproblems a few
eigensolutions are computed which are meant to represent the global problem on the correspond-
ing subdomain or interface. In the next step, the computed eigensolutions of the subproblems
are used to form a subspace onto which the global eigenvalue problem is projected. The pro-
jection results in a reduced eigenvalue problem which is of much smaller size than the original
problem and typically easy to solve. Finally, the eigenpairs of the reduced eigenvalue problem
are computed which deliver approximations of the sought eigenpairs of the global eigenvalue
problem.

The AMLS method has proven to be very efficient for solving large-scale eigenvalue problems
arising in structural engineering analysis (see, e.g., [15, 47, 55]). Especially when a large number
of eigenpair approximations is required, AMLS has shown to be more efficient than classical
approaches using iterative algebraic eigensolvers that are coupled with a preconditioner or a
linear solver (cf. [42]). The big advantage of the AMLS method is that its computational
costs increase only slightly with the number of sought eigenpairs, and hence a large amount of
eigenpairs can be computed at once. A very popular classical approach is the shift-invert block
Lanczos (short block-SIL) algorithm [36] which is commonly used in structural engineering.
Kropp and Heiserer could present in [55] breakthrough calculations when they benchmarked
AMLS against block-SIL within a vibro-acoustic analysis of an automobile body. In these
benchmarks the AMLS method running on a commodity workstation has been several times
faster than block-SIL running on a supercomputer.

When the AMLS method is applied to a discrete eigenvalue problem it computes only approx-
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imations of the discrete eigenpairs whereas block-SIL computes the discrete eigenpairs almost
numerically exact. This seems to be disadvantageous, but in the setting of this work a discrete
eigenvalue problem results always from a finite element discretisation of a continuous eigenvalue
problem. Hence, all computed eigenpairs of the discrete problem are related to a discretisation
error. This means that, as long as the projection error caused by AMLS is of the same order
as the discretisation error, the computed eigenpair approximations of AMLS are of comparable
quality as the eigenpairs computed by block-SIL or some other classical approach.

Although AMLS has proven to be very efficient, one problem is the computation of the
interface eigenvalue problems via dense matrix operations. In the three-dimensional case the
complexity is dominated by this part.

In the following sections the AMLS method is described in detail. Although the method can
be described in a purely algebraic way without any geometry information of the underlying
partial differential equation the method is first explained, in Section 5.1, in a continuous setting.
In the continuous setting it is easier to understand the idea behind AMLS and why the method
is working. However, for reasons of simplification the discussion in the continuous setting is
restricted to the single-level version of AMLS, for the description of the corresponding multi-
level version it is referred to [16]. After that, in Section 5.2, the AMLS method is described in
an algebraic setting to show how the method is applied in practice. For ease of understanding
it is started with the description of the single-level version of AMLS which is extended to the
multi-level version afterwards. Finally, in Section 5.3 it is outlined why the AMLS method is
getting expensive for three-dimensional problems.

The AMLS method has been already described in [31, Section 3] by the author. This chapter
is a strongly revised version of [31, Section 3| and provides a more detailed discussion of the
topic.

5.1. The AMLS Method in the Continuous Setting

The initial point of AMLS in the continuous setting is the variational eigenvalue problem (4.2)
which will be denoted as global eigenvalue problem in this particular section. The single-level
version of the AMLS method, which is described in the following, is a generalisation of the
classical CMS.

In the first step of AMLS the Lipschitz domain 2 is subdivided into two non-overlapping
subdomains §2; and €9 such that both subdomains have as well a Lipschitz boundary. In
particular, we have

Q= ﬁl U ﬁz and 0 NQy = (51)

whereby the subdomains share the interface I' := Q1N Q. Examples of such a domain substruc-
turing are given in Figure 5.1 for a two-dimensional domain.

After this suitable subspaces of HJ () are defined which are associated with the subdomains
Q; (i =1,2) and the interface I': For the subdomains €2; the subspaces

Vo, == {v € Hy() - vio\Q; = O}

are defined, which are built of all admissible functions that are equal to zero on 2\ ;. For the
interface I" the subspace

Vr= {EQT DT E Hégg(F)}
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Cor

0

(a) Underlying domain Q of the (b) Example of a possible domain  (c) Example of a possible domain
PDE eigenvalue problem (4.1) substructuring. substructuring.

Figure 5.1.: Substructuring of the domain 2 into two non-overlapping subdomains 1 and 9
with interface I' := Q1 N Qs.

is defined, where H&éz (T') denotes the trace space of H}(£2) on the interface ' and Eqr € H} ()
is the extension of the trace function 7 € HééZ (I") which is defined as the unique solution of the

variational problem

{ find Eqr € {u € Hj(Q) : wr =7} such that (5.2)

a(Eqr,v) =0 Vv e {ueHj(Q) : ur=0}.
Basic properties of the extension operator Fq are summarised in the following lemma.

Lemma 5.1 (Extension Operator) The extension operator Egq : HgéQ(P) — HE(Q) is linear
and injective. Furthermore, the operator is continuous, i.e., there exists a constant C' > 0 such
that

|Eor|1 < C for all € Hy/*(T) (5.3)

< Clllgpq

where || - || ;12 is the the norm on H&éQ(F) [¢f. Remark B.20].
00

™)
Proof: i) For the sake of completeness it is first proven that problem (5.2) has for each

T E H30/2(F) a unique solution EFqo7. Basic properties of trace spaces are presented in
Remark B.20 [in Remark B.20 the trace space H 1/2 (09) is discussed, however, the analogue

results hold as well for HééQ(F)]. It holds that for all 7 € HééQ(F) there exists some
7 € H}(Q) such that
e =71 and (7Tl < Cltlle e (5.4)

with some constant C' > 0 independent of 7. Furthermore, it holds that Fqr € H}(Q) is
a solution of problem (5.2) iff Eq7 := Eq7 — T is a solution of the variational problem

find Eqr € Uy such that
(5.5)

a(Eqr,v) = —a(7,v) Vv e U

where Uy := {u € H§(Q) : wr = 0}. Since Uy C Hg(R) is a Hilbert space and [(v) :=
—a(T,v) defines a continuous linear functional on Uy, it follows from Theorem A.18 that
problem (5.5) has a unique solution Eqr € Up. Thus, a solution of problem (5.2) exists
as well. Moreover, if it is assumed that u; and ug are solutions of (5.2) it follows that
u1 —ug € Up and a(ug —ug,v) = 0 for all v € Uy. Since a(-, ) is HE(Q)-elliptic we conclude
that u; —ug = 0 in HJ () which proves the uniqueness of the solution EqT.
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ii) The linearity of the operator Eg : HééQ(F) — HZ(Q) is proven using the uniqueness of
the solution of problem (5.2), and the injectivity of Egq is obvious. Moreover, it holds
a(Eqt, EqT) = 0 because of (5.2) and Eq7t € Uy, and it follows

1 1 ~ _ 1 -
||EQT||% < —a(Eqt,EqT) = C—a(EQT,EQT—I—T) = C—a(EQT,T)

a(-,) is E E
elliptic
CB ~ C CB
< o Berluliwlh < === IBarlllir] e -
a(-)is F (5a) “F o
continuous
Hence, for all 7 € HS(P(F) there exists some C' > 0 with ||[Eq7|, < C ”THH1/2(F), i.e., the
00
extension operator Eq is continuous.
|
For the subspaces Vq,, Vo, and Vi defined above the following relation is valid:
Theorem 5.2 The direct sum
Vo, ® Vo, @ Vr (5.6)

is an a-orthogonal decomposition of Hg(Q).

Proof: The proof of this result is outlined in [16], however, for a better understanding of the
AMLS theory the proof is performed here as well: Let ur € Vp be given then there exists a
TE HSéQ(F) with up = Eq7. According to the definition of Eq7 it holds a(Eq7,v) = 0 for all
veU:={ue HjQ):uyr=0}. It follows that for all u; € Vo, (i = 1,2) it holds a(ur,u;) = 0
since Vo, C Up, and that a(ui,u2) = 0 since Q1 N Qy = ), which proves the orthogonality
statement. Furthermore, for u € H}(Q) we define the functions

0 in Ql,

u — Pru in Q.

u— Pru in Q,

Pru:=FE , P =
ru Q(U|F) 0 u { 0 in Qy

and Pa,u = {

From the definition of Vy, and from the substructuring (5.1) of Q it follows that Pru € Vr and

Paq,u € Vo,. Finally, from the orthogonality result from above and from the identity
Pru+ Pq,u + Po,u =Pru+u—Pru=u

we conclude that (5.6) is valid. ]

In the second step of AMLS for each subspace separate eigenvalue problems are defined: For
Va, (i = 1,2) the so-called fized-interface eigenvalue problem

{ find (A%, u®) € R x Vo, \ {0} such that 5)
a(u,v) = X% (u®, v)g Vo e Vg,
is defined, and for Vr the so-called coupling mode eigenvalue problem
{ find (AU, u") € R x Vp\ {0} such that 58)
a(ul,v) = A (Wl v)g Vove .
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Note that the only difference to the global eigenvalue problem (4.2) is that the functions u and
v in (5.7) and (5.8) are elements of Vo, or Vi instead of H}(f2). Since Vg, and Vi are closed
subspaces in H¢ () it follows from Remark 2.7 that each of these problems possesses a countable
family of eigensolutions which are given by

(A u) € Rog x Vo, \ {0} with AP <%

for the fixed-interface eigenvalue problem (5.7) and by

(A s i) 2y €Roo x e\ {0} with A} < A7
for the coupling mode eigenvalue problem (5.8). The eigenfunctions (5.7) and (5.8) form a basis
of Vo, and Vr. Furthermore, from Theorem 5.2 it follows that the eigenfunctions of (5.7) and
(5.8) are a-orthogonal to each other, and that they form a basis of H}(Q) with

HY(Q) = é span{u?i : jGN} o span{u? D J€ N}. (5.9)

It is important to note that even if the eigensolutions of the problems (5.7) and (5.8) are known,
the global eigenvalue problem (4.2) is not solved. However, the eigenfunctions of (5.7) and (5.8)
belonging to the smallest eigenvalues are well suited to approximate the sought eigensolutions
(Aj, uj);< of the global problem (4.2). This issue is reasoned by various numerical studies (see,
e.g., [16]) and is motivated by the error analysis done in [21, 22] for a method quite similar to
AMLS. Correspondingly, to approximate the sought eigensolutions of problem (4.2), in the third
step of AMLS the finite dimensional subspace U, C Hg(Q) is defined by

2
Uy = @ span{u?i D= 1,...,1%} & span{ujr- D j= 1,...,l<:p} (5.10)
i=1

which is obtained by applying a modal truncation in (5.9) and selecting only those eigenfunctions
which belong to the smallest k1, ko and kr eigenvalues for given ki, ko, kr € N and multi-index
k := (ki, k2, kr).

Using the finite dimensional subspace Uy the so-called reduced eigenvalue problem

find (A®,u®) € R x Uy \ {0} such that (5.11)
a(u®,v) = XE) (4@ v), Vv e Uy .
is defined which possesses the eigensolutions
N e Rog x U\ {0} with A <A (5.12)

The reduced problem (5.11) is a conforming Ritz-Galerkin approximation of the global eigen-
value problem (4.2). According to Theorem 3.2 the eigensolutions of the reduced problem are
converging to eigensolutions of the global eigenvalue problem when k1, ko, kp — 0.
Correspondingly in the fourth and last step of the AMLS method the first nes eigensolu-
tions (5.12) are computed (with nes < |k|) which are approximating the sought eigensolutions

(Ajsuj)7e of the global problem (4.2).
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5. Automated Multi-Level Substructuring

Theorem 5.3 The coupling mode eigenvalue problem (5.8) is equivalent to the eigenvalue prob-
lem

find (A, u) € R x HééQ(I’) \ {0} such that

(Su,v) = X(Mu,v) Ve HID), (5.13)

where § and M are operators acting on the trace space HééQ(F) which are given in strong form
by
2 . 2 '
ST = Z( (AVEq,T) -n’ )‘F and Mr = Z —((AVGq,(Eq,T)) - n' )‘F

i=1 i=1
forT € HSéZ(F), and where (-, -) denotes the duality pairing between Hééz(I‘) and its dual space.
Furthermore, n* denotes the outward normal unit vector on T' for the subdomain €);, Eq, is the
subdomain extension operator defined by Eq,7 := (EqT)q,, and for f € L2(SY) the function
Ga,(f) is defined as the solution of the variational problem

{ﬁnd Ga,(f) € H&(QZ) such that (5.14)

a(gQZ(f)v U)Qi = (fa U)Qi Vve H&(Ql)

with the restricted bilinear forms

a(u,v)q, = / Vul AVv + cuv dz Yu,ve HY(Q),
Q;

(u,v)q, ::/ wv dz Yu,v € L*().
Q;

Properties of S and M are listed in the end of the following proof.

Proof: The proof of this theorem can be found in [16] in the context of an eigenvalue problem
from linear elastodynamics. However, for a better understanding of the AMLS theory the proof
is performed here as well for generic H'(Q)-elliptic bilinear forms: First of all, it is noted that
the coupling mode eigenvalue problem (5.8) is equivalent to the eigenvalue problem

find (A7) € R x Hy*(T)\ {0} such that

o (5.15)
a(Eqt, Eqn) = A(EqT,Eqn)y  Vne Hy (D)

since each element of Vr is determined by its trace on T

Derivation of operator S:

Note that for 7 € H562 (T') the subdomain extension Eq,7 := (EqT)|q, is the unique solution' of
the variational problem

{ find Eq,7 € {ue H'(Q) : wr =7 and ujgo\r = 0} such that (5.16)

a(Eq,m,v)q, = 0 Vv e Hi ().

i

!The existence of a unique solution for problem (5.16) is proven in the same way as for problem (5.2) [cf. part
i) of the proof of Lemma 5.1].
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5.1. The AMLS Method in the Continuous Setting

Since Eq,7 is the solution of problem (5.16) we obtain for v € H!(Q;) the identity?

a( Eq,7,v)q, = / Vo, ((AVEQ,T) - n') 0, ds, (5.17)
00

where the surface integral [,, ... ds on the right-hand side of (5.17) is formally interpreted as
a functional on Héf (T"). Correspondingly, for 7,7 € H&éQ (T") it follows that

2 2
a( EQT, EQ??) = Za( EQiT, EQin)Qi = / (EQin)in ( (AVEQZ.T) . ni )|an’ ds
= (5.17) =3 Jou
-y /F n((AVEqr) ni ) ds = 3 ((AVEg7) - ni,n) = (St,n).
=1 =1

Derivation of operator M:

Since Gq, (f) is the solution of problem (5.14) we obtain for v € H*(;) the identity?

7

where the surface integral |, aq, - -~ ds on the right-hand side of (5.18) is formally interpreted

as a functional on H&?(F). Using f := Eq,7 and v := Eq,n in (5.18) we conclude that for
T,n € Héf(I‘) it holds

a’( gQi(EQiT)7 Eﬂﬂ? )Qz = (EQz'T’ EQ¢77 )Qz + /8 (Eﬂm)\aﬂi ( (AngZ(EQzT)) -n' )\891 ds
Q;

which leads to

(Eqt,Eqn)o = (Eq,7, Ea,n ),

@.
i Mw
I

Il
'M”

ﬁ
Il
—

o(Go,(Ea,7), Ealo, — [ (Eomjpn, (AVGo,(Eor) - )on, ds

K3

I
'M"’

@
I
—

CL( gﬂi(EQiT)7 Eq,n )Qz - /F(Eﬂln)ﬂ" ( (Angz (EQzT)) -0’ )|1" ds.

*Identity (5.17) is proven using the following result: Let u € H}(£2) be the solution of the variational problem
a(u,v) = (f,v)o for all v € H} () with some given f € L?(Q2). In the case that the coefficients of the associated
PDE operator L fulfil a;; € H'(Q) and if u € H*(Q) holds, then we obtain by partial integration (P.I.) that

(fiv)o = /va dz = /QLuv dz =2 CL(U,U)—/BQ'U|8Q((AVU)'H)‘QQ ds Yuve H(Q)

where n denotes the outward normal unit vector on 9. Using this result, it can be shown that also in the
case when only a;; € L*(Q) and « € H'(Q) is valid, that then the functional (v) := a(u,v) — (f,v)o fulfils the
equality 1(v) = [,, vjoe((AVu) - 1) jaq ds for all v € H'(Q2) where the surface integral is formally interpreted
as a functional on H/2(9Q).

3Identity (5.18) is derived in the same way as identity (5.17).
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5. Automated Multi-Level Substructuring

Furthermore, using the function

Ga,(Fq,7) in §,

Gilla,T) = { 0 in 0\

we obtain from the orthogonality result of Theorem 5.2 that
a( ng (EQiT)7 Eq,n )Qz = CL( gi(EQiT)ﬂ Eqn ) =0

since G;(Fq,T) € Vo, and Eqn € Vr. Altogether, we obtain

2
(Bar Bamho = -~ [ 0 ((A¥0a, (Ba,r)) -0 )r ds = (Mr.a).
i=1

Properties of S and M:

S and M are linear operators of the form HééQ(F) — H~Y2(I') where H~'/2(T") denotes the

dual space of H&éQ (T"). Since the variational representation of S and M is given by

(S7,n) = a( Bqr, Eqn) and  (Mr,n) = (Eqr,Eqn)y  for 7,n € HY(T)

it follows that the operators S and M (and the bilinear forms associated to S and M) are
selfadjoint (symmetric). From

(ST.m)| = la( Eq7, Eqn)| < CgllEq7|1]|Eanlli < C2CBHTHH562

a(-,) is (5.3)
continuous

ol gz )

and

(M, )| = |( EaT, Ean ol < ||Eat|lol|Eanllo < [|Eat|hl[Eanli < C? 171 a2 o 101l a2y
(53) 00 00

we conclude that the operators S and M are continuous on Héf(F), and that the associated
1

bilinear forms are continuous on H, éé 2 (T)x Hoé 2 (T"). Basic properties of trace spaces are discussed
in Remark B.20 [in Remark B.20 the trace space H'/2(99) is discussed, however, the analogue
results hold as well for H(%Q(F)]. In particular, the trace operator v : H}(Q) — HS(P(F)

is continuous, i.e., there exists a constant C' > 0 such that H"Y(U)HHI/2(F) < Cllu|; for all
00
u € H}(Q). For 7 € Hééz(f‘) we have

Cg

(S7.7) = a(Bar.Bar) > CpllBarli = G 7l

a('?') s
elliptic

and conclude that S (respectively, the associated bilinear form) is Héé 2(F)—elliptic. Furthermore,

from the injectivity of the extension operator Eq (cf. Lemma 5.1) we conclude that Eq7 # 0
for all 7 € Hy*(T') \ {0}. Tt follows that for 7 € Hy/*(T')\ {0} it holds

(Mr, 1)y = (Eqr,EqT)0 = ||EQT||%>0,

i.e., the operator M (and the associated bilinear form) is positive definite. ]
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5.2. The AMLS Method in the Algebraic Setting

Remark 5.4 i) S is the so-called Steklov-Poincaré operator which is determined by the bi-
linear form a(-,-). The Steklov-Poincaré operator is known, for example, from domain
decomposition methods for elliptic boundary value problems. See [60] for further informa-
tions. The operator M has been firstly described in [16] and is called mass operator. This
operator is determined by both the bilinear form a(-,-) and the bilinear form (-,-)o.

it) The operators S and M are symmetric and continuous on HééZ(I’), moreover, S is elliptic
and M s positive definite (cf. proof of Theorem 5.3). These properties (respectively, the
properties of the associated bilinear forms) are important for the numerical solution of the
coupling mode eigenvalue problem (5.13).

ii1) The fixed-interface eigenvalue problem (5.7) is equivalent to the eigenvalue problem

LQ, suc a
{ find (A, u) € R x H}(2;)\ {0} such that (5.19)

a(u,v) = A (u,v)o Vv e HE ().

iv) The benefit of the representation (5.19) and (5.13) compared to the representation (5.7) and
(5.8) is that the eigenvalue problems are solely solved and evaluated on the subdomains €);
respectively the interface I'.

In this section we have seen that, in order to solve the global eigenvalue problem, the domain 2
is subdivided into two subdomains which are separated by an interface. On the subdomains and
on the interface suitable eigenvalue problems are defined which, however, do not solve the global
problem but whose eigenfunctions are well suited to approximate the sought eigensolutions
of the global problem. In particular eigenfunctions belonging to the smallest eigenvalues are
selected from each subproblem to form a suitable subspace which is used for a Ritz-Galerkin
approximation of the global problem. Finally, we obtain from the resulting reduced eigenvalue
problem approximations of the sought eigensolutions of the global problem.

Remark 5.5 (Modal Truncation) To apply AMLS in practice the fized-interface eigenvalue
problems (5.19) and the coupling mode eigenvalue problem (5.13) have to be discretised, e.g.,
by the finite element method, and eigensolutions of (5.19) and (5.13) associated to the smallest
eigenvalues are approzimated. As already mentioned, the modal truncation performed in (5.10)
is motivated by theoretical and numerical results. However, there is a further reason for the
performed modal truncation: According to the approximation properties of finite element spaces
(see Section 3.4) only the first jEF (Np) < Nj, eigenfunctions can be well approximated by a given

finite element space Vi, with Ny = dim V}, degrees of freedom (short DOF'). For example, under

certain smoothness conditions on the data (cf. Corollary 3.17) the number of well approzimable
eigenfunctions is given, e.g., only by jer (Np) = C'Né/3 or ji¥ (Np) = CN2/4. This issue
motivates the modal truncation in (5.10) from another point of view.

5.2. The AMLS Method in the Algebraic Setting

In this section the AMLS method is described in the algebraic setting to show how the method is
applied in practice. The initial point is the algebraic eigenvalue problem (4.4) which is the finite
element discretisation of the continuous problem (4.2). For reasons of convenience the upper
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(a) DOF are associated to the interface I" when their (b) Interface I' is chosen in such a way that it does
basis functions have supports that are intersecting the not cut any finite element of the triangulation of €.
interface T'.

Figure 5.2.: Single-level substructuring of the domain 2 with triangulation. DOF of the FEM
space X,ll o are indicated by circles if they are associated to 2, by squares if associated to €,
and by triangles if associated to I'.

index of A", (") K" and M™  which is indicating in (4.4) the underlying mesh width h of
the finite element discretisation, is left out in this particular section and the eigenvalue problem

(5.20)

find (\,z) € R x RN \ {0} with
Kr =AMz

is considered with the eigenpairs
N
(/\j’xj)jzl € Ryg X RN \ {0} and )\j < )\j+1

where N := N = dimV,. To avoid misunderstandings, it is explicitly noted that in this
section A and \; are interpreted as the eigenvalues of the discrete problem (5.20) and not as the
eigenvalues of the continuous problem (4.2).

The description starts in Section 5.2.1 with AMLS in the single-level version and is extended
in Section 5.2.2 to the multi-level version. In Section 5.2.3 a recursive version of AMLS is
presented, which has been first described in [31] by the author (to the best of his knowledge),
and which reduces the computational costs of the classical (multi-level) AMLS version.

5.2.1. Single-Level Version

In the first step of AMLS the domain € is substructured into two non-overlapping subdomains
Q1 and Q5 as done in (5.1) where the subdomains share the interface I' := Q; N Q. Since the
matrices K € RV*N and M € RV*Y in (5.20) result from a finite element discretisation each
row and column index is associated with a basis function which has typically a small support
(see, e.g., Figure 3.2). Using the substructuring of 2 the row and column indices of K and M
are reordered in such a way that

04 Oy I 04 Oy I
O | Ki K3 Q| My M3
K = QQ KQQ K23 and M = QQ M22 M23 (5.21)
I' | K31 K3 Ksg I' [ M3 Msz Mss
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holds with K;j, M;; € RNixNj and Ny 4+ Ny + N3 = N. The labels Q;,Q5 and T in (5.21) are
indicating to which subset the indices are associated, i.e., if the supports of the corresponding
basis functions are inside €2; or intersecting I' [cf. Figure 5.2(a)].

Remark 5.6 It is more convenient to substructure Q in such a way that the resulting interface
does not cut any finite element of the triangulation Ty, of Q [cf. Figure 5.2(b)]. This minimizes
the number of DOF' associated to the interface, leading to smaller submatrices in (5.21) that are
associated to T, and correspondingly reduces the computational costs when the problem (K, M)
is transformed in the next steps of AMLS. Furthermore, when the interface I' does not cut
the triangulation T;, of Q then the substructuring induces triangulations Th of Q1 and Th2
of Qo that share the same edges on T [cf. Figure 5.2(b)]. In particular, it follows that the
eigenvalue problems (Ki1, Mi1) and (Koo, Mag) are the discrete equivalent of the continuous
eigenvalue problems (5.19), which eases the proof that AMLS in the algebraic setting is the
discrete equivalent of AMLS in the continuous setting (see Section 5.1).

In the next step of AMLS a block LDLT-decomposition is performed in order to block diago-
nalise the matrix K by K = LKLT where

Id
L:= Id S RNXN and IA(/— = diag [KH, KQQ, [?33] . (522)
K3 K' KKy 1d

The submatrix K; 33 given by
K3z = Kiz — K31 K ' K13 — K32 Koy Kog

is the Schur complement of diag[Ky1, K22] in K and it is typically dense. The matrix M is
transformed correspondingly by computing M := L~ ML~ with

M ]\Z13
M= May Mo (5.23)
M3z Mszs Mss

where the submatrices of M are given by

]/\Zgi = Mgi — KgZKZZIM”, and Mig = ]/\Zg; for ¢ = 1,2,

and
2

M3 = Ms3 — Z(K&‘KQIMB + M3 K Kis — Ky K ' My K Ks).
i=1

A part of the sparsity structure is lost in K and M. All submatrices R’u and Mj whose row
or column indices are associated with the interface I' are now typically dense. The eigenvalue
problems (K, M) and (I? ,M ) are equivalent, i.e., the eigenvalues of both problems are equal
and if 7 is an eigenvector of (K, M) then = L~77 is an eigenvector of (K, M).

At first glance, the reason for the performed eigenvalue problem transformation from (K, M)
to (I?,M) is not obvious. But it can be shown, cf. [16] and [60, Section 2], that the eigen-
value problem (1?33, Mgg) is the discrete equivalent of the continuous coupling mode eigenvalue
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5. Automated Multi-Level Substructuring

problem (5.13), and that the eigenvalue problems (Kj1, M11) and (Koo, May) are the discrete
equivalents of the continuous fixed-interface problems (5.19). The initial point of the corre-
sponding proof is the triangulation of € described in Remark 5.6 and Figure 5.2(b).

As in the continuous setting the global eigenvalue problem (K, M), respectively (I? , M ), is
not solved just by computing the eigensolution of the subproblems (K11, Mi1), (K22, M) and
(IN( 33, M. 33). However, the eigenvectors of these three subproblems are well suited to approximate
the sought eigenvectors of (K, M) and (f(, M) As in the continuous setting, cf. (5.10), only
those subproblem eigenvectors are of interest which belong to the smallest eigenvalues.

Correspondingly in the next step of AMLS partial eigensolutions of the subproblems are
computed, i.e., only those eigenpairs of (K11, Mi1), (K22, Mag) and (I~(33,M33) are computed
which belong to the smallest k; € N eigenvalues for given k; < N; and ¢ = 1,2, 3. In the following
these partial eigensolutions are

Kii §Z = Mii gz 51 for 1 = 1, 2 and f}gg §3 = Mgg §3 53 (5.24)

v~vhere the diagonal matrix 15@ € RFi*ki contains the k; smallest eigenvalues and the matrix
S; € RNixFi column-wise the associated eigenvectors (i = 1,2,3). Furthermore, the eigenvectors
of the subproblems are normalised by SiTMZ-Z-SZ- =1d (=1,2) and SgMggsg =1Id.

Remark 5.7 (Mode Selection) How many eigenvectors have to be selected in (5.24) from
each subproblem is not easy to answer. On the one hand enough spectral information has to
be kept to obtain sufficiently good eigenpair approximations from the reduced problem. Selecting
all (discrete) eigenvectors from each subproblem would lead to exact eigenpairs of the discrete
global eigenvalue problem (K, M). On the other hand k; should be small to obtain in the further
proceeding of AMLS a reduced problem of small size which can be easily solved.

In the literature [28, 67] several heuristic approaches have been derived on how to select eigen-
pairs._ These heuristics are based purely on the analysis of the algebraic eigenvalue problem
(K, M) without using any geometry information of the underlying partial differential equation
(4.1). One possible strategy for the eigenpair selection in (5.24) is as follows: Select in each
subproblem only those eigenpairs whose eigenvalues are smaller than a given truncation bound
w> 0.

In this work a different approach is pursued. As already described the three subproblems
(K11, Mi1), (K22, Ma2) and (K33, M33) correspond to finite element discretisations of the contin-
uous problems (5.19) and (5.13). Therefore and because of the discussed approximation proper-
ties of finite element spaces (see Chapter J for summary), all eigenvectors in (5.24) are computed
which still lead to reasonable approrimations of the corresponding continuous eigenfunctions.
Correspondingly only the eigenvectors belonging, e.q., to the smallest

ki=CN/*eN or k=CN'?eN (5.25)

eigenvalues are computed with some constant C > 0. The size of the constant C' and the used
exponent in (5.25) depend, among other things, on the spatial dimension d, on the polynomial
degree p of the used finite element space Vy,, on the type of the subproblem (subdomain or interface
eigenvalue problem), and on the number nes of sought eigenpairs. The constant C and the
exponent from (5.25) will be specified in Chapter 9 where numerical results are presented. The
results of Corollary 3.17 where asymptotics on the number of well approzimable eigenfunctions
are presented can be used as orientation, however, it might be useful to select slightly more

58



5.2. The AMLS Method in the Algebraic Setting

eigenvectors which are possibly bad approximations of continuous eigenfunctions but still have
enough spectral information to approrimate the associated eigenvalue.

In the next step the block diagonal matrix
Z .= diag |:§1, gg, §3] S RNXE with &k := ki4+ ko + ks << N

is defined which is built of all selected subproblem eigenvectors. The k-dimensional subspace
spanned by the columns of the matrix Z respectively of the matrix L™ T7 is well suited to
approximate the sought eigenvectors of (K M) respectively (K, M). In particular, the columns
of the matrix
S —(KﬁlKlg)Sg )
T, = _ ~ Nxk
L7z = Sy —(K221K23)Sg e RVX
Ss

are the discrete equivalent of the selected eigenfunctions contained in subspace (5.10) from the
continuous setting (cf. [16, 60]). To be more precise, the columns vectors in the first and second
block column of the matrix L~=7 Z are the discrete analogue of the selected eigenfunctions from
the continuous problems (5.7), and the column vectors in the third block-column of L~ TZ are
the discrete analogue of the selected eigenfunctions from the continuous problem (5.8).

In order to approximate the sought eigenpairs of (K, M) in the next step of AMLS, the
matrices K := ZT K Z and M := ZT M Z are computed where it holds

o Id Mz o
R = diag [Dl, DQ,D3} eRFF and M= Id M| € RF¥F,
M3z Msp Id

and a reduced eigenvalue problem

nd (N7 k wi
{ﬁAd()\, )AERXR \ {0} with (5.26)

with eigenpairs )
(X:35);, €Rso x RF\{0}  and X; < Xjps

is obtained. In particular, the reduced eigenvalue problem (5.26) is the discrete equivalent of
the reduced problem (5.11) from the continuous setting.
At the end of AMLS the smallest nes eigenpairs of (5.26) are computed. The vectors

g =L"1Zz; withj=1,...,k (5.27)

are Ritz-vectors of the original eigenvalue problem (K, M) respective to the subspace spanned
by the columns of the matrix L=7Z, and Aj are the respective Ritz-values. Finally, the pairs

(N, 95)7, € Rog x RY\{0}  with X; < Ay (5.28)

are approximating the sought smallest nes eigenpairs of the eigenvalue problem (K, M). But
note that in the beginning of AMLS the original index ordering of the matrices K and M has
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H
Figure 5.3.: Extending the single-level substructuring of Q(lo ) .= Q to a two-level substructur-
ing.
been changed by some index permutation 7 : [ — I with I := {1,..., N} in order to obtain

the block-structure form (5.21). To obtain eigenpair approximations of (K, M) with the original
ordering of the row and column indices the inverse index permutation 7~ has to be applied to
the vectors gy for j =1,... .

Remark 5.8 (Reduced Eigenvalue Problem) Because the eigenpairs of the reduced eigen-
value problem (I?,M\) are primarily used to approximate the eigensolutions of the continuous
problem (4.2) and not the eigenpairs of the discretised problem (K, M), the approximation error
of AMLS is influenced by the finite element discretisation and the modal truncation applied in
(5.24). As long as the error caused by the modal truncation is of the same order as the dis-
cretisation error, the eigenpair approrimations derived from the reduced problem (I?, ]\/Z) are of
comparable quality as the eigenpair approximations derived from the problem (K, M).

The reduced eigenvalue problem (IA(, J/\/[\) 18 much easier to solve than the original eigenvalue
problem (K, M) because the number of selected eigenpairs in (5.24) is typically quite small and
therefore the order of the reduced problem is much smaller than the order of the original problem.
If for example the mode selection strategy described in Remark 5.7 is used with k; = C’Nil/3 then
the size of the reduced problem can be bounded by (’)(Nl/3) and the problem can be solved by
dense linear algebra routines in O(N).

5.2.2. Multi-Level Version

The single-level version of the AMLS method explained in the previous section can easily be
extended to a multi-level version. Using the substructuring from the single-level version we
recursively subdivide the subdomains 2; and €25 into additional levels. For this purpose a
more appropriate notation is introduced: The subdomain on level [ € Ny with numbering index

j € N is denoted by Q(jl) where Q(lo ) corresponds to the global domain 2. Kach subdomain

QY is further subdivided into two non-overlapping subdomains on level [ + 1 which share the
interface F(j). This substructuring can be applied recursively to the resulting subdomains until
a certain level is exceeded or the size of the subdomains falls below some given limit. This
type of domain substructuring is also known as nested dissection. In Figure 5.3 the described
domain substructuring has been illustrated until the level | = 2 is reached. The performed
substructuring results in a subdivision of §2 into mg,, subdomains which are separated by m;,,
interfaces (for the two-level substructuring from Figure 5.3 we have mg,, = 4 and m,,, = 3).
The subdomains and interfaces will constitute in the following, similar to the single-level version
of AMLS, in total m = mgy.m, + My Subproblems.
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5.2. The AMLS Method in the Algebraic Setting

The further proceeding of AMLS in the multi-level version is analogous to the single-level
version. As in (5.21) the row and column indices of the matrices K and M are reordered to
achieve a matrix partitioning according to the performed domain substructuring. For example
the matrix partitioning of K corresponding to the two-level domain substructuring applied in
Figure 5.3 is

0P 0@ TP 0@ o@ 0 0

Q<12> K11 K3 K7
Q) Ky Kis Koy
V| K Ksy K K7

K = qf Ky Ky Kur (5.29)
Q) K55 Ksg Ksr
F(zl) Kes Kes Koo Kor
F(lo) K71 Kro Kr3 Krqa K7z Krg Kr7

where K;; € RN:*Nj is the submatrix of K in block-row i and block-column j fori,j =1,...,m

and with N = >~ N;. It is explicitly noted that the multi-level version of AMLS does not
correspond to a recursive call of the single-level version. Instead the different matrix operations,
done in the single-level version, are applied analogously to the matrices from the multi-level
version, i.e., to matrices of the form (5.29) for example.

In the next step the eigenvalue problem (K, M) is transformed equivalently to ([? , M ), i.e.,
K is block diagonalised via K = LK LT by performing a block LDLT-decomposition and M
is transformed correspondingly by M = LML, Due to the transformation a part of the
sparsity structure is lost in K and M. All submatrices K;; and M;; are now typically dense if
their respective row or column indices are associated with an interface. Furthermore, it holds
KZZ = Kj;; and MM M;; if the respective row and column indices are associated with a sub-
domain. For example, for the two-level substructurlng described in Figure 5.3 the transformed

matrices are of the form K dlag [KH, KQQ, K33, }'(447 K55, Kﬁﬁ, K77] and

M

M

M,

Mo

M
Mas

M33

Mz

Mayqy

M35
Mgy Mg
Mz Mzs

My
M5
Mg
Mz

M7
My,
M3
My
My
Mgz

M7

(5.30)
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where the transformation matrix L is of the form
[ 1d
Id
L3; Lz 1d
L = 1d
Id
Ley Les 1d
| L71 L7a L7z L7a L7s L7e 1d)

In the next step the partial eigensolutions of the subproblems (I~(u, Z\ZZ) are computed. Let
the partial eigensolution be given again by

KiyS; = My S;D;  with ST M;S; = 1d (5.31)

fori =1,...,m, where the diagonal matrix D; € RFi*ki contains the k; < N; smallest eigenvalues
and S € RN Xk column-wise the associated eigenvectors. In the next step the reduced matrices
K :=2TKZ € RF*F and M := ZTMZ € RF*F are computed where Z := dlag[Sl, cee §m] and
k= >, k;. For example, for the two-level substructuring described in Figure 5.3 the reduced
matrices are of the form

[ 1d Mis Mi7]

Id 1\723 ]\727

My M 1d My

K= diag[ﬁl,...,l~)7] and M = Id ]\/4\46 ]\/4\47

Id  Mss Ms;
Mes Mgs 1d Mg
| M71 Mry Mys M7y Mzs Mrge  1d |

Finally, the ne smallest eigenpairs (Xj, zj) of the reduced eigenvalue problem (I? , M ) are com-
puted where eigenpair approximations of the original eigenvalue problem (K, M) are obtained
by computing y; := LTz zj. To summarise the AMLS method an overview of all necessary
operations is given in Table 5.1 where the different tasks of the method are denoted by (T1)—(T8).

Remark 5.9 (Purely Algebraic Setting) The matriz partitioning in (5.21) can be obtained
also in a purely algebraic way by applying graph partitioning algorithms like nested dissection to
the graph of the matriz' |K|+|M|, and AMLS is applied to the pure algebraic eigenvalue problem
Kz = AMx where symmetric sparse matrices K, M are given and where M is additionally
positive definite. For this reason, the AMLS method is often analysed in literature (e.g., in
[28, 30, 67]) only in a pure algebraic setting.

“For a given matrix A = (ai;)1;—, € RV the matrix |[A| € RV*V is defined by |A| = (|a;| )=
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5.2. The AMLS Method in the Algebraic Setting

Task Matrix Operations AMLS

(T1) partition matrices K and M apply nested dissection reordering as done, for example,
in (5.21) and (5.29)

(T2) block diagonalise the matrix K K=LKLT

(T3) transform M M=L'MLT
compute partial eigensolutions ~Z-Z- NZ- = A/Z Ni NZ- wit Ni € 2% an NZ- € R%71%
T4 ial eigensoluti K S; = My; S; D h S; € RVixki and D; € RFxF
(fori=1,...,m)
(T5) define subspace 7 = diag [51, e gm] € RNk with k = Sk
(T6) compute matrices of the K = 7T K 7Z € RF*k,
reduced eigenvalue problem M= 72T M 7 c Rkxk

o~

Mz for j=1,...,Nes

>)

(T7) solve reduced eigenvalue problem | K7; =

(T8) transform eigenvectors y;=L"177z; forj=1,...,n

(to restore the original index-ordering for the approxi-
mated eigenvector the inverse of the in task (T1) per-
formed index permutation 7 has to be applied to ;)

Table 5.1.: Overview of the AMLS method to compute eigenpair approximations (/):j, y;) for
the smallest neg eigenpairs of (K, M).

The benefit of the multi-level approach is that the substructuring of the domain € or respec-
tively the partitioning of the matrices K and M can be applied recursively until eventually in
(5.31) the size of the subproblems (K, My;) associated to subdomains is small enough to be
solved easily. However, if more and more levels are used in the multi-level approach of AMLS,
then the size of the reduced eigenvalue problem increases as k = ity ki grows with the num-
ber m of subproblems. Although the reduced problem is partially structured (I? is a diagonal
matrix and the structure of M is inherited from the block-sparsity of M), eventually the total
complexity is dominated by this part. As a consequence, the number of levels has to be con-
trolled so that at most O(nes) eigenvectors are used from all subproblems together. Altogether,
to achieve both, i.e., subproblems that are easy to solve and a reduced eigenvalue problem of
size O(nes), it is proposed to apply the AMLS method only with a few levels and to apply the
method recursively to the large subdomain eigenvalue problems. Details of this approach are
presented in the following section.

5.2.3. Recursive AMLS

In the following we denote a subproblem (I?u, ]\ZZ) that is associated to an interface simply as in-
terface eigenvalue problem and a subproblem (f(”, ]\A/.fu) associated to a subdomain as subdomain
etgenvalue problems.

The recursive version of AMLS has been first discussed in [31] by the author (to the best of his
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5. Automated Multi-Level Substructuring

knowledge). In the recursive approach the classical (multi-level) AMLS method is applied (as
described in Section 5.2.1 and Section 5.2.2) with only a few levels, and with the special feature
that in task (T4) large subdomain eigenvalue problems (IN(“, ]Tj”) are solved recursively by the
AMLS method. Since in this approach the number of levels from the multi-level substructuring
is kept small the number of subdomains (from the multi-level substructuring) can be bounded
by O(1).

As already discussed only jib . (V) eigenfunctions (cf. Corollary 3.17) of the continuous prob-
lem (4.2) can be well approximated by the discretised problem (K, M) using a finite element
space V}, with N = dim V}, degrees of freedom and where jEir  (N) < nes < N. Furthermore, each

max
subdomain eigenvalue problem (K;;, M;;) is associated to a subdomain Q(jl) (with suitable [ € N

and j € N), in particular it holds (f(“, ]\A/[/u) = (Kj;, M), i.e., the subproblem corresponds to the
finite element discretisation of the continuous eigenvalue problem on Q(;) (cf. Remark 5.6) using

the finite element space Vj, restricted® to Q(;)

in each of the subdomains Q(D there are k; < nes eigenfunctions that can be represented well in
the associated finite element space. Since in the recursive approach the number of subdomains
(from the multi-level substructuring) is in O(1) it follows® that the size of the reduced problem
is at most O(nes). If it holds, for example, that n.s € O(N 1/ 3) then the reduced eigenvalue
problem (I? , M ) can be handled by a standard dense linear algebra solver with cubic complexity
whereby the computational costs for task (T7) still remain in O(N).

When in task (T4) the AMLS method is used for the solution of a subdomain problem
(I?Z-Z-, ]\ZZ) then an approximated eigensolution

with V; < N degrees of freedom. Correspondingly,

is obtained. Although it is primarily aimed to approximate the continuous eigenfunctions and
not the discrete eigenvectors of (ffu, M;;), it is reasonable to compute slightly more eigenvectors
than in the case when, e.g., a direct solver is used for the solution of (IN(”, J\Z,) [which computes
almost numerically exact eigenvectors|, so that a possibly lower approximation quality of AMLS
can be compensated and enough spectral information of (I?“, ]\7“) is provided for the subspace
in task (T5). This issue is discussed in more detail in Section 8.7 and Section 9.2 where the
implementation is described and numerical results are presented.

The recursive approach and the multi-level approach of AMLS affect the size of the subdomain
eigenvalue problems, however, both approaches do not effect the size of subproblems that are
related to interfaces. When the spatial domain 2 of the problem is three-dimensional this is a
bottleneck, as it is shown in the following section.

5.3. Efficiency Problems in the Three-Dimensional Case

In the following we refer to a submatrix whose row or column indices are associated with an
interface as an interface matriz. When AMLS is applied to a three-dimensional problem the
interface matrices are getting relatively large which is leading to very high computational costs.

5More precisely, this is the finite element space which is spanned by the basis functions (gth) );V:I of Vj, whose

index j is associated with the rows and columns of IN(” or ]\ZZ
5Provided that for interface problems the number of selected eigenvectors k; is bounded as well by k; < nes.
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Py : o 1
5 ] n Tt
(1) :
Y 'y
L .n"“ ’/;L - <
------------------------ F (0)
n 1
(a) Domain Q = (0,1)3. (b) Triangulation of Q with n® DOF; (c) Two-level substructuring of the
Only the grid associated to the DOF discretised domain leading to inter-
is marked where DOF are indicated faces of the size O(n?).

by small dots.

Figure 5.4.: Two-level substructuring of the discretised domain £ = (0,1)3.

As discussed in the previous section further substructuring reduces only the size of submatrices
which are associated only with subdomains, but the substructuring reduces not the size of the
interface matrices.

To illustrate this bottleneck we consider the initial eigenvalue problem (4.2) with the under-
lying domain Q = (0,1)3. To solve this problem with the AMLS method it has to be discretised
first using finite elements. A triangulation of Q@ = (0,1)® can be obtained, for example, by
decomposing Q = (0, 1)3 into n + 1 equispaced subintervals in each direction and using the finite
element space of piecewise affine functions X} , with mesh width A = 1/(n+1) [see Figure 5.4(b)
for illustration]. The discretisation results in ‘the algebraic eigenvalue problem (5.20) where the
matrices K and M are of size N x N with N = n3. If we assume that, for example, a two-level
substructuring is performed in AMLS then we obtain a matrix partitioning of the form (5.29)
where the number of rows or columns of the interface matrices are O(N?/3) [see Figure 5.4(c)
for illustration]. The size of these interface matrices is relatively large and cannot be reduced
by further substructuring.

During the procedure of AMLS a couple of matrix operations have to be performed on the
interface matrices, e.g, computing the inverse, the matrix product or the partial eigensolution.
The interface matrices are not only relatively large, they become dense as well when task (T2)
and (T3) is performed. For example in the two-level version of AMLS the inverse of the interface
matrices K33 and Kgg has to be computed when in task (T2) the block LDLT-decomposition
K = LKL is performed. These operations alone lead to costs of O((N2/3)3) = O(N?), and
hence AMLS is getting too expensive for three-dimensional problems. The so-called hierarchical
matrices which are introduced in the next chapter are a possibility to resolve this problem.
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The so-called hierarchical matrices (short H-matrices) [38, 39] are data-sparse but possibly
dense matrices. The basic idea is to reorder the rows and columns of a matrix such that certain
submatrices can be represented or approximated by low rank matrices. Using the low rank
approximation, a fully populated but data-sparse matrix of size N x N can be represented
using only O(N log® N) data instead of storing N? entries where o = 1,...,4 (cf. [33, 35]).
Most importantly, H-matrices provide exact matrix-vector multiplication and approximated
matrix(-matrix) operations (e.g. multiplication, addition, inversion, LU-factorisation) which are
performed in almost linear complexity O(N log® N).

As described in Section 3.3, the stiffness matrix resulting from the finite element discretisation
of an elliptic PDE operator is sparse. However, the inverse and the LU-factors of the stiffness
matrix are in general fully populated. In [13, 29] and [12, 29, 34, 59] it is shown that the inverse
and the LU-factors can be well approximated by H-matrices and that these approximations can
be computed with almost linear complexity. This motivates to use the fast H-matrix arithmetic
in task (T2) and (T2) of the AMLS method for the computation of the block diagonalisation
K = LKLT and the matrix transformation M = L='ML-T.

To use the fast H-arithmetic the sparse matrices K and M have to be converted into H-
matrices. For this purpose a suitable H-matrix format has to be provided which is based on
the geometry information of the partial differential equation (4.1). To introduce this H-matrix
format and the basics of H-matrices it is first explained how the inverse of a stiffness matrix is
approximated by an H-matrix.

A description of the H-matrices by the author has been already given in [31, Section 5]. This
chapter is a strongly revised version of [31, Section 5] and provides a more detailed discussion
of the topic.

6.1. 7-Matrix Approximation of the Inverse Stiffness Matrix

Assume G € RV*N is the stiffness matrix! resulting from the finite element discretisation of
an elliptic partial differential operator. The matrix G is sparse, however, its inverse G~! is
fully populated. Recalling the definition of the stiffness matrix in (4.5) each row and column
index i € I := {1,..., N} of G and respectively of G~ is associated with a basis function cp,gh)
of the underlying finite element space Vj with N = dim V}, degrees of freedom. To emphasise
that the row and column indices of G and G~! are associated with the index set I the notation

G,G71 € RI™* is used. The support of each index set t C I is defined by

Q = U supp(gogh)). (6.1)

i€t

1To avoid misunderstandings, the stiffness matrix is denoted in this particular section by G and not by K since
the H-matrix structure used to approximate the inverse G~! differs from the H-matrix structure which will
be used later in the AMLS method in order to approximate the factorisation K = LKLT.
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Correspondingly each submatrix
G_l\sxt = ((G_l)z’j )iES,jet with s,t C I

of G~1 is associated with the geometry information of {2, and ;. Based on the geometric
separation of the supports {25 and §2; certain subblocks s x ¢ C I x I can be identified that allow
a low rank approximation of the respective submatrices G_1|Sxt. More precisely, submatrices
G_1| sx¢ Whose index sets s and ¢ fulfil the so-called admissibility condition

min{ diam(€2y), diam(2;) } < n dist(Qs, ) (6.2)
are well suited for a low rank approximation (cf. [13]). The quantities

diam () := max{||z — y2 : =,y € U}, (6.3)
dist(Qs, ) := min {||z — yll2 : z € Qs,y € U} (6.4)

are the diameter and the distance of the supports of s and ¢, and the parameter 1 > 0 controls
the number of admissible subblocks s x ¢ and is typically set to n = 1 (see, e.g., [33]). Subblocks
s x t fulfilling the admissibility condition (6.2) are called admissible and submatrices associated
to these subblocks are approximated by so-called R(k)-matrices which are defined as follows.

Definition 6.1 (R(k)-Matrix Representation) Let k,m,n € Ny and R € R™™ be a matrix
of rank at most k. If the matriz R is stored in factorised form

R=ABT  with A€ R™* and B e R™* (6.5)

and when A, B are stored in full matriz representation® then R is called an R(k)-matriz. Fur-
thermore, (6.5) is called the R(k)-matriz representation of R.

When the rank k is small compared to n and m the representation of an R(k)-matrix of size
n x m is much cheaper than in full matrix representation because only k(n + m) entries have to
be stored instead of nm. Furthermore, when k is small basic matrix operations can be evaluated
much more efficiently in R(k)-matrix representation than in full matrix representation. More
precisely, for an R(k)-matrix R = ABT € R™*™ it holds:

e Matrix-Vector Multiplication: The matrix-vector product y := Rz for x € R" can be
computed in only O(k(n+m)) by first computing z := BTz € R* and afterwards y = Az.

e Matrix Addition: Let R = AB” be an R(k)-matrix of size n x m then the sum

R+ R = AB" + AB" = [AA] [BB]" (6.6)
N~ ——
nx2k 2kxn

is an R(2k)-matrix and no computation is necessary.

2A matrix B € R™** is said to be stored in full matriz representation if the matrix entries are stored (column-
wise) in an array of real numbers of length mk.
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e Matrix Multiplication: Let By = A1 BT € R and Ry = A3 Bl € R™*! be R(k)-matrices.
Then the matrix products

RiR=ABT  with A:= A (BTA),
RRy = ABT  with B := By(AlB)

can be represented in the R(k)-matrix format where A € R™* and B € R™F can be
computed in O(k%(l +n)) and O(k*(l + m)). Also, when Ry and Rp are in full matrix
representation the products R; R and RRy can be represented as R(k)-matrices with R1 R =
ABT and RRy = AB” where A := Ry A and B := R} B can be computed in O(Ink) and
O(Imk).

Algorithm 1 Geometric Bisection of an Index Set

procedure GEOMETRICBISECTION( ¢, (&;)ict)

for j=1,...,d do > determine a bounding box containing all &;
a; :=min{ (e;,&) : i€t} > (-,-) denotes the dot product in R?
b; :=max{ (e;,&) : i €t};
end for
Jmax 1= argmax{b; —a; : j=1,...,d}; > Jmax @S the direction of maximal extent
€= (Ajax + 0jinar) /25 > split the bounding box in the chosen direction
t1:=0, ty :==
for all i € t do > distribute the indices i € t to the sons t1 and tg
if (€j,....&) < c then
tl = tl U {Z},
else
t2 = t2 @] {Z},
end if
end for

return cluster ¢ with S(¢) := {t1,t2}
end procedure

In order to exploit the low rank approximation property of submatrices G*1| sx¢ tulfilling (6.2)
the row and column indices of G~! have to be reordered according to a suitable partitioning of
the product index set I x I. How a suitable partitioning of I x I is constructed is described in
the following.

At first the index set I is divided according to a geometric bisection of its support into two
disjoint index sets s,t C I with I = sUt. This geometric bisection is applied recursively to the
index sets s and t until the cardinality of an index set falls below some given limit ny,;, € N.
Using this approach a hierarchy of disjoint partitions of the index set I is obtained where the
corresponding subsets of the partitioning tend to be geometrically separated. In Figure 6.1(a)
and 6.1(b) such a partitioning of I is illustrated for a two-dimensional problem. The partitioning
of I can be obtained, for example, by applying Algorithm 1 recursively to the index set I (cf.
[18]), where for each index i € I a geometric representative

h
& € supp( ") C RY (6.7)
is chosen which can be, e.g., the nodal point of the basis function %(h) or the geometric centre
of the corresponding support. Let {ei,...,eq} be an arbitrary orthonormal basis in R? (e.g.,

69



6. Hierarchical Matrices

the standard basis) then Algorithm 1 will split a given index set ¢ C I into disjoint index sets
t1,to C t such that the associated geometric representatives &; are separated by a hyper-plane.
The described geometric partitioning of I is organised in a so-called cluster tree:

Definition 6.2 (Cluster Tree) Let Ty = (V, E) be a tree with vertex set V' and edge set E C
V x V. For a vertex v € V the set of its sons is defined by S(v) := {w € V : (v,w) € E}. The
tree T is called a cluster tree over the index set I if the following conditions are fulfilled:

i) For allv €V it holds v C I and v # (.

it) I €V is the root of Tr.

ii) For allv € V it holds S(v) =0 or v =,eg50)w-

The nodes v € V' are called clusters. For reasons of simplification, we identify V and Ty, i.e.,
we just write v € Tr instead of v € V. Furthermore, we call a cluster without sons a leaf and

define the set of leaves of Ty by L(T;) :=={v € Tr : S(v) = 0}.

Algorithm 2 Construction of the Block Cluster Tree

procedure CONSTRUCTBLOCKCLUSTERTREE( $ X t, Nomin, 1) )
if s x ¢ is admissible then

S(s xt):=0;
else if min{#s, #t} < nyin then

S(s xt):=0; > nmin affects the minimal size of the block clusters
else

S(sxt):={s'xt' : s eS(s),t' eSSt}
for all s’ xt' € S(s x t) do
CONSTRUCTBLOCKCLUSTERTREE( 8’ X ', Nmin, 1 );
end for
end if
return s X t;
end procedure

To obtain a partitioning of the product index set I x I the so-called block cluster tree Trx is
introduced. The block cluster tree corresponding to the cluster tree 77 and admissible condition
(6.2) is obtained by applying Algorithm 2 to the product index set I x I. Using this algorithm,
I x I is recursively subdivided into subblocks s x ¢ until the subblock gets admissible (which
is controlled by the parameter 7) or the size of the subblock falls below the limit ny;, as it is
illustrated in Figure 6.1(c). The block cluster tree Ty itself is a cluster tree over the product
index set I x I (cf. Definition 6.2) and provides a hierarchy of disjoint block partitions of the
product index set I x I. In particular, it holds

IxI = | sxt (6.8)
sxt€L(Trx1)

where L£(Trx«1) is the set of leaves of Tr ;. Using this block partitioning of I x I a hierarchical
matrix format can be defined which is well suited for the approximation of G~!:
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Definition 6.3 (H-matrix Representation) Let k € Ny. The set of H-matrices induced by
the block cluster tree Trxy with block-wise rank k is defined by

H(Trx1, k) == {A e RIXL . rank(A|sxt) < k for all admissible leaves s x t of 7}X[}.

We say a matriz A € H(Tix1,k) is stored in H-matriz representation if the submatrices Az,
associated to admissible leaves s X t of Trxy are stored as R(k)-matrices whereas submatrices
associated to inadmissible leaves are stored as full matrices.

‘H-matrices typically consist of large low rank matrices and small full matrices. The size of the
full matrices is controlled by the parameter n,;, which has been used for the construction of the
trees Tr and Trx;. For inadmissible leaves s X t of Trxr it holds min{#s, #t} < npiy. Standard
values for npi, are in the range of 20 to 40 (cf. [50]).

Finally, when the rows and columns of G~! are reordered according to the applied partitioning
of I, and G™! is partitioned into blocks according to L£(T7xr) [as illustrated in Figure 6.1(c)],
then the reordered matrix G=! € RV*N | which is in general fully populated, can be well ap-
proximated in the matrix format H (77«1, k) and only O(N log® N) data is necessary instead of
storing N2 entries (cf. [13, 29]). Even more important: The H-matrix approximation of G~}
can be computed in O(Nlog® N) by an algorithm requiring only the matrix G and the used
‘H-matrix format. How this H-matrix approximation is computed is briefly described in the
following.

First of all, the rows and columns of the stiffness matrix G € R’*! are reordered according to
the partitioning of I, and the matrix is partitioned into blocks according to L£(77xs). Since for
a block cluster s x t € L(T7xy) fulfilling admissibility condition (6.2) the supports of the basis
functions cpl(»h) with ¢ € s are geometrically separated from these of gog-h) with j € t it follows from
Lemma 3.6 that the respective submatrix G|,.; has only entries equal to zero and, therefore,
G|sxt can be represented exactly by an R(k)-matrix with rank zero. Correspondingly, no ap-
proximation is necessary to represent the reordered matrix G in the matrix format H(77x7, k).
The (exact) H-matrix representation of G will be denoted in the following by G™.

‘H-matrices are implemented in a structured way which is guided by the block cluster tree
(cf. [39]) in order to ease the implementation of a corresponding H-matrix arithmetic: For the
matrix G = GHUX[ and a block cluster s x t € Ty« it holds

o if s Xt € L(T7x1) then G* ., is represented as a full matrix or an R(k)-matrix,

o if sxt & L(Tixr) then G*|4,; is decomposed into a block matrix consisting of submatrices
that are associated to the sons of s x t, i.e., if S(s) = {s1,...,s.} and S(¢) = {t1,...,t.}
with 7, ¢ € N it holds®

H H
G |81><t1 G |81Xtc

3Using a geometric bisection for the construction of 7; and Algorithm 2 for the construction of 77x; we obtain
in (6.9) a 2 x 2 block structure.
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(a) Geometric bisection of the domain = (0,1)? using nmin = 1. The indices i € I = {1,...,16} of the nodal
points of the basis functions are enumerated from 1 in the upper left to 16 in the lower right corner.
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(b) Disjoint partitioning of the index set I corresponding to the applied geometric bisection.
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(c) H-Matrix format for G~! € R'6*!6 according to the applied partitioning of I using admissibility condition
6.2) with n» = 50 and where nmin = 1; admissible blocks are coloured green, inadmissible ones are red.
n g

Figure 6.1.: Construction of the H-matrix format for the inverse of the stiffness matrix resulting
from a finite element discretisation of an elliptic partial differential operator on Q = (0, 1)2, where
the finite element space of piecewise affine functions X,ll o defined on an equispaced grid with 16
DOF is used for the discretisation. ’
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The computation of the H-matrix approximation of G~! is based on the following approach:
The inverse of a regular matrix A can be computed by using the identify

A+ A ApST An A — A ApST! A A

A7l = ith A:= 6.10
_S—1A21A1—11 §-1 Wi [Azl Azz} ( )

and Schur complement S := Asy — AglAfllAlg. After the computation of Ail and S~! only
multiplications and additions of submatrices have to be performed in order to obtain A~!.
Applying identity (6.10) recursively to the block structure (6.9) of G™ its inverse can be
computed. In particular, the computation can be performed very efficiently when the R(k)-
matrix representation is exploited for the multiplication and addition of submatrices fulfilling
condition (6.2). However, since the sum of two R(k)-matrices leads to an R(k)-matrix of rank 2k
[see (6.6)] the problem arises that during the computation of the inverse the rank of submatrices
can become unacceptably large. Correspondingly, submatrices have to be replaced during the
computation by approximations with a reduced rank. Beside the possibility to reduce to a fixed
rank k (i.e., the matrix format H(77«r, k) is retained) also an adaptive rank can be used in
order to control the approximation quality of the R(k)-matrix approximations: For a desired
approximation accuracy € > 0 an arbitrary matrix M can be approximated by an R(k)-matrix
R such that
MRl _

6.11
| M ]2 (610

where the rank k € Ny is as small as possible (cf. [33]). There are many different approaches for
the efficient computation of such a low rank approximation (see, e.g., [39]). For example, a low
rank approximation with accuracy € of the sum (6.6) of the two R(k)-matrices can be computed
in O(k%(n +m)) by the so-called truncated singular value decomposition (see [33]).

The corresponding H-matrix format using an adaptive rank with accuracy ¢ for the R(k)-
matrix approximation is denoted by H(77xr,€). Furthermore, let (G*)~' € H(T7«r1,¢) denote
the H-matrix approximation of G~' which is computed by the recursive approach outlined
above using an adaptive rank with accuracy €. Then this approximated inverse is computed in
O(Nlog® N), see [33], and the error® |G™! — (G*)~![|5 is controlled by the chosen accuracy e
in (6.11).

6.2. H-Matrix Format for AMLS

To use the fast H-matrix arithmetic in task (T2) and (T3) of the AMLS method for the compu-
tation of the block diagonalisation K = LKLT and the matrix transformation M = L=1ML-T
the described H-matrix format has to be changed slightly. First of all, a nested dissection is
applied as in the classical AMLS method, i.e., the domain 2 is recursively subdivided into sev-
eral subdomains which are separated by interfaces. The row and column indices of K and M
are reordered according to the performed substructuring of €2 and a matrix partitioning, e.g.,
of the form (5.21) or (5.29) is obtained. As discussed in Section 5.2 some of the submatrices
I?Z-j and ]\Zj are fully populated, however, they can be approximated in the H-matrix format.

“To compare (G7*)™! with G™' and to compute the error |G~ — (G*)7!||2, both matrices need to have the
same ordering of the row and column indices.
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Figure 6.2: H-matrix format for G=! € RV with i T M
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from a finite element discretisation of an elliptic partial . | H =i m :,,,m
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For this purpose the index sets associated to the subdomains and interfaces are additionally
partitioned according to a recursive geometric bisection, and the row and column indices of the
submatrices INQJ- and M;; are reordered correspondingly. The described domain substructuring
has been illustrated in Figure 6.3.

To compute the transformed eigenvalue problem by the fast H-matrix arithmetic the reordered
matrices K and M have to be represented in the matrix format H(7rxr,e) where Trxr is the
block cluster tree corresponding to the domain substructuring described above. Examples for
the matrix format H(77«s,€) are given in Figure 6.4. The resulting H-matrix representations
of K and M will be denoted in the following by K" and M™ (note that the representations
are exact, cf. Section 6.1). Using these H-matrix representations the block diagonalisation of
K and the transformation of M can be computed by efficient algorithms (see, e.g., [34, 35, 39]),
similar to the recursive algorithm used for the computation of (G*)~1, in O(N log® N) leading
to

KM ~ LHKMMT  and  M* ~ (DT MH (LT (6.12)
where K*, MH, L™ € H(Tix1,€). The computation in (6.12) is performed not exactly but only
approximatively, in particular the approximation errors |[L — L¥| 2, ||K — K|y and H]Tj — MM,
are influenced by the chosen accuracy ¢ in (6.11). In Section 8 the computation in (6.12) is dis-

cussed in more detail, especially an improved H-matrix format is introduced which is much more
efficient for the computation of (6.12).
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Q(ll) Q(Ql) I‘(lo) > nested dissection
needed for AMLS

geometric bisection
needed for H-matrix
arithmetic

Figure 6.3.: Schematic example of the in H-AMLS applied domain substructuring: A two-level
nested dissection (necessary for AMLS, cf. Figure 5.3) is performed followed by an additional
two-level geometric bisection of the subdomains and a one-level geometric bisection of the in-
terfaces (necessary for the approximative H-matrix arithmetic).

e
ol

B

(a) one-level nested dis. (b) two-level nested dis. (c) three-level nested dis.

Figure 6.4.: H-matrix format H(7;x1,¢) used in H-AMLS for the finite element discretisation
of an elliptic PDE eigenvalue problem on Q = (0,1)® with #I = 2744 degrees of freedom.
The matrix format H(77x7,€) is based on a one, two and three-level nested dissection with a
subsequent geometric bisection. Furthermore, n = 50 and npyi;, = 40 have been used for the
construction of 77x;. Red blocks represent full matrices, green blocks R(k)-matrices and white
blocks submatrices equal to zero which retain zero during the computation of (6.12) and don’t
cause computational costs.
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7. Combination of AMLS and #H-Matrices

In this chapter a more refined version of the AMLS method is presented which is using the
fast H-matrix arithmetic. The benefit of the use of H-matrices is a substantial reduction in
computational time and storage requirements. However, due to the use of the approximative
‘H-matrix arithmetic, an additional error occurs which can influence the quality of the computed
eigenpair approximations.

This chapter is organised as follows: In Section 7.1 the new method, called H-AMLS, is
introduced. The computational costs of the method are analysed in Section 7.2 and the accuracy
of the computed eigenpair approximations is discussed in Section 7.3. Finally, in Section 7.4
an additional task is introduced which is basically one (approximative) iteration step of the
subspace iteration and which further improves the accuracy of the H-AMLS method.

The H-AMLS method has been introduced in [31, Section 6] by the author. This chapter is
a revised version of [31, Section 6]. It contains a more detailed description of the method, and
it introduces the new improvement task from Section 7.4.

7.1. Introduction of the #-AMLS method

As already described in Section 6.2, in the first step of the H-AMLS method the domain € is
substructured according to a nested dissection just like in the classical AMLS method, which
results in a substructuring of {2 with m € N subdomains and interfaces. To use the fast H-matrix
arithmetic additionally a geometric bisection of the subdomains and interfaces is performed.
After the row and column indices of K and M are reordered corresponding to the performed
domain substructuring, the exact H-matrix representations K7t and M™ are constructed (cf.
Section 6.2). In the next step the block diagonalisation of K " is computed and the corresponding
matrix transformation of M, see (6.12), using the fast H-matrix arithmetic.

The further proceeding of H-AMLS is analogous to the classical AMLS method. At first
the m x m block partitioning of the matrices K KM and M™ is introduced corresponding to the
performed nested dissection [e.g., as in (5.21) or (5.29)], where KH € RNi*Nj and MH € RNixN;
denote the corresponding submatrices in block row ¢ and block column 7. In the next step of
H-AMLS the partial eigensolutions of the subproblems (K 4 M ') are computed fori =1,...,m
which are given by

I?ZZ{ gz = ]\Z’i{ gz ]5, with fsvzj]f\\j;-[ gz = Id, (71)

where the diagonal matrix D, € RFi*ki contains the k; < N; smallest eigenvalues and the
matrix S € RNixki column-wise the associated eigenvectors. Because in general the matrices
K K* and M MH slightly differ from K;; and Mn, the corresponding eigensolutions (5.31) and
(7.1) can dlffer as well. To indicate this difference in the H-AMLS method bold symbols are
used for the corresponding matrices and symbols. In the next step the block diagonal matrix
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Z := diag [gl, ey §m] is defined and the reduced matrices
K:=2TK*ZcR"™*  and M := 2T M*Z c RMF

are computed where k = Y7, k;. These matrices lead to the so-called H-reduced eigenvalue
problem )
{ find (A, X) € R x R¥\ {0} with

_ - (7.2)
K% = AM=X

<)

which possesses the eigenpairs
~ Y f{: T . ~ ~
(A2%j),_ €Rog x RFA{0}  with Aj < Ajyr. (7.3)
In the end of H-AMLS the smallest nes eigenpairs of (7.2) are computed and the eigenvectors
X; of the reduced problem are transformed via

v = (LH)_TZQj for j=1,..., Nes.

The computed pairs (Xj,ﬁj)?fl are approximating the nes smallest eigenpairs of the original
problem (K, M). But note that in the beginning of H-AMLS the original index ordering of
the matrices K and M has been changed by some permutation 7 : I — I in order to obtain
the needed matrix partitioning and to derive the corresponding H-matrix representations. To
receive eigenpair approximations of the problem (K, M) with the original ordering of the row
and column indices, the inverse index permutation 7—! has to be applied to the vectors y; for
J=1 .. Nes.

In contrast to the classical AMLS method, in general Xj is not equal to the Rayleigh quotient

- YKy,

N (74)
Y; My;

since the matrix operations in (6.12) are performed only approximatively. Typically the Rayleigh

quotients Xg-rq) deliver better approximations of the sought eigenvalues \; than Xj, especially
when the chosen accuracy € of the H-matrix arithmetic is coarse. Correspondingly, the Rayleigh
quotients are computed as well in H-AMLS.

Furthermore, as already described in Section 5.2.3, it is intended to apply a low-level nested
dissection in the H-AMLS method in order to keep the number of subproblems small so that
the size k of the H-reduced problem can be bounded by O(nes). In the case that in task (T4)

subdomain eigenvalue problems (K} ,]\7;{) occur that are too large to be solved by a direct
solver, the H-AMLS method is applied recursively to this subproblem. However, note that in
this case instead of an (almost) exact eigensolution of the discrete problem, as obtained by an

classical eigensolver, an approximated eigensolution

is obtained, and correspondingly an additional error is introduced which can influence the quality
of the computed eigenpair approximations (Xg.rq), Aj)ﬁfl.

In the following the recursive version of ’H—AML§ is simply called recursive H-AMLS. In
order to compare classical AMLS with the new (recursive) H-AMLS method an overview of
both methods is given in Table 7.1 where the tasks (T1)—(T8) and a new task, denoted by task

(T9), are summarised.
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Remark 7.1 If the accuracy of the approzimative H-arithmetic is not fine enough it can po-
tentially happen that the computed matrices K™ and M™ lose their positive definiteness (note
that the FEM matrices K,M and their corresponding H-matriz representations K HMH

positive definite), and that therefore the matrices KZZ'{', MH and K M may lose their posztwe
definiteness as well. In this case the problems (KX, M;’;{) and (IA{,I\//\I) may become defective
and eigensolutions of the form (7.1) and (7.3) do not exist. However, in numerical tests this
problem did not occur, even when the accuracy of the H-arithmetic has been chosen very coarse

the matrices K™ and M™ retained the positive definiteness.

7.2. Computational Costs

Beside the number of degrees of freedom N and the number of sought eigenpairs nes the compu-
tational costs of H-AMLS depend on the chosen accuracy ¢ of the H-matrix operations in (6.12)
and the applied modal truncation in (7.1), i.e, the number of selected eigenvectors k;. A coarser
accuracy € and smaller k; result in faster computations and reduced memory requirements of
H-AMLS. Of course these parameters can be chosen arbitrarily, however, their choice influences
the approximation accuracy of the sought nes eigenpairs. This issue is discussed in the next
section and in Chapter 9. In the following the computational costs of recursive H-AMLS are
discussed in detail and compared with the costs of classical AMLS. The discussion is restricted
to three-dimensional problems where nes ~ N? eigenpairs are sought with some 3 € (0,1/3].

The recursive version of H-AMLS is applied in detail as follows: In task (T1) a multi-level
substructuring is performed with a fixed number of few levels [, € N. The substructuring
results in 2/oc subdomain problems of approximate size N/2%oc, and 2ec — 1 interface eigenvalue
problems of size O(N?/3) [cf. Section 5.3]. In task (T4) the mode selection strategy proposed
by Remark 5.7 is applied, i.e., the eigenvectors of (KZZ",MH) associated to the k; smallest
eigenvalues are computed where k; € (Q(Nf dom) for subdomain problems and k; € O(NN, N7 ) for
interface problems with suitable constants Baom, Bt € (0, 1) fulfilling Baom < 8 and Biy, S 35/2.
This mode selection strategy guarantees for three-dimensional problems that the size of the
‘H-reduced problem is bounded by O(nes), and is applied as well in Chapter 9 where numerical
results are presented. In the case that in task (T4) the size N; of a subdomain problem (K ;’;‘, M H)
is larger than a given threshold n"® € N then, instead of using a direct solver, the subdomain
problem is solved recursively by H-AMLS. The depth of the recursion [,.. € N depends on the

size N of the problem (K, M) and is described by
N az Qhrechioe pAMLS — 1 € O(log N ).

Comparing the different tasks it can be seen that the recursive H-AMLS method is much
faster than the classical AMLS method:

e The computational costs of task (T1) are negligible, O(N log N). The computational costs
for task (T2) and (T3) are of the order O(Nlog® N) in H-AMLS whereas in classical
AMLS they are at least of the order O(N?) for three-dimensional problems (cf. Section
5.3).
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Task

Matrix Operations classical AMLS

Matrix Operations (recursive) H-AMLS

(T1) partition
K and M

nested dissection cf.

(5.21) and (5.29)

reordering,

nested dissection reordering, cf. (5.21)
and (5.29), with subsequent geometric
bisection (cf. Section 6.2)

(T2) block diagonalise
the matrix K

K=LKLT

— expensive because of large-
sized, dense interface matrices

KM~ M [?H (LH)T

— using fast H-matrix arithmetic
done in O(N log® N)

(T3) transform M

M=LMLT

— expensive because of large-
sized, dense interface matrices

M?—L ~ (LH)fl M’H (L”H)fT

— using fast H-matrix arithmetic
done in O(N log® N)

(T4) comp. partial
eigensolutions
(fori=1,...,m)

if subdomain EVP

K;i Si = M;; S; D;

with S; € RNixki and D, € RNixki

K;; and M;; are dense
— expensive
K;; = Ky and My; = M;; are sparse

— if small problem: cheap
— if large problem: expensive

3,

with S; € RNixki and D, € RVixki

38D,
if recursive call)

KZ;-‘ and MZ;‘ are H-matrices

— use fast H-matrix arithmetic
for eigensolver

K}t and M}t are are H-matrices

— if small problem: cheap
— if large problem: when H-AMLS is
used cheap, otherwise expensive

(T5) define subspace

7 = diag [51,...,

§7n:| c RNX];

7 = diag [§1§} € RN*F

~

(T6) comp. matrices K = ZTK Z € RF*k, K = ZT KMZ ¢ RF*F,

of reduced EVP ]\7 = ZT MZ c Rl_cxl_c m = ZT MH 7 c REXE

— use fast H-matrix arithmetic
for computation
T7) solve the Kz, =\ Mgz, for j =1,...,Nes KX =\ M%, for j=1,..., Nes
J j J j j j

reduced EVP

(T8) transform vectors || J; := L TZZ; forj=1,...,Nes yi=LMTZx; forj=1,... ne

(T9) comp. Rayl. quot.

N =9 KT /3 M5, J =1 nes

final eigenpair approx.

(Aj, ) with j=1,...,nes

(S\J(-rq>,§j) with j =1,..., Nes

Table 7.1.: Overview of the classical AMLS and the new H-AMLS method (EVP is the abbre-
viation for eigenvalue problem).
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e Also the computation of the partial eigensolutions [task (T4)] is faster in the H-AMLS
method: The submatrices K} K* and M;; M* whose row and column indices are associated to
an interface are data-sparse 7—[ matrlces and not unstructured dense matrices as assumed
in the classical AMLS method. Correspondingly an eigensolver exploiting the H-matrix
structure of K ZZ" and Mff can be applied in (7.1) instead of an eigensolver for dense matrices
as it is done in classical AMLS. Since interface eigenvalue problems (K;’l‘, M H) are of size
N; € O(N?/3) for three-dimensional problems, the almost linear scaling of H-matrices
allows us to solve for k; € O(nes) eigenvectors in complexity

O(k; Nilog® N; + k2 N;) < O(nes N¥31log® N + n2 N?/3), (7.6)

e.g. by using shift-invert Lanczos (see H-SIL in Section 8.4). Since we assume nes €
O(N'/3) and since the number of interface eigenvalue problems is bounded by O(1), it
follows from (7.6) that the computational costs for the solution of all interface eigenvalue
problems are bounded by O(nesNV).

The number of subdomain problems is bounded as well by O(1). In the case that the
subdomain problems are small enough (i.e., it holds N; < ni¥S) the subproblems are
solved by a direct solver leading to costs of the order O(1), otherwise the subdomain

problems are solved recursively by the H-AMLS method.

e Also the H-matrix structure of K7 and M™ can be exploited in H-AMLS using the
fast H-matrix-vector multiplication for the computation of the reduced matrices K M ¢
RF*F. The multiplications ST(K*S) and ST(MHS) involve 2k H-matrix times vector
multiplications in O(N log® N) plus 2k? scalar products of length N. Both together sum
up to costs of the order

O(]%NlogaN—i—l;QN) < O(neSNlog N + n? N)

for task (T6). Since the scalar products can be computed with peak performance on
todays workstations and compute servers, the costs for these are invisible in practice.
The 2k H-matrix times vector multiplications are as well harmless since the logarithms
and constants involved in the matrix vector multiplications are much smaller than for the
H-matrix operations in (6.12).

e The computational costs of task (T?) are the same in both methods. The reduced
eigenvalue problems (K, M ) and (K, M) are both of the same structure. Since it holds
k € O(nes) and since we aim at nes € O(N'/3) eigenvalues, the size of the reduced prob-
lem allows us to use a dense linear algebra solver with cubic complexity whereby the
computational costs still remain in O(N).

e Finally, for task (T8) we can again exploit the fast H-matrix times vector multiplication
[backward substitution in (L*)7] to complete this task in

O(nes(EN+Nlog“N)) < (’)(neleog N+n N)

and for the Rayleigh Quotients in task (T9) it is enough to use the sparsity of K and M
to perform the computation in O(nesN).
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Hence, the computational costs of recursive H-AMLS — without the costs of the recursive calls
of H-AMLS in task (T4) — are bounded by O(nesN log® N + n2,N). Defining m := 2lec the
overall costs, including the costs for the recursive calls, can then be bounded by

(’)(neleogaN + ngsN) + %ﬁ%l (’)< (ﬁ)ﬁdom % loga<~£> + (Nﬁ)w‘i"m ]~V>

m! m! m! m!

lrec

= O(nes Nlog® N + n2, N +Zo<( >5d0leogaN+ (g)zﬁd"mN)

lreC 2
'n
< O(nes Nlog® N +ng N ) +ZO< =l V108" N 4 =g N)

lrec lrec

O(nes Nlog N Z Cl'l =+ O Z 021 Where C’ = 2lloc Bdom
—(’)(neleog N+n N)

We can sum up that the complexity of recursive H-AMLS is bounded! by O(nesN log® N +
n2,N) and theoretically dominated by tasks (T6) and (T8). The operations involved in task (T6)
and task (T8) are the H-matrix times vector multiplication, which accumulates to a total of
O(nesN log® N), and the usual scalar product accumulating to at most O(n2,N) multiplications
or additions. Both of these operations have extremely small constants involved and are therefore
for problem sizes up to N = 6,000,000 not the bottleneck. Instead, most of the computational
time is spent in the transformation steps (T2) and (T3), both of them in O(N log® N) which is
asymptotically in o(nes/N). In the numerical examples we can observe that the costs for (T6)
and (T8) are slowly increasing relative to the total cost, and that the total complexity stays in
O(nesN) for very large-scale problems.

7.3. Accuracy of the Eigenpair Approximation

The downside of faster computations and reduced memory requirements in H-AMLS — achieved
by a coarsening of the H-matrix accuracy ¢ in task (T2+T3) and a reduction of the number of
selected eigenvectors k; in task (T4) — is a possible loss in quality of the eigenpair approxima-
tions.

Keeping in mind the initial problem, the Rayleigh quotients Xg.rQ) in (7.4) are used to ap-
proximate the nes smallest eigenvalues A; of the continuous problem (4.2). The corresponding
approximation error is bounded by

(ra) (h) (h) _ 3 N (ra)
A I PV i S S DY v + I = AT
N——— N——— N——— N———
error of the error caused by error caused by the error caused by the
H-AMLS method the discretisation modal truncation H-matrix approximation

(and the recursive approach)

'Note that the upper bound O(nesN log® N+n2 N) for the computational costs of recursive H-AMLS computing
the nes ~ N” smallest eigenpairs is obtained for all 8 € (0, 1), i.e., also in the case when 3 > 1/3.
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elliptic PDE eigenvalue problem (classical formulation)

7.3. Accuracy of the Eigenpair Approximation

— see Chapter 1

Lu = Au in £,

u=0 onl

e O C R%is a bounded domain with Lipschitz boundary T' := 9Q

e [ is a uniformly elliptic PDE operator where
Lu= —diV(AVu) + cu with A := (aij)d

i j=1 and a;j,c € L*(2)

elliptic PDE eigenvalue problem (weak formulation)

\

— see Section 2.2

find (\,u) € C x H}(Q) \ {0} such that
Vv e Hi(Q)

{

possesses eigensolutions
(Mg ug) 2, € Rogx Hg()\{0} with A; < Aj

=

a(u,v) = A(u,v)o

e a(u,v) = [ Vul AVv + cuv dz is a symmetric
elliptic bilinear form

e (u,v)0 := [ouv dz is the inner product of L?(12)

\

Ritz-Galerkin discretisation using FEM space X;:O - H&( Q)

— see Chapter 3

KM () — \(*) pph) 1.(R)

possesses eigensolutions
n) (h
O,

J
where (A§h)7pm§-h)) € Ry x HY(Q) approx. the
eigensolutions of the continuous problem and P
is the prolongation operator from (3.3)

Np,

h h
€ RogxRYM\ {0}, A <A,

. K(h)7 M® e RNe*Nu are both sparse, symmet-
ric and positive definite, see (4.5)

P
e approx. error depends on FEM space Xh,o

e we are only interested, e.g., in the smallest nes =
CN ,1/ 3 eigensolutions — see Section 3.4

\

reduced EVP obtained by classical AMLS

Kz =AMz
possesses eigensolutions

~ E 7 . ~ ~
(%> %5) -y € RooxRM\{0} with Aj < Ajpt

where (A, P7;) € Rso x HL(Q) approx. the
eigensolutions of the continuous problem and
the approx. error depends on:

e FEM space XI;L,O

e modal truncation of the subproblems

4

reduced EVP obtained by (recursive) H-AMLS

KX = AM=X

possesses eigensolutions

~ Y E T
(Xj:%;);—; € RooxRF\{0}

where (X;-rq),”P%) € Roo x H} () approx. the
eigensolutions of the continuous problem and

the approx. error depends on:

e FEM space XZ’O

e modal truncation of the subproblems

e accuracy ¢ of the H-matrix arithmetic

e selected parameter of the recursion

Figure 7.1.: Overview of the different eigenvalue problems and the interconnection between

these problems.
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7. Combination of AMLS and H-Matrices

(h)
J
problem (5.26) from classical AMLS. The upper index of )\§-h) is indicating the mesh width of the
underlying finite element space V},. In Figure 7.1 an overview of the different eigenvalue problems
is given and the interconnection between them is summarised. The approximation error of the
non-recursive H-AMLS method is associated with the finite element discretisation, the modal
truncation, and the H-matrix approximation. The error caused by the modal truncation is
influenced by the number of selected eigenvectors k; in (7.1), and the error caused by the use of
the approximative H-matrix arithmetic is influenced by the chosen accuracy ¢ in (6.12). In the
recursive version of H-AMLS an additional error occurs when in task (T4) the H-AMLS method
is applied recursively for the solution of large-sized subdomain problems. The approximation
quality of the approximative eigensolution (7.5), and with it the approximation error of the
recursive H-AMLS method, is influenced by the chosen parameters k; and € in the recursive
calls of H-AMLS.

In contrast to the H-AMLS method, the approximation error of classical approaches, like the
block-SIL algorithm (cf. [36]), is only associated with the finite element discretisation because

where A} is the eigenvalue of the discrete problem (4.4) and Xj is the eigenvalue of the reduced

(almost) exact eigenvalues )\jh of the discrete problem (4.4) are computed. The corresponding
discretisation errors are used as reference values for the H-AMLS method. To compete with
a classical approach, the error caused by the modal truncation and the error caused by the
approximative H-matrix arithmetic have to be small enough that the error of the H-AMLS
method is of the same order as the discretisation error

KN h
A =AMy =AM (7.7)
—— —
error of H-AMLS discretisation error

Dividing (7.7) by |A;| one obtains the equivalent statement expressed in form of relative errors

~ h)
N = A A =AW
I e’ R U L ' (0} (7.8)
J
Aj Aj
N———— N———
relative error of relative error
H-AMLS of discretisation

Ultimately, the overarching aim arises to choose the parameters k; and ¢ in such a way that
the approximation error of H-AMLS fulfils (7.8) while the computational costs and storage
requirements of H-AMLS are reduced as much as possible.

7.4. Improving the H-AMLS Approximations with Subspace lteration

The H-AMLS method described in Section 7.1 is a projection method without any iterative
improvement where the accuracy of the computed eigenpair approximations depends on the a
priori chosen mode selection strategy and the accuracy of the H-matrix arithmetic. However,
even in the case that the accuracy of the computed eigenpair approximations is not satisfac-
tory for some reason, the performed H-AMLS computation was not useless since the computed
eigenvector approximations are at least well suited as an initial subspace of a subsequent sub-
space iteration. Using the subspace iteration the accuracy of the H-AMLS approximations can
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7.4. Improving the H-AMLS Approximations with Subspace Iteration

Algorithm 3 Basic Subspace Iteration with Rayleigh-Ritz Projection

1: procedure SUBSPACEITERATION( K, M )

2 initialise iteration matrix Q(® € RN*"es with full rank;
3 > perform iteration where ni., € N is some given value
4: for i =1,...,nje do

5: M-orthonormalize QU—1);

6: compute A := MQU~1 g RNXnes,

7 solve KQUW = A for Q) e RNX7es;

8 end for

9: > perform Rayleigh-Ritz projection where Q := Q(Miter)
10: compute reduced stiffness matrix Ko := QT A; > note that A = K Q
11: compute reduced mass matrix My = QT M Q;

12: solve the reduced EVP Ko So = Mg Sq Do with SEMgSg = 1d € RMesX"es;
13: transform eigenvectors S := Q Sg;
14: return (Dg, S); > return the computed eigensolutions

)

15: end procedure

be improved up to the discretisation error if wanted, i.e., that (almost) exact eigenpairs of the
problem (K, M) are computed. In the following, the subspace iteration is briefly recalled and it
is explained why particularly this method is a good choice for the iterative improvement of the
‘H-AMLS approximations.

The subspace iteration [8, 10, 63] — which is sometimes also called orthogonal or simulta-
neous iteration — generalises the concept of the power iteration to multiple iteration vectors.
The subspace iteration, as described in Algorithm 3, computes eigenpair approximations of the
problem (K, M) associated to the smallest ns eigenpairs, and provided that the initial subspace
of the iteration is not M-orthogonal to one of the sought eigenvectors the convergence rate for
the approximation of the j-th eigenpair (see, e.g., [10, 63]) is given by

i/ Anes+1 for j=1,...,Nes. (7.9)

The Rayleigh-Ritz projection? in Algorithm 3 is needed to extract the corresponding eigenvector
approximations from the iteration subspace which is spanned by the columns of the matrix Q).

To make out of Algorithm 3 an efficient and practically applicable eigensolver several improve-
ments are needed (see, e.g., [8, 11] for details) such as: Implementation of shift-invert techniques
to accelerate the convergence; implementation of a convergence check where already converged
iteration-vectors are locked (i.e., converged vectors are extracted from the subsequent iteration
process); performing the orthonormalization as infrequently as possible and only for those vec-
tors for which it is necessary; and operating on a subspace whose dimension is a little bit larger
than the number of sought eigenpairs (cf. [11]).

The subspace iteration is still widely used in practice because of its robustness and efficiency
[11], but typically the Lanczos method [8] is more efficient especially when many eigenpairs are

2The Rayleigh-Ritz projection in Algorithm 3 includes the computation and the solution of the reduced eigenvalue
problem (Kq, Mq), where the diagonal matrix Do € R™=*"e contains the eigenvalues of (K¢, Mg) and
So € R¥X7es column-wise the corresponding eigenvectors. The matrix Dg together with the transformed
eigenvector matrix S := QS finally provide the sought eigenpair approximations of the problem (K, M).
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7. Combination of AMLS and H-Matrices

sought. However, in combination with H-AMLS the subspace iteration provides important ad-
vantages: As mentioned in the beginning the eigenvector approximations of H-AMLS (which are
already quite close to the exact ones) are well suited for the construction of the initial subspace
of the subspace iteration. The subspace iteration typically leads to a fast solution if the initial
subspace is already close to the sought eigenspace. Correspondingly, it is reasonable that the
accuracy of the H-AMLS eigenpair approximations is improved sufficiently by the subspace iter-
ation within a few iterations.®> Furthermore, the factorisation K" ~ L* K™ (L*)” computed in
task (T2) of the H-AMLS method, can be reused as a preconditioner for the solution of the linear
system in line 7 of Algorithm 3. For these two reasons the subspace iteration is a good choice
for the iterative improvement of the H-AMLS approximations. The efficiency of this approach
has already been demonstrated in [68] in a purely algebraic setting. There a basic version of the
subspace iteration (without any acceleration techniques) has been used to improve the eigenpair
approximations of the classical AMLS method. It is shown in [68] for several problems that
the accuracy of the eigenvalue and eigenvector approximations of AMLS can be significantly
improved already within one or two iteration steps. The same results can be expected when
H-AMLS is combined with the subspace iteration. In particular, when H-AMLS is applied with
a subsequent subspace iteration the H-AMLS method becomes less dependent from the a priori
chosen mode selection strategy and the chosen accuracy of the H-arithmetic, since the accuracy
of the H-AMLS approximations can be improved in any case up to the discretisation error if
wanted. This should allow H-AMLS to become applicable to a wider range of problems, e.g., to
problems where a high accuracy of the computed eigenpair approximations has to be guaranteed.

The efficiency of the subspace iteration for the iterative improvement of the H-AMLS ap-
proximations (the accuracy can be significantly improved within one iteration step, cf. [68])
motivates to introduce a variation of the in Section 7.1 presented H-AMLS method: Instead
of applying task (T9) it is proposed to apply Algorithm 4 right after finishing task (T8). Let
S € RN*7es be the matrix containing column-wise the H-AMLS eigenvector approximations
y; which have been computed in task (T8), then Algorithm 4 performs one (approximative)
iteration step of the subspace iteration using S as initial subspace. Note that, when in task (T7)
a partial eigensolution of the H-reduced eigenvalue problem of the form

—~ o~

KS = MSD  with STMS = Id

is computed where the diagonal matrix D € R eXnes contains the eigenvalues (S\j)?;sl and S €
=
orthonormal. Furthermore, note that the computation of K—1(MS) in Algorithm 4 is performed
only approximatively, and correspondingly the error of the improved eigenvector approximations
is still associated with the error induced by the approximative H-arithmetic. The evaluation of
K~Y(MS) can be performed also exactly by using the factorisation of K™ as a preconditioner,

however, this would further increase the computational costs.

Note that, when Algorithm 4 is applied in the H-AMLS method right after task (T8) then
the Rayleigh quotients of the improved eigenvectors do not have to be computed, since already

REXnes column-wise the associated eigenvectors (X;) then the matrix S is approximatively M-

3In particular, the convergence for the eigenpairs at the lower end of the spectrum should be faster because of
the convergence rate (7.9).
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7.4. Improving the H-AMLS Approximations with Subspace Iteration

Algorithm 4 Implementation of Task (TSI)

1: procedure IMPROVEEIGENSOLUTION( K, M, L, K™ S)

2 > perform one (approximative) iteration step of the subspace iteration

3 compute A; := MS € RN Xnes: > note that K and M are sparse
4: solve LMAy = A, for Ay using fast H-arithmetic; > L™ is a lower triangular matriz
5: compute Az := ([N(H)flAz using fast H-arithmetic; > K™ is a block diagonal matriz
6 solve (LM™)TA,; = A3 for Ay using fast H-arithmetic;

7 > perform the Rayleigh-Ritz projection where @QQ := Ay

8 compute reduced stiffness matrix Ko, := QT K Q;

9: compute reduced mass matrix M, = QT M Q;

10: solve the reduced EVP  Kq Sq = Mg S Do with SHMgSq = Id € RMesx"es;

11: transform eigenvectors Sew := @ Sg;

12: return (Dg, Shew); > return improved eigensolution

13: end procedure

the equality
~(SI F' ~(SI

W fOI"jZl,...,nes
J J

N(SD
)\j =

is fulfilled, where X;SI) denotes the j-th diagonal entry of the matrix D, from Algorithm 4 and

?;-SI) is the j-th column vector of the matrix S,... In particular, the computed eigenvector ap-

proximations ?;SI) are M-orthonormal. In the following Algorithm 4 is referred to as task (TSI),
and the H-AMLS method is simply called H-AMLS with (TSI)-improvement when task (TSI)

is performed instead of task (T9).

The computational costs of task (TSI) are as follows:
e The computation of MS is performed in O(neN) using the sparsity of M.

e The computation of the matrices Ay, Ay € RV*"s in Algorithm 4 [forward and backward
substitution in L* and (L*)?] can be performed column-wise in O(nesN log® N) using
the fast ‘H-matrix arithmetic.

e The multiplication (K™)~!'A, is performed in O(nesN log® N) exploiting the fast H-
arithmetic for the computation of the inverse (K)~! and for the computation of nes
‘H-matrix times vector multiplications.

e The multiplications Q7 (K Q) and QT (M Q) involve 2n.s sparse matrix times vector mul-
tiplications in O(N) plus 2n%; scalar products of length N which sum up to costs of the
order O(n%N).

e Since we aim at nes € O(N'/3) the solution of eigenvalue problem (Ko, My) in Algorithm
4 can be performed in O(N) by a dense linear algebra solver with cubic complexity.

e The multiplication QS involves Nnes scalar products of length nes leading to costs of
O(nZ,N).
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7. Combination of AMLS and H-Matrices

We can sum up that the complexity of task (TSI) is dominated by the H-matrix times vector
operations, which accumulates to a total of O(neN log™ N), and the usual scalar product ac-
cumulating to at most O(n2,N) multiplications or additions. As described in Section 7.2, both
of these operations have constants involved that are much smaller than the constants involved
in the H-matrix operations in (6.12). Therefore, in H-AMLS task (TSI) is for problem sizes up
to N = 6,000,000 not the bottleneck, instead most of the time is spent in task (T2) and (T3),
both of them in O(N log® N) which is asymptotically in o(nesN).

Last but not least another feature is listed which possibly allows the application of H-AMLS
to a wider range of problems:

Remark 7.2 (Black Box H-AMLS) To perform the H-AMLS method the H-matriz repre-
sentations of K and M are needed. These H-matrix representations are based on a block cluster
tree Trx1 and an admissibility condition that describe a partitioning of K and M into submatrices
that are stored in full matriz or R(k)-matriz representation (cf. Section 6.1). To construct the
needed block cluster tree geometry information of the underlying finite element space is needed
in order to determine a geometric partitioning of the index set I, and to determine diameters
and distances of clusters for the admissibility condition. The H-matriz arithmetic itself, which
is used in the H-AMLS method, requires only the H-matriz format induced by Trx; and does
not need any geometry information. However, in some applications geometry information might
not be available, and only the already assembled stiffness matriz K and mass matriz M can be
provided. In this case, the black box approach presented in [34] can be used to construct the nec-
essary block cluster tree Trx; and an algebraic admissibility condition. This black box approach
1s based on the matriz graph of the sparse matrices K and M, and uses the connectivity infor-
mation of the indices i € I to derive, e.g., a partitioning of the index set I. Using this approach
geometry data associated with the indices is no longer required, and hence the H-AMLS method
can be applied as well in a purely algebraic setting.

88



8. Implementation of H-AMLS

The H-AMLS method has been implemented in C++ using the H-matrix software library
HLIBpro v2.3. The HLIBpro [50, 53] is a C++ library which provides a complete implementation
of the available H-matrix arithmetic, and which contains a wide range of routines for H-matrix
construction, index set clustering, low rank approximation, etc. Moreover, the HLIBpro has
been parallelised for shared and distributed memory machines [51, 52, 54]. Beside that, a LA-
PACK/BLAS [3, 56] library has been used for the implementation of H-AMLS since a direct
eigensolver routine is needed, and since a corresponding library is required by the HLIBpro itself
(the HLIBpro uses LAPACK/BLAS for all low-level linear algebra functions).

This chapter describes the implementation of the H-AMLS method. In particular, it is shown
how the computations involved in H-AMLS are performed in detail and how basic parameters of
‘H-AMLS have been chosen which lead to the numerical results presented in Chapter 9. Further-
more, most of the tasks of H-AMLS are very well parallelisable. To benefit from the multiple
cores of today’s workstations and compute servers the H-AMLS method has been parallelised for
shared memory systems. How the different tasks of H-AMLS have been parallelised is discussed
here as well. But before this topic is started the following Lemma is presented which enables to
change the block diagonalisation in task (T2) of the H-AMLS method:

Lemma 8.1 Consider the transformation matrixz L arising in task (T2) of the classical AMLS
method when the matriz K is block diagonalised. Let B := diag[By, ..., Bp] be a block diagonal
matriz consisting of arbitrary regular matrices B; € RN>*Ni for i =1,... . m. If in the AMLS
method the transformation is performed with matrix Ly := LB instead of L then the computed
eigenvector approximations (/):j, yj) remain unchanged.

Proof: If in classical AMLS the transformation matrix L is replaced by Lp then in task (T2) and
(T3) of AMLS the transformed matrices Ky := (L) 'K(Lp)™T and My := (L) 'M(Ly)~T
are computed instead of K and M, and it holds

Ky =B 'KB T and Myz=B'MBT

with B~! = diag[B; ..., B;,']. Denote (Kp)ii and (M) for i = 1,...,m the submatrices of
Ky and My in block row and block column i. Then in task (T4) of AMLS the partial eigenso-
lutions of the subproblems ( (K )i, (Mg)i; ) are computed where it holds (K B)ii = B, 1KMB -7
and (MB)ZZ =B, 1MuB T Note that the eigenvalue problems ((KB)“, (MB)“) and (Ku, M“)
are equivalent, i.e., the elgenvalues of both problems coincide and the eigenvectors are trans-
formed. More p1recisely7 if in task (T4) a mode selection strategy is applied which only depends
on the size of the subproblem elgenvalues (see, e. g Remark 5.7) then the partial elgensolutlon of
((KB)”, (MB)“) is given by (D z,BTS) where (DZ, S) is the partial eigensolution of (K“, Mm)

Correspondingly, in task (T5) of AMLS the subspace spanned by the columns of the matrix
Z5 = BTZ is used for the reduction, and in task (T6) the reduced matrices I?B = ZgI?BZB
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Algorithm 5 Implementation of Non-Recursive and Recursive H-AMLS

1: > parameters that are used in H-AMLS and their corresponding default values
2: parameter {

3:

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

h

do_recursive_ HAMLS:=false; > switch between recursive and non-recursive version
apply_task_(TST):=false; > switch to activate improvement task (TSI)
Nmin = 40, 1 := 50; > parameters controlling shape of block cluster tree Tr«
nAMLS . — 1000; > parameter controlling the size of subdomain problems
€; > relative accuracy of the used H-arithmetic — see Chapter 9
Bints Baoms Cints Caoms Choms > control number of selected eigenvectors — see Chapter 9
Nes; > number of sought eigenpairs

procedure APPLYHAMLS( K, M, (&)Y, parameter )

> task (T1): construct the H-matriz representations of K and M — see Section 8.1

I:={1,...,N}
Tr := CONSTRUCTCLUSTERTREE( I, (&;)icr, Mmin ); > see Algorithm 6
Tix1 := CONSTRUCTBLOCKCLUSTERTREE( 77, Nmin, 1 ); > see Algorithm 2

reorder rows/columns of K and M to obtain K™, M* € H(T;x1,¢);

> task (T2—|—']T3) transform eigenvalue problem (K7, M™) — see Section 8.2, Algorithm 7
(K™, M™, L") := TRANSFORMEVP( K, M™, T;, 1, ¢ );

> initialise the auziliary data — see Section 8.3 and Algorithm 8
Tamrs := CREATESUBSTRUCTURETREE( 77, nAMES );
m = #L(Tamws); > m is the number of subproblems

create the bijection ¢ : {1,...,m} = L(Tamrs); > see (8.5) for the definition of ¥

> task (T4): compute partial eigensolution of subproblem@ — see Section 8.4, Algorithm 9
(D;,S;)", := COMPPARTIALEIGENSOL( K™, M™, Cyom, Cine: Baom, Bint );

> apply the condensation of subproblems — see Section 8.7 and Algorithm 16
> note that (D;,S;) and Tamws can change during the condensation process
if do_recursive HAMLS then o

APPLYCONDENSATION( K*, M™ Tayws, (DiySi)™1, C%s Baom )i
end if

> task (T6): compute the reduced matrices K and M — see Section 8.5 and Algorithm 11
(K, M) := CoMPREDUCEDMATRICES( K™, M™ Tauws, (D, Si)™,);

> task (T?) compute partial eLgenwl of the reduced eigenvalue pmblem — see Section 8.5
solve KS = MSD with STMS = Id where D € RnesXnes | § € RFxnes;

> task (T8+T9+TSI): transform and improve ezgensolutwm — see Section 8.6, Alg. 12
(D, S) := TrANSFORMEIGENSOL( K, M, L*, K™ (S;)™,, S, apply_task TSI );

return (D, S);

end procedure
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and ]\/ZB = Z?;MBZB are computed. Since
Ky =2T"BB'KBTBTZ=K and M,=2"BB'MB TBTZ=M

it follows that the reduced eigenvalue problem which is obtained by using the transformation
matrix Ly coincides with the reduced problem obtained by using transformation matrix L, and
hence in task (T7) the same eigenpairs ()\j,fﬁj)?isl are computed. Furthermore, when in task
(T8) the eigenvectors z; are transformed we obtain

(Lp) TZp2;=(LB) "B Zz; =L 12%; = 7.

Altogether, it follows that the same eigenpair approximations are computed when in AMLS the
transformation matrix Ly is used instead of L. [ ]

According to Lemma 8.1 the AMLS method can be applied with a modified transformation
matrix without changing the computed eigenpair approximations (Xj, Yj)j<. For example, in-
stead of performing in task (T2) the block LDLT-factorisation K = LK LT [see, e.g., (5.22)] also
the complete LDLT-factorisation can be performed, i.e., that the factorisation K = LDDLE is
computed where D is a diagonal matrix and L, a lower triangular matrix with unit diagonal.
Since the matrix L, can be written as L, = LB with a suitable regular block diagonal matrix
B the result of the AMLS approximation remains unchanged according to Lemma 8.1. By a
similar argumentation as done in the proof of Lemma 8.1 it can be shown that also in the recur-
sive version of AMLS the computed eigenpair approximations remain unchanged when instead
of the block diagonalisation a complete diagonalisation is performed.

Performing a complete LDLT-factorisation in task (T2) of the H-AMLS method has the
following advantages: The (complete) LDLT-factorisation of a symmetric H-matrix K* ¢
H(Trx1,€) is already implemented in the HLIBpro library [50] with a computational complex-
ity of O(Nlog® N). Correspondingly, there is no need to implement an explicit block LDLT-
factorisation and instead the well proven and tested HLIBpro routine can be used in task (T2)
for the transformation of the stiffness matrix. Furthermore, this HLIBpro routine is already
parallelised very efficiently for shared memory systems [54]. Another advantage of performing a
complete LDLT-factorisation in task (T2) is that this eases the implementation of the recursive
H-AMLS method. Keep in mind that when in task (T2) a block LDLT-factorisation is performed
that then the submatrices on the block diagonal of the transformed matrices K and M remain
unchanged if they are associated with a subdomain, i.e., it holds IN(ZZ" = K} and M}t = M7t 1f
in task (T4) the partial eigensolution of subproblem (K7#, M) should be computed recursively
by H-AMLS then again the matrix KZ} has to be block diagonalised and MZZ1£ has to be trans-
formed correspondingly. If in task (T2) instead a complete LDLT-factorisation is performed,
in connection with the appropriate matrix partitioning of K* and M* (cf. Section 8.1), then
the submatrices I?Z,f are already diagonalised and no further transformation is needed when
H-AMLS is applied recursively. This means when a complete LDLT-factorisation is performed
then the problem (K7, M™) is transformed globally. In this light, the recursive application of
H-AMLS can be seen as a condensation process (see Section 8.7 for details) where the spectral
information of several subproblems is condensed using H-AMLS into the (approximative) spec-
tral information of a single subproblem of larger size.
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The H-AMLS method has been implemented using the approach discussed above, i.e., where
in task (T2) a complete LDLT-factorisation is performed and the eigenvalue problem (K7, M™)
is transformed globally. The implementation of H-AMLS is summarised in Algorithm 5. For
given finite element matrices K, M € RY*¥ from (5.20) and associated geometric representatives
(&)X, from (6.7) Algorithm 5 computes the approximative partial eigensolution

KS ~ MSD  with STMS ~ Id (8.1)

where D € R™es*"es jg g diagonal matrix containing approximations of the nes smallest eigen-
values and S € RV*"es the matrix containing column-wise approximations of the corresponding
eigenvectors. Algorithm 5 includes the implementation of the non-recursive and recursive version
of H-AMLS, and as well the version with (TSI)-improvement.! In the following Algorithm 5 is
described in detail. The description starts with the implementation of non-recursive H-AMLS
(Section 8.1-8.6), and based on this, it is shown how recursive H-AMLS has been implemented
(Section 8.7). Finally, in Section 8.8 it is described how H-AMLS has been parallelised for
shared memory systems.

8.1. Task (T1): Construction of the 7{-matrices

Algorithm 6 Construction of the Cluster Tree

1: procedure CONSTRUCTCLUSTERTREE( t, (& )ict, Mmin )
2 if #t < nmin then
3 S(t) == 0;
4 else if ¢ is a domain-cluster then
5: geometric dissection of ¢ into domain-clusters 1,2 and interface-cluster t3;
6 S(t) = {tl,tg,tg};
7 else if ¢ is an interface-cluster then
8 > level(t) is defined as the length of the path between t € T; and the root of T;
9: if level(t) = 0 mod d then
10: S(t) :={t};
11: else
12: geometric bisection of ¢ into interface-clusters t; and ts;
13: S(t) = {tl,tg};
14: end if
15: end if
16: for all s € S(t) do
17: CONSTRUCTCLUSTERTREE( 8, (&;)icss Tmin )
18: end for
19: return cluster ¢;

20: end procedure

In order to compute in (6.12) the transformed cigenvalue problem (K oM ") by the fast H-
matrix arithmetic, first of all, the matrices K and M have to be represented in the matrix
format H(77x1,€). For this purpose a cluster tree 77 over the index set I = {1,..., N} has to

!Depending on whether task (T9) or task (TSI) has been applied in Algorithm 5 the diagonal matrix D contains

the eigenvalue approximations X;“ﬂ or X;SI)

y; or §§.SI). Furthermore, it holds S”MS = Id in (8.1) when task (TSI) has been applied.

, and the matrix S column-wise the eigenvector approximations
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substructuring
needed for
AMLS

substructuring
needed for
H-matrix
arithmetic

Figure 8.1.: Schematic example of the substructuring of the domain € applied in H-AMLS: A
two-level geometric nested dissection (necessary for AMLS, cf. Figure 5.3) is applied followed by
an additional two-level geometric nested dissection of the subdomains and a one-level geometric
bisection of the interfaces (necessary for H-matrix approximation).

be constructed. The substructuring of the domain €2, which is associated to the construction
of 77, has already been discussed in Section 6.2. However, the described substructuring scheme
is not optimal for the computation of (6.12), especially when in task (T2) a complete LDL™-
factorisation is performed. Instead of applying a recursive geometric bisection of the index sets
associated to subdomains it is much more efficient regarding the computational costs of (6.12)
to apply as well a geometric nested dissection, cf. [35]. To be more precise, let ¢ C I be a cluster
associated to a subdomain, then ¢ is geometrically subdivided into two so-called domain-clusters
t1 and to which are separated by a so-called interface-cluster t3 such that

t= |J t with Q,NQ, =0 (8.2)
1€{1,2,3}

where (2, is the support [see (6.1)] of the cluster ¢;. The implementation of such a subdivision is
typically based on a initial geometric bisection (cf. Algorithm 1) and followed by the construction
of an explicit separator t3, cf. [34, 35]. This substructuring scheme is applied recursively
to the domain-cluster ¢; and ts until the size of the clusters is small enough. In contrast
to this, interface-cluster are recursively subdivided by a geometric bisection. The resulting
partitioning of the index set I is organised in the cluster tree 7;. The construction of 77 is
summarised in Algorithm 6 which has to be applied to the index set I and the associated
geometric representatives (&;);es (the representatives &; from (6.7) are needed for the geometric
subdivision), and where the parameter nyy, is controlling the minimal size of the clusters. In the
numerical examples presented later in this work the parameter ny;, has been set to 40 which is
a standard value for npy;, (cf. [50]) and which lead to a good computational performance. Note
that in Algorithm 6 the subdivision of the interface-clusters is delayed every d-th step in order
to avoid that interfaces are substructured faster in smaller parts than subdomains, cf. [35]. The
domain substructuring of {2 associated to the construction of 77 is illustrated in Figure 8.1.

In the next step the block cluster tree Tr«; associated to 77 has to be constructed. This is
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8. Implementation of H-AMLS

done by applying Algorithm 2 to the product index set I x I using the parameters ny;, and 7,
and the following adjusted admissibility condition

if condition (6.2) is fulfilled or
block cluster s x t is admissible :<= . (83)
if s and t are domain-clusters with s # ¢

The adjusted admissibility condition takes into account that for a domain-cluster ¢ which is
subdivided as in (8.2) typically the distance between 2, and €, is very small in contrast to
the diameters of €2y, and 2;,, and that correspondingly the block cluster ¢; x ¢y is often not
admissible according to condition (6.2). However, since the submatrices of K and M associated
to the block cluster ¢; x tg are zero and, most importantly, remain zero when (6.12) is computed
(cf. [35]), it follows that block cluster ¢; x t2 should be considered as well as admissible since the
corresponding submatrices can be represented as R(k)-matrices of rank zero. As mentioned in
Section 6.1 the parameter n > 0 controlling the number of admissible subblocks s x t is typically
set to n = 1 (see, e.g., [33]). However, in numerical tests better results have been obtained
according to the computational time using larger 1 and correspondingly having larger but fewer
admissible subblocks. In [40] better results have been obtained as well when even subblocks s x ¢
with s # t were accepted as admissible. In numerical tests 7 := 50 has been a good choice and
this value has been used in the rest of the work.

Finally, the rows and columns of K and M are reordered according to the partitioning of I
(which is described by the cluster tree 77), so that K and M are partitioned into blocks according
to L(Trxr). Since for block cluster s x t € L(Tr«) fulfilling admissibility condition (8.3) the
associated supports {25 and (2; are geometrically separated it follows that the submatrices K5y,
and M|y, are equal to zero (cf. Lemma 3.6) and can be represented exactly by R(k)-matrices
with rank zero. Hence, no approximation is necessary to represent K and M in the matrix
format H(T7x7,€). The (exact) H-matrix representations of K and M are denoted by K™ and
MM,

The modified substructuring scheme described in Algorithm 6 has two advantages: First,
the computation of (6.12) becomes faster (see, e.g., [35]). Second, the matrices K* and M7
are partitioned in such a way that in the H-AMLS method the submatrices KZZ{ and ij
associated to a subdomain are already partitioned according to a nested dissection. This becomes
advantageous when in the recursive approach the subdomain eigenvalue problem (KZZ", M;’;‘) is

solved recursively by H-AMLS and no further partitioning of KZ;‘ and MZZ" is needed.

8.2. Task (T2+4T3): Transformation of the Eigenvalue Problem

The computation of the transformed eigenvalue problem (IN( 71, M H) is described in Algorithm
7. First a nearly complete LDL"-factorisation K" ~ L*KM"(LM™)T is computed using the
corresponding HLIBpro routine (cf. [50]) with approximation accuracy e where K* € H(T7x;,¢)
is symmetric and L™ € H (77«7, ¢€) is a lower triangular, unit diagonal matrix. Nearly complete
LDLT-factorisation means that K™ is diagonalised only up to the block diagonal matrices which
are associated to leaves of the block cluster tree Tr«y, i.e., the matrix K™ is zero except for the

dense block diagonal matrices K ft{x , which are associated to some ¢t x t € L(T7x1). According to

[50] the nearly complete LDLT-factorisation of an H-matrix is more stable than the complete
one. Because of Lemma 8.1 the transformation in task (T2) can be modified in such a way.
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Algorithm 7 Computation of the Transformed Eigenvalue Problem

1: procedure TRANSFORMEVP( K™, M™, T;yg, ¢)

2: > diagonalise the stiffness matriz K™ using the H-arithmetic with approximation accuracy e
3 initialise lower triangular matrix L* € H(T7x7,€);

4: initialise symmetric matrix K" e H(Trxr1,€);

5: compute (nearly) complete LDLT-decomposition K* ~ LHI?H(LH)T;

6.

7

8

9

> transform the mass matric M™ using the H-arithmetic with approzimation accuracy e
initialise matrix A" € H(Trxr,¢);
solve L* A" = M™ for AH;N
: initialise symmetric matrix M* € H(T;xr,¢€);
10: solve MH(LH)T = A™ for MH; > compute only the lower triangular part of MM
11: return (I?H,MH,LH);
12: end procedure

After factorising K the transformed mass matrix MM is computed. This is done in two steps:
First the matrix A" € H(T7xz,€) is computed by solving LM A" = MM for A" € H(Tix1,€)
where the lower triangular structure of L7 is exploited. The computation is performed using
the corresponding HLIBpro routine with approximation accuracy . By solving M (L*)T
AM for MM € H(Trx1,€) finally the transformed mass matrix is obtained. In order to save
computational time, explicitly only the lower block triangular part of the symmetric matrix MM
is computed.

8.3. Auxiliary Data

For the implementation of the remaining H-AMLS tasks the substructures of the domain € have
to be identified (respectively, the corresponding subsets of I) which induce the m subproblems
of the H-AMLS method and the m x m block partitioning [cf., e.g., (5.21) or (5.29)] of the
transformed matrices K7 and M™. For this purpose a truncated version of the cluster tree
71 is introduced which is called in the following AMLS substructure tree (or short AMLS tree)
and which is referred to as Tamrs. The AMLS tree is obtained by applying Algorithm 8 to 7T
using the parameter niy® € N with ni¥ > nyin: In the first step of Algorithm 8 the tree
Tamus 18 initialised as a copy of T;. Thereafter Toyis is traversed, starting from the root running
recursively through the sons, until an interface-cluster is reached or a domain-cluster which is
smaller or equal to nAM". In both cases the sons of these clusters are truncated, i.e., for the
corresponding ¢ € ﬂMLS the set of sons is set to S(t) := (). The parameter nj}° € N controls
the minimal size of the domain-clusters in T g, and it is set to the largest size of an eigenvalue
problem which can still be solved easily by a direct solver. Note that all interface-cluster in the
resulting AMLS tree Tawis are leaves. In numerical tests nAM" := 1000 has been a good choice
and this value is used in the rest of the work. The difference between the AMLS tree Tams and
the cluster tree 7; can be illustrated in Figure 8.1: The upper part of the described domain
substructuring in Figure 8.1 is associated with Ty.s, whereas both the upper and lower part is

associated with 77.

The leaves of the AMLS tree describe a disjoint partitioning of the index set I which results
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Algorithm 8 Creation of the Substructure Tree

1: procedure CREATESUBSTRUCTURETREE( T, njMls )

2 initialise Tanmws as a copy of 7r;

3 U := {t} with ¢t := root(Tamws); > t is the root of the tree Tamis
4 while U # () do

5: select arbitrary ¢t € U and set U := U \ {t};

6 if t ¢ L(Tamrs) then

7 if ¢ is a domain-cluster and #t > nAMS then

8 U:=UUS(t); > append sons of large domain-clusters to the cluster set U
9 else
10: S(t) :=0; > delete sons of small domain-clusters and interface-clusters
11: end if
12: end if
13: end while
14: return 7Tanrs;

15: end procedure

in a block partitioning of the product index set I x I of the form

IxI = U s xt, (8.4)
s€L(TAMLS)s
teL(TamMLS)
see Figure 8.2(b) for illustration. The partitioning of I x I in (8.4) corresponds to the m x m

block partitioning of the transformed matrices K™ and M™ which has been described in Section
7.1 where m = #L(Tamws). More precisely, there exists a unique bijection

¢ {1,...,m} = L(Taws) with i~ (i) C T (8.5)
corresponding to the m x m block partitioning of K™ and M™ such that for ,7=1,...,m it
holds B B . .

K= (K™) o and M} = (M™) o with s := (i), t = (j).
This bijection allows to assign to each subproblem index i € {1,...,m} the corresponding index

set (i) € L(Tauws) and vice versa.
The block structure of the H-matrices K7, M™ € H(Trxr,€), however, is described by the
leaves of the block cluster tree 77y« via

IxI = U s X t,
SXtEE('T[X])

and typically does not coincide with the mxm block structure described in (8.4), as it can be seen
in Figure 8.2. To implement the remaining tasks of H-AMLS the submatrices KZJ{,MZJ{ have to
be extracted from K* and M™. Note that the H-matrices are implemented in a recursive block
structure format which is guided by the block cluster tree 77y, cf. (6.9). Correspondingly,

in order to obtain, for example, the submatrix ]TJZJ" associated to the clusters s := (i) and

t :==1(j), the block structure of (MH)HX[ has to be recursively truncated to the block cluster
sxt, and when finally a leaf matrix (M,H)IUXU is reached with uxv € L(T;xs) and uxvNsxt # ()
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(a) The used H-matrix format H(Tixr,€) is (b) m x m block partitioning used in H-AMLS to access the
independent of the constructed substructure submatrices Kf and M/f. In this example the substructure
tree TaMmLs. tree Tamrs has two levels resulting in m = 7 subproblems.

Figure 8.2.: Improved H-matrix format H(77xs,€) used in H-AMLS (cf. Section 8.1) for the
finite element discretisation of an elliptic PDE eigenvalue problem on = (0, 1)3 with # = 2744
degrees of freedom. Red blocks represent full matrices, green blocks R(k)-matrices and white

blocks submatrices equal to zero which don’t cause computational costs during the computations
performed in task (T2) and (T3).

the recursion is stopped and the corresponding full matrix or R(k)-matrix representation of
(MH)WM is truncated to the block cluster 4 X v where w := uNs and v := vNt. Note that for
an R(k)-matrix? R = ABT € R**? with A € R*** and B € R"** the restriction of R to the
block cluster @ x @ is given by the R(k)-matrix R = ABT € R¥? with A € R%** and B € R"*¥,

8.4. Task (T4): Computation of the Partial Eigensolutions

In task (T4) the partial eigensolutions (D;, S;) of the subproblems (I?Z;‘, ]\Z@") have to be com-
puted for i = 1,...,m. ]5, € RF*ki i5 the diagonal matrix containing the k; < N; smallest
eigenvalues of (I?Z;‘, M;’;‘) and §Z € RYNixFi the matrix containing column-wise the correspond-
ing eigenvectors (cf. Section 7.1). In Remark 5.7 different mode selection strategies have been
discussed. It is proposed to compute all eigenvectors of the discrete problems (IN(Z;[, ]\AJZZ") which
still lead to reasonable approximations of the corresponding continuous eigenfunctions. More
precisely, for subdomain eigenvalue problems it is proposed to compute only eigenvectors be-
longing to the smallest k; := [Ciyom (N;)P4om] eigenvalues are and for interface problems only the
eigenvectors belonging to the smallest k; := [C, (N;)%nt] eigenvalues. The concrete choice of
the constants Cyom, Cine > 0 and Baom, Bins € (0, 1) is discussed in detail in Section 9.1.1 where
numerical results are presented. This mode selection strategy depends solely on the size and the
type of the subproblem.

2The notation R**" indicates that R is a matrix of size #u x #v whose row indices are associated with the
cluster u C I and whose column indices are associated with v C I. Correspondingly, A € R*** and B € R***
are matrices of size #u X k and #v X k with k € N, where the row indices are associated with the clusters u
and v.
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Algorithm 9 Computation of the Partial Eigensolutions

1: procedure COMPPARTIALEIGENSOL( K®, MM, Cuom, Cine, Baoms Bine )

2 fori=1,...,m do _ _ . .

3 extract submatrices K := (K™);, and M7 := (M), with ¢ := 9(i);

4 if t is a domain-cluster then

5: > compute partial eigensolution of a _subproblem associated to a subdomain

6 initialise full matrices D; € RF*F: S, € RN:Xki with k; := min{ [Cyom (N;)Pdem], N; };
7

8

9

solve Kg;‘ S, = MZZ'[ S; D; using the dense LAPACK eigensolver dsygvx;

else

: > compute partial eigensolution of a_subproblem associated to an interface
10: initialise full matrices D; € RF*Fi S, € RN:*Fi with k; := min{ [Ciy (N;)Pint], N; };
11: if #t < njMLS then
12: solve I}Zj S, = ]\Zt‘ S, D; using the dense LAPACK eigensolver dsygvx;
13: else o o
14: solve KZZ{ S, = Mff S; D; using the eigensolver H-SIL;
15: end if
16: end if

17: end for
18: return (D;,S;)™;
19: end procedure

Remark 8.2 Of course also other mode selection strategies can be implemented, for example, a
strategy motivated by the results of Corollary 3.17 on the maximal size Ao, of well approzimable

etgenfunctions. This means, depending on whether the eigenvalue problem (KZf,M;’;‘) 18 asso-

citated to a subdomain or an interface all eigenvectors of subproblem (KZ;QMH) are computed
whose eigenvalues are smaller than the truncation bound wa.., (for subdomains) and wi,, (for

interfaces) where
Wdom = Cdome?dom and Wint += CYirlt:AZ\[}/i-}irlt

with suitable constants C~'d0m, C’im, Bdom, Bim > 0 depending on the polynomial degree of the under-
lying finite element space Vj, and the spatial dimension d. Using this mode selection strategy the
number k; of chosen eigenvectors is not known in advance which, however, is highly desirable
when the recursive version of H-AMLS is implemented (see Section 8.7 for details) and the size
ky has to be determined in order to check condensation condition (8.15).

The implementation of task (T4) is described in Algorithm 9. Depending on the type of the
subproblem a different eigensolver is used. If the eigenvalue problem (Kﬁ, M H) is associated
to a subdomain (i.e., t := 9(i) is a domain-cluster) then the size of the problem is relatively
small (according to Section 8.3 it holds N; = #t < n))®) and it can be handled easily by a
direct eigensolver. For this purpose the dense eigensolver routine dsygvx of LAPACK [3] is used.
This eigensolver is used as well when the problem (KZZ{, M H) is associated to an interface of
small size, i.e., when it holds N; < ni¥'S. However, if the interface problem is getting large the
solution by the dense LAPACK solver becomes too expensive. In the classical AMLS method
the matrices f(u and M;; associated to an interface are typically dense, however, in the H-AMLS
method the matrices I?;’;‘ and M;’;‘ are represented in the H-matrix format. This data-sparse H-
matrix structure can be exploited by an iterative eigensolver. In the following two eigensolvers

are presented which have been implemented, and which can be used for the solution of large
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8.4. Task (T4): Computation of the Partial Eigensolutions

interface eigenvalue problems.

Eigensolver -ARPACK

Let A" and B be symmetric H-matrices and A* regular. We consider the eigenvalue problem
Atz = ABz (8.6)

where the eigensolutions associated to the smallest eigenvalues are sought. To solve this problem
the FORTRAN 77 library ARPACK [57] can be used which provides routines for the solution
of large scale eigenvalue problems. The implementation of the corresponding eigensolver is as
follows: To solve problem (8.6) the eigensolutions of the transformed problem
HN\—1 pH 1

(A")"" B"z = 32 (8.7)
are computed which are associated to the largest eigenvalues 1/A. The solution of (8.7) is per-
formed using the ARPACK routines dsaupd and dseupd that implement the so-called Implicitly
Restarted Lanczos Method which is a combination of the Lanczos process with the implicitly
shifted QR technique, see [57] for details. ARPACK provides a reverse communication interface
(cf. [57]) that allows the usage of the fast H-arithmetic for the involved matrix-vector multiplica-
tions. Note that the H-matrix-vector multiplication is performed exactly. Furthermore, the ma-
trix (A*)~1B™ in (8.7) is not evaluated explicitly, instead an approximative LDL -factorisation
AM =~ LHD(L)T is computed by the fast H-arithmetic which is used as an preconditioner (cf.
[34, 35, 49]) for the iterative solution of the linear system involved in (8.7). The accuracy of the
‘H-arithmetic used for the computation of this factorisation is chosen in such a way that it holds
|T1d — (L D(L?)T)=1AM||; < 1072, and correspondingly, the preconditioner (L% D(L*)T)~!
guarantees in a linear iteration method a convergence with a convergence rate of at least 1072,
The tolerance parameter tol used for the stopping criterion (cf. [57]) of the ARPACK routine
dsaupd has been set to 1078, Altogether, this leads to an eigensolver which computes eigenpair
approximations (\,Z) with a relative residual error ||A*Z — ABMZ||5/||AMZ||5 typically in the
order of single machine precision. In the following this eigensolver is referred to as H-ARPACK.

Unfortunately, the ARPACK library is not thread-safe (see Section 8.8), in particular, it is
not possible to solve several eigenvalue problems concurrently by the eigensolver H-ARPACK.
Correspondingly, another thread-safe eigensolver has to be implemented in order to parallelise
task (T4) efficiently. But due to the high accuracy of the H-ARPACK eigenpair approximations,
this eigensolver is used as reference solver when in Chapter 9 numerical results are presented
and the approximation quality of H-AMLS is compared with these of a classical approach.?
For the solution of large interface eigenvalue problems (in both the parallel and the sequential
implementation of H-AMLS), however, the following eigensolver is used:

Eigensolver #-SIL

Consider the eigenvalue problem (8.6) with the symmetric matrices A* := IN(;’;‘ and BM := M

2 )
where A™ is positive definite. In order to solve this problem the eigensolutions of the transformed

3H-ARPACK is applied to the sparse problem (K, M) in the analogical way as to the problem (8.7). In order
to compute a preconditioner for K the corresponding H-matrix representation K7 is factorised.
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Algorithm 10 Check if ﬁij is a Zero Matrix

1: procedure SUBMATRIXISZERO( ¢, 7, Tamws )

2: get clusters s := (i) and ¢ := ¥ (j);

3 > F(t) € Tamws s defined as the father of t € Tawus, i-e., it holds t € S(F(t))
4: if ¢ is an interface-cluster then

5: t:= F(t);

6: end if

7 if s is an interface-cluster then

8 s:= F(s);

9: end if

10: > if F(s)NEF(t) =0 then M” is a zero matriz, otherwise not
11: return ( F(s)NF(t) =0 );

12: end procedure

problem

1
L'BRL Ty = 3y with A =L, and y:=Llx (8.8)

are computed which are associated to the largest eigenvalues 1/\, where A" = L,L% in (8.8)
is the exact Cholesky factorisation of A™. Note that A™ = I?;’;‘ is nearly diagonal (cf. Section
8.2) since in task (T2) a nearly complete LDLT-decomposition of K* is performed, and corre-
spondingly it is quite inexpensive to compute the (numerically) exact Cholesky factorisation of
A, For the solution of problem (8.8) the Lanczos method (without shift) has been implemented
where the matrix L7 B* L7 is not evaluated explicitly, instead the vector y,.., := LZIBHL;Ty
is computed by solving the triangular system L.y’ =y for 3/, computing y” := B*y/ using the
fast H-arithmetic, and solving L ¥ue. = ¥” for y,... Note that the matrix L, is nearly diag-
onal, and correspondingly the computation of ¥’ and ., is inexpensive. In the following this
eigensolver is referred to as H-SIL.

For the solution of (8.8) only a basic version of the Lanczos method has been implemented
(see, e.g., [8]) with a fixed number of maximal iterations. Benchmarks have shown that in some
examples the accuracy of the eigenpair approximations computed by H-SIL is slightly worse than
the one of H-ARPACK. However, in task (T4) it is not necessary to compute (numerically) exact
eigensolutions of the discrete problems (K Zj, M 7'[) Instead the aim is to provide enough spectral
information from each subproblem (KZ;‘,MH) in order to derive from the reduced problem

(K, ﬁ) sufficiently good eigenpair approximations ()\( O‘), ¥;)j<y of the original problem (K, M)

[cf. Remark 5.7]. Hence, it is sufficient to compute only approximative eigenpairs of (K“ , M H)

and to compensate a possibly lower approximation quality of the computed partial eigensolution
by slightly increasing the number of computed eigenpairs.

8.5. Task (T6+T7): Computation and Solution of the Reduced EVP

In task (T6) the reduced matrices K := ZTKMZ and M := ZT M™MZ have to be computed. The
computation of these matrices is described in Algorithm 11 where it is noted that K, M € RF*¥
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Algorithm 11 Computation of the Reduced Matrices

1: procedure COMPREDUCEDMATRICES( K™, MM, Taniis, (ﬁi,gi);gl)

2 initialise full matrices K7 M € RF*¥F with matrix entries equal to zero and k = Z?il ki;
3 initialise m x m block structure K = (IA(,J)Q”J:1 and M = (Mij)%—:l;

4 fori=1,...,mdo B B

5: extract submatrices K7 := (K™)|;,, with ¢ := 4(i);

6 compute K;; := STKS; € RF** using the H-arithmetic;

7 forj=1,...,ido .

8 extract submatrix Mff = (MH)‘sxt with s := (i), t := ¥(j);

9 if — SUBMATRIXISZERO(i, j, Tamrs) then > see Algorithm 10
10: compute ﬁij = g?ﬂz?j §j € R¥**i using the H-arithmetic;
11: end if
12: end for

13: end for
14: return (K, M);
15: end procedure

possess the following m x m block structure

~

K:diag[f{n,...,Kmm] with K :§,TI~(Z;‘§1 € RFixki fori=1,...,m,
ﬁ = (Mm )Z}:l with ﬁz‘j = ngj\ZZJ{ gj e RFixk; fori,j=1,...,m.

Because of the symmetry of the reduced matrices only the lower triangular part of M has to
be computed. Furthermore, some M;; are zero matrices (i.e., all entries of these matrices are

equal to zero). Note that ﬁij is a zero matrix if and only if ]\Af/zf is a zero matrix, and that a

large part of the block-sparsity structure of M™ is retained in M™ [see, e.g., (5.23) and (5.30)].
To see if ]\Z?f and ﬁij are zero matrices the substructure tree 7Tayrs has to be observed. For a
cluster t € Tyuws with ¢ # root(Tauws) we define the unique cluster F'(t) := u € Tyyps fulfilling
t € S(u) as the father of t. For the clusters s = ¢ (i) and ¢t = 1(j) associated to ﬁij it can be
observed that ﬁij is a zero matrix (for illustration see upper part of Figure 8.1):

e if s and t are domain-cluster with i # 7,
e if s is a domain-cluster and ¢ an interface-cluster with s N F(t) = 0,
e if 5 is an interface-cluster and ¢ a subdomain-cluster with F(s) Nt = (),

e if s and ¢ are both interface-clusters with F(s) N F(t) = 0.

This result is summarised in Algorithm 10. In the case that ﬁij has to be computed (the same
holds for I/i“) then in the first step the matrix A := ]\Z’f gj € RNiXk; is computed (numerically
exact) where the data-sparse structure of the H-matrix MZJ" is exploited, and in the second step
MZJ{ = ngA is computed as the product of two matrices in full matrix representation. Note
that Rm = f)l € RFixki and ﬁ“ = Id € RFi*Fi when a (numerically) exact partial eigensolution
(D;, S;) has been computed with normalisation va;‘F]\AjZf S; = Id, and that in this case the com-

putation of IA{“ and ﬁu has not to be performed. However, in benchmarks could be observed
that the used eigensolvers dsygvx and H-SIL computed in some cases eigensolutions where the
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corresponding relative residual error4 has been larger than machine precision. Hence, to be on
the safe side the matrices K“ and M” are computed in Algorithm 11 as well.

In the next step of H-AMLS, in task (T7), the partial eigensolution

~

KS =

o~~~

MSD  with STMS = Id (8.9)

of the H-reduced eigenvalue problem is computed, where the diagonal matrix D € RftesXnes

contains the eigenvalues ()\ )jey and S € RF*nes column-wise the associated eigenvectors (X;)7
Although the reduced problem is partially structured® the computation is performed by the dense
LAPACK eigensolver dsygvx®. Since it is ultimately aimed that the size k of the H-reduced
eigenvalue problem is bounded by O(nes) when H-AMLS is applied recursively (cf. Section 8.7),

the problem (IA{, ﬁ) will be small enough to be solved easily by the dense solver dsygvx.

8.6. Task (T8+T9+TSI): Transformation of the Eigensolutions

In task (T8) of H-AMLS the computed eigenvectors (X;)<; of the H-reduced problem have to
be transformed via

¥, = (L") TZ%;  with Z:=diag[S,...,Sn] € RN*F, (8.10)

The computation of y; in (8.10) can be performed vector-wise for j = 1,...,n.. However,
in terms of runtime it is typically much more efficient to represent (x;)7* by the full matrix

S from (8.9) and to perform the computation in (8.10) matrix-wise, since for most computer
systems with cache memories (cf. Section 8.8) data locality can be exploited much better in the
matrix-wise approach than in the vector-wise approach.

To compute (8.10) matrix-wise in the first step the matrix S:=7ZSis computed via

S S, S
| = : with S@:=8,8% fori=1,...,m (8.11)
g(m) S, §(m)
— — T
:SERNXTLGS :ZeRka :SEkanes

where the block diagonal structure of Z is exploited, i.e., for S € RVixki the matrices S and
S are decomposed correspondingly into blocks with S ¢ RN XMes S@) ¢ Rkixnes . Note that
(D, S) is an approximative eigensolution of eigenvalue problem (K™, M M™) with D from (8.9) and
where STM™S = Id. In the next step the transformed eigenvector matrix Sem, 1= (L)~ TS is
computed by solving the triangular system (LH) Stemp =S for Siemp Via the fast H-arithmetic.
In particular, the computation of S, = (LH) TS is performed numerically exact. Finally, the

"We define the relative residual error of an eigenpair approximation (\,z) of problem (K, M) by ||Kz —
AMllo /|| K|l2.
5K is a block diagonal matrix and M has a block-sparsity structure similar to the structure of M MH (cf. Figure
8.2). See Section 8.5 for details.
6Since eigensolver dsygvx (cf. [3]) requests only the lower triangular matrix part of the symmetric problem
(IA(, ﬁ) it is sufficient in Algorithm 11 to compute and store only the lower block triangular part of M.
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Algorithm 12 Transformation and Improvement of Eigensolutions

1: procedure TRANSFORMEIGENSOL( K, M, L*, I?H, (gz)?;l, §, apply_task TSI )
2 > compute the transformed eigenvectors S: =78
3 initialise full matrix S € RN X7es;
4: partition S and S in m block rows as it is done in (8.11);
5: fori=1,...,m do
6 compute S = 8, S®;

7 end for

8 > compute Siemp 1= (LH)’TS’; € RV X7es

9 solve the triangular system (L7)7'S, ., = S for Stemp Using fast (and exact) H-arithmetic;

10: > restore the original index ordering of the approrimated eigenvectors

11: apply inverse of the in task (T1) performed index permutation 7 to column vectors of S;cmp;
12: set S 1= Siemp;

13:

14: if apply_task TSI then

15: > improve eigenvalue and eigenvector approximation by task (TSI)

16: (D, S) := IMPROVEEICGENSOLUTION( K, M, L*, KM S ); > see Algorithm /4
17: else

18: > compute Rayleigh quotients exploiting the sparse structure of K, M

19: initialise full matrix D € R™e=*"es with entries equal to zero;

20: for j=1,...,ne do

21: X§rq> = ?fK vi/ ?;‘FM y; where y; denotes the j-th column of S;

22: set the j-th diagonal entry of D equal to XEIQ);

23: end for

24: end if

25:

26: return (D, S);
27: end procedure

matrix S is obtained by applying the inverse of the in task (T1) performed index permutation
7 (cf. Section 7.1) to the column vectors of the matrix S,.,.,, and hence the permutated matrix
S := Siemp 18 containing column-wise the eigenvector approximations y; of the initial eigenvalue
problem (K, M) with the original index ordering.

Benchmarks have shown that the matrix-wise approach for the computation of (8.10) is sig-
nificantly faster than the vector-wise approach, whereas the vector-wise approach scaled better
on shared memory systems (see Section 8.8) with the number of cores than the matrix-wise
approach. Nonetheless, also with many cores (benchmarks have been performed with up to 32
cores) the parallel implementation of the matrix-wise approach (cf. Section 8.8.6) still has been
significantly faster than the parallel implementation of the vector-wise approach.

Depending on the chosen parameter setting in the next step of Algorithm 12 the Rayleigh
quotients Xg.rq) are computed (which involves matrix-vector multiplications with the sparse ma-
trices K and M), or instead the in Section 7.4 described improvement task (TSI) is applied.
Finally, Algorithm 12 returns the eigenpair approximations (D,S) stated in (8.1) where de-

pending on whether task (T9) or task (TSI) has been applied the diagonal matrix D € R™es*"es
(ra)
J

the eigenvector approximations y; or ?}SI). The approximation quality of the computed eigen-

contains the eigenvalue approximations A%~ or /\}SI), and the matrix S € RV*7es column-wise
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pair approximations has been discussed in Section 7.3, and it depends on the chosen accuracy
e of the H-arithmetic used in task (T2) and (T3), and the chosen mode selection strategy in
task (T4). How the accuracy and the mode selection strategy should be chosen is discussed in
Chapter 9 where numerical results are presented.

8.7. Implementation of the recursive H-AMLS method

In the previous sections the implementation of non-recursive H-AMLS version has been de-
scribed. According to Section 8.3 the domain 2 (respectlvely the index set I) has been sub-
structured in so many levels until eigenvalue problems (K“, Mm) associated to subdomains are
getting small enough (according to Alg. 8 it holds N; < nj}"S) to be solved easily by a direct
solver. However, the downside of this is that the number of subproblems is getting large when
N increases: Applying the domain substructuring described in Section 8.1, Algorithm 8 leads

to an AMLS substructure tree with m subproblems where m = m(N) is typically of the order

m(N) € O<nA]I\\/[ILS> = O(N) as N — oo. (8.12)

min

But as the number of subproblem increases with N also the size k = Z:’l(lN ) k; of the reduced
eigenvalue problem (IA(, ﬁ) increases. Although the reduced problem is partially structured?,
eventually the total complexity of H-AMLS is dominated by the solution of the reduced eigen-
value problem. Beside that also the computation of the reduced matrix M is getting expensive
when k is getting large. To resolve this problem the H-AMLS method is applied recursively (cf.
Section 5.2.3 and Section 7.1) which enables both: small subdomain problems that are easy to
solve, and a reduced problem (IA(, ﬁ) whose size k is bounded by the order of O(nes). To apply
the recursive version of H-AMLS the so-called condensation process has to be performed which
is applied right after task (T4) in Algorithm 5 (in non-recursive H-AMLS this process is omit-
ted). In the condensation process, which is described in the following, the spectral information
of many small subproblems is condensed using H-AMLS into the spectral information of few
superordinated subproblems of larger size.

8.7.1. Applying H-AMLS to a Superordinated Subproblem

Let u € Tamws be a cluster with w ¢ L£(Tamws). Then there exist unique subproblem indices
ifirst(w),idast(u) € {1,...,m} with ifirst(u) < i-last(u) such that

w = U (i) (8.13)

ifirst(u) <i<ilast(u)

In the non-recursive version of the H-AMLS method the spectral information of the subproblems
(K "M 7")1 Hast(w) ) has been used, together with the spectral information of the other subprob-

1) T /=i first(u
lems, to form in task (T6) the reduced eigenvalue problem (K, M). The spectral information of

(KZZ", ]\Z?)iiiig;)(u) is approximatively described by the partial eigensolutions (]51, gz)li?f;:t)(u),

"K is a block diagonal matrix and M has a block-sparsity structure similar to the structure of MM (cf. Figure
8.2). See Section 8.5 for details.
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Algorithm 13 Apply H-AMLS to the subproblem associated to the cluster u € Tamws

1: procedure APPLYHAMLSSUB( KM MY ’ﬂMLS, (D, S; ), uy, CF L Baom )
2 > comp. reduced matrices K M € R’W " associated to the cluster u — see Algorithm 1/
3 (Ku,M ) = COMPREDUCEDMATRICESSUB( KM MM, Tauws, (D, S; ), w);
4
5: > determine number of needed eigenvectors
. last
6 hy = min{ [ CF,, (N,)Paem], N, } with N, i= 350 N,
7
8 > compute the partial eigensolution of the reduced eigenvalue problem
9 1n1t1ahse full matrices D, € RFuxku and S, € Rk« L

10: solve Ku Su = Mu Su Du using the dense LAPACK e1gensolver dsygvx;
11:

12: > transform the eigenvectors of the reduced eigenvalue problem — see Algorithm 15
13: Su :=TRANSFORMEIGENVECTORSSUB( (S;)™, Sy, © );
14:

15: b return (approzimative) partial eigensolution (Dy,S,) of (f(fjl\?z'i) where D, =D,
16: return (D,,S,);
17: end procedure

and in total k, := Z;’:lafftigzg(u) k; eigenvectors are selected from these subproblems for the for-

mation of the reduced problem (K,ﬁ) But instead, it is also possible to consider in the
further proceeding of H-AMLS the superordinated eigenvalue problem (K, M) associated to
the cluster u where

ilast(u
Kb i= (KM ey € RNONe M = (M) ey € RYNe and N, := Z N;.
i=1first(u)
i-last(u)

Instead of using the spectral information of the subproblems (K "M 7")

[T n

i first(u) the spectral

information of the superordinated problem can be used to form in task (T6) the reduced prob-
lem (IA{,M) For this purpose a partial eigensolution (Dy,S,) of (I?y,]f\\ﬂ{) has to be com-
puted. This eigensolution can be computed very efficiently by the H-AMLS method, especially
when N, is large. Here the question arises how many eigensolutions of (K, M) have to
be computed. According to the mode selection strategy described in Section 8.4 only those
eigenvectors are computed which still lead to reasonable approximations of the corresponding
continuous eigenfunctions. Since (Kff, MZ{) is an eigenvalue problem associated to a subdomain
(note that u is always a domain-cluster) these are the eigenvectors associated to the smallest
[Cliom(Ny)P4om] € N eigenvalues (cf. Section 8.4). However, the H-AMLS method computes in
general only approximative eigenvectors of a discrete problem and not (numerically) exact ones
such as, for example, the dense LAPACK solver dsygvx does in task (T4) in the most cases.
Correspondingly, it is reasonable to compute slightly more eigensolutions for (IN( H M. M) when
H-AMLS is used, in order to compensate a possibly lower approximation quality and to provide
enough spectral information of (K7, M 7") for the formation of the reduced problem (K, M) in
task (T6). This means, when #-AMLS is used for the solution of (K, MZ{) then it is suggested
to compute the eigenvectors associated to the smallest k, eigenvalues where

ky == [CF, (N,)Pm] € N with some constant C7_ > Cyon. (8.14)
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Algorithm 14 Computation of the reduced matrices associated to cluster u € Tayrs

1: procedure COMPREDUCEDMATRICESSUB( f(” MH , Tamis, (ﬁi,gi)ﬁl, u)

2 compute k, := E; lfsgg:t(u) k; and my,, := ilast(u) — ifirst(u) + 1;

3 initialise full matrices Ku7 Mu € RFu*ku with matrix entries equal to zero;

4 initialise m., x m,, block structure K, = (le);’;‘ﬁfgr)st(u) and M, = (ﬁ”); ;dhf(gr)st(u),
5: for i =i ﬁrst( ) S last( ) do

6 extract submatnces KH : (KH)‘txt with ¢ := (7);

7 compute K” = SiTKZ;[ SZ € RF*Fki using the H-arithmetic;

8 for j=1,...,ilast(u) do

9 extract submatrlx MH : (MH)|Sxt with s :=(0), t :== ¥(j);

10: if — SUBMATRIXISZERO(Z j, Tamrs) then > see Algorithm 10
11: compute ﬁij = STMH S € R¥*ki using the H-arithmetic;

12: end if

13: end for

14: end for

~

15: return (Ku,ﬁu);
16: end procedure

Algorithm 15 Transforming eigenvectors of the reduced EVP associated to cluster u € Tays

procedure TRANSFORMEIGENVECTORSSUB( (S; ), Su, u )
> compute Sy = Zy S where Z,, := diag [Sl first(u)s - - -5 Si_ 1ast(u)] € RNuxku

initialise full matrix Su € RNuxku with N, := Z;}i«sstt((z)) N;;

1:
2
3
4: partition §u and §u in m,, block rows in a similar way as it is done in (8.11);

5: for i =i first(u),...,ilast(u) do

6 compute S = S, S where S{ € RNixku S, € RNixki and S e RF: ¥k
7 end for
8: return S,;
9: end procedure

The implementation of H-AMLS applied to eigenvalue problem (IN(ZL{,MJ{) is described in
Algorithm 13: Tasks (T1)-(T4) of H-AMLS are omitted since K has already block diagonal

structure and the partial eigensolutions of (K Z;‘, Mff); lifi(rsg () have been computed as well. The

first task to be performed is the computation of the reduced matrices

K, :=ZIK]'Z, e R*** and M, := ZLK]'Z, € RF>F

with Z, := diag [fSVLﬁrSt(u), e Suast(u)] € RN“X’_“”, which posses the m,, x m, block structure
> s \ilast(u) NA (. \i-last(u)
K, = (K ) 1,j=ifirst(u) and M, = <M13)i,j:i,ﬁrst(u)

where m,, := ilast(u) — ifirst(u). The computation of the reduced matrices is described in

élgorit}lgl 14 and is done in the analogical way as the computation of the global reduced matrices
K and M (cf. Section 8.5). In the next step the partial eigensolution (D,,S,) of the reduced
problem (K,, M,,) is computed

K.S, = M,S,D, with STM,S, = Id,
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where the diagonal matrix ﬁu € Rkuxku contains the k, < k, smallest eigenvalues and §u S
RFu*Fu column-wise the associated eigenvectors, and where k, is chosen as in (8.14). As for the
global reduced eigenvalue problem (cf. Section 8.5) the computation of the partial eigensolution
(Dy, Sy) is done by the dense LAPACK eigensolver dsygvx. In the last step of Algorithm 13 the
eigenvectors of the reduced problem are transformed by computing S, := Zugu (see Algorithm
15 for implementation), and the approximative partial eigensolution

K*S, ~ MM*S,D, with STMMS, = Id

is obtained where f)u = ﬁu

In summary, it could be seen how the spectral information ([N)27 gi)i*laSt(“)

i first(u) of the subprob-

lems (I?Zf, ]\A/fz?)ijfg(rg(u) has been condensed via H-AMLS into the spectral information of a

single subproblem of larger size. In particular, in the following it is said that the subprob-

lems (I?Z;‘,Z\Z?);’:l?fg(rzt)(u) have been condensed if in the further process of H-AMLS the data
(KX, ]\Z?)iﬁfg(rzt)(u) and (D;, ’sz)i’:l?fgizt)(u) is replaced by the data (KX, M) and (D, S,).

The question arises when subproblems should be condensed. The spectral information of

(f)z,gz)i’:l??ggzz(u) and of (D, Sy) is considered as equivalent concerning their contribution to

the global reduced eigenvalue problem (IA(, ﬁ) Overall, it is aimed to bound the size k of the
global reduced problem by O(nes). Correspondingly, in the case that k, < k, it is advantageous

to condense the subproblems (I?ZZ", ]\Zt‘);’:l?ig(rg(u) in order to bound k. On the other side the
condensation of subproblems results in additional computational costs. Correspondingly, the
subproblems (K, sz)ii??;igzz(u) should only be condensed when, for example, it holds

ky > 2ky. (8.15)

This means that if condensation condition (8.15) is fulfilled it is considered as more efficient to
condense the subproblems (K}, M ﬁ)l’laSt(u) and to use the spectral information of problem

10 77t ) j=i first(u)
(K, M) instead.

8.7.2. Implementation of the Condensation Process

The complete condensation process which is performed in the recursive version of H-AMLS is
described in Algorithm 16: In the first step of this process subproblems are identified which
should be condensed. This is done by applying Algorithm 17 to the AMLS substructure tree
Tamws- Let depth(Tauws) € Ng be the length of the longest path in Tyys, and level(t) € Ny the
length of the path between the cluster ¢ € Taurs and the root of Tyiurs. Applying Algorithm
17 the AMLS tree is traversed level-wise, starting from level [ = depth(7auws) — 1 up to level
I =1, where every three levels clusters u € Taurs are tested if the cluster and the corresponding
subproblems fulfil condensation condition (8.15). If this is the case the cluster u is appended
to the set U. As soon as on a concrete level ' € N clusters® are found whose associated
subproblems should be condensed, then Algorithm 17 finishes and returns the set U back to
Algorithm 16. Searching for clusters on levels | < I’ of the AMLS tree is first continued when
all subproblems associated to the clusters u € U have been condensed. The corresponding

8Note that on one level there can be several clusters u fulfilling the condensation condition (8.15).
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Algorithm 16 Implementation of the Condensation Process

1: procedure APPLYCONDENSATION( K, MM, Taniis, (5i,§i);11, C%..» Baom )
2 while true do
3 > in the set U clusters are collected that represent subproblems which should be condensed
4: U :=FINDSUBPROBLEMSTOCONDENSE( Tamrs; (Ki)i"1: C5ms Bdom ); > see Alg. 17
5: if U = () then
6 return; > end condensation process when no further subproblems can be condensed
7 end if L o
8 > compute for u € U (approx.) partial eigensol. (D.,,S,) of (KX, M) — see Alg. 13
9: for all v € U do o o
10: (Dy,S.) := APPLYHAMLSSUB( K™, MM, Tamws, (Di, )™y, u, C5 s Baom );
11: for i = ifirst(u), . ..,ilast(u) do
12: delete (f)“ §Z), > eigensol.s which are not needed anymore can be deleted
13: end for
14: end for
15: > introduce cluster-notation for the partial eigensol.s of old subprobl.s which are still in use
16: for all u € {t € L(Tams) : t € J with J := UUGUU} do
17: (Dy,S.) == (D;,S;) with i := ¢~ (u);
18: end for
19: > truncate the substructure tree Tanws by deleting the sons of the new used subproblems
20: for all w € U do
21: S(u) = 0;
22: end for
23: > update the auziliary data according to the truncated substructure tree Tanmrs
24: m = #L(Tamws); > update the number of subproblems
25: initialise the bijection ¢ : {1,...,m} = L(Tamws); > see (8.5) for definition of v
26: > initialise indez-notation for the partial eigensol.s of the subprobl.s which are now in use
27: fori=1,...,mdo _
28: (D, S;) := (Dy, Sy) with u := 1(i);
29: end for

30: end while
31: end procedure

condensations are performed by Algorithm 13. Note that for all w € U the partial eigensolutions
(ﬁi, g,);’:lfzg(rg(u) are not needed anymore and that they can be deleted. Since old subproblems
are replaced by new ones the auxiliary data of H-AMLS has to be updated to the new situation.
However, typically not all subproblems are condensed into superordinated subproblems, i.e.,
some old subproblems are still in use. For the partial eigensolutions of these old but still used
subproblems (I?Zj, M) the cluster-notation (Dy,S;) := (D;,S;) is introduced where t := v(i).
The index-notation (f),, gl) which has been used so far depends on the shape of the AMLS tree
and becomes invalid when T,us is updated. To update Taurs simply the sons of all u € U
are deleted, i.e., it is set S(u) := 0. Once the AMLS tree has been truncated the number of
used subproblems m and the bijection ¢ from (8.5) is updated, and finally, the index-notation
for the partial eigensolutions of the old and the new created subproblems is introduced. After
the auxiliary data has been updated the condensation process in Algorithm 16 is restarted from
the beginning with the truncated tree until no further subproblems can be found which can be
condensed. The choice that every three level subproblems are condensed can be replaced by
other approaches, but ultimately this approach emulates a recursive H-AMLS method with a
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three-level substructuring.

Algorithm 17 Find subproblems which should be condensed

1: procedure FINDSUBPROBLEMSTOCONDENSE( Tamws, (ki)1, CF s Bdom )

2 > collect in the set U clusters representing subproblems which should be condensed

3 U:=0;

4 for | = depth(Tamrs) — 1,...,1 do > depth(Tamws) :=length of longest path in Tanws
5: Tﬁ\}ms = {u € Tamrs : level(u) =1};

6 for all u € T s\ L(Tanws) do

7 > k, etgenvectors are selected when subproblems associated to u are not condensed

8 Fu o= SO ks

i=ifirst(u) "

9: > k, etgenvectors are selected when subproblems associated to u are condensed
10: k= min{ [ €5, (Ny)%em], Ny, } with Ny == Yjees(®) N;;

11: > if ky is too large then the subproblems associated to cluster u should be condensed

12: if 1=0mod3 and k, > 2k, then

13: U:=UU{u};

14: end if

15: end for

16: > stop searching if on current level subproblems have been found which should be condensed
17: if #U > 0 then

18: return U,

19: end if

20: end for
21: return U;
22: end procedure

8.8. Parallelisation of the 7H-AMLS method

In this section it is described how the H-AMLS method has been parallelised for shared memory
systems. Shared memory systems are computer systems with multiple CPU cores and a shared
main memory which is directly accessible by all CPU cores. The communication between the
different cores is solely realised by reading and writing data to the shared memory. In contrast
to shared memory systems stand distributed memory systems, i.e., computer systems where
each CPU has its own private memory, and where cores, respectively computational tasks, have
to communicate explicitly via a message-passing system. However, this work is solely focused
on parallelising H-AMLS on shared memory systems. This topic is started by describing shared
memory systems in more detail and by discussing basic issues of parallel computing.

A shared memory system with a memory architecture where each position in the memory is
accessed in equal time by all CPU cores is called uniform memory access architecture (short
UMA-architecture). However, the memory of shared memory systems is often constructed in
some hierarchical form (especially for systems with many cores) where each core has — depend-
ing on its position in the system — local and non-local shared memory. If the access time to some
parts of the memory differs for some cores then the system architecture is called non-uniform
memory access architecture (short NUMA-architecture). Correspondingly, the parallel perfor-
mance of a program running on a NUMA-architecture may depend as well on the distribution
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of the data on the shared memory.

Another important issue of shared memory systems is that the memory can become easily
a bottleneck when too many cores access data at the same time. The problem is the limited
memory bandwidth of the system, and the contention between the cores over a shared memory
bus that can be used only by a single core at once. Correspondingly, the cores are forced to
wait until needed data is transferred to or from the memory. This problem is also referred to
as the so-called von Neumann bottleneck or the memory wall. One attempt to mitigate this
bottleneck is to provide caches between the cores and the main memory. Caches are very fast,
but small, hardware memories on the CPUs which hold recently accessed data. If data is reused
by a core and still present in the local cache, the core can access this data much faster than
when it has to get the data from the main memory. However, CPU caches are not part of the
shared main memory and, in particular, they are not considered for the classification of UMA-
or NUMA-architectures.

Nowadays, shared memory systems (with UMA- and NUMA-architectures) are realised on
nearly all workstations and compute servers, where the number of cores is typically in the range
of 2 up to 128 or even more, and where the cores are equipped with several levels of caches.

9. In

On a shared memory system a program is executed by the operating system as a process
order to utilise multiple cores of the shared memory system within a process, threads are typically
used. Threads are execution paths within a single process which can execute concurrently and
which share all resources of the process such as the address space and the memory. Each thread
is assigned one-to-one to a core by the operating system. To access threads in C++ programming
a special interface is needed which is provided, for example, by the Threading Building Blocks
[46] or by OpenMP [27].

When implementing a multi-threaded program one has to take care when multiple threads
access (read/write) the same data. If the outcome of the program depends on the undetermined
timing of computational tasks a so-called race condition is present. To avoid these unwanted
race conditions the execution of data dependent tasks has to be scheduled. If no race condition
is present the program is called thread-safe.

The parallel performance of a program is often measured by the following quantities:

Definition 8.3 (Speedup and Efficiency) For a given algorithm let t(p) be the runtime of
the parallel implementation using p € N\ {1} cores, and t(1) the runtime of the best sequential
implementation. Then the parallel speedup S(p) and the parallel efficiency E(p) of the parallel
program are defined by

S(p) == —= and E(p) = — = —~.

The speedup of a parallel program is optimal if it holds S(p) = p for p € N. In practice, however,
an optimal speedup is often not achieved due to a variety of overheads which are associated with
the parallelisation: For example, overhead imposed by the use of parallel software, overhead
caused by spawning and finishing of threads, overhead due to synchronisation of data dependent
tasks (cores can become idle if for example input data for a tasks is not yet computed), and
overhead due to load imbalances (e.g., because of different workloads per thread some cores

9A process is an instance of a running program.
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may finish before others and become idle), etc. Furthermore, the speedup of a program can
be limited by the von Neumann bottleneck. If for example the cores are required to perform
minimal processing on large amounts of data then the memory can become a bottleneck, and
cores become idle as well since they have to wait for data. Beside this, parts of the program
may be unparallelisable so that they can be processed only by a single tasks: Denote cgeq € [0, 1]
the fraction of the overall computational work in an algorithm which can be handled only
sequentially. Furthermore, it is assumed that the overall computational work is fixed for all
p € N. Then the time needed for the parallel execution of the corresponding program is bounded
from below by

tp) > cseqt(1)+(1_csgq)t(1)7

and correspondingly the speedup of the program is bounded from above by

1

Sp) < Cseq + (1 — Cseq) /D
Statement (8.16) is known as Amdahl’s Law [2], and it follows that the maximal speedup
of the program is limited by its sequential part (we have S(p) < Smax(p) < 1/cseq for all
p € N) and that the parallel efficiency E(p) of the program tends to zero for p — oo (since
limy, 00 Smax(P) = 1/¢seq). But note that Amdahl’s Law is only valid when the computational
work is fixed for all p € N. However, in practice typically with increasing computer resources
(i.e., more available cores) larger problems are solved, where often the parallelisable part of
the overall computational work grows much faster than the sequential part. From this point of
view, Amdahl’s Law may be considered as too pessimistic concerning a realistic evaluation of
the parallel performance of a program.

= Smax(p). (8.16)

The Threading Building Blocks (short TBB) mentioned above have been used for the par-
allelisation of the HLIBpro v2.3 on shared memory systems, cf. [50]. TBB [46, 62] is a C++
template library which offers standard parallel constructs, such as special commands for paral-
lelising loops. However, the main principle of the TBB parallelisation is the decomposition of the
computational work into many small tasks that can be performed concurrently. To define these
tasks and possible data dependencies certain TBB data structures and TBB commands have
to be used. When the parallel program is executed the tasks are automatically mapped by the
TBB library to worker threads where the scheduling of the threads is managed independently by
TBB. In particular, the programmer has neither access to the worker threads nor access to their
scheduling or management. The abstract task-based concept of the TBB parallelisation allows
the programmer to implement scalable and portable code without knowing details of the used
hardware and without knowing how the thread management is realised by the used operating
system. To obtain highly scalable code, the programmer only has to implement many tasks
which can be performed concurrently.

The TBB library (version 4.2) has been used as well to parallelise the most cost intensive
computational parts of the H-AMLS method. For the LAPACK/BLAS linear algebra routines
which are required by the HLIBpro the Intel Math Kernel Library v10.3 (short MKL) has been
used. MKL [45] is a parallel library for shared memory systems, in particular, the library is
thread-safe!®. Although the MKL linear algebra routines can be executed by multiple threads,

!"Note that the standard LAPACK/BLAS library provided by Netlib (www.netlib.org/lapack/) is not thread-
safe.
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multi-threading has been deactivated for these routines — by setting the number of threads for
the MKL routines globally to 1, cf. [45] — in order to avoid the overuse of multiple threads in the
HLIBpro routines and the H-AMLS method. The only exception from this is the parallelisation
of task (T7) where a multi-threaded MKL routine has been used. Details how task (T7) and all
other tasks of H-AMLS have been parallelised are presented in the following sections. Details
on the resulting parallel performance are given in Section 9.4 where numerical experiments are
presented.

8.8.1. Parallelisation of Task (T1)

The HLIBpro provides multi-threaded routines (cf. [50, 52]) for the construction of the cluster
tree 77 (but not for the block cluster tree 77« ) and the construction of the H-matrix representa-
tions. However, benchmarks have shown (in Section 9.4 the used computer system is described)
that the runtime of the multi-threaded computation did not improve against the sequential one,
the computation became even slower. Beside the parallel overhead associated with the multi-
threaded computation, especially, the limited memory bandwidth of the system inhibits that
task (T1) benefits from the multi-threaded computation. The work to be performed in task
(T1) is mainly characterised by initialising data and allocating memory, and is not computa-
tionally intensive. Even the concurrent construction of the H-matrix representations K and
M™ using two threads did not accelerate the computation. Henceforth, task (T1) has been
implemented in such a way that by default always a single thread is used for the corresponding
computation.

8.8.2. Parallelisation of Task (T2+T3)

The computation of K* ~ LXK"(L*)T and M™ ~ (L)~ *M™(L")~T is performed using the
corresponding multi-threaded HLIBpro routines (cf. [50, 52]). The LDLT-factorisation in the
H-matrix format, which has to be performed for K™, is based on a block algorithm similar to
the algorithm used for the block LDLT-factorisation of a dense matrix, and which is applied
recursively to the block structure of the H-matrix [cf. (6.9)]. Beside the standard parallel im-
plementation of this recursive algorithm, where the involved matrix operations are performed in
parallel (taking data dependencies into account) on the local level of the recursion, the HLIBpro
v2.3 offers as well a parallel implementation where all individual computational tasks are con-
sidered on a global scope of the LDLT-factorisation (cf. [54]). The task-based implementation
with global scope shows a much improved parallel scaling behaviour compared to the standard
parallel implementation with the local scope (cf. [54]). Correspondingly, when H-AMLS is
applied with more than one thread the task-based implementation of the LDLT-factorisation
is used. However, due to additional overhead the runtime of the task-based implementation is
slightly larger when only a single thread is used than the runtime of the standard recursive im-
plementation. For this reason, the standard recursive implementation of the LDL™-factorisation
is used when H-AMLS is applied with a single thread.

8.8.3. Parallelisation of Task (T4)

M2
(2 (53
are computed in parallel for ¢ = 1,...,m. In context of the used TBB library in parallel means
here and in the following that each subproblem is labelled as an own computational task which

In the parallel implementation of task (T4) the partial eigensolutions of the subproblems (K7t
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is then scheduled independently by TBB to worker threads when the program is running. To
further improve the parallel performance of task (T4), the matrix-vector operations, which are
involved in the eigensolver H-SIL (cf. Section 8.4), are performed in parallel using the corre-
sponding multi-threaded HLIBpro routines. All this results in a very high parallel granularity
of task (T4) which is becoming higher with increasing problem size.

Note that the computational work associated to each subdomain problem (K ZZ{, M, H) is nearly
the same, however, for interface eigenvalue problems the work is varying. In general, the size

N; of an interface problem (Kz;l, M H) and the number k; of sought eigenvectors are different
varying for different ¢. This can potentially lead to load imbalances when the subproblems are
solved in parallel, and the computational work assigned to the several threads is different. In
the case of load imbalances the TBB library applies the so-called concept of task-stealing where
computational tasks are transferred to other threads to avoid that threads become idle. But
since the parallel scalability of the iterative eigensolver H-SIL is limited, it may still happen that
in the parallel execution of task (T4) the solution of the largest interface problem is running

while all other subproblems have been finished.

8.8.4. Parallelisation of Task (T6)

The computation of the reduced matrices K and M is described in Algorithm 11. Note that
all submatrices K; ij and M ij can be computed concurrently. In order to avoid in the parallel
implementation of Algorithm 11 load imbalances and overhead due to unnecessary task manag-
ing, in the first step all index pairs (i,7) are collected where a submatrix IA(Z-]- or M;; has to be
computed. For this purpose, we define the set W C {1,...,m}? x {0,1} by

W= {(z‘,j,O) D1 <i<m, 1< <i, dist(Qy), Q) :o} U {(i,i,l) 1 §i§m}

where the triple w € W with w = (4,7,0) indicates that submatrix Mij has to be computed,
and w = (i,4,1) that K;; has to be computed. In the next step all submatrices associated to
the w € W are computed in parallel where, as noted before, the TBB library manages inde-
pendently the scheduling of the parallel tasks to the worker threads. In general, however, the
computational effort associated to each w € W is not equal. Furthermore, in the recursive ver-
sion of H-AMLS (i.e., when the condensation process is performed) the number of subproblems
m is bounded and typically only few, but relatively large, submatrices IA{“ and ﬁij have to be
computed. Hence, in order to avoid load imbalances and to provide a high parallel granularity
the computation of each submatrix is performed in parallel as well.

The parallel computation of ﬁij = SZT]\AiZJ1£ S; (respectively, of K = SZTf(ZZ" Si) has been
implemented as follows: In the first step the matrix C := A*"B has to be computed where
AM = MZ]'[ € RNNj is in H-matrix representation, and B := S; € RN *Fi and C € RNi%ki are
in full matrix representation. In the case that the size of B and C is large enough both matrices
are subdivided in ¢ € N block columns of (nearly) equal size, and the matrix product C = A*B
is computed block-wise in parallel. More precisely, let C.,; € N be a predefined column width
and C,,;, € N some predefined threshold. If the conditions

k] > Ccol and NZ > Cmin (817)
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are fulfilled the matrices C and B are decomposed into ¢ := [k;/C., | block columns of (nearly)
equal size so that

[Cl,...,cc] - AM [Bl,...,BC] , (8.18)
— ~
= C e RN:ixk € RN:xN; =B ¢ RNixk;

and the block columns C; := A"B; are computed in parallel for I = 1,...,c. If condition (8.17)
is not fulfilled the block decomposition (8.18) is not performed.

Furthermore, depending on the size and structure of the involved matrices, the computation
of C' := AMB' with C’ := C; and B’ := B, [respectively, C’ := C and B’ := B if (8.17) is not
fulfilled] is performed in parallel as well. This is done the following way: If the H-matrix A™ is
associated to a leaf in the block cluster tree 77 then A* is a full matrix or an R(k)-matrix [cf.
(6.9)], and the product C' = A®B' is computed sequentially using the corresponding HLIBpro
routine. However, if A™ is not associated to a leaf of 77y, then the H-matrix A™ possess a
block structure of the form (6.9). Assume in this case that A™ is decomposed into r € N block
rows and ¢ € N block columns, then the matrices B’ and C’ are decomposed correspondingly
such that

o] A7 . AR B} .
| = S : with Cj:=» AJiB forl=1,...,r. (819
C.. AR Al B, =1
T
SN—— SN——
:C/GRNixk’ — AM ERNixNj :BIERijk/

In the case that the conditions
r>1 and max{N;, N;} k' > Ci (8.20)

are fulfilled then the block rows Cj in (8.19) are computed in parallel for I = 1,...,r; and if
(8.20) is not fulfilled the block columns are computed sequentially.!! The described approach
for the parallel computation of A*B’ is applied recursively in (8.19) for the computation of
the matrix products AlHl, Bj,. In summary, one can say that for the parallel computation of
C = ]\AZZJ{ §j the matrices §j and C are decomposed (depending on the size and the structure)
first into block columns and then recursively into block rows.

After the computation of C the matrix ﬁij = ngC has to be computed, where S; € RNixki
and C € RYi*%i are both in full matrix representation and where typically max{k;, k;} < N;.
If the conditions

k‘i > Ccol and kj > Ccol and N; > Cmin (821)
are fulfilled the matrix E := 1/\\/11-]- € RF>*k; is decomposed into a 7 x ¢ block structure with
submatrices of (nearly) same size where r := [k;/C.,] and ¢ := [k;/C.,]. Then the matrix

"The HLIBpro actually uses the same approach for the parallel computation of the matrix product A*B’,
however, the block rows Cj in (8.19) are computed in parallel only when min{N;, k'} > C with some given
constant C' > 0. However, since in our setting k' is typically relative small and N; > k' condition (8.20) is
better suited as a criterion for the parallel computation of A7B'.
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D := ng is decomposed correspondingly into r block rows and C into ¢ block columns so that
the matrix product E = DC can be written as

Eq E;. D,
: = : FLHWCJ, (8.22)
Erl Erc Dr
=E € RFixk =D e RF*Ni = C e RNixks
and the submatrices E;y := D;Cp are computed in parallel for 1 <[ < rand 1 <!’ <e¢. If

condition (8.21) is not fulfilled decomposition (8.22) is not performed and the matrix E = DC
is computed sequentially. -

In summary, due to the parallel computation of the submatrices M;; and IA{” for w € W,
and due to the parallel computation of each submatrix itself, for task (T6) a very high parallel
granularity can be provided which is becoming higher with increasing problem size. In numerical
tests C.,, := 150 and C.,;, := 15,000 have been a good choice and this value are used in the rest
of the work.

8.8.5. Parallelisation of Task (T7)

The reduced eigenvalue problem (IA{, ﬁ) is solved using the dense LAPACK eigensolver dsygvx
which is provided by the MKL library. As already mentioned, throughout the H-AMLS method
all MKL linear algebra routines are executed with a single thread in order to avoid the overuse
of multiple threads in the parallel HLIBpro routines. Only in the case that the size k of the
‘H-reduced eigenvalue problem is larger than a predefined threshold Cykr, € N the eigensolver
dsygvx routine is applied with the maximum number of available threads. In numerical tests
the threshold Cyk;, := 4000 has been a good choice (i.e., for problems larger than this size the
multi-threaded execution of dsygvx was noticeably faster than the single-threaded one) and has
been used in the rest of this work.

8.8.6. Parallelisation of Task (T8+T9)

The implementation of task (T8) is described in Algorithm 12. In the parallel version of H-
AMLS the computation of the matrices S g RNixnes ig performed in parallel for ¢ = 1,...,m.
Furthermore, in order to provide a high parallel granularity for large sized problems, the com-
putation of each matrix product S = §Z S ig performed in parallel as well. This is done
in the following way: Let C.., € N be a predefined threshold. In the case that N; > C..,, the
matrices F := §Z € RNixki and G 1= SO ¢ RNiXnes are decomposed in r := [N;/C.., | block
rows of (nearly) equal size such that

Gy Fy
: = : s® (8.23)
G, F, v
e Rlﬁ XMNes
N—— S~——

=G eRVi¥nes = F e RNixhi
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and the submatrices G; = Fl§(i) are computed in parallel for [ = 1,...,r. If N; < C...
decomposition (8.23) is not performed and S =8, 80 ig computed sequentially. In numerical
tests Clo,, := 4000 has been a good choice and has been used in all benchmarks presented in this
work.

After the parallel computation of S the matrix S, = (L*)~T'S has to be computed (cf.
Alg. 12). For this purpose the matrices S;., and S are subdivided into ¢ € N block columns of
(nearly) equal size such that

S I L 0 I I ] (8.24)
—_—— ——
= Stemp S Ranes € RNXN = g c RNX"es

The number of block columns c¢ is defined by

c = min{p, Lnes/C(':DIJ} (8.25)

where p € N denotes the number of used threads and €’ € N is some predefined minimal
column width. Using block decomposition (8.24) the matrix Si.., is computed in parallel by
solving the triangular system (LH)TSEQHP =S for St(iznp using the corresponding multi-threaded
HLIBpro routine and computing SEQHP in parallel for I = 1,...,c. The number of block columns
c is defined in such a way that, if the problem is large enough, to each thread the same work
load is assigned. However, if the problem is not large enough the column width of the matrices
S® and SEQHP is bounded from below by C’ in order to avoid efficiency losses. Of course
the computation of S,.., can be performed as well vector-wise (i.e, where ¢ = nes), however,
the matrix-wise approach is typically much more efficient in terms of runtime than the vector-
wise approach since the matrix-wise approach can exploit data locality much better (cf. [50]).
Although the vector-wise approach scales better with the number of cores, numerical tests have
shown that even with 32 used CPU cores the parallel computation of S,.,,, with the matrix-wise
approach has still been significantly faster than with the vector-wise approach. In numerical
tests C’, := 20 has been a good choice for the minimal column width and has been used in all
benchmarks presented in this work.

In task (T9) the Rayleigh quotients /A\grq) have to be computed (cf. Alg. 12). In the parallel
version of H-AMLS the computation of Xg-rq) is done in parallel for j = 1,..., Nes.

8.8.7. Parallelisation of Task (TSI)

The implementation of task (TSI) is described in Algorithm 4. For the parallelisation of this
task the same approaches have been used as for the parallelisation of the previous tasks:

e The sparse matrix multiplication A := M S (cf. Algorithm 4) is performed in parallel by
computing each column of A; in parallel. The computation of As := (L™)~'A; and A, :=
(LH)_TAg is performed in parallel using the same approach as for the parallel computation
of Siomp = (L*)~TS in task (T8). Furthermore, the computation of Ag := (K™)~"1A, is
performed in parallel by the corresponding multi-threaded HLIBpro routine.

e The matrices K, and M, from Algorithm 4 are computed concurrently. Furthermore, the
sparse matrix multiplications K@ and M@ are computed column-wise in parallel (same
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approach as for A; = MS). The computation of Q7 (KQ) and QT (MQ) is performed in
parallel using the approach described in (8.22).

e The reduced eigenvalue problem (K, M) is solved by the same parallel approach which
has been described for task (T7).

e The computation of S,., = Q5 is performed in parallel using the approach described in
(8.23).

8.8.8. Parallelisation of the Condensation Process

The condensation process, which is applied in the recursive version of H-AMLS, is described in
Algorithm 16. In the first step of Algorithm 16 clusters u € Tayws are collected in the set U which
represent subproblems that should be condensed. Since the condensations associated to different
clusters u € U can be handled independently, these condensations are computed in parallel in the
parallel version of H-AMLS. Furthermore, each condensation for itself is performed in parallel
which is done in the following way: The condensation of the subproblems that are associated
to a cluster u € U is performed by applying the H-AMLS method to the problem (IN(Z", M.
See Section 8.7 for details and Algorithm 13 for the corresponding implementation. In the first
step of Algorithm 13 the reduced eigenvalue problem (Ku, Mu) is computed. For the parallel
computation of (A ,ﬁ ) the same approach has been used as for the parallel computation
of task (T6). After the solution of the reduced eigenvalue problem (Ku, M «) the transformed
eigenvector matrix S = 7y S has to be computed. For the computation of S the same
parallel approach has been used as for the computation of S:=ZS in task (T8).
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9. Numerical Results

In this chapter we analyse numerically the H-AMLS method for the Laplace eigenvalue problem

{ ~Au=Xu inQ=(0,1)3, (9.1)

u=0 on 0.
Note that the underlying domain of (9.1) is three-dimensional and that it is very costly to solve
this problem by the classical AMLS method (cf. Section 5.3). Problem (9.1) has already been

discussed in Section 2.3 and it is one of the few examples where the eigensolutions can be derived
analytically. In particular the eigenvalues of (9.1) are given by

A= A0 = 222 4+ 12 + 2) a,b,c € N,

and correspondingly it is possible to evaluate the relative errors

. 3 (ra) , (h)
5 .- oA s A A
o= ;=
Aj Aj
—_—— —_———
relative error of relative error
(recursive) H-AMLS of discretisation

which have been already introduced and discussed in Section 7.3, so that the approximation
quality of H-AMLS can be compared with the approximation quality of a classical approach.

To solve eigenvalue problem (9.1) by the H-AMLS method or by a classical approach it is
discretised as described in Section 5.3 using the finite element space of piecewise affine functions
X}%O with mesh width h = 1/(n+ 1) and Ny := dim X}“O = n3 degrees of freedom. As described
in Section 4.4 the discretisation results in the algebraic eigenvalue problem (K () nr (h)) of size
Ny, whose discrete eigenvalues )\g-h) are approximating the sought smallest nes eigenvalues A;
of the continuous eigenvalue problem (9.1). For convenience we use in the following the short
notation (K, M) instead of (K", M™) and N instead of Nj.

The theoretical behaviour of the approximation error of )\g-h) has been investigated in Section
3.4. Since it holds u € C*°(Q) [see (2.20)] for the eigenfunctions u of problem (9.1), it follows from

Remark 3.19 that the error bounds presented in Theorem 3.14 are valid for the approximations
AL
J
mesh width h. To investigate the discretisation error numerically the eigenpairs of (K () M (h))

associated to the smallest 500 eigenvalues have been computed for the mesh widths
e h;:=0.05 = N =6,859,
e hy:=0.025 = N = 59,319,
e h3:=0.0125 = N = 493,039.

. In particular, these bounds show how the error due to the discretisation depends on the
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Figure 9.1.: Relative discretisation errors ZS\J(h
for varying mesh widths h.

for the smallest 500 eigenvalues of problem (9.1)

For the computation of the discrete eigenpairs the eigensolver H-ARPACK, presented in Section
8.4, has been used. For all eigenpairs computed by H-ARPACK the relative residual error! has
been smaller than 1e-9, however, it is noted that the discretisation error is significantly larger.
Therefore, the eigenpairs computed by H-ARPACK can be considered as numerically exact (as
allowed by the finite element discretisation), and they can be used as references for the eval-
uation of the approximation quality of the H-AMLS eigenpairs. In Table 9.1 and Figure 9.1

g-h) are displayed. It can be seen that

smaller eigenvalues are better approximated than larger ones, and that the relative errors :5\]-(}1)
form more or less a monotonically increasing sequence in j. In particular, it can be observed
that halving the mesh width reduces the errors by a factor of approximately 4 (as predicted by
Theorem 3.14) but at the same time the system size increases by a factor of 8. To approximate
more eigenvalues with the same accuracy a finer mesh width is necessary as it can be seen, e.g.,
in the last three columns of Table 9.1. For example, to compute the smallest 10 eigenvalues with
a relative accuracy of le-2 the mesh width hy is sufficient while for the smallest 500 eigenvalues
a mesh width finer than hg is necessary and correspondingly a model with more than 493,039

DOF is needed.

the discretisation errors of the computed eigenvalues A

For a classical iterative eigensolver — such as H-ARPACK or the subspace iteration presented
in Section 7.4 — the leading computational costs are caused by the matrix-vector multiplications
of the iteration vectors, and beside that possibly by costs caused by the computation of precond-
tioners (which are needed to solve the involved linear systems) and by the orthogonalisation of
iteration vectors. However, neglecting possible computational costs for preconditioners and or-
thogonalisation, a lower bound for the best possible computational complexity of an eigensolver

'We define the relative residual error of an eigenpair approximation (A, ) of (K, M) by ||[Kz — AMz||2/||Kz]|2.
In literature this error is also referred to as modal error.
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j Aj error |\j — )\§-h>| relative error Sj(h) max{ 51_(}1) ci=1,...,j }
b | hy | hs ho | hy | b ho | ha |
1 29.60 0.30 0.07 0.01 1.02e-2 | 2.57e-3 | 6.42e-4 1.02e-2 | 2.57e-3 | 6.42e-4
2 59.21 0.92 0.23 | 0.05 1.55e-2 | 3.88e-3 | 9.71e-4 1.55e-2 | 3.88e-3 | 9.71e-4
3 59.21 0.92 0.23 | 0.05 1.55e-2 | 3.88e-3 | 9.71e-4 1.55e-2 | 3.88e-3 | 9.71e-4
4 59.21 1.45 0.36 | 0.09 2.45e-2 | 6.11e-3 | 1.52e-3 2.45e-2 | 6.11e-3 | 1.52¢-3
5 88.82 2.34 0.58 | 0.14 2.64e-2 | 6.62e-3 | 1.65e-3 2.64e-2 | 6.62e-3 | 1.65¢-3
10 108.56 3.31 0.81 | 0.20 3.05e-2 | 7.48e-3 | 1.86e-3 3.50e-2 | 8.83e-3 | 2.21e-3
20 167.78 12.58 | 3.16 | 0.79 7.49e-2 | 1.88e-2 | 4.71e-3 7.50e-2 | 1.88e-2 | 4.71e-3
30 207.26 13.26 | 3.24 | 0.80 6.39¢-2 | 1.56e-2 | 3.90e-3 7.50e-2 | 1.88e-2 | 4.71e-3
40 256.61 15.14 | 3.87 | 0.97 5.90e-2 | 1.50e-2 | 3.79e-3 8.38¢-2 | 2.27e-2 | 5.78¢-3
50 286.21 21.27 5.46 1.37 7.43e-2 | 1.91e-2 | 4.81e-3 1.01le-1 | 2.51e-2 | 6.27e-3
100 || 414.52 63.52 | 16.69 | 4.19 1.53e-1 | 4.02¢e-2 | 1.01e-2 1.53e-1 | 4.06e-2 | 1.09e-2
200 641.52 106.84 | 33.27 | 10.17 1.66e-1 | 5.18e-2 | 1.58e-2 2.03e-1 | 5.87e-2 | 1.59e-2
300 819.17 188.28 | 37.64 | 9.20 2.29e-1 | 4.59e-2 | 1.12e-2 2.60e-1 | 7.29e-2 | 2.20e-2
400 || 967.22 273.93 | 75.76 | 19.03 2.83¢e-1 | 7.83e-2 | 1.96e-2 2.92¢-1 | 8.83e-2 | 2.36e-2
500 || 1115.26 344.35 | 77.18 | 20.26 3.08¢-1 | 6.92¢-2 | 1.81e-2 3.42¢e-1 | 9.40e-2 | 3.19¢-2

Table 9.1.: Errors between the eigenvalues A; of the continuous problem (9.1) and the eigen-

values A§h) of the discretised problem (K" M (h)) for varying mesh widths h. (All values given
in this and the following tables are correct to two digits.)

would be
O(nes N), (9-2)

when neg eigenpairs of (K, M) are computed. Accordingly a possible measure for the performance
of an eigensolver is the needed computational time per eigenpair and per one Million DOF,
formally defined by avg(tay), where ¢,y is the total time needed for the computation of the first
Nes eigenpairs of (K, M) and

109 ¢

avg(t) := avg(t, nes, N) = — (9.3)

Assume for example that a classical iterative approach has the best possible computational
complexity where in average 10 iterations are needed until an iteration vector converges, and
assume that the matrix-vector multiplication (by the inverse) takes 5 seconds per one million
DOF, then the average computational time of this eigensolver is then given by avg(ta;) = 50s.

Applying the H-AMLS method, the matrices of the discrete eigenvalue problem (K, M) are
partitioned according to a geometric domain substructuring, represented in the corresponding
H-matrix format, and transformed using the fast H-matrix arithmetic. Thereafter, the trans-
formed problem (IN( H M™M) is projected onto a subspace derived from the partial eigensolutions
of the subproblems and the H-reduced eigenvalue problem (7.2) is obtained where the Rayleigh
) of the corresponding Ritz-vectors are approximating the sought eigenvalues \;
of (9.1). An overview of the involved eigenvalue problems and their interconnection is given
in Figure 7.1. Beside the DOF of the model, the relative errors 6Aj depend on the number of
selected eigenvectors k; (modal truncation of the subproblems), the chosen accuracy e of the

quotients Xgrq
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9. Numerical Results

H-matrix arithmetic, and if the recursive version of H-AMLS is applied Sj depends as well on
the parameters of the recursion. In the following we investigate how these parameters have to
be chosen so that the eigenvalue approximations of H-AMLS match the discretisation errors. In
particular we will test for nes = N,i/3, 2N2/3, 5N,1/3 how the parameters have to be selected so
that the inequality

) <3 (9-4)
is fulfilled where
7,(23 = max{ﬁj/éj(h) D= 1,...,nes} (9.5)

is defined as the maximal ratio between the relative error Sj associated to H-AMLS and the rel-

ative discretisation error gj(h) . In the case that inequality (9.4) is fulfilled it can be said that the

approximation error of H-AMLS is of the same order as the discretisation error (cf. Section 7.3).

Beside the approximation quality of H-AMLS we investigate as well the computational time
of the method, in particular its average time introduced in (9.3). We start in Section 9.1 with
the analysis of non-recursive H-AMLS, proceed in Section 9.2 with the analysis of the recursive
version, and study in Section 9.3 the effect on H-AMLS when task (TSI) is performed instead of
task (T9). The numerical experiments presented in Section 9.1 — 9.3 apply the sequential version
of H-AMLS, and are performed on a 64-bit Linux platform with an Intel Xeon E5-4640 processor
(2.40 GHz, 8 Cores). Furthermore, it is noted that H-AMLS is implemented as described in
Chapter 8 using the H-matrix software library HLIBpro v2.3 where low-level linear algebra
functions are provided by the Intel Math Kernel Library v10.3. If not indicated differently the
H-AMLS parameters are chosen as described in Chapter 8. The parallel performance of H-
AMLS (see Section 8.8 for implementation) is investigated in Section 9.4. Finally, in Section
9.5 results concerning the approximation quality of H-AMLS are presented for more challenging
elliptic PDE eigenvalue problems.

9.1. Analysis of Non-Recursive 7-AMLS

The analysis of non-recursive H-AMLS is started by investigating how the approximation quality
of the computed eigenpairs depends on the chosen modal truncation and the accuracy of the
approximative H-arithmetic. Non-recursive H-AMLS is applied as described in Algorithm 5
(without performing the condensation process) where the multi-level domain substructuring is
performed as described in Section 8.1 and Section 8.3. After determining a suitable parameter
setting for non-recursive H-AMLS the computational time of the method is analysed.

9.1.1. Influence of the Modal Truncation

To investigate solely the influence of the modal truncation — i.e., the influence of the number
of selected eigenvectors k; in task (T4) — the parameter n from (6.2) is set to n = 0 in order to
deactivate the H-matrix approximation in (6.12). Correspondingly no subblock in the H-matrix
format is admissible, no R(k)-matrix approximation is applied and the computation of the trans-
formed problem (I? H, M MY in (6.12) is performed exactly (up to machine precision). Using this
parameter setting H-AMLS is equivalent with the classical AMLS method and correspondingly
the computations will be very expensive as described in Section 5.3.
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9.1. Analysis of Non-Recursive H-AMLS

Tes v,(f;) for hy ’y,(lzz for ho 77(1’2 for hs
S1 | S2 S1 | S2 S1 | S2

N1/3 1.74 | 1.77 1.98 | 1.76 2.65 | 1.91
oN1/3 1.79 | 1.80 2.36 | 2.00 5.12 | 2.16
5N1/3 2.91 | 2.58 3.82 | 2.06 5.66 | 2.36

Table 9.2.: Influence of the mode selection strategy to the maximal ratios ’y,(libs) for varying mesh

widths and varying nes. The H-matrix approximation has been deactivated in this benchmarks
by setting the parameter n to 0.

For the modal truncation the approach discussed in Remark 5.7 has been used and the fol-
lowing two mode selection strategies have been benchmarked:

strategy || subdomain problem | interface problem

. SI ki = 15N}/ ki = 2N3
o S2 ki = 1.5N;/ ki = N}/

If for example strategy S2 is applied then in task (T4) for a subproblem associated to a subdomain
the smallest k; = 1.5Ni1/ 3 eigenpairs are computed and for a subproblem associated to an

interface the smallest k; = Nil/ 2 eigenpairs. The resulting relative errors Sj of the H-AMLS
eigenvalue approximations are displayed in Figure 9.2(a) for the mesh widths hj, he and hg,
(h) (h)

and for comparison the discretisation errors gjh are displayed as well. The maximal ratio 7y,
between both errors can be seen in Table 9.2 for nes = Ni/3,2Né/3,5N;/3. Obviously, the

approximation quality of H-AMLS using mode selection strategy S1 (where only 2NZ-1/ ? modes
from the interface are selected) deteriorates as h — 0.

Furthermore, it can be seen in Table 9.2 that strategy S2 is sufficient in such a way that for
hi,he and hs postulation (9.4) is fulfilled for nes = Ni/3,2N2/3,5N,1/3. However, since n = 0
the computational costs of H-AMLS are getting very expensive with increasing DOF.

9.1.2. Influence of the -Matrix Approximation

To accelerate the computation of the transformed matrices K* and M* in (6.12) the H-matrix
approximation is activated by setting the parameter 7 in (6.2) back to n = 50 (see Section
8.1 for details concerning the choice of 7). Hence certain subblocks in the H-matrix format
get admissible and the respective submatrices are approximated by R(k)-matrices with a given
approximation accuracy e.

In the previous subsection could be seen that mode selection strategy S2 is sufficient for
the mesh widths hq, ho and hs. Using this mode selection strategy the computations from
the previous subsection have been repeated applying the following accuracies for the H-matrix
approximation

® £ = 61(h) =12h
o o9 :=c9(h) := 240 h2.
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9. Numerical Results
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(a) Influence of the mode selection strategy to the rel-
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(b) Influence of the H-matrix approximation accuracy
€ to the relative errors gj. In this tests mode selection
strategy S2 has been applied. To highlight the influ-
ence of the H-matrix accuracy on the approximation
of the smallest eigenvalues only the errors of the first

95 eigenvalues are displayed.

Figure 9.2.: Influence of the mode selection strategy and the H-matrix accuracy to the relative
approximation errors d; of H-AMLS for varying mesh widths and comparison with the relative

. .. ~(h
discretisation errors & j( )
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9.1. Analysis of Non-Recursive H-AMLS

Tes 77(3;) for hy ’y,(lzz for ho 7,(12 for hs
&1 ‘ g9 ‘ n=20 &1 ‘ €9 ‘ n=20 &1 ‘ &9 ‘ n=20
N1/3 1.92 | 1.92 | 1.77 323|212 | 1.76 7.16 | 1.96 | 1.91
oN1/3 1.97 | 1.97 | 1.80 453 | 2.12 | 2.00 7.16 | 2.26 | 2.16
5N1/3 2,62 | 2.62 | 2.58 453 | 2.54 | 2.06 7.16 | 2.39 | 2.36

Table 9.3.: Influence of the H-matrix approximation accuracy € = £1(h),e2(h) on the maximal
ratios %(f;) for varying mesh widths and varying nes. In this tests mode selection strategy S2 has

been applied.

The accuracies €1 and €2 depend on the discretisation mesh width of the underlying model, and
for hi, ho, hs we obtain:

h ho hs

ei(h) || 06 0.3 0.15

ea(h) || 06 0.15 | 0.0375

The relative errors Sj of this benchmark are displayed in Figure 9.2(b) and the maximal ra-
tios 'y,(LQ in Table 9.3. In Table 9.3 can be seen that mode selection strategy S2 and H-matrix
accuracy o are sufficient for the mesh widths hy, he and hg to fulfil postulation (9.4) for all
Nes = Nhl/g7 2N2/3, 5Ni/3. In particular, it is emphasised that this parameter setting adjusts the
number of selected eigenpairs k; automatically to the size of the corresponding subproblem, and
the H-matrix accuracy automatically to the underlying mesh width. Furthermore, in Figure
9.2(b) can be seen that especially the approximation of the smallest eigenvalues behaves sensi-
tively to the chosen accuracy e.

Altogether we could observe in our benchmarks that for the underlying model problem (9.1)

the number of selected eigenpairs k; in (7.1) should be of the order (’)(Nil/ 3) for subdomain
problems (which are associated to three-dimensional subdomains) and of the order (’)(Nil/ 2)
for interface problems (which are associated to hyperplanes in R?). The accuracy of the approx-
imative H-matrix arithmetic in (6.12) should be proportional to h?, or respectively, expressed
in DOF proportional to N~2/3. This parameter setting is recommended for similar problems.
If more accuracy of the H-AMLS approximations is needed, k; should be scaled by a constant

larger than 1 and &5 by a constant smaller than 1.

9.1.3. Timing of the Method

The computational costs of non-recursive H-AMLS, using mode selection strategy S2 and H-
matrix accuracy €9, are given in Table 9.4 for nes = 5N, 2/ 3 and the mesh widths hi,hs and hg.
Displayed are the costs of the different tasks (indicated in Table 7.1) and basic characteristics of
the method such as the level of the applied domain substructuring (1vl), the resulting number of
subproblems m, and the order k of the H-reduced eigenvalue problem (R, ﬁ) We observe that
the computation of the block diagonalisation K* ~ L* K™ (L")T and the matrix transformation
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9. Numerical Results

IPEREVINEHER EEHinG GF Gl characteristics of non-recursive H-AMLS

nes | Ny M| m | K AP

e mode selection strategy S2
e 7{-matrix accuracy e
e condensation process has hi 95 6,859 3| 15 185 2.62

been deactivated

ha 195 | 59,319 6 | 127 1,649 2.54
e task (T9) has been performed

instead of task (TSI) hs 395 | 493,039 9 | 1023 | 13,537 2.39
computational time of tasks in relation to total time computational time

) | () | @) | @y | @) | @n) | @) | (@9 ta | ava(ta)

hy 1.8% | 19.5% | 55.2% | 21.1% | 0.4% | 0.2% | 0.9% | 0.4% 5s 8.70s

ha 1.3% | 13.2% | 69.0% | 11.8% | 0.5% | 1.5% | 1.7% | 0.7% 1min 24s 7.34s

hs 0.3% | 6.0% | 41.7% | 3.8% | 0.4% | 45.4% | 1.4% | 0.5% 40min 09s | 12.37s

Table 9.4.: Characteristics and computational costs of non-recursive H-AMLS computing the

smallest nes = 5N,}b/ 3 eigenpairs for varying mesh widths. ¢,y is the total computational time

and avg(tan) the average time defined in (9.3) using nes = 5N, ,1/ 3. Since no computational costs
are associated with task (T5) it is left out in this and the following tables.

MM ~ (L)~ *MM(L*)~T, task (T2) and (T3), are dominating the costs of the other tasks.
However, with increasing DOF the portion of task (T2) and (T3) to the total computational
time is decreasing. To keep in the benchmarks the computational costs of task (T4) small the
domain 2 has been substructured several times in order to obtain in (7.1) small subdomain
eigenvalue problems which can be solved easily (see Section 8.1 and Section 8.3 for details). In
particular, in order to keep the size of the subdomain problems constant when A is decreased,
the number of substructuring levels in #-AMLS (cf. Figure 8.1) has to increase as it can be seen
in the column (lvl) of Table 9.4. The downside of a multi-level substructuring with constant
sized subdomain problems is that the size & of the H-reduced eigenvalue problem is O(N). Note
particularly that the H-reduced problem (K, ﬁ) is only partially structured? and not sparse.
Nevertheless, the cost savings achieved in task (T4) outweigh the additional computational
costs in tasks (T6)—(T8) due to the larger k. The eigenpairs of the H-reduced problem have
been computed by the dense LAPACK eigensolver dsygvx (cf. Section 8.5), and correspondingly
we observe in Table 9.4 that the computational costs of task (T7) are increasing much stronger
than the costs of tasks (T6) and (T8). However, this issue can be resolved by applying the
recursive version of H-AMLS as it is shown in the following.

9.2. Analysis of Recursive H-AMLS

In the previous section we observed that the transformed eigenvalue problem, task (T2) and
(T3), can be successfully computed using the fast H-matrix arithmetic which massively reduces

2K is a block diagonal matrix and M has a block-sparsity structure similar to the structure of MM (cf. Figure
8.2). See Section 8.5 for details.
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9.2. Analysis of Recursive H-AMLS

k for hs 7&3 for hs with nes equal to || & for hy ’y,(lzz for hy with nes equal to

N | 2Ny | sy 100 | 200 | 267
n e 2,209 2.91 3.07 3.07 4,483 4.49 | 4.79 | 4.79
;ﬂ T‘g 2,833 2.58 2.80 2.85 5,747 3.92 | 4.07 | 4.07
> g 10 3,457 2.48 2.66 2.79 7,011 3.45 | 3.53 | 3.53
= 5)5 12 4,081 226 | 255 | 2.73 8,275 321 | 3.36 | 3.36
2]
g = 14 4,705 2.20 2.47 2.61 9,539 3.01 | 3.18 | 3.18
= B 16 5,329 212 | 242 | 255 10,803 2.84 | 2.95 | 2.95
non-recursive 13,537 1.96 2.26 2.39 108,995 (%) (*) | (%)

H-AMLS

. to the maximal ratios %S’;) for recursive H-AMLS
and the mesh widths hg and hy. The error ratios (x) could not be evaluated since it was beyond
the available computing capabilities to apply non-recursive H-AMLS to the problem associated
with mesh width hy.

Table 9.5.: Influence of the parameter C7

the computational time of AMLS. Task (T2) and (T3) are the computational bottleneck of the
classical AMLS method, each with costs of at least the order O(N?) for problems with a three-
dimensional domain (cf. Section 5.3). Using the fast H-matrix arithmetic these two tasks are
now computed in almost linear complexity O(N log® N) where the costs are independent of the
number neg of sought eigenvectors.

In this section we consider the recursive version of H-AMLS where the size k of the H-reduced
eigenvalue problem can be bounded by O(N 1/ 3), cf. Section 5.2.3. To apply the recursive version
of H-AMLS the condensation process in Algorithm 5 has to be performed. The condensation
process, which is described in Section 8.7, implements the recursive call of H-AMLS in a bottom-
up fashion where the spectral information of several subproblems is condensed using H-AMLS
into the spectral information of a single subproblem of larger size.

The parameters for recursive H-AMLS have been chosen as follows:

1. The H-matrix accuracy e2(h) from the previous section has been used in task (T2) and
(T3) for the computation of the transformed eigenvalue problem.

2. The multi-level substructuring is applied in such a way that the size of the subdomain

eigenvalue problems is smaller than the threshold n2)® = 1000 (cf. Section 8.3).

3. In task (T4) mode selection strategy S2 has been applied, i.e., the smallest k; = 1.5Ni1/ 3

eigenpairs have been computed if the subproblem is associated to a subdomain and the
smallest k; = Nil/ 2 eigenpairs if the subproblem is associated to an interface. The small-
sized subdomain eigenvalue problems have been solved directly by the dense LAPACK
solver dsygvx. For small-sized interface problems the dense LAPACK solver has been
used as well, for large-sized interface problems the iterative eigensolver H-SIL introduced
in Section 8.4 has been used.
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9. Numerical Results

4. The condensation process, which is performed after task (T4) in Algorithm 5, is applied in
such a way that subdomain eigenvalue problems are condensed every 3 levels and only if
condition (8.15) has been fulfilled (cf. Algorithm 17). In the case that several subproblems
are condensed by H-AMLS into a single subdomain problem (I?ff, M{’f‘) of larger size, then
the smallest k, = CF,_(N,)"/3 eigenpairs are computed with some constant C5_ > 0.

In plain words the parameter setting described above implements a recursive approach, where
after 3 levels of multi-level substructuring a total of m = 15 subproblems arise (8 subdomain
and 7 interface eigenvalue problems), where small-sized subdomain problems are solved by the

LAPACK solver dsygvx computing the smallest k; = 1.5Ni1/ 3 eigenpairs, and where large-sized

subdomain problems are solved recursively by H-AMLS computing the smallest k; = C;)mNil/ 5
eigenpairs.

Using the parameter setting described above recursive H-AMLS has been benchmarked for
the mesh widths hi, hy and hg; and even for the finer mesh width hy := h3/2 which leads to a
discrete eigenvalue problem (K, M) with roughly 4 million DOF. Since the problems associated
to the mesh widths h; and hg are too small to fulfil condition (8.15) no condensation has been
performed, and the same results are obtained as when the non-recursive version of H-AMLS
would have been applied (cf. Table 9.4). However, the problems associated to hs and hy are large
enough so that subproblems can be condensed, and recursive H-AMLS has been benchmarked for
these problems using different choices of C5 . In Table 9.5 the influence of the parameter C5
to the maximal ratios 77(1};2 has been displayed, as well as the resulting size k of the H-reduced
eigenvalue problem, and for comparison the corresponding results of the non-recursive approach.
However, for the mesh width h4 the maximal ratios 7,(12 are displayed in Table 9.5 only up to
Nes = 267. Due to computational limits it was only possible to compute with H-ARPACK the
smallest 267 eigenpairs of the discrete problem (K, M) associated to mesh width hy. In Table
9.5 we observe that for mesh width hs already C7, = 8 is sufficient to fulfil postulation (9.4) —
i.e. that the approximation error of recursive H-AMLS matches the discretisation error — while
for mesh width hy at least CF_ = 16 is needed. Furthermore, the size k of the problem (IA{, M)
is massively reduced by the recursive approach while nearly the same approximation quality is
obtained as when the non-recursive approach is applied (cf. results for mesh width hs in Table
9.5).

In Table 9.6 the computational costs of recursive H-AMLS are displayed for the computation

of the smallest nes = SN;/ 3 eigenpairs and using the parameter setting described above with
C% = 16. This parameter setting is sufficient to obtain for the mesh widths hy, ho and hs that

dom

77(1’;) < 3 is valid for ne = 5N2/ 3 (cf. Table 9.6). For the mesh width hy postulation 77(1};) <3
could be validated due to computational limits only up to nes = 267, but it is noted that the
error ratios 'ygelb) are only slowly increasing in nes (cf. Table 9.5). Beside the computational
costs of the different tasks, in Table 9.6 are displayed basic characteristics of recursive H-AMLS
such as the order k of the H-reduced problem (after condensation), and an overview of the
performed condensation process. For example, for the problem associated to mesh width Az in
total 8 condensations have been performed, all on level 3 of the AMLS tree (cf. Section 8.7).
We remark that in Table 9.6 and in the following the time measurements concerning the tasks
(T6)—(T8) are accumulative, e.g., for task (T7) the computational time indicated by >>(T7) in
Table 9.6 includes beside the time spent for task (T7) as well the time spent for the solution
of the H-reduced eigenvalue problems of all recursive calls of H-AMLS. In the benchmarks of
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9.3. Analysis of Recursive H-AMLS with (TSI )-improvement

parameter setting of H-AMLS characteristics of recursive H-AMLS
e mode selection strategy S2 - N, e T 3 %(:;)
e 7{-matrix accuracy e
e condensation process has been hy 95 6,859 0 185 2.62
activated with CF,, = 16 ho || 195 59,319 0] 1,649 | 2.54
o task (T9) has been performed hy || 395 | 493,039 8onlvli3 | 5320 | 255
instead of task (TSI)
hg || 795 | 4,019,679 || 64 on 1vl 6, 8 on 1vl 3 | 10,803 (%)

computational time of tasks in relation to total time computational time

) | @) | @) | @ | swe) | £ | mms) | @) | avelta)
hi 1.9% | 22.4% | 50.8% | 22.4% | 0.5% 0.2% 1.0% | 0.4% 5s 8.14s
ha 1.1% | 13.1% | 70.0% | 11.2% | 0.5% 1.4% 1.6% | 0.6% 1min 30s 7.83s
hs 0.6% | 9.4% | 65.9% | 5.7% | 10.4% | 3.7% 3.2% | 0.8% 25min 19s 7.80s
ha 02% | 6.1% | 51.3% | 3.2% | 27.1% | 5.4% 5.7% | 0.6% 8h 9min 37s 9.19s

\. J

Table 9.6.: Characteristics and computational costs of recursive H-AMLS computing the small-

est Nes = 5Né/ 3 eigenpairs for varying mesh widths. The error ratio (x) was beyond our com-

puting capabilities (for mesh width h4 only the smallest 267 discrete eigenpairs A§h) could be
computed, cf. Table 9.5)

non-recursive H-AMLS we observed that the computational costs of task (T7) became dominant
with decreasing mesh width h, the cost became even so expensive that it was infeasible to apply
non-recursive H-AMLS to the problem associated with mesh width k4. Since the size k of the H-
reduced eigenvalue problem has been bounded by O(N 1/3 ) by the recursive approach, we observe
in Table 9.6 that the computational costs associated with task (T7) are massively reduced. The
computational costs of recursive H-AMLS are dominated by the computation of the transformed
eigenvalue problem, i.e., by the computation of the LDLT-factorisation K™ ~ LHKH (LT in
task (T2) and the computation of the matrix M™ ~ (L*)~1 M™* (L*)~T in task (T3).

9.3. Analysis of Recursive 7{-AMLS with (TSI)-improvement

In this section we analyse recursive H-AMLS where the improvement task (TSI) is performed
instead of task (T9). See Section 7.4 and Algorithm 3 for a description of task (TSI). The
benchmarks from the previous section are repeated and in Table 9.7 the resulting maximal error

ratios %(LQ are displayed for nes = 5N,1/ ® with mesh widths hs and h4, and for varying C7

dom*
Analogously to (9.5), the value %(LQ is the maximal ratio between the relative error associated
to recursive H-AMLS with (TSI)-improvement and the relative discretisation error. Note that

in contrast to the version of H-AMLS where task (T9) is applied, the maximal error ratios

'yj(-h) (with j < nes) depend as well on the number nes of computed eigenvectors since in the
improvement task (TSI), where an approximative iteration step of the subspace iteration is
applied (cf. Section 7.4), the improvement of each eigenpair approximation becomes better the
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9. Numerical Results

k for hs vj(-h) for hg with j equal to k for hy A/](-h) for hy with j equal to

N | 2Ny | sy 100 | 200 | 267
=N 0.5 497 1.64 5.39 | 44.31 1,011 1.57 3.72 5.86
5 & % 1 649 1.20 1.74 7.72 1,323 1.21 1.52 1.77

-

;,'g @ g 15 809 1.21 1.53 3.93 1,643 1.22 1.47 1.87
2 _i 5 961 121 | 1.27 | 2.60 1,955 1.22 | 1.24 | 141
wn
sé %i 2 1,585 1.21 1.21 1.39 3,219 1.22 1.22 1.22
2 5 < 2,209 121 | 121 | 1.23 4,483 122 | 1.22 | 1.22
non-recursive
H-AMLS applied || 13,537 1.20 1.20 1.20 108,995 (%) (%) (%)
with task (TSI)

Table 9.7.: Influence of the parameter C7 _ to the maximal ratios y(h) for recursive H-AMLS

dom

with (TSI)-improvement with nes = 5N ,1/ 3 and mesh widths hs and hy. The error ratios (x) could
not be evaluated since it was beyond the available computing capabilities to apply non-recursive
H-AMLS to the problem associated with mesh width hy.

larger the dimension of the iterative subspace is [see (7.9)]. Comparing Table 9.5 and Table
9.7 we observe that replacing task (T9) by task (TSI) leads to a clear improvement of the
approximation quality. In particular, we observe that already for C5 = 2 postulation (9.4)
is fulfilled (for h4 it could be only verified up to the 267-th eigenvalue), and that for the mesh
width hsz the approximation quality of recursive H-AMLS is nearly as good as of non-recursive
‘H-AMLS [where both versions are applied with task (TSI)] when the parameter C7 = 6 is
used.

In Table 9.8 basic characteristics and the computational costs of recursive H-AMLS with
(TSI)-improvement are displayed for the computation of the smallest nes = 5NV, i/ 5 eigenpairs.
In addition to that in Table 9.9 the memory consumption is displayed of the different matrices
that are involved in the corresponding computations. Although the computational costs of
tasks (TSI) are in general larger than those of task (T9) the overall costs of recursive H-AMLS
could be decreased which is due to the fact that instead of the parameter C3 = 16 only
C% .. = 6 could be used for the computations. Of particular note here is that in the benchmarks
also the approximation quality of recursive H-AMLS has been further improved, leading to an
approximation error of the eigenvalues which is only slightly larger than the discretisation error.

To get a better impression of the practical performance of H-AMLS we investigate the average
computational time avg(t,y) of the method. The average computational time (per eigenpair and
per DOF) is defined in (9.3) and in the following we analyse avg(t,y) in detail only for recursive
H-AMLS with (TSI)-improvement since this H-AMLS version shows the best performance re-
garding computational time and approximation quality. In Figure 9.3 the average time of this
H-AMLS version is displayed for the computation of the smallest nes = 5N/3 eigenpairs for
varying DOF with N up to 6 million. Beside the total average time also the average time of
each task (for (T6)—(T8) accumulated as explained above) has been measured separately and dis-
played in Figure 9.3 in order to profile the complexity of the involved tasks [(T1),...,(T8),(TSI)]
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9.3. Analysis of Recursive H-AMLS with (TSI )-improvement

parameter setting of 7-AMLS characteristics of recursive H-AMLS
e mode selection strategy S2 - N, “condensations 2 %(Li;)
e FH-matrix accuracy £
e condensation process has been hy 95 6,859 0 — Lot
activated with CF =6 he || 195 59,319 0| 1,649 1.53
* task (TSI) has been performed hs || 395 | 493,039 8onlv3 | 2209 | 1.23
instead of task (T9)
ha || 795 | 4,019,679 || 64 on lvl 6, 8 on vl 3 | 4,483 (%)

computational time of tasks in relation to total time computational time

() | ) | (@) | @0 | 2o | £ | mms) | (rsy | avelta)
hi 1.7% | 21.2% | 49.9% | 21.7% | 0.4% | 0.2% 1.0% | 3.4% 5s | 8.39s
ha 1.3% | 12.8% | 65.8% | 11.2% | 0.4% 1.4% 1.6% | 5.1% 1min30s | 7.84s
hs 0.6% | 9.8% | 65.7% | 5.9% | 3.9% | 0.9% | 2.8% | 10.0% 24min55s | 7.67s
ha 0.3% | 7.1% | 59.9% | 3.7% | 10.6% | 0.6% | 4.0% | 13.5% 6h 58min14s | 7.85s

Table 9.8.: Characteristics and computational costs of recursive H-AMLS with

with (TSI)-improvement computing the smallest nes = SN;/ 3 eigenpairs for varying mesh
widths. The error ratio (x) was beyond our computing capabilities (for mesh width h4 only the

smallest 267 discrete eigenpairs )\gh) could be computed, cf. Table 9.7).

K&M|K*&M?| KH " MM K &M S
hy 3.12 32.38 1.66 19.12 16.86 0.54 5.21
ho 28.96 376.32 15.00 247.99 212.17 | 43.50 92.53

h3 239.78 3,580.34 127.34 | 2,527.60 | 2,478.40 78.06 | 1,558.00
ha 1,974.4 31,340.46 | 1,049.00 | 24,058.38 | 29,103.95 321.54 | 25,565.15

Table 9.9.: Corresponding to the benchmarks presented in Table 9.8 the memory consumption
of the matrices in megabyte which are involved in the corresponding computations. Note that
S € RV*7es ig the full matrix containing column-wise the computed eigenvector approximations
(cf. Algorithm 5).
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Figure 9.3.: Average computational time (per eigenpair and per one million DOF) of recursive
H-AMLS with (TSI)-improvement for the computation of the smallest nes = 5IV 1/3 eigenpairs in
relation to the degrees of freedom N. Displayed are the total average computational time avg(tay)
and the average computational time of the different tasks. To provide a better presentation these
times are displayed in separate figures.

in more detail. First of all it can be observed in Figure 9.3 that the total average time of the
method is constant, which means in particular that recursive H-AMLS reaches in the presented
benchmarks the optimal complexity O(nes/N). Furthermore, the results in Figure 9.3 show that
for all involved tasks the average computational time is roughly constant, and that the compu-
tational costs are clearly dominated by task (T3), i.e., by the computation of transformed mass
matrix MH.

In the benchmarks presented in Section 9.1 — Section 9.3 the parameter setting of H-AMLS (for
both the recursive and the non-recursive version) has been chosen in such a way that postulation
(9.4) is fulfilled, i.e., that the error of the H-AMLS eigenvalue approximations matches the
discretisation error. In Table 9.3, Table 9.5 and Table 9.7 we observe that the ratio between the

€rrors (/5\]- and g\j(h) is only slowly increasing in j. Correspondingly it seems that in the presented

benchmarks much more than 5V, ,1/ 3 eigenvalue approximations can be computed with nearly the
same approximation quality as the discretisation. Increasing the number of sought eigenpairs,
however, increases only slightly the computational costs of H-AMLS as it can be seen for example
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9.3. Analysis of Recursive H-AMLS with (TSI )-improvement

‘H-ARPACK recursive H-AMLS with (T9) recursive H-AMLS with (TSI)
(h) ity s (h) ety s
;" with j equal to ;" with 7 equal to
TNes avg(tan) avg(tan) I avg(tan) J

[Tes/4] ‘ [Tes/2] ‘ Nes [Mes/4] ‘ [Mes /2] ‘ Tes
10 269.86s 284.73s 2.05 2.05 2.07 286.41s 1.23 1.23 1.23
20 164.24s 143.30s 2.05 2.05 2.07 143.98s 1.23 1.23 1.23
50 100.62s 57.96s 2.07 2.07 2.25 58.48s 1.22 1.22 1.22
N1/3 =79 119.85s 36.13s 2.07 2.07 2.25 36.68s 1.22 1.22 1.22
2N1/3 100.46s 17.14s 2.07 2.25 2.56 17.50s 1.22 1.22 1.22
5N1/3 109.92s 7.68s 2.25 2.56 2.73 8.20s 1.20 1.20 1.20
10N1/3 128.71s 3.83s | 2.56 2.73 | 2.96 4.64s | 1.19 119 | 1.77
20N1/3 128.80s 2.25s 2.73 2.96 3.32 3.24s 1.18 1.67 1.96
50N1/3 (%) 1.20s (%) (%) (%) 2.83s (%) (%) (%)

Table 9.10.: The average computational time of recursive H-AMLS for computing the smallest
Nes €igenpairs of the problem associated to mesh width hs with N = 793 degrees of freedom.
The parameter setting of H-AMLS has been chosen as described in Section 9.2 with the fixed
parameter C¥ = 12 used for all nes (cf. Figure 9.4). For the sake of completeness, the average

computational time of the reference solver H-ARPACK is displayed as well, and the maximal
(h)
J

ratios ;" for j < nes. The values (%) are unavailable since the computation of the smallest

Nes = DON, 2/ 3 eigenpairs using H-ARPACK was beyond the computing capabilities.

in Figure 9.4. In Figure 9.4 the total computational time of recursive H-AMLS, applied once
with task (T9) and once with task (TSI) instead, is displayed for varying mes with nes up to
50N1/3. We observe that the computational costs of recursive H-AMLS are nearly constant
in nes when task (T9) is applied, and that the costs are slowly increasing in nes when instead
of task (T9) the improvement task (TSI) is applied. In Figure 9.5 the corresponding average
computational time avg(tay) is displayed which is decreasing very fast until it reaches (already
for nes > 10N/ 3) a range of less than 5s. In particular, this runtime behaviour makes the #-
AMLS method very attractive when many eigenpairs are sought. Furthermore, in Table 9.10 can
be seen that the accuracy of the computed H-AMLS eigenpair approximations reaches nearly
the approximation quality of a classical approach, in particular, when task (TSI) is applied. For
the sake of completeness, the average computational time of H-ARPACK is displayed in Table
9.10 as well. Note that the classical eigensolver H-ARPACK uses the efficient and in practice
widely used ARPACK library for the computation of the sought eigensolutions. Furthermore,
H-ARPACK uses the fast H-arithmetic for the computation of the needed preconditioner (cf.
Section 8.4) which is performed in (nearly) optimal complexity O(N log® N) and hence is very
inexpensive especially for three-dimensional problems.
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Figure 9.4.: Total computational time of recursive H-AMLS, applied once with task (T9) and
once with task (TSI) instead, for computing the smallest nes eigenpairs of the problem associated
to mesh width hs. nes is varying from N3 = 79 up to 50N'/3 = 3950. The parameter setting
of H-AMLS has been chosen as described in Section 9.2. In order to have a sufficiently large
reduced eigenvalue problem (k > 3950 is needed) the parameter C% _ has been set to 12 for all
Nes 1IN both benchmarks.
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Figure 9.5.: The average time of recursive H-AMLS corresponding to the benchmarks presented
in Figure 9.4.
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0.4. Parallel Performance of H-AMLS

The H-AMLS method has been parallelised for shared memory systems using Threading Build-
ing Blocks v4.2 [46] to provide thread parallelism. See Section 8.8 for the corresponding im-
plementation and for further details. In the following the parallel performance of the H-AMLS
implementation is analysed, however, the discussion is restricted to the recursive version apply-
ing the improvement task (TSI) and using the parameter setting described in Section 9.2 with
C7 = 6. The benchmarks presented in this section have been performed on the following two

dom

NUMA-architectures, both of which equipped with 32 cores.

System A: 4-socket system with Intel Xeon processors X7550 (Nehalem-microarchitecture, 2.00
GHz, 8 cores)

System B: 4-socket system with Intel Xeon processors E5-4640 (Sandy-Bridge-microarchitecture,
2.40 GHz, 8 Cores)

A basic difference between both NUMA systems is that system B is equipped with processors
of the more modern Intel Sandy-Bridge-microarchitecture (which has replaced Intel’s Nehalem-
microarchitecture) and that system B has more memory bandwidth than system A.

In Figure 9.6 and Figure 9.7 the parallel performance of H-AMLS (using the parameter setting

described above) has been displayed computing the smallest nes = 5N ,1/ 3 eigenpairs for the mesh
widths hi, he, hs and hy. Figure 9.6 displays the parallel speedup and the parallel efficiency on
system A for up to 32 threads, and Figure 9.7 displays the corresponding results on system
B. First of all it can be observed that the parallel performance of H-AMLS on NUMA-system
B is better than on system A for the larger problems associated to mesh widths hg and hy.
This effect is primarily caused by the von Neumann bottleneck (see Section 8.8) where the
speedup of a parallel program is limited by the data transfer rate between the CPU cores and
the shared memory. Since NUMA-system B is equipped with a higher memory bandwidth than
system A, the parallel performance of H-AMLS on this system is better. In particular the
results show how strongly the speedup of H-AMLS depends on the memory bandwidth and the
NUMA-architecture. Furthermore, it can be observed in Figure 9.6 and Figure 9.7 that the
parallel efficiency of H-AMLS increases with increasing DOF, in particular that it is inefficient
to apply H-AMLS with many threads when the problem size is small. For example, the problem
associated to mesh width hj is too small to benefit from a larger number of threads, as it can
be seen in Table 9.11 the computational time using one thread (i.e., the sequential version of
H-AMLS is applied) is less than 6s on system B. For small problems the parallel overhead (see
Section 8.8) is too large and the granularity of working tasks, which can be performed in parallel,
is too small.

However, also on the more efficient NUMA-system B the implementation of H-AMLS has
for the largest problem, the problem associated to mesh width h4, only a parallel speedup of
around 16 when 32 threads are used. To investigate the parallel performance on system B in
more detail the speedup of each involved task has been benchmarked separately for the mesh
width h4. Since in the parallel implementation of H-AMLS in the condensation process different
condensations (which are basically recursive calls of H-AMLS) are performed concurrently it is
not possible to measure the speedups concerning the tasks (T6)—(T8) accumulatively. In contrast
to the previous section, in the following the time measurements concerning tasks (T6)—(T8) do
not include the times of the recursive calls, instead the computational costs of the recursive call
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Figure 9.6.: Parallel performance on NUMA-system A of recursive H-AMLS with (TSI)-
improvement for computing the smallest ne = 5N, 2/ 3 eigenpairs for different mesh widths.

120

100 4,

80

60

speedup

40

parallel efficiency in percent

20

4 8 12 16 20 24 28 32
# threads # threads

Figure 9.7.: Parallel performance on NUMA-system B of recursive H-AMLS with (TSI)-
improvement for computing the smallest nes = 5V, ;/ 3 eigenpairs for different mesh widths.
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9.4. Parallel Performance of H-AMLS

#threads for hy for ho for hs for hy
P tar | E(p) tall E(p) tal E(p) ta E(p)
1 5.47s | 100.0% 90.75s | 100.0% 1,495.67s | 100.0% 25,094.71s | 100.0%
8 2.03s | 33.6% 18.71s | 60.6% 237.97s | 78.5% 3,321.88s | 94.4%
16 2.14s | 15.9% 14.98s | 37.8% 161.66s | 57.8% 2,122.20s | 73.9%
24 1.93s | 11.8% 13.25s | 28.5% 128.20s | 48.6% 1,693.65s | 61.7%
32 2.15s 7.9% 12.77s | 22.2% 121.00s | 38.6% 1,556.72s | 50.3%

Table 9.11.: Parallel performance on NUMA-system B of recursive H-AMLS with (TSI)-
improvement for computing the smallest nes = 5V, ,1/ 3 eigenpairs for different mesh widths.

are included in the measured time of the condensation process, and the parallel performance
of the condensation process has been measured on its own. In Figure 9.8 the separate speedup
of each task [(T1)—(T8), (TSI), condensation process] is displayed, and in order to assess the
speedup of each task regarding the total speedup of the method in Figure 9.9 the computational
time of each task relative to the total computational time is displayed in dependence of the
number p of used threads. As described in Section 8.8 task (T1) is always applied sequentially,
since the performance of the task depends heavily on the memory bandwidth of the system and
the performance did not benefit from a parallel implementation (more details in the following).
Correspondingly the speedup of (T1) is equal to 1 for all p € N and is not displayed in Figure
9.8. In order to evaluate the limitations of the parallel speedup on NUMA-system B due to the
limited memory bandwidth the speedup of the following reference task is displayed as well in
Figure 9.8.

Definition 9.1 (Reference Task) The reference task associated to problem (K, M) with N
degrees of freedom and nes sought eigenpairs is given by computing the matriz vector product

yi:= KMz fori=1,... N where z := (1,...,1)T e RV

where the matriz-vector multiplication is performed using the compressed row storage format of
the sparse matrices K and M. If the number of used threads is larger than 1 the computation of
(yi)ie is performed in a parallel for loop using the corresponding TBB routine. In the following
the reference task is referred to as (TRef).

Task (TRef) is perfectly parallelisable when nes = kp for some k& € N or when nes > p, however,
the performance of the sparse matrix-vector multiplication is highly dependent on memory
bandwidth.

In Figure 9.8 and Figure 9.9 the following observations can be made:

e As expected the speedup of the reference task (TRef) is limited. In particular, the speedup
of (TRef) indicates in general the limitation of the parallel speedup on NUMA-system B
for tasks whose parallel performance depends increasingly on the memory bandwidth of
the system.
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Figure 9.8.: Parallel speedup on NUMA-system B of recursive H-AMLS with (TSI)-
improvement for computing the smallest nes = 5N'/3 eigenpairs of the problem associated
to mesh width h4. Displayed are the total speedup and the speedup of the involved tasks. To
provide a better presentation the speedups are displayed in separate figures. Beside this, also
the speedup of the reference task (TRef) from Remark 9.1 is shown.
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Figure 9.9.: Corresponding to the benchmark presented in Figure 9.8 the portion (in percent)
of the computational time of each involved task in relation to the total computational time of

‘H-AMLS.
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9.4. Parallel Performance of H-AMLS

e Although task (T1) is the only task which is applied sequentially (see Amdahl’s Law in
Section 8.8) its portion to the total computational time is even for 32 threads only around
10% and correspondingly limits the overall speedup only moderately. Benchmarks on
NUMA-system B have shown that even when the construction of each H-matrix repre-
sentations K7 and M™ is performed concurrently by two threads then no speedup could
be observed, which is due to the limited memory bandwidth of the system. More modern
NUMA-systems with a higher memory bandwidth could overcome this issue so that task
(T1) benefits from multiple cores.

e The speedup of task (T2), i.e, the computation of the LDL™-factorisation K" ~ LHKH (LT,
is worse than most of the other tasks. However, the portion of task (T2) to the total com-
putational time is only around 10% and keeps nearly constant for varying number of used
threads. As mentioned in Section 8.8.2 for the parallel computation of task (T2) a HLIBpro
routine is used which implements a task-based approach of the LDLT-factorisation. This
implementation, however, exhibits in HLIBpro v2.3 still a sequential part which can be
parallelised and possibly increases the speedup (cf. [54]). Moreover, the H-matrix format
which is used for K can be replaced by the refined and improved H?-matrix format (cf.
[17]) and the computation of K can be performed using the corresponding parallel H2-
matrix arithmetic [19, 61] which is possibly leading to a general reduction of computational
time of task (T2) and to a better speedup.

e The speedup of task (T3) is moderate, in particularly the task (T3) clearly remains the
computational most dominant part of H-AMLS also when up to 32 threads are used. As
described in Section 8.2 the computation of M* ~ (L*)~'!M™(L*)~T is performed by
solving triangular systems which is done by the corresponding parallel HLIBpro routines
for H-matrices. The solution of the triangular system is performed in a recursive approach
applied to the block hierarchy of the H-matrix structure and inherits a sequential bottle-
neck. However, a better parallel performance of the computation can be expected when
the same task-based approach (with a global scope on the computational tasks) is imple-
mented which is used for the parallel LDL -factorisation (cf. Section 8.8.2). Furthermore,
as proposed for task (T2), also in task (T3) the refined and improved H2-matrix format
can be used for the computation of M which is possibly leading to a general reduction of
computational time of task (T3) and to a better speedup.

e The speedup of task (T4) is better than most of the remaining tasks, however, as already
mentioned in Section 8.8.3, the speedup is partially limited by the speedup of the H-SIL
eigensolver which is applied to the large interface eigenvalue problems. Beside many small-
sized subdomain and many small-sized interface eigenvalue problems (which create an even
workload per thread) in task (T4) also few large-sized interface eigenvalue problems have
to be solved whose size is varying. Since the speedup of the H-SIL eigensolver for a
single subproblem is limited due to sequential parts of the Lanczos method, the overall
speedup can be partially limited by the solution of one single large interface eigenvalue
problem. This issue can be partially overcome by applying a scheduling which prioritises
the processing of the large interface problems, and by improving the speedup of the H-SIL
eigensolver. Nonetheless, task (T4) only makes a small portion of the total computational
time.
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e Task (T6) shows the best parallel performance, however, an even better speedup is expected
on shared memory system with a higher memory bandwidth. Task (T6) is perfectly paral-
lelisable and according to Section 8.8.4 the parallel implementation of task (T6) provides
a very high granularity of working tasks that can be performed concurrently.

e As described in Section 8.8.5 task (T7) has been parallelised using the multi-threaded
MKL version of the LAPACK eigensolver dsygvx. The speedup of task (T7) is quite
weak, however, a better speedup is expected when the size k of the H-reduced problem is
getting larger (in the benchmark k was equal to 4,483). Nonetheless, the portion of task
(T7) to the total computational time is only minor also for 32 threads.

e Task (T8) shows only a moderate speedup, nonetheless the portion of this task to the total
computational time remains relative small even when 32 threads are used. Theoretically,
task (T8) is perfectly parallelisable, see Section 8.8.6 for the corresponding implementation.
The majority of the computational costs of task (T8) are caused by the computation of
the matrix Si.., in (8.24). As already mentioned in Section 8.8.6 the efficiency of the
matrix-wise approach for the parallel computation of S,.,,, depends on the column size &’

of the block columns SSQHP € RV*F  With the number of used threads the column size &’
is decreasing and with it the efficiency of the matrix-wise approach for the computation
of Siemp- For example, using 32 threads we have k&’ ~ 25 while for one thread k¥’ = 795.
Correspondingly, if number nes of sought eigenpairs is getting larger also a better speedup
is expected.

e Task (TSI) shows as well only a moderate speedup, although most of the individual work-
ing steps of task (TSI) are perfectly parallelisable. The implementation of task (TSI) is
described in Algorithm 4 and its parallelisation in Section 8.8.7. The computational costs
of task (TSI) are dominated by the costs of the sparse matrix multiplications M S, K@,
MQ and by the costs of the matrix computations Ay := (LM*)71A;, Ay = (L) T A3
(cf. Section 8.8.7). The parallel performance of the sparse matrix multiplication, however,
depends heavily on the memory bandwidth of the system which thus limits the speedup of
task (TSI). Furthermore, the matrices Ay and A4 are computed by the same parallel ap-
proach which is used for the matrix S,.,, in task (T8), and hence the parallel performance
of their computation benefits as well from a larger number of sought eigenpairs.

e The parallelisation of the condensation process is described in Section 8.8.8. In the bench-
mark the condensation process shows a satisfying speedup and its portion to the total
computational time is minor.

In summary, the implementation of H-AMLS shows a reasonable parallel performance. How-
ever, better speedups are expected when H-AMLS is applied to larger problems and, most
importantly, when H-AMLS is performed on more modern NUMA-architectures with improved
memory performance. In particular, a better speedup is expected when the distribution of the
data to the memory is optimised to the NUMA-architecture such that locality of memory ac-
cess is guaranteed. Some tasks of H-AMLS are perfectly parallelisable, however, the optimal
speedup is not achieved due to the limited memory bandwidth of NUMA-system B and due to
some parallel overhead [as described, e.g., for task (T8)].

Furthermore, as noted above, a better speedup of H-AMLS is expected when the parallel
implementation of the H-matrix routines used in task (T2) and (T3) is further improved, or
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possibly when the used H-matrix format is replaced by the refined H?-matrix format. Also the
scheduling in (T4) can be improved. Beyond that, the execution of the different tasks of H-

~ —~ — (s MZ’}Z{)
and (K%, M Z‘) have been computed the computation of submatrix M;; can be started — which
increases the parallel granularity of H-AMLS even further and might get relevant for many-core
shared memory systems with high memory bandwidth.

AMLS can be merged partly — for example, as soon as the eigensolutions of problem (f( H

9.5. H-AMLS for Challenging Problems

In the previous sections we analysed the H-AMLS method for the Laplace eigenvalue problem
on the unit cube. In this section additional numerical results are presented which investigate
the approximation accuracy of the H-AMLS method for elliptic PDE eigenvalue problems

Lu=Au in §,
(9.6)
u=0 on JQ
with a more challenging domain 2 and a general PDE operator of the form
Llu)(z) = —=div(AVu) (z) + c(z)u(z) for all z € Q. (9.7)

We consider the following three-dimensional elliptic PDE eigenvalue problems:

Example 1: Eigenvalue problem (9.6) with PDE operator Lu = —Awu and domain

Q:=(0,1)3\ [%, 1] x [0, %] x [%,1]  — unit cube with internal corner, cf. Figure 9.10(a)

Example 2: Eigenvalue problem (9.6) with PDE operator Lu = —Awu and domain

Q:=(0,1)>\ [£,1] x [2,2] x [0,1] — unit cube with slit, cf. Figure 9.10(b)

Example 3: Eigenvalue problem (9.6) with the same domain as in Example 2 and where the
coefficients of the PDE operator L in (9.7) are of the form

3 21
A(z)= |2 2 1|landc¢(z)=2 Vze
111

Example 4: Eigenvalue problem (9.6) with the same domain as in Example 2 and where the
coefficients of the PDE operator L in (9.7) are of the form

. . 3 2 1

B if U 2 if U

A(z) = 1 z ¢ and c(x) = 1 v ¢ with B:= |2 2 1 Vae
Id ifzeU 0 ifzeU 1 1 1

and where

U= {x ERY ¢ w € [k, ki 4 55) X ko ko + ) % [ks, ks + ) with ki, ko, ks € 27 }
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To solve the eigenvalue problems described in Example 1 — Example 4 by H-AMLS or a classical
approach, the problems have to be discretised. This is done by using the finite element space
of piecewise affine functions X}lz,o and where the triangulation of the corresponding domain is
obtained by decomposing {2 into equispaced subintervals in each direction [cf. Figure 9.10(c)].
For the Laplace eigenvalue problem on the unit cube the approximation quality of H-AMLS
could be evaluated by comparing the relative errors of the H-AMLS approximation and of the
discretisation

~ h)
. A — A9 . 1A — AP
0; = L B and g = LT (9.8)
J
Aj A
— —
relative error of relative error
H-AMLS of discretisation

However, since for Example 1 — Example 4 the exact eigenvalues )\; are not known, the eigen-

values A; in (9.8) are approximated by the discrete eigenvalues )\éh4) associated to the finest
mesh width hy. Using these approximated relative errors the approximation quality of H-AMLS
has been benchmarked for Example 1 — Example 4 by investigating the corresponding maximal
error ratios

7,(12 = max {3\] / gj(h) cg=1,... ,nes} (9.9)
where the following setting has been used:

e The discrete eigenvalues )\;h) have been computed for h = hq, hs, hg and for the reference
mesh width hy by the eigensolver H-ARPACK. The relative residual errors® of the com-
puted discrete eigenpairs has been smaller than 1e-9, so that they can be considered as
numerically exact (as allowed by the finite element discretisation). However, due to com-
putational limits it was only possible to compute for the mesh width hy with H-ARPACK
the smallest 267 discrete eigenpairs.

e The H-AMLS method has been applied in the recursive version with (TSI)-improvement
and C7 = 6 for the computation of the smallest nes = 31V, ;/ ? discrete eigenpairs of the

problems associated to the mesh widths h1, hg, hs.

The results of these benchmarks are summarised in Table 9.12 and show that the approximation
quality of H-AMLS is comparable to the approximation quality of a classical approach.

3We define the relative residual error of an eigenpair approximation (\,z) of (K, M) by ||[Kz — AMz||2/||Kz2.
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N\

(a) Unit cube with internal corner

C (b) Unit cube with slit
Q=(0,1)°\[3,1] x [0, 3] x [3,1].

(¢) Triangulation of do-
Q=(0,1)>\[5,1] x [3,2] x [0,1].

main from Figure 9.10(a)

Figure 9.10.: The underlying domains and associated triangulations of Example 1 — 4.

Example 1 Example 2 Example 3 Example 4

Ny, ‘ Nes ’77(122 Ny, ‘ Nes 'Yr(zi) Np | Nes ‘ 77(1}:2 Np, ‘ Nes 77(22
hy 5,859 | 54 | 1.14 5,339 | 51| 1.16 5,339 | 51 | 1.43 5,339 | 511|140
ha 51,319 | 111 | 1.10 48,087 | 108 | 1.60 48,087 | 108 | 1.23 48,087 | 108 | 1.13
hs 429,039 | 225 | 1.16 407,087 | 222 | 1.08 407,087 | 222 | 1.19 407,087 | 222 | 1.12

Table 9.12.: Approximation accuracy of the recursive H-AMLS with (TSI)-improvement for

computing the smallest nes = 3N, ,1/ 3 eigenpairs with varying mesh widths.
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10. Conclusion

To solve an elliptic PDE eigenvalue problem in practice typically the finite element discretisation
is used. From approximation theory it is known that only the smaller eigenvalues A; and their
corresponding eigenfunctions u; can be well approximated by the finite element discretisation
because the approximation error increases with increasing size of the eigenvalue. However,
results on the number of well approximable eigenvalues or eigenfunctions are not available in
literature (to the best of the author’s knowledge). In this work asymptotic estimates on these
quantities could be derived. For example, it is shown that for three-dimensional problems under
certain smoothness assumptions on the data only the first ©(N?/5) eigenvalues and only the
first O(N 1/ 4) eigenfunctions can be well approximated by the finite element discretisation using
N-dimensional finite element spaces of piecewise affine functions with uniform mesh refinement.

To solve the discretised elliptic PDE eigenvalue problem and to compute all well approx-
imable eigenvalues and eigenfunctions, in this work a recursive version of the automated multi-
level substructuring has been combined with the concept of hierarchical matrices. Whereas the
classical AMLS method is very efficient for two-dimensional problems, it is getting very expen-
sive in the three-dimensional case. One computational bottleneck of classical AMLS is in the
three-dimensional case the required computation of the transformed eigenvalue problem (K M )
Using the fast H-matrix arithmetic, however, the transformed problem can be computed very
efficiently in almost linear complexity O(N log® N) which is even independent of the number
of sought eigenpairs. Also the solution of the interface eigenvalue problems (IN{”, ]\Zl) and the
computation of the reduced eigenvalue problem (IA( , M ) are performed much more efficiently
using the fast H-matrix arithmetic. Moreover, the new recursive version of AMLS allows us to
bound the size of the reduced eigenvalue problem (I/f , M ) which substantially further reduces the
costs for its computation and solution. Overall, this leads to the new H-AMLS method which
is well suited for three-dimensional problems and which allows us to compute a large amount
of eigenpair approximations in optimal complexity. Furthermore, H-AMLS is well parallelisable
and shows in numerical experiments a satisfying parallel performance.

The H-AMLS method has to be benchmarked in further examples, especially for problems
arising from applications. The numerical results presented in this work, however, demonstrate
the potential of the method in solving large-scale elliptic PDE eigenvalue problems. Furthermore,
a black box approach allows H-AMLS to be applied in a purely algebraic way without the need of
geometry information. Beside that, H-AMLS can be combined very efficiently with a subsequent
subspace iteration in order to improve the accuracy of the H-AMLS eigenpair approximations
when needed. These aspects possibly allow H-AMLS to become applicable to a wide range of
problems.
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A. Abstract Variational Eigenvalue Problems

The elliptic PDE eigenvalue problem (2.1) is analysed in Chapter 2. The corresponding existence
result of (weak) eigensolutions which is presented in Theorem 2.6 is based on this section which
provides a general analysis of abstract variational eigenvalue problems of the form

{ find (A, u) € Cx H\ {0} such that (A.1)

a(u,v) = Ad(u,v) Vve H

where a(-, ) and d(-, -) are bilinear forms defined on a Hilbert space H. In this section it is shown
that under certain assumptions on the bilinear forms the eigenvalue problem (A.1) possesses a
countable family of eigensolutions. The key in the corresponding existence proof is to reformulate
the variational eigenvalue problem (A.1) as an eigenvalue problem of a linear operator, and to
show that this operator is compact. The Fredholm-Riesz-Schauder theory allows to characterise
the spectrum of that compact operator, which finally proves the existence of a countable family
of eigensolutions of the variational eigenvalue problem (A.1).

The remainder of this section is organised as follows: In Section A.1 basic definitions from
functional analysis are recalled and the mathematical framework for compact operators is stated,
and in Section A.2 the Fredholm-Riesz-Schauder theory for compact operators is formulated.
The statements made in Section A.1 and Section A.2 are basic results from functional analysis
and can be found, e.g., in [43] or any textbook on this topic. In Section A.3 the variational
eigenvalue problem (A.1) is reformulated as an eigenvalue problem of an operator and it is
proven by the author that, under certain assumptions, this operator is compact. As described
above, this finally proves the existence result for eigensolutions of problem (A.1).

A.1. Basic Definitions and Compact Operators

In this section basic results from functional analysis are recalled and the mathematical framework
for compact operators is stated. The following discussion is restricted to real-valued linear spaces.

Definition A.1 (Normed Space) Let X be a linear space (vector space) over the field R. A
mapping || - || : X — [0,00) is called a norm if it fulfils
VeeX: |z]|=0=2x2=0,
VaeRzeX: |az|=]|al|lx],
Ve,ye Xz 4yl < =l + [yl

The linear space X associated with the norm || -|| is called normed space and is identified by the
pair (X, ||-||). If the underlying space X is not clear the notation ||-||x is used. On a linear space
several different norms can be defined. Two norms ||-||1 and || - ||2 on X are called equivalent if
a constant C > 0 exists such that

1
clelle < llzllz < Cllzfy Vo€ X.
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A. Abstract Variational Eigenvalue Problems

Definition A.2 (Bounded Operator) Let X,Y be normed spaces. A linear mapping T :
X — Y s called operator. The operator T is called bounded or continuous if it holds

T}y

[E415%

[Tl cx =su | e X\ (0} <00

where || ||y —x is the corresponding operator norm. The set of all bounded operators T : X —Y
is denoted by L(X,Y). In the case of X =Y we simply write L(X) instead of L(X,X). With

the addition operation and the scalar multiplication
(Th + Tr)x =Tz +Tex, (ali)x:=Ti(ax) VezeX,acRand T1,Th € L(X,Y) (A.2)

the set of all bounded operators L(X,Y) forms a linear space, and together with the operator
norm || - ||y —x it is a normed space. Introducing the multiplication operation

(ThTo)x =Ty (Toxr) Vae X and Th,Tr € L(X)
the space L(X) constitutes an algebra with the identity (neutral) element
IeL(X) with I(z):=2 VzelX.
In this context T™ € L(X) denotes for n € N the n-times operator composition of T € L(X).

Definition A.3 (Banach Space) A sequence (zp)neny C X is called Cauchy convergent or
Cauchy sequence if it holds

k—o00

sup{”xn —Tp| : n,m > k:} — 0.

A normed space X is called complete if every Cauchy sequence (y)nen converges to an element
x € X, i.e., it holds lim,_, ||xn — || = 0. A normed and complete space is called Banach space.

Theorem A.4 (Bounded Inverse) Let X,Y be Banach spaces and T € L(X,Y). If T is
bijective then it holds T~' € L(Y, X).

Definition A.5 (Dual Space) Let X be a normed linear space over R. The dual space X' of
X is the space of all linear and bounded mappings, i.e., it holds X' := L(X,R). The dual space
X' is a Banach space with the norm

|2/ ()]

[E415%

:xeX\{O}}.

2 llxr = lla’lrex = S”p{
An element 2’ € X' is called linear functional on X .
Definition A.6 (Precompact, Compact) Let X be a Banach space. A subset M C X is
called precompact if every sequence (Tn)neny C M has a convergent subsequence (xy,)ien, i.e,

there exists an element v € X such that lim;_, ||xn, —z||x = 0. The subset M is called compact
if it additionally holds ©x € M.
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A.2. The Fredholm-Riesz-Schauder Theory

Definition A.7 (Compact Operator) Let X,Y be Banach spaces. A bounded operator T €
L(X,Y) is called compact if the set

{Tx ;€ X with ||z]|x < 1}

is precompact in'Y . The set of all compact operators from X into Y is denoted by K(X,Y) and
in the case of X =Y we write K(X) instead of K(X, X).

Definition A.8 (Embedding) Let X,Y be Banach spaces with X CY. The linear mapping
I:X—>Y with Iv:=2 VexelX

is called embedding of X in'Y. If it holds I € L(X,Y), i.e., there exists a constant Cg > 0
such that ||z||y < Cpllz||x for all x € X, we call X continuously embedded in'Y and formally
write X < Y. If it holds I € K(X,Y) the embedding is called compact. If X is dense! in'Y the
embedding I is called dense.

A.2. The Fredholm-Riesz-Schauder Theory

In this section the spectrum of bounded operators is introduced. The spectrum generalises the
concept of eigenvalues of matrices and is used for the characterisation of operators. We say a
complex number A\ € C is in the spectrum of an operator 7" € L(X) iff the mapping 7" — A\I
is not bijective. If the underlying linear space X is finite-dimensional the operator T can be
described by a matrix, and the spectrum and the set of eigenvalues are the same. In the infinite-
dimensional case, however, not every spectral value has to be an eigenvalue and a more detailed
distinction is made.

Throughout the whole section it is assume that (X, || - ||) is a Banach space with X # {0}.

Definition A.9 (Resolvent Set, Spectrum) The resolvent set p(T') of an operator T € L(X)
is defined by
o(T) = {)\ € C : Ker(T — M) = {0} Alm(T — \I) = X},

where Ker(+) is the kernel and Im(-) is the image of an operator. The spectrum of T is defined
by o(T) := C\ p(T') where it is distinguished between the point spectrum o,(T), the residual
spectrum o,(T') and the continuous spectrum o.(T) which are defined by

op(T) = {)\ € o(T) : Ker(T — \) # {0}}, (A.3)
on(T) = {)\ € o(T) : Ker(T — M) = {0} ATm(T — M) # X}, (A.4)
oc(T) := {)\ c€o(T) : Ker(T — AN) = {0} AIm(T — A\[) = X ANIm(T — \I) # X}. (A.5)

The statement that it holds A € p(7T') is equivalent to the statement that the operator T'— I :
X — X is bijective, i.e., that the inverse (T'— AI)~! exists. Because of Theorem A.4 we have

RA(T) := (T — M)~ ! € L(X)

'A subset X C Y is called dense in a normed space Y when for each y € Y there exists some sequence
(Zn)nen C X with limp—eo ||, — ylly = 0.
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A. Abstract Variational Eigenvalue Problems

where the operator Ry(T) is called the resolvent® of T. If it holds instead that A € o(7T) then
the spectral value A can be assigned to one of the three distinct types (A.3) — (A.5). In the
following discussion, however, we are only interested in the point spectrum o,(7") where we have

Aeop(T) <+ FJue X\ {0} with Tu = Au. (A.6)
Definition A.10 (Eigenvalue, Eigenvector) If it holds A € o,(T) then X is called eigenvalue
of T and allu € X\{0} fulfilling Tu = Au are called eigenvectors. The eigenspace of X is defined
b
’ E(\) :=Ker(T — M)
and dim E(\) is called the multiplicity of \.
Basic results on the spectrum are summarised in the following remark.
Remark A.11 Let T € L(X) be a continuous operator. Then it holds:
i) The eigenspace E(\) C X of an eigenvalue \ € o,(T) is T-invariant®.
i1) The spectrum o(T) C C is compact and non-empty. In particular, it holds
rT)i= sup A= lim 1T x < ITlxex
where r(T) is called the spectral radius of T.
iii) If dim X < oo then it holds o(T) = o,(T).
i) If dim X = oo and the operator T is compact then it holds 0 € o(T).
The following important theorem characterises the spectrum of compact operators.

Theorem A.12 (Riesz-Schauder I) Let T € K(X) be a compact operator. Then the follow-
ing statements are valid:

i) It holds o(T)\ {0} C o, (T"). More precisely, o(T')\{0} consists of countably many (finitely
or infinitely many) eigenvalues with zero as the only possible accumulation point.

ii) For A € o(T) \ {0} it holds
1<ny:= max{n eN : Ker((T'— XI)") # Ker((T — )\I)”_l)} < 00
where ny is called the index of .

i11) For A € o(T') \ {0} the space X can be decomposed into the direct sum
Ker((T'— A)™) & Im((T — XI)™)
where both subspaces are closed and T-invariant, and where dim Ker((T — \)™) < oco.
i) For all \,pn € o(T) \ {0} it holds
me- {0
where Py € L(X) is the projection’ onto Ker((T — AI)™) according to the decomposition

%In literature the definition Rx(T) := (M —T)™ " can be found as well which only changes the sign of the
operator.

3A subset M C X is called T-invariant if T(z) € M for all 2 € M.
“Let X be a Banach space, then an operator T' € L(X) is called projection if it holds T2 = T.
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A.2. The Fredholm-Riesz-Schauder Theory

described in iii).
Remark A.13 (Fredholm Alternative) Statement i) of Theorem A.12 is also known as the
Fredholm alternative: For any operator T € K(X) and for A € C\ {0} it either holds
Vye XT3z e X withTe — Az =y or dxe X\ {0} with Tz — Az =0.

The statements made in Theorem A.12 can be strengthened when compact operators are
considered which are defined on Hilbert spaces and which are selfadjoint. As it can be seen in
Theorem A.16, these operators can be completely described by their eigenvalues and eigenvec-
tors.

Definition A.14 (Inner Product, Hilbert Space) Let X be a linear space. A mapping
(-,-): X x X = R is called inner product on X if it holds

Vee X\{0}: (x,z)>0,
Ve,yz€ X,ae€R:  (ax+y,2) =a(x,z)+ (y,2),
Ve,ye X (z,y) = (y,2).

A Banach space X is called Hilbert space, if an inner product (-,-) is defined on X with ||z| =
(z,x)Y/2.

Definition A.15 (Selfadjoint Operator) Let X be a Hilbert space. An operator T € L(X)
is called selfadjoint (or symmetric) if

(Tx,y) = (2, Ty) Va,yeX.
A selfadjoint operator is called positive definite if it additionally holds
(x,Tx) >0 VzeX)\{0}

Theorem A.16 (Riesz-Schauder II) Let X be a Hilbert space and let T' € K(X) be selfad-
joint with T # 0. Then it holds:

i) All eigenvalues of T' are real, i.e., we have op(T) C R. Furthermore, there exists an
eigenvalue A € o, (T) with [N = ||T|| xx-

ii) For all A € op(T') it holds ny = 1.

iii) The eigenspaces E(X) and E(p) are orthogonal for eigenvalues A, € op(T) with X # p.

iv) Let {Q\,z‘}jﬁi) be an orthonormal basis of eigenspace E(X) for eigenvalue A € o,(T) \ {0}
where d(\) := dim E(X). Then the operator T is described by

d(N)

Tr = Z A < Z (:10, e,\ﬂ-) e,\ﬂ-> for all x € X.

A€ap(T)\{0} =1
v) An orthogonal decomposition of X is given by

P EN @ Ker(T). (A7)
Aeop\ {0}

vi) If T is additionally positive definite then it holds op(T) C (0,||T||xx]. In particular,
IT||xx is an eigenvalue of T.
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A.3. Analysis of Abstract Variational Eigenvalue Problems

In this section it is discussed under which assumptions the variational eigenvalue problem (A.1)
possesses eigensolutions. For this purpose, eigenvalue problem (A.1) is reformulated as an eigen-
value problem of an operator. Under certain assumptions on the involved bilinear forms in (A.1)
it can be shown that this operator is compact. Hence, the Fredholm-Riesz-Schauder theory from
the previous section can be applied to characterise the spectrum of this compact operator which
finally constitutes the existence of countably many eigensolutions of problem (A.1).

Throughout the whole section it is assumed that H is a Banach space with H # {0}.

Definition A.17 (Bilinear Form) A mapping a(-,-) : H x H — R is called bilinear form if
for all @« € R and for all x,y,z € H it holds

alx + ay,z) =a(z,2) + aaly,z) and a(z,y+ az) =a(z,y) + aalz, 2).
Bilinear forms can have the following properties:
e a(-,-) is called symmetric if it holds a(x,y) = a(y,x) for all x,y € H.

o a(-,-) is called continuous or bounded on H x H if there exists a constant Cp > 0 such
that
la(z, y)| < Csllzlllyll Va,y € H.

e a(-,-) is called H-elliptic®, or short elliptic, if a(-,-) is continuous on H x H and if there
exists a constant Cg > 0 such that

a(z,x) > Cgllz||*> Yz e H.

Theorem A.18 (Lax-Milgram) Letl € H' be a continuous linear functional and let a(-,-) :
H x H — R be a symmetric elliptic bilinear form. Then the functional

J:H—R with J(v):=ia(v,v)—1l(v) VveH

has a unique minimizer w € H. This minimizer is the unique solution of the variational problem

find w € H such that (A.8)
a(u,v) = l(v) YveH.
Based on problem (A.8) the variational eigenvalue problem
find (\,u) € C x H\ {0} such that (A.9)
a(u,v) = Nd(u,v) VveH. '

is introduced where d(-,-) : H x H — R is a bilinear form fulfilling the following assumptions:

Precondition A.19 i) d(-,-) is symmetric and d(u,u) > 0 for allu € H \ {0}.

®In [23] a symmetric elliptic bilinear form is also referred to as coercive. However, in literature coercivity often
describes a property which is weaker than ellipticity (see, e.g., [37]).
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it) d(-,-) is continuous on H x H, i.e., it holds ||d||rmxg =: Cq < 0.

iii) For all sequences (u;)jen C H with ||uj||g < C for all j € N and some C > 0 there exists
a subsequence (uj, )ren which is Cauchy w.r.t. the norm induced by d(-,-)'/2.

Theorem A.18 constitutes the existence of a unique solution of the variational problem (A.8).
In the following an analogue result is derived for the variational eigenvalue problem (A.9). For
this purpose the variational problem

{ find uy € H such that (A.10)

a(ug,v) = d(f,v) VoveH.

is introduced for some given f € H. Since d(f,-) : H — R is a continuous linear functional
for all f € H we conclude from Theorem A.18 that problem (A.10) possesses a unique solution
uy € H for all f € H. This induces the solution operator

T:H—H with f—up:=TFf. (A.11)

Lemma A.20 Let the bilinear form a(-,-) be symmetric elliptic and let the bilinear form d(-,-)
satisfy the assumptions made in Precondition A.19. Then the solution operator T in (A.11) is
compact.

Proof: Before it is proved that T is compact, it has to be proved that the solution operator is
linear and bounded on H.

T is linear:
Let u, f € H and uy :=Tf, ug :=Tg, uyiq :=T(f + g) then it holds

aluy +1g,v) = alug,v) + alug, v) = d(f,v) + d(g,v) = d(f + g.v) Vv e H.

Since the solution of problem (A.10) is unique we obtain usy, = us + u4 and correspondingly
T(f+g) =Tf+Tg. Analogical, we obtain for o € R and uns := T'(«v f) because of

a(lauf,v) = aalus,v) = ad(f,v) =d(a f,v) Yve H

that uar = auy is valid, i.e., it holds T'(af) = a T f.
T is continuous:

For all f € H it holds

1 1 Cq
1T f|” ( S) ?Ea(Tf’ Tf) (£10) FEd(f’ Tf) u S) @\|f\|||Tf”~
a(-,) is . -,0) is
H-elliptic continuous

Correspondingly, we have | Tf|| < g—ngH for all f € H, i.e., it holds T' € L(H).

T is compact:

It remains to prove that the subset

B .= {Tf . f e H with ||f|g < 1}
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is precompact in H. Consider for this purpose a sequence (T'f;);eny C B, then it holds

1
ITE-Th s TGRS (TG )T )
fncar Leilpric
1
(10 @d(fi_fjaT(fi_fj))
1
< e (G S fi= 1) AT ). T 1)
relgt.){lgli‘glon E
C 1/2
< g g - 1) WG - 5l
ri‘f?lréilit)lon E
C 3/2
" (<cd£>z A(fi =I5 fi= 1) i = fillm
continuous
C 3/2
< O a1 1) (U + 15

)
(Cq)3/? Y.
”sz?{Sl, 2 (CE)2 d(fz_fjvfz_f]) .

£l <1

Since || fi||z < 1 for all i € N it follows from Precondition A.19 iii) that there exists a subsequence
(fin)ken which is Cauchy w.r.t. d(-,-)'/2. Altogether we obtain that

((jd)3/2
(Cp)?

1/2 kil—
ITf —Thll% < 2 2 b,

d( fir = firs fin — fir) 0,

i.e., each sequence (T'f;);en C B has a subsequence which is convergent in H. Hence, the subset
B is precompact and it follows that operator 7' is compact. [ |

Remark A.21 The assumption made in Lemma A.20 on the bilinear form d(-,-) can be replaced
by the following stronger assumption: To prove that the solution operator T is compact it is
sufficient to assume that d : U x U — R is a bilinear form operating on a larger Banach space
U, i.e., HC U where

i) d(-,-) is symmetric and d(u,u) > 0 for all u € U \ {0}.
ii) d(-,+) is continuous on U x U, i.e., it holds ||d||rvxv =: Cq < o0.
i11) The embedding of H in U is compact.
Since the solution operator 7" in (A.11) is compact, Theorem A.12 can be applied and we

obtain that the operator eigenvalue problem

{ find (p,u) € C x H\ {0} such that (A.12)

Tu = pu
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has countably many eigensolutions. Note that the variational eigenvalue problem (A.9) is equiv-
alent to problem (A.12) in such a way that for A # 0 it holds

(A, u) € C x H\ {0} is an eigenpair of (A.9)
= (A.13)

<i,u) € C x H \ {0} is an eigenpair of (A.12).

Since it is assumed that the bilinear form a(-,-) : H x H — R is symmetric elliptic, an inner
product is induced on H by

(v )a(y s Hx H—= R with  (u,v)..y == a(u,v) Yu,veH.

a(-:
Furthermore, the associated norm ||ull4.,.) = a(u,u)"/?, which is also called energy norm in
literature, is equivalent to the norm || - ||z because the bilinear form af(-, ) is elliptic and continu-

ous. Hence, the Banach space H forms together with the inner product (-, -)a( ) a Hilbert space.

Using the inner product induced by a(-,-) for the underlying space one can derive additional
properties for the solution operator 1.

Lemma A.22 Let the assumptions of Lemma A.20 be fulfilled. Then the solution operator T
in (A.11) is selfadjoint and positive definite regarding to the inner product (-,-)q(...)-

Proof: From the symmetry of a(-,-) and d(-,-) it follows for all u,v € H that

(Tu,v)q(.,.) = a(Tu,v) = d(u,v) = d(v,u) = a(Tv,u) = a(u, Tv) = (u, Tv),(.,.,

i.e., T is selfadjoint. Because of

(u, Tu)q(..y = a(u, Tu) = a(Tu,u) = d(u,u) >0 Vue H\{0} (A.14)

e

it follows that T is positive definite. [ |
Altogether the following result is obtained for the variational eigenvalue problem (A.9).

Corollary A.23 Consider the variational eigenvalue problem (A.9). Let a(-,-) be symmetric
elliptic and let d(-,-) satisfy the assumptions made in Precondition A.19 or the assumptions
made in Remark A.21. Then problem (A.9) possesses a countable family of eigensolutions

(Agsus) oy © Rog x H\ {0} (A.15)

with N € NU {oo} and eigenvalues \j ordered® such that \j < \j41. Furthermore, it holds:

i) All eigenvalues are real and positive. Furthermore, it holds #N = dim H and in the case

of dim H = oo we have \; T2
ii) The eigenspace E(\j) C H of the eigenvalue \;, which is defined by
E(\)) = Span{u € H : a(u,v) = \jd(u,v) Yve H},

s finite-dimensional.

SEigenvalues are repeated in (A.15) according to their geometric multiplicity.
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iii) If it holds N\j # Ay then the corresponding eigenfunctions w; and uy are orthogonal with
respect to a(-,-) and d(-,-), i.e., we have a(u;,ux) =0 and d(u;,u;) = 0.

i) The eigenfunctions (uj)j.vzl form a basis of H and without loss of generality it can be
assumed that all eigenfunctions are orthonormal with respect to a(-,-) or d(-,-).

Proof: According to Lemma A.20 and Lemma A.22 the solution operator T associated to
eigenvalue problem (A.9) is compact, selfadjoint and positive definite. Correspondingly, Theo-
rem A.12 and Theorem A.16 can be applied to characterise the spectrum and the eigensolution
of the operator 7. Equivalence (A.13) proves the remaining statements. In particular, for
eigenvalues \; # A; it holds because of the symmetry of a(-,-) and d(-,-) that

A d(ug, wp) = alug, wy) = a(ug, ug) = N d(ug, ug) = N d(ug, w).

Since Ap # A; it follows that d(ug,w;) = 0, and from a(ug,w;) = Mg d(uk,w;) it follows that
a(ug,u;) = 0. [ |
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In this section basic definitions and results from the theory of Sobolev spaces are recalled which
are used for the analysis of elliptic PDE eigenvalue problems. To introduce this topic, basic func-
tion spaces are recalled (Section B.1) and the smoothness of the boundary of a domain Q C R?
is discussed (Section B.2). Afterwards the weak derivatives is introduced and basic results from
the theory of the associated Sobolev spaces are discussed (Section B.3). More information on
Sobolev spaces can be found in [37] or any textbook on this topic.

Throughout the whole section it is assumed that  is an open subset of R%.

B.1. Basic Function Spaces

First of all, different differentiability classes of functions f : 2 — R are listed.

Definition B.1 (C*(Q)-functions) o Let M be a subset of R, then the space of functions
f: M — R which are continuous on M is denoted by C°(M).

e For k € N we denote by C*(Q) the space of functions f : Q — R for which all (partial)
derivatives D*f of order |a| < k exist, with a € Ng, and where all these derivatives are
continuous on . Note that a = (a1, ...,aq) is a multi-index and that the notation

D¢ 8|O“f ith

= t = .
f I &L"gd wi || o1 + + ayg
18 used.

For the closure of the open set Q C R? the space C*(Q) is introduced which is defined by
the set of all functions f € C*(Q) N CO(Q) where all (partial) derivatives D*f of order

la| < k can be continuously extended to ).

e The space of functions f : Q — R which have (partial) derivatives of any order is denoted
by C*°(2). Functions f € C*(Q) are called smooth.

e A function f € C*®(Q) is called analytic, if f is equal to its Taylor series expansion around
any point x € Q. The space of all these functions is denoted by f € C*(QQ) and is a proper
subset of C*°(2).

Definition B.2 (C§°(Q)-function) The support of a function f:Q — R is defined by
supp(f) == {z € Q: f(z) # 0}.
The so-called space of test (or bump) functions is then defined by

C5o(Q) = {f € C™(Q) : supp(f) is compact, supp(f) C Q,supp(f) NI = @}.
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B. Theory of Sobolev Spaces
The Sobolev spaces, which are introduced in Section B.3, are based on the Lebesgue space
L?(2) which is defined as follows:

Definition B.3 (L?(Q)-function) The set of all functions f : @ — R where |f|? is Lebesque
integrable on §) is denoted by L*(). Two functions f,g € L*(Q) are considered as equal (f = g),
if it holds f(z) = g(x) for almost all x € Q, i.e., the equality holds for all x € Q\ M where M
15 a suitable measure-zero set.

Theorem B.4 o L2%(Q) is a Hilbert space together with the inner product and the norm

(ﬁwo:<ﬁgnmn:‘éfmmuwu with f,g € (),

1/2
wm:vmmpz{évmﬁm} with f € L2(Q).

e The spaces C® () N L*(Q) and C°(Q) are densein L*(12).

Definition B.5 (L*>°(Q)-function) The set of all functions f :  — R that are bounded almost
everywhere and locally Lebesgue integrable on § is denoted by L>(Q2). It is not distinguished
between functions which are equal almost everywhere on 2. The supremum norm is defined by

1 fllLeo() = inf{ sup |f(z)| : M is a measure-zero set }
zeQ\M

and with this norm the linear space L*°(2) forms a Banach space.

B.2. Classification of the Boundary

In the analysis of partial differential equations and in the theory related to Sobolev functions
f:Q — R it is often required that the subset  C R? has a sufficiently smooth boundary.

Definition B.6 (Boundary) The boundary 0 of a subset Q@ C R is defined by

o0 = 0N (RE\ Q).
To classify the smoothness of the boundary 9€) the so-called Holder spaces are introduced.

Definition B.7 (Hoélder Spaces) Let M be an open and bounded subset of R?. Then the
Holder spaces CONM) and C* (M) are defined as follows:

o A function f € C°(M) is called (uniformly) Hélder continuous on M with exponent \ €
(0,1], if there exists a constant Cy > 0 such that

(@) = f(y)| < Cyllz —y|I* for all 2,y € M.

The set of all Holder continuous functions forms a linear space which is denoted by
COA(M). In the special case X = 1 we call a function f € C%Y(M) Lipschitz continu-
ous.
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B.2. Classification of the Boundary

e Fork € N and ) € (0,1] the space C**(M) is defined by
CFNDT) = {f e CK(M) : D°f € COND) for all a € N¢ with |a| < k} .

A function f € C*NM) is called k-fold Hélder continuously differentiable.

For the Holder spaces defined above the following inclusions are valid:

Remark B.8 For all k € Ny and all X\, i € (0, 1] with A < p we have
CPNM) c C*(M)  and  CMH(M) c CFMNDM).

The definition of the Holder spaces can be generalised to functions f : M — U where U is
a subset of RY. Note that a function f : M — U can be entirely described by its component
functions f; for ¢ =1,...,d with

fi:M—=R and f(z)=(fi(z),...,fa(x))" forallzec M. (B.1)

Definition B.9 Let M C R? be open and bounded, and U C R™ for some n € N. For k € Ny
and X € (0,1] we define the space CFNM,U) by all functions f : M — U which possess
component functions f; : M — R with f; € C* M) for alli=1,.

Finally, the smoothness of the boundary of Q C R? is characterised as follows:

Definition B.10 (Boundary Classification) Let k € Ny and A\ € (0,1]. Furthermore, we
denote by By(zg) := {z € R? : ||z — zo| < r} the d-dimensional open ball of radius r > 0 and
centre xo € RY.

o We say the boundary O is of class C** and write 90 € C* if for every point xg € OQ
there exists a radius r > 0 and a bijection v : By(x0) — B1(0) such that

Y( Br(1g) N Q) = B (0) :{:nl,..., TeBi(0) : 2qg>0}, (B.2)
(B (z9) N0Q) = BY (0) := {(21,...,24)" € B1(0) : z4=0}, (B.3)
(B (o) "R\ Q) = By (0) :{xl,..., TeBi(0) : 2g<0}, (B.4)
and
1/) € Ck’A(Br(xO)vBl(O))’ ¢_1 € Ck)\(m’m)' (B’5)

e Furthermore, a boundary 0Q € CFA is called analytic if in addition to (B.2)—(B.5) it
holds that all component functions v; : By(xg) — R of the bijection v : B,(xy) — B1(0)
are analytic. In particular, it is assumed that there exist constants Cy, vy € Rsq such that

for all n € Ny it holds
nl 1/2
oo |

—

where | D%(x)|? := Z?:l | D% () |2

< Cynl(yy)"
Lo (Br(zo))

lal=n
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B. Theory of Sobolev Spaces

In the analysis of partial differential equations and the theory of Sobolev spaces it is often
sufficient to have a boundary 9% of class C%!, i.e., the boundary can be represented locally
by the graph of Lipschitz-continuous functions. Beside this, it is often needed that €2 is open,
connected! and bounded:

Definition B.11 (Lipschitz Domain) A set Q@ C R? which is open and connected is called
domain. If it additionally holds 0 € C%' then Q is said to have a Lipschitz boundary, and
1s called Lipschitz domain.

The assumption that a partial differential equation is defined on a Lipschitz domain is not very
restrictive, since these properties are usually fulfilled by the domains used in practice.

Remark B.12 Let Q C R? be a domain with Lipschitz boundary Q. Then, there exists an
exterior normal field ©i almost everywhere on 9S). That means 7i(x) € R is a unit vector,
orthogonal to the tangential hyperplane in x € 02, and directed to the outside. The normal
derivative of u in x € 0S) is defined by

ou(z)
on

= ((z)) T Vu(z).

B.3. The Weak Derivative and the Sobolev Space

The theory for the solution of elliptic PDE eigenvalue problems is based on the concept of weak
derivatives and the corresponding Sobolev spaces. Important definitions and results which are
related to this topic are summarised in the following.

Definition B.13 (Weak Derivative) Consideru € L?(2) and the multi-inder o = (a1, . .., aq) €
Ng with |a| > 0. We say, the function u has the a-th weak derivative D*u, if there ezists a
function D% := w € L?(2) with?

(v,w)g = (—D)I (D, u)y for all v e C(Q) (B.6)
where D%v is the a-th (partial) derivative of v with

dlaly

D% = ——————
Ox(* ... 0xy?

and |o|:=a1+...+ aq.

Lemma B.14 [f the weak derivative D®u € L?() exists for a function u € L?(Q) and o € Ng,
then it is unique in L?(Q). If it additionally holds that v € C*(Q) for some k € N and if
0 < |a| < k, then the a-th weak derivative and the a-th classical derivative are equal almost
everywhere in Q.

Remark B.15 As noted above, the weak derivative and the classical derivative — if both exist
— are equal in the L?(Q) sense. However, the existence of the classical derivative does not
imply the existence of the corresponding weak derivative, and also not the other way around.
For example, even the condition u € C*°(Q2)NC(Q) does not guarantee the existence of the first
weak derivative.

'A set Q C R? is called connected if for all z,y € Q exists a function ¢ € C°([0,1]) with ¢ : t € [0,1] — ©(t) € Q

and ¢(0) =z, p(1) = y.
2The requirement (B.6) on the weak derivative is adapted to Green’s formula: For given k € N and a € N¢ with
lo| <k it holds [, D*u(x)v(z) dx = (—1)lel Jo u(z)D%v(x) dx for all u € C*(Q) and v € C§°(Q).
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B.3. The Weak Derivative and the Sobolev Space

Definition B.16 (Sobolev Space I) For k € Ny the Sobolev space H* () is given by
H*(Q) = {f € L2(Q) : Df € L2(Q) exists for all a € N¢ with |a| < k}

where D*f denotes the a-th (partial) weak derivative of f.

Theorem B.17 For Q c R? it holds:

i) H*(Q) is a Hilbert space with the inner product and norm

(£ 9)e=(F9ur@ = >, | D*f(z)D%(a) de with f,g € H*(Q),
o<k

1/2
1l = 1oy = { S IDF ey } with f € H¥(Q),

la|<k

ii) A seminorm® on H*(Q) is given by

1/2
|fle = flar@) = { > 1D f1I72 (0 } :
|oe|=k
iii) If Q is a bounded Lipschitz domain, then |- |y and || - ||k are equivalent norms on HE(Q).

i) C®(Q) N H*(Q) is dense in H*(Q).

In contrast to C°°(€2) the smaller function space C$°(Q) is in general not dense in H(().
Since C§°(£2)-functions vanish close to the boundary 0€2, the closure of C§°(€2) with respect to
the H*(Q)-norm is used to define the Sobolev space with a zero-boundary in a “weak” sense.

Definition B.18 (Sobolev Space II) The space HY(Q) is defined as the closure of CS°(Q)
with respect to the norm || - ||, of H*(Q).

For the investigation of partial differential equations and their weak formulations, it is neces-
sary to evaluate boundary values of Sobolev functions. For a function v € C°(2) the boundary
values are described by the restriction ujgn. However, for a function v € H 1(Q) it is not clear
how to describe its values on the boundary 0f2, since 0f) is a measure-zero set. This problem,
however, is resolved by the following theorem.

Theorem B.19 (Trace Operator) Let Q C R? be a bounded domain with Lipschitz boundary
I':= 0Q. Then there erists a unique bounded linear operator v : H*(Q) — L?*(I') with

VueClQ): ~(u) = ur,
Vue H'(Q):  |Iv(w)llrzm < Callullmg),

where Cq > 0 is a constant depending only on Q). The operator ~y is called the trace operator,
and for a given u € H*(Q) the function v(u) € L?(T') is called the trace of u.

3A seminorm on a linear space X is a mapping |-]: X — [0,00) which has the same properties as a norm except
that it has not to hold that | - | is positive definite.
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B. Theory of Sobolev Spaces

Remark B.20 i) The function ~(u) represents the “values” of the function v € H'(Q) on
the boundary T' := 0Q. Correspondingly, the notation uy is often used for y(u). For
example, for a given u € H* (), the equation ur = 0 has to be interpreted as y(u) =0 in
L3(T).

it) In general the trace operator is not surjective. It can be only shown that Im(vy) is dense
in L2(T'). However, Im(y) can be characterised by the so-called Sobolev-Slobodeckij space
HY2(I') via

HY2(T') = Im(y) = {v € L2(T) : Jue H'(Q) with v = y(u)}.

The Sobolev-Slobodeckij spaces H*(T') are Hilbert spaces with inner product (-, ) gs(r) and
defined for indices s € Rxq (cf. [37, Theorem 6.2.39]). These spaces can be seen as a
generalisation of the usual Sobolev spaces with quite similar properties as H*(T') with k € N.
In particular, if Q is a bounded Lipschitz domain then the trace operator v : HY(Q) —
HY2(T') is continuous (cf. [37, Theorem 6.2.40]), i.c., there exists a constant C > 0

such that ||[y(u)llgiz2ey < Cllullgi) where 7| guzpy = (T,T)Zf/z(r) is the norm of

7€ HY(I'). Vice versa, there exists a bounded linear (extension) operator ® : H'/?(T') —
HY(Q) such that for all T € HY?(T') it holds ¥(7) = T with T := ®(7). In particular, there
exists a constant C" > 0 such that || 2(7)| g1() < C'lI7[ grr2(ry-

Using the trace operator from Theorem B.19 the space Hé“ (©) can be characterised for the
special case k = 1 in a more natural way:

Theorem B.21 If Q C R? is a Lipschitz domain, then it holds
HE(Q) = {u € H'(Q) : upn = o}
where uaq is the value of u on the boundary 0S) according to Remark B.20 1).

In Lemma B.14 and Remark B.15 the connection between the weak and the classical derivative
has been discussed. The following theorem partially treats this issue. More precisely, in Theorem
B.22 the smoothness of Sobolev functions in the sense of weak derivatives is related to the
classical smoothness in the sense of C™(Q). For example, in the one-dimensional case with
Q C R it can be shown that all H!(Q2)-functions are continuous on ©, however, in the two-

dimensional case this is in general not true.

Theorem B.22 (Sobolev’s Embedding Theorem) Let Q2 C R? be a bounded Lipschitz do-
main and m € Ny. Furthermore, the notations H°(Q) := L?(Q) and HJ(Q) := L*(Q) are used.
Then, depending on the index k € Ny of the Sobolev space and the spatial dimension d € N, the
following embeddings are continuous and compact:

HM(Q) — H*(Q), HE(Q) — C™(Q), p
1 . for k>0, and _ for k— 5 >m.
Hy ™ (Q) — HE(Q) = C™(Q)

Especially, the embeddings
H*(Q) — L*(Q) for ke N and HE(Q) — L*(Q) for ke N

are continuous, compact and dense.
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C. Asymptotic Distribution of the Eigenvalues

In this section fundamental results on the asymptotic distribution of the eigenvalues of the
elliptic PDE eigenvalue problem (1.1) are presented. These result derived here will be used in
Appendix D to refine the error estimates of the finite element discretisation.

Since the numerical computation of eigenvalues A; becomes very difficult for large j (and only
for some problems the eigenvalues can be computed analytically), in literature the asymptotic
behaviour of the eigenvalues has been investigated as j — co. However, instead of deriving the
asymptotics for A; it has been shown that it is more convenient to calculate the asymptotic
distribution of the eigenvalues. The first important results in this field have been derived by
Weyl in 1911 (cf. [66]) where he described the asymptotic behaviour! of the eigenvalues of the
Laplace eigenvalue problem on bounded Lipschitz domains. From then on this field has been
investigated by many (see, for example, [1], [4], [25, Chapter VI, Section 4], [58]). The main
result reads as follows.

Theorem C.1 (Weyl’s Law) Consider the variational eigenvalue problem (2.12) and assume
that a) and b) of Precondition 3.12 are fulfilled. Furthermore, define the eigenvalue counting
functions N1, Ns : R — Ny by

Ni(t) == card{j : \j <t} and No(t) == card{j : \j <t}.

Then the asymptotic distribution of the eigenvalues is described by

A0
t—00 td/2

- CWeyl and — CWeyl (Cl)
where Cye,i > 0 is a constant which only depends on the underlying domain Q0 and on the
coefficients of the underlying partial differential operator L.

Proof: In [58, Theorem 13.1] it is proven that for all s € (0, §) it holds
Ni(t) = Cye t¥? + O(+979)/2) ast — oo, (C.2)

It follows that statement (C.1) is valid for counting function N;. Statement (C.1) for counting
function Ny is derived as follows: Since eigenvalue problem (2.12) has a discrete spectrum there
exist for all ¢ € R some 6;(t) > 0 such that Na(t) = N1(t+0) for all 0 < 6 < 6;(¢). Furthermore,
for all e > 0 and all ¢ > 0 there exists an d2(¢, &) > 0 such that

No(t) No(t)
ok O < e for all 0 < 6 < da(t,€).

IThe behaviour of the asymptotic distribution of the eigenvalues for the Laplace problem became known as
Weyl’s Law.
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C. Asymptotic Distribution of the Eigenvalues

We conclude that

Ni(t+96) - Na(t) Ni(t+96)
(t+ 6)4/2 td/2 (t + 8)d/2

V0 <6 <min{d(t),02(t,€)} (C.3)

From (C.3) we obtain for t — oo, by using the already proven statement (C.1) for Ny, that
Na(t)

CYVchl — € S tlirglo td/2 S C1Vch1 +e€
which finally leads to statement (C.1) for counting function N2 when ¢ — 0. ]

As seen in Theorem C.1 counting function N1 and Ny can be equivalently used to express
the asymptotic statement (C.1). In literature counting function Ns is more commonly used.
Note that the counting functions take the multiplicities of the eigenvalues into account. Using
statement (C.1) the following bounds for the eigenvalues of problem (2.12) can be derived.

Theorem C.2 (Eigenvalue Bounds) Let the assumptions of Theorem C.1 be fulfilled. Then
there exist constants Cy, ¢, > 0 independent of j (with ¢, < Cyen < Cy), such that the eigenvalues
of problem (2.12) can be bounded by

.\ 2/d .\ 2/d
X <j <o n? and (é) <\ < (g) for all j € N. (C.4)
b b

Proof: From the definition of the counting functions it follows
Nl()\j) < J and j < NQ()\]‘) for all j € N. (05)

Furthermore, since the sequence (\;);en is monotonically increasing with A\; — oo for j — oo it
follows from (C.1) that

== CWeyl' (C6)

Hence, there exist constants C,, ¢, > 0 independent of j (with ¢, < Cyen < Cy) such that

N1 (\; No(\; .
¢, < )1\5/2]) and jc(l/;) < C, for all j € N. (C.7)
J J

Combining (C.5) with (C.7) we obtain that

A AP < Ni(y) < j and j < Na() < Gy

/2

y for all j € N

which finally leads to statement (C.4). ]

In the following the asymptotic behaviour of the spectral gap is analysed. In particular, it is
discussed when a lower bound for the relative spectral gap

Ar(yy) = B UA(L) Vi)
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can be found where o(L) C R is defined as the spectrum of eigenvalue problem (2.12). To the
best of the author’s knowledge in literature asymptotic sharp lower bounds for the spectral gap
are not available. Only in [64] it has been motivated that under quite technical assumptions
on the right-hand side of (C.2), and provided that \; has multiplicity 1 and A;_; is sufficiently

large, it holds
My) = NP (cEo(WHP)) asjo oo (C.8)

J

with for some constant C' > 0.

For the analysis of the spectral gap an additional notation and ordering of the eigenvalues
of problem (2.12) is introduced in this particular section: For j € N we denote with 5\]- the
eigenvalues of (2.12) which are ordered by the size but where — in contrast to the ordering
(3.13) — the multiplicity of the eigenvalues is not taken into account, i.e., we have

0<A <A<A3<....
For j € N we define
kj = dimE();) and iy = Y dimE(X)
=1

and obtain the following relation

/\Th]' < /\mj_H = ... = )\mj+l~€j+1 < )\mﬂ—l 41 for all jeN. (C9)
~—— ———
=Aj = Aj+1 = Aj+2

Lemma C.3 Let the assumptions of Theorem C.1 be fulfilled, then it holds

ki k:
lim i 0 and lim —2

Jj—o0 m; Jj—00 m;

=0 (C.10)

Proof: Analogically to the proof of the estimates (C.4) it can be shown that there exists for all
e > 0 some jo(¢) € N such that

j 2/d j 2/d
) =N S|m7"— for all j > jo(e). C.11
(Cwey1+€> - (CWey1—€> oratlj —'70(6) ( )
From this and (C.9) it follows that for all j € N with m; + 1 > jo(e) it holds
i+ k 2/d - 2/d
mj + kj1 L ROESS
( Cwey + € > = )\ijrij - )\mj'H < (CWeyl —c : (0-12)

If we assume that the left-hand side of (C.10) is not valid, then there exists some constant g > 0
and a strictly increasing sequence (j,)nen C N such that
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C. Asymptotic Distribution of the Eigenvalues

According to (C.12) it has to hold for all j, with m;, + 1 > jo(e) that

Mgy + kjt g, +1

C1VVey1 +e€ - CWeyl — £
which is equivalent to
~ 2e - CWe 1+ &
fjp1 € iy, + et TE C.14
It Cwey1 — € ! Ciwey1 — € ( )

However, if we choose € such that ¢ > (4¢)/(Cwen — €) and j,, such that

2 Cyey + €
mj, > max(jgs — 77y7)
/ ( ) QC'VVeyl_8
it follows from (C.13) that
z ~ 0 . o . 2e - Ciwer1 + €
ey ey

which stands in contradiction to (C.14), i.e., it has to hold kjy1/7m; — 0 for j — co. Finally,
the right-hand side of (C.10) follows from

ki K g
m; mj;—1
||
From the right-hand side of (C.6) it follows that
. by . o
lim 7]2/d = C’(’Veyl Wlt’h C\/Neyl = (CWeyl) / . (015)

=% (Na()) )

From the definition of the counting function Ny we conclude that Ny(\;) = 77; and we obtain

from (C.15) the identity

Njo= Ol + 7(j) (C.16)

with some suitable remainder term 7(j) € o(fnj?/ d) as j — 00.

Theorem C.4 (Spectral Gap Bounds) Let the assumptions of Theorem C.1 be fulfilled. If
the remainder term 7(j) in (C.16) fulfils one of the following conditions

i) d(j) = 7(G) —7(G—1) € ofk;m"") asj oo, (C.17)
i) () = F(i—1) Yj=jo for some jo € N, (C.18)

then there exist constants c,, g, Ces > 0 independent of j such that the spectral gap can be
bounded from below by

A1<5\]) — min{xj_xj_l 5\j+1—5\]‘} > ¢ min{dimE(S\j),dimE(S\j_H)} vj > 17 (019)

= %gl 1d/2
)‘j

Y 1_;].} - min{dim B(}; ), dim B(X,;11) }

S S 2 e a7 vi>1,  (C.20)
As(X;) = Aﬂ"g*l > o g Vi>1.  (C21)
J
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Proof: According to (C.9) we have \; = Am; and it follows from Corollary C.2 that

) - oN2/d -\ 2/d
A <y < G A and <Z}’> <)< (Z”) forall j€N.  (C.22)
b b

Let be j > 1 in the following. Using identity (C.16) and that m;_1 = m; — l;j we obtain

- - - ~2/d  ~2/d

Aj— Aj1 2/d Aj — Aj-1 2/d v My T My 2/a T(j) —7(j — 1)
G &g @ Gver T R AT T
J J J
_2/d . = B
2/d mj/ — (mj — kj)* 27d d(j)
= G Weyl —2/d + ¢ —2/d
J m;

For d € N a Taylor argument leads to
(m; — k)Y = w2 2 kim /d 1y 2d ~]2~ (imj — &)¥472  for some &; € (0, k).

It follows that

B - = 2/d—1 7.2 (2 - 7( 3
Aj = Aj1 2/d (20 kg N A k) A C)
5 = ¢ O =37 — % O —2/d T e
j m; m; m;
oy kj (i — &)2/42 d(j)
= / o ( C\/Neyl — 7C\I,Vey1 ]~2/d11 + = ~2/d—1 (023)

Because of Lemma C.3 there exists some jo € N such that l;:j < m;/2 for all j > jo. Hence, for
all j > jo and all d € N it follows that ; < k; < m;/2 and that

ki(m; — &;)2/42 Ei(Lm)2/d=2  J.92-2/d B e
J(mj~ 2/591 < J(2~”;;3_1 - Y — < 4# L 0. (C.24)
mj mj g j

Correspondingly, if we assume that (C.17) or (C.18) is valid then we obtain from (C.23) by using
(C.24) that for sufficiently large j it holds

O 2/
A At 2/ k; Lo > By e Clun
X Z ; Weyl (G 32) 5\;1/2 dC,

We conclude that there exists some constant c,; > 0 independent of j such that

- i — Ao k.
As(Xj) = inﬂl > cggxd—% for all j > 1
J j

and (C.21) is proven. Furthermore, for j > 0 it holds

Ao(Xy) = min{A3(5\j), A3(5\j+1)} and  A1();) = miH{As(S\j)aAs(/\yH)A;\H } (C.25)
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C. Asymptotic Distribution of the Eigenvalues

Because of Lemma C.3 there exists some jg € N such that l~€j+1 < m; for all j > jo which leads
to

< kj ¢y kjt1 ¢y ki1
Az(N\jr1) = Gt 2 Gt = Gy
(C.21) AN (22 Mjt1 mj + kj1
Cy, kj+1 _ Cg3 Cy kj+1 Cg3 Cp k‘j+1
S w2 iy oy 20 3P
(ifj>j0) W T i (caz2) 2O A

and

< e . 5 Gy Kj
Ag(Aj) L > Ag(Ajn) > czg’gccb fc;gl :
’ (it 5j0) <P A
These estimates combined with (C.21) and (C.25) lead to the statement that there exist constants
Ca1, Ceo > 0 independent of j such that

min l;:-, /;'+1 Y min E} ]%'H
{ S\Jd/g J } and Ai(\j) > ¢ { ;d/Q : } )
‘ J

As(Nj) = cu

Furthermore, it is noted that — if condition (C.17) is valid — one can proof in an analogical
way that there exist constants Cy,, Cy,, Cys > 0 independent of j such that

N i i mind ;. - min{k;, k;
A3(N) < Cagrss DoY) < {Zwﬁl} A1(k) SC@W'
A Aj Aj

A very easy example where this condition is fulfilled is the Laplace eigenvalue problem (2.17)
for d = 1. All eigenvalues of this problem are simple and given by \; = \; = j2m?. Correspond-
ingly, we have 7(j) = 0 and hence the spectral gap can be estimated by

A< A) < GNP foralljeN (with k=1,2.3).
However, it is quite challenging to prove for a general elliptic PDE eigenvalue problem that
the remainder term 7(j) € o(m?/d) from (C.16) fulfils condition (C.17) or (C.18). In literature
typically only asymptotic statements for the counting functions Ny or Ny of the form (C.2) can
be found. These statements are not sufficient to derive for the difference d(j) = 7(j) — 7(j — 1),

for example, a bound of the form d~( j) € o( l~€j rhi/ -1 ) Hence, the asymptotic analysis has to

be extended to the difference term cZ( j) and further research is needed, so far it is only known
that d(j) € o(1n; fnj/d_l). However, Corollary C.4 shows that the remainder term 7(j) has to
fulfil certain properties [such as (C.17) or (C.18)] in order to derive sharp lower bounds for the
spectral gap. Furthermore, Corollary C.4 gives an orientation what we can possibly expect from

the spectral gap.
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D. Preliminary Work for Results on the FEM
Approximation

This section forms the basis of Section 3.4 where approximation results for the finite element
discretisation of eigenvalue problem (2.12) are derived. First of all, the error estimates presented
in [64] are summarised and slightly adjusted. These results are combined with the results from
Appendix C on the asymptotic behaviour of the continuous eigenvalues and their spectral sepa-
ration. The resulting approximation properties are finally summarised in Section 3.4, however,
the corresponding proofs can be found here.

Starting point of the following discussion is the setting described in Precondition 3.12 from
Section 3.4. To derive error estimates for the discretised eigenvalues and eigenfunctions the
approximation quality of the finite element space V}, = Xio has to be measured, more precisely,
it has to be measured how good the space V}, is approximating the continuous eigenfunctions.

. .- 52 . .
For this purpose the spaces U; and quantities d (Uj, V},) are introduced for j =1,..., N, by

J 2
Uj = span{ w; 1< < j} and d~2(Uj,Vh) = Z <WM> (D.1)

P [[il1

where Qp, : H}(Q) — V}, is the H}(Q2)-orthogonal projection onto V.

The connection between the finite element discretisation of eigenvalue problem (2.12) and the
approximation properties of the underlying finite element space V}, is described by the following
theorem.

Theorem D.1 Consider the variational eigenvalue problem (2.12) and its Ritz-Galerkin dis-

cretisation (3.1). Let Precondition 3.12 be satisfied and j € {1,..., Np}. Then the relative error
(h)

of the continuous eigenvalue \; and its finite element approximation )\jh
above by

can be estimated from

. < JQ(U]', Vi).

In the case that it holds &2(Uj, Vi) <1 for some j € {1,..., Ny} the discretisation error can be
estimated by

(h) 72
SN TN AUV
TN T -d W)
Proof: The result can be found in [64, Theorem 4.1]. |

(D.2)

~2
Estimates for the quantities d " (Uj;, V},) have been derived in [64] by combining the regularity
result of Theorem 2.10 with suitable approximation properties of the underlying finite element
space Vy:
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Theorem D.2 Consider the variational eigenvalue problem (2.12) and assume that Precon-
dition 3.12 is fulfilled. Let C1 > 0 be some given (arbitrary) constant. If the discretisation
parameters h and p of the finite element space Vi, are chosen such that the condition

VAL, (0.3)

is fulfilled then it holds

~2 C3 ! 1 [ Coh \*P VAih o
d (U;, V) < (min{\, 1})2 ;(Al <h—|—a> +< op ) ) (D.4)

where Cy,Cs,0 > 0 are constants independent’ of j, h, p.

Proof: The result and the corresponding proof can be found in [64, Theorem 3.2 and Corollary
4.2]. To avoid misunderstandings, it is noted that the constant C5 differs from the constant Cs
used in [64]. ]

The combination of Theorem D.1 and Theorem D.2 leads to the following error estimates

between the continuous and discrete eigenvalues. It is noted that in [64, Corollary 4.2] quite
similar error estimates have been derived already.

Corollary D.3 Let the assumptions of Theorem D.2 be fulfilled, then it holds:

i) The quantities ciQ(Uj7 V1) can be estimated from above by

2p
~9 ) Csh 2p \/Ajh . Cs
; < - = .
d (Uj, Vi) < Cyj <h+a> + ( = with Cy (min{Ar, 178 (D.5)

i1) If the discretisation parameters h and p of the space Vy, fulfil additionally the condition
2p P 1 : . 04 02210
WP A < 230, with C5 := o Tzl, +1 (D.6)

then it holds J2(Uj, Vi) < 1/2 and the discretisation error of the eigenvalue approzimation
can be estimated from above by

)\(.h)—)\~ 2p N h p
0 < J)\ij < 204 <CQh> + (3 . (D.7)
y o op

Proof: Estimate (D.5) directly follows from (D.4). Furthermore, we obtain from (D.5) for p € N

!The constants Cz, Cs depend on the concrete choice of Cj.
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and h > 0 that

2p 2p
- , Coh \?P Nk | /Con\ P VN h
dQ(Uj,Vh) < C4j (h 2 ) + <]> < C4] <2> + <]>
+o op o o
M* , [ CF R\? [ C?P
— | — o < o p 2
C4j <O’> )\] ( )\f +1 < 04] <0’> )\j )\]1, +1
= C5h?P j AP ith t tC—g C—gp+1
= 5 ] y W1 constan 5 = 0—217 /\71) .

We conclude that d 2(U 5> Vi) < 1/2 if condition (D.6) is valid. Combining this result with (D.2)
and (D.5) estimate (D.7) is obtained. It is noted that the constant C5 depends on A1, p and the
concrete choice of C1, apart from that, the constant Cs is independent of the underlying mesh
width % and the eigenvalues (A;)52,. [

As noted in Section 3.2 the error analysis of the eigenfunction approximation is more challeng-
ing in the case of multiple eigenvalues. The error estimates for the eigenfunction approximation
which are presented in the following have been derived in [64]. These estimates are restricted to
the special case that all eigenvalues of the continuous problem (2.12) have multiplicity 1, i.e., it
is assumed that it holds

)\1<)\2<)\3<.... (D.8)

Theorem D.4 Consider the variational eigenvalue problem (2.12) and its Ritz-Galerkin dis-
cretisation (3.1). In the following it is assumed that Precondition 3.12 and (D.8) are fulfilled.
Let Cy > 0 be some given (arbitrary) constant and j € {1,...,Nyp}. Furthermore, let the dis-
cretisation parameters h and p of the space Vy, be chosen such that the condition

/Al

p

IN

Ch (D.9)

is fulfilled, and let in the case that j > 1 the parameters h and p be chosen such that it holds

N 1A — A
d°(Uj_1,Vy) < 2=t

D.10
<37 (D.10)

Then there exists a discrete eigenfunction ﬁgm e by ()\gh)) such that it holds

R ~(h) ~ ~ pmin{p,2} P . h p
g~y G 4 Gt ! <02h> 4 (D.11)
HujHl mln{lv/\l} (5]' 1/>\j h+o op

where Cy, 6’3, 54, o > 0 are constants independent® of j, h,p and where

min 7)% —Ain
i€{js.+1} 21

0 = with j4 := max{j,2}.

2The constants Ca, 53 depend on the concrete choice of C. Furthermore, it is noted that the constants C2 and
o are the same as in Theorem D.2.
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Proof: This result and the corresponding proof can be found in [64, Corollary 5.2]. [

In Appendix C results on the asymptotic behaviour of the eigenvalues and the spectral gaps
have been derived. Using these results the analysis of the finite element discretisation is refined
as follows.

Corollary D.5 Let all assumptions of Theorem D.4 be fulfilled except for condition (D.10).
Instead it is assumed for j € N, in view of Theorem C.4, that the spectral gap satisfies
min A= A > cG)\-_g with j; := max{j, 2} (D.12)
ity 2, T Y o Y '
for some constant cg > 0 independent of j, and it is assumed that the discretisation parameters
h and p of the finite element space V, are chosen such that the condition
2 erd C6
RPN 2 < D.13
Nt s g (D.13)
is fulfilled where the constant Cs is chosen as in (D.6). Then the relative error of the eigenfunc-
tion approximation can be estimated from above by

) ~ ~ p
HU/] — u] ”1 < 03 1 + % )\1+%l hmin{p,Q} 1 < CQh >p n \/Eh} .
i 7 min{l, A} cg 7 N \h+to op

(D.14)

Proof: In the proof of Corollary D.3 it is shown that

~2 ) A
d (Uj,Vh) < C5hpj)\§ = 05)\]- 2 hijj 2

where the constant C5 is chosen as in (D.6). Correspondingly, if condition (D.12) and (D.13)
are fulfilled we obtain

d

~2 -5 Cg . )\z' — )\,‘_1 1A — )\;1

d (U;, Vy, < O N. 2= < min < X J
(U5 V) (D.13) ° Gy (D12) i€{iritl} 2N 2 )

with j+ = max{j,2}. From the definition (D.1) we conclude that

~2 ~2
d (Uj_1,Vh) <d (Uj7Vh)

and it follows that condition (D.10) is fulfilled. From Theorem D.4 it follows that there exist a

discrete function ﬂgh) € Fy (Aﬁh)) with

||Uj — ﬂ;h)Hl < 63 - 5’4 hmin{p,Q} 1 ( Coh )p N T\jh p
Juglli 7 min{1, A} 5, Jh \h+ao op '

From the assumption (D.12) on the spectral gap we obtain for ¢; that

min Az Aic > 1 min A= Aict > ic A2 =g )\_1_
i€{ir i1y 2MNi1 T Aj delipgry 2N (D12) Aj 0% 0%

[\CIIsH

5 =
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which finally leads to the error estimate (D.14). |

The results of Corollary D.3 and Corollary D.5 show that various conditions on the discreti-
sation parameters h and p of the finite element space have to be satisfied in order that the
corresponding error estimates for the eigenvalue and eigenfunction approximation become valid.
For the eigenvalue approximation condition (D.3) and (D.6) are needed, for the eigenfunction
approximation condition (D.9) and (D.13). In Corollary 3.14 from Section 3.4 it is shown that
these conditions can be summarised. The corresponding proof is as follows.

Proof of Corollary 3.14:

Proof for the Eigenvalue Approximation:

From Corollary D.3 follows that error estimate (3.18) is valid if the discretisation parameters h
and p of the space V}, are chosen such that it holds

VAR
YT < ¢ d  APiN < D.15
y o 1 an A= 2Cs ( )

where C7 > 0 is an arbitrary chosen constant, and where C5 > 0 is a constant chosen as in
(D.6) which depends on A1, p and Cy, but which is independent from the mesh width A and the
eigenvalues (A;)52,. We introduce the following new condition

1
WP N < Cuy  with Chy = min{cfp, —} (D.16)
J 2C5
If condition (D.16) is fulfilled then it follows that also the right inequality in (D.15) is fulfilled.
Furthermore, condition (D.16) can be reformulated as follows

1

1 h . —1\2p
(D.16) <= I jA < Cov <= hy/Aj < (Covi ') % = fﬁ (CEV‘; >

Hence, if (D.16) is valid it holds for p € N that
1

: i—1)2 1 1 1
W Cond )T (B < (n)B < (OB = o,
p p (D.16)

i.e., the left inequality in (D.15) is fulfilled as well. We conclude if condition (D.16) is satisfied
then it follows from Corollary D.3 that error estimate (3.18) is valid. Furthermore, condition
(D.16) can be replaced by stronger conditions as follows: According to Corollary C.2 there exist
constants C,, ¢, > 0 independent of j such that

<G and A < (j/e)¥? foralljeN. (D.17)

Using these inequalities condition (D.16) can be replaced by the following stronger conditions

2p

R YT < OB with CF = /0, (D.18)
d

PPN < omy with CEL = Cev/Cy (D.19)
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since it holds

_2p 2p
PPN < he, DA < Chy,

(D.17) (D.18)

d
WA < RPONT2 < Gy

(D.17) (D.19)

Altogether, we conclude that if the mesh width fulfils condition (3.16) or condition (3.17) where

the constants Cf}. and CEY are chosen sufficiently small [e.g., the constants are chosen as in

(D.18) and (D.19)] then it follows that error estimate (3.18) is valid.

Proof for Eigenfunction Approximation:

From Corollary D.5 follows that estimate (3.23) is valid if the spectral gap satisfies condition
(3.20), if all continuous eigenvalues have multiplicity 1, and if the discretisation parameters h
and p of V}, are chosen such that it holds

P+2 C6

/Aih
Y <oy and h?P j A < = (D.20)
p Cs

where C7 > 0 is an arbitrary chosen constant and Cs is a constant chosen as in (D.6). We
introduce the following new condition

d
WPiNT2 < Coe with Cpp = min{cfpr”,éi}. (D.21)
5

If condition (D.21) is fulfilled then it follows that also the right inequality in (D.20) is fulfilled.
Furthermore, (D.21) can be reformulated as

1
.~\d —1~—d 5=
(D.21) = AP N jAY? < Cuw = hy/Aj < (Conj A7) 2

1
._1y—d/2\ 5
— ha/A; < (CEF] )\j )2p
p p
Hence, if (D.21) is valid we follow for p € N that

d. L

1N 2p
h\f‘»ﬁ = (CEFJ ;Aj 2> (CEFfl)‘ )211) = (CEF d);p (D.Sﬂ) <012p>‘2 M §> =,

i.e., the left inequality in (D.20) is fulfilled as well. We conclude if condition (D.21) is satisfied
then it follows from Corollary D.5 that error estimate (3.23) is valid. As in the proof for
eigenvalue approximation condition the estimates (D.17), are used to replace (D.21) by the
following stronger conditions

2p
2p 2+°7 EF : EF . 1+2p/d
h p] d S idx Wlth idx — Cb / CEF’

RPN < OB with  CEF, = Cie/C.

s1ze

A
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Proof of Corollary 3.17: By definition the continuous eigenvalue ); is called well approximable
by V}, if condition (3.16) or (3.17) is fulfilled. In particular it holds

1 2ptd
condition (3.16) <= h < (Cfj;)2j 2d (D.22)

= hinax (7)
EV =4 Zptd
— (C)?j > < i (D.23)
N———
= NEV.()
d g
=24 [/ 1)\ 2p+d
= j < ()%t <hd> ’ (D.24)

= Jmax(h)

where Cf}. > 0 is some sufficiently small constant. The quantities defined in (D.22) — (D.24)
can be interpreted as follows: ALY (7) is the maximal possible mesh width of V}, in order to well
approximate the eigenvalue \;; since we assume that N, € ©(1/h9) the quantity NEY (5) can
be seen as an orientation value for the minimal dimension of V} in order to well approximate
Aj; and the quantity | jiv.(h)| € N is the maximal index j such that eigenvalue \; is well
approximable by Vj,. Because of the assumption that Nj, € ©(1/h%), and because of (D.23)
and (D.24), it can be easily seen that the asymptotic behaviour of the quantities N2 () and

Jov(INp,) is described by (3.25) and (3.27). However, for the sake of completeness this result is
formally proven in the following.

By definition N[¥ (j) is the minimal dimension of the finite element space V}, such that

eigenvalue \; is well approximable, i.e., such that condition (3.16) is fulfilled. If we consider the
space V;, where the mesh width A is chosen such that the dimension of V}, fulfils Ny, > CNEY ()

I’Illn
we obtain that

NEY () < Moo o L

min

and from (D.23) it follows that condition (3.16) is fulfilled — i.e., A; is well approximable by V},
— and we conclude that NFY (j) < CNEV (7). On the other side, if A’ denotes the mesh width of
the finite element space Vj,/ Wlth minimal dimension Nj, = NEY () it has to hold A’ < hY (j)

because otherwise condition (3.16) is not valid and A; would not be well approximable by V.
From

, EV .
NELG) = ! < Lo M Nail) (D.25)
A \d d
(hENx(5)) (h')" @21 € ¢

we follow that NEY () > ¢NEY (j). Using these results and the definition of NEY (j) we finally

min min

conclude that NEY (j) € ©O( §2p+d)/(2p) ). In particular, it is noted that a space Vj,, whose
dimension fulfils N, > CNJY (j)/c, is well approximating the eigenvalue \; since \; is well
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approximable when N, > Cﬁfl‘{n (7) and because of

EV .
Ny = oMl s o),
c (D.25)

To analyse the asymptotic behaviour of j5Y. (N},) we define the auxiliary quantity

_2p
]max(Nh) = (CEV ) 2p+d (Nh) 2p+d (D26)

which can be seen as an orientation value for jEV (Np). By definition jEY. (IVy) is the index of
the largest eigenvalue which is well approximable by the finite element space V), with dimension
Np,. If the index j of an eigenvalue A; fulfils j < CJEV_(Np) with C := C~22/(2r+d) we obtain

2p
(D.26) d C \ 2p+d
< C max N; < C CEV 2ptd <> = r?l\;x h
j Jronsc(Nn) o (Ciax) T 3y Jmax ()
According to (D.24) condition (3 16) is fulfilled — i.e., A; is well approximable by V}, — and

we conclude that jEY_(Nj) > CjEY_(N). On the other hand, if we choose j < jiV. (NNV},) then
by definition eigenvalue \; is well approximable, and in particular inequality (D.24) has to be
valid. We conclude

2p

(D.21) Ny 2o+
N BV (h) < (CEY 2p+d = TjEV (N,
]max( h) ]max( ) (3—24)( idx ) < C) (D.26) ]max( h)

with ¢ := ¢ 22/p+d) j e we have jEY (N,) < € jEV (N). Using these results and using the
definition of 7BV (N},) we finally obtain that jEV_(Nj) € O(N, NZP/Cptd) ).

In an analogical way we derive from

(321) & h< (Cif)?j v & (CE)Pj P <— & j<(Cg)2etd <hd> :

2p+d _ 2p+d
3.17) & h< (C%) B o (OB 2§A Ea <i<:> A< (o Yz (L ey
h )

S1ze Wi s1ze s1ze h

1 _ptd —d q¢2td 1/ 1\ dptd)
(3.22) & h< (Ch. )2 A S PN (Cflﬁe)?p)\ p <m & A< (CE )P d<hd>

the asymptotical behaviour of the minimal dimensions NEF (7), NEY (A), NEF (\); the maximal

index jFF (Np,); and the maximal sizes A5V (Np), A (Ng). ]

max max
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