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Abstract

To solve an elliptic PDE eigenvalue problem in practice, typically the finite element discreti-
sation is used. From approximation theory it is known that only the smaller eigenvalues and
their corresponding eigenfunctions can be well approximated by the finite element discretisation
because the approximation error increases with increasing size of the eigenvalue. The number of
well approximable eigenvalues or eigenfunctions, however, is unknown. In this work asymptotic
estimates of these quantities are derived. For example, it is shown that for three-dimensional
problems under certain smoothness assumptions on the data only the smallest Θ(N2/5) eigen-
values and only the eigenfunctions associated to the smallest Θ(N1/4) eigenvalues can be well
approximated by the finite element discretisation, when the N -dimensional finite element spaces
of piecewise affine functions with uniform mesh refinement are used.

To solve the discretised elliptic PDE eigenvalue problem and to compute all well approximable
eigenvalues and eigenfunctions, a new method is introduced which combines a recursive version
of the automated multi-level substructuring (short AMLS) method with the concept of hierarchi-
cal matrices (short H-matrices). AMLS is a domain decomposition technique for the solution of
elliptic PDE eigenvalue problems where, after some transformation, a reduced eigenvalue prob-
lem is derived whose eigensolutions deliver approximations of the sought eigensolutions of the
original problem.

Whereas the classical AMLS method is very efficient for elliptic PDE eigenvalue problems
posed in two dimensions, it is getting very expensive for three-dimensional problems, due to the
fact that it computes the reduced eigenvalue problem via dense matrix operations.

This problem is resolved by the use of hierarchical matrices. H-matrices are a data-sparse
approximation of dense matrices which, e.g., result from the inversion of the stiffness matrix that
is associated to the finite element discretisation of an elliptic PDE operator. The big advantage
of H-matrices is that they provide matrix arithmetic with almost linear complexity. This fast
H-matrix arithmetic is used for the computation of the reduced eigenvalue problem. Beside this,
the size of the reduced eigenvalue problem is bounded by a new recursive version of AMLS which
further reduces the costs for the computation and the solution of this problem. Altogether this
leads to a new method which is well-suited for three-dimensional problems and which allows us
to compute a large amount of eigenpair approximations in optimal complexity.
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Zusammenfassung

Elliptische PDE Eigenwertprobleme werden in der Praxis typischerweise mithilfe der Finite-
Element-Diskretisierung gelöst. Aus der Approximationstheorie ist bekannt, dass nur die kleins-
ten Eigenwerte und die zugehörigen Eigenfunktionen sich gut durch die Finite-Element-Diskre-
tisierung approximieren lassen, da der entsprechende Approximationsfehler mit der Größe des
Eigenwertes wächst. Resultate bezüglich der Anzahl der gut approximierbaren Eigenwerte und
Eigenfunktionen sind bisher aber noch unbekannt. In dieser Arbeit werden Abschätzungen
hergeleitet, die es erlauben diese Größen asymptotisch zu beschreiben. So wird zum Beispiel
gezeigt, dass für drei-dimensionale Probleme (unter bestimmten Glattheitsbedingungen der
Daten) nur die kleinsten Θ(N2/5) Eigenwerte und die Eigenfunktionen zu den kleinsten Θ(N1/4)
Eigenwerten gut durch die Finite-Element-Diskretisierung approximierbar sind, wenn N -dimen-
sionale Finite-Element-Räume mit stückweise affinen Funktionen bei gleichmäßiger Gitterver-
feinerung verwendet werden.

Um das diskretisierte elliptische PDE Eigenwertproblem zu lösen und um alle gut approx-
imierbaren Eigenwerte und Eigenfunktionen zu berechnen, wird in dieser Arbeit eine neue
Methode vorgestellt, welche eine rekursive Version der Automated Multi-Level Substructuring
(kurz AMLS) Methode mit dem Konzept der hierarchischen Matrizen (kurz H-Matrix) kom-
biniert. AMLS ist eine Gebietszerlegungsmethode zum Lösen elliptischer PDE Eigenwertprob-
leme, bei der nach einer bestimmten Problemtransformation ein reduziertes Eigenwertproblem
aufgestellt wird. Die Eigenlösungen des reduzierten Problems liefern schließlich Approximatio-
nen der gesuchten Eigenlösungen des Ausgangsproblems.

Die klassische AMLS Methode ist sehr effizient für PDE Eigenwertprobleme definiert auf einem
zwei-dimensionalen Gebiet, jedoch wird die Methode sehr teuer für drei-dimensionale Probleme,
da in AMLS das reduzierte Problem mittels vollbesetzter Matrixoperationen berechnet wird.

In dieser Arbeit wird dieses Effizienzproblem von AMLS durch den Einsatz von hierarchis-
chen Matrizen gelöst. H-Matrizen sind kosteneffiziente Approximation von vollbesetzten Ma-
trizen, welche beispielsweise auftreten bei der Invertierung der Steifigkeitsmatrix der Finite-
Element-Diskretisierung elliptischer PDE Operatoren. Der große Vorteil von H-Matrizen ist,
dass diese eine Matrixarithmetik mit fast linearer Komplexität ermöglichen. Diese schnelle H-
Matrixarithmetik wird verwendet um das reduzierte Problem zu berechnen. Darüber hinaus wird
die Größe des reduzierten Problems durch eine neue rekursive Version von AMLS beschränkt,
was die Kosten für das Aufstellen und das Lösen des reduzierten Problems weiter verringert.
Insgesamt führt dies zu einer neuen Methode, welche sehr gut geeignet ist um drei-dimensionale
elliptische PDE Eigenwertprobleme zu lösen und welche eine Vielzahl von Eigenpaar Approxi-
mationen in optimaler Komplexität berechnet.

4



Acknowledgements

First of all, I would like to thank Prof. Dr. Lars Grasedyck for giving me the opportunity
to perform my research on elliptic PDE eigenvalue problems and the AMLS method which has
been the basis for this thesis. I am very grateful for his guidance and support, he had always
time for discussions when assistance was required. It was a pleasure to work with him.

Furthermore, I want to thank Dr. Ronald Kriemann for providing me the software library
HLIBpro [50] which made the implementation of my program code much easier, and which
helped to improve my programming skills.

Writing my thesis and working at the Institut für Geometrie und Praktische Mathematik was
a great time and interesting experience, in particular also because of the great friendliness and
helpfulness of my colleagues. Working together in teaching, private conversations and activities
with my colleagues have been a welcome change from my everyday research.

Last but not least, I want to thank my family and all my friends for their support and their
interest in my work. At this point I want to thank in particular Veronique Overhoff and Paul
Gerds for their everlasting encouragement.

5





Contents

List of Symbols and Abbreviations 9

1. Introduction 11

2. Analysis of Elliptic PDE Eigenvalue Problems 15
2.1. Analysis of the Boundary Value Problem . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Analysis of the Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3. Laplace Eigenvalue Problem on the Unit Cube . . . . . . . . . . . . . . . . . . . 23

3. Solving Elliptic PDE Eigenvalue Problems 25
3.1. Ritz-Galerkin Discretisation of the Eigenvalue Problem . . . . . . . . . . . . . . . 25
3.2. Approximation Properties of the Ritz-Galerkin Discretisation . . . . . . . . . . . 27
3.3. Introduction of Finite Element Spaces . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4. Approximation Properties of the Finite Element Discretisation . . . . . . . . . . 35

4. Summary and Problem Description 45

5. Automated Multi-Level Substructuring 47
5.1. The AMLS Method in the Continuous Setting . . . . . . . . . . . . . . . . . . . . 48
5.2. The AMLS Method in the Algebraic Setting . . . . . . . . . . . . . . . . . . . . . 55
5.3. Efficiency Problems in the Three-Dimensional Case . . . . . . . . . . . . . . . . . 64

6. Hierarchical Matrices 67
6.1. H-Matrix Approximation of the Inverse Stiffness Matrix . . . . . . . . . . . . . . 67
6.2. H-Matrix Format for AMLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7. Combination of AMLS and H-Matrices 77
7.1. Introduction of the H-AMLS method . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2. Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3. Accuracy of the Eigenpair Approximation . . . . . . . . . . . . . . . . . . . . . . 82
7.4. Improving the H-AMLS Approximations with Subspace Iteration . . . . . . . . . 84

8. Implementation of H-AMLS 89
8.1. Task (T1): Construction of the H-matrices . . . . . . . . . . . . . . . . . . . . . 92
8.2. Task (T2+T3): Transformation of the Eigenvalue Problem . . . . . . . . . . . . . 94
8.3. Auxiliary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.4. Task (T4): Computation of the Partial Eigensolutions . . . . . . . . . . . . . . . 97
8.5. Task (T6+T7): Computation and Solution of the Reduced EVP . . . . . . . . . . 100
8.6. Task (T8+T9+TSI): Transformation of the Eigensolutions . . . . . . . . . . . . . 102
8.7. Implementation of the recursive H-AMLS method . . . . . . . . . . . . . . . . . 104
8.8. Parallelisation of the H-AMLS method . . . . . . . . . . . . . . . . . . . . . . . . 109

7



Contents

9. Numerical Results 119
9.1. Analysis of Non-Recursive H-AMLS . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.2. Analysis of Recursive H-AMLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.3. Analysis of Recursive H-AMLS with (TSI)-improvement . . . . . . . . . . . . . . 129
9.4. Parallel Performance of H-AMLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.5. H-AMLS for Challenging Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.Conclusion 145

A. Abstract Variational Eigenvalue Problems 147
A.1. Basic Definitions and Compact Operators . . . . . . . . . . . . . . . . . . . . . . 147
A.2. The Fredholm-Riesz-Schauder Theory . . . . . . . . . . . . . . . . . . . . . . . . 149
A.3. Analysis of Abstract Variational Eigenvalue Problems . . . . . . . . . . . . . . . 152

B. Theory of Sobolev Spaces 157
B.1. Basic Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.2. Classification of the Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
B.3. The Weak Derivative and the Sobolev Space . . . . . . . . . . . . . . . . . . . . . 160

C. Asymptotic Distribution of the Eigenvalues 163

D. Preliminary Work for Results on the FEM Approximation 169

Bibliography 177

8



List of Symbols and Abbreviations

Abbreviations

EVP eigenvalue problem

FEM finite element method

PDE partial differential equation

SIL shift-invert Lanczos

Greek Letters

∆u Laplace operator ∆u :=
∑d

i=11
∂2

∂x2
i
u for u : Rd → R

ρ(T ) resolvent set of an operator T ∈ L(X), page 147

σ(T ), σp(T ) spectrum and point spectrum of an operator T ∈ L(X), page 147

Miscellaneous Symbols

(·, ·)0, ‖ · ‖0 inner product and norm on L2(Ω), page 156

(·, ·)k, ‖ · ‖k, | · |k inner product, norm and seminorm on Hk(Ω), page 159

(·, ·)X , ‖ · ‖X inner product and norm on linear space X, page 149

dxe, bxc dxe := min{n ∈ Z : n ≥ x} and bxc := max{n ∈ Z : n ≤ x}

∇u gradient ∇u := ( ∂
∂x1

u, . . . , ∂
∂xd

u)T for u : Rd → R

¬a logical negation of statement a

‖ f ‖∞ supremum norm of function f : Ω→ R is ‖ f ‖∞:= supx∈Ω | f(x) |

‖ T ‖Y←X operator norm of T : X → Y , page 146

∂/∂n normal derivative, page 158

∂Ω boundary of a subset Ω ⊂ Rd, page 156

R>0 R>0 := {x ∈ R : x > 0}

a ≡ b logical equivalence of statement a and b

f ∈ O(g) lim supx→x0
| f(x)/g(x) |<∞ with x0 ∈ R ∪ {∞,−∞}

f ∈ Ω(g) lim infx→x0 | f(x)/g(x) |> 0 with x0 ∈ R ∪ {∞,−∞}

9



Contents

f ∈ Θ(g) 0 < lim infx→x0 | f(x)/g(x) | ≤ lim supx→x0
| f(x)/g(x) |<∞

f ∈ o(g) limx→x0 | f(x)/g(x) |= 0 with x0 ∈ R ∪ {∞,−∞}

Roman Letters

L∞(Ω) set of functions that are bounded almost everywhere, page 156

divF divergence divF :=
∑d

i=1
∂
∂xi
Fi for F : Rd → Rd

H(TI×I , ε) set of H-matrices induced by block cluster tree TI×I , page 69

Id quadratic identity matrix

Im(T ) image (range) of T ∈ L(X,Y ) is given by {Tx ∈ Y : x ∈ X}, page 147

Ker(T ) kernel (null space) of T ∈ L(X,Y ) is given by {x ∈ X : Tx = 0}, page 147

Hk(Ω), Hk
0 (Ω) Sobolev spaces, page 159

K(X,Y ), K(X) set of compact operators from X to Y , and X to X, page 147

L2(Ω) space of square integrable functions f : Ω→ R, page 156

L(X,Y ), L(X) set of bounded operators from X to Y , and X to X, page 146

L(TI), L(TI×I) leaves of cluster tree and leaves of block cluster tree, page 68

T , Th triangulation of a domain, page 30

P prolongation operator, page 24

supp(f) support of the function f , page 155

C∞0 (Ω) set of C∞(Ω)-functions with compact supports, page 155

TI , TI×I cluster tree and block cluster tree, page 68

H
1/2
00 (Γ) trace space of H1

0 (Ω) on the interface Γ, page 47
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1. Introduction

This work focuses on the efficient solution of the continuous eigenvalue problem{
Lu = λu in Ω,

u = 0 on ∂Ω
(1.1)

where Ω is a bounded d-dimensional domain (d=2,3) with a Lipschitz boundary ∂Ω and L is a
uniformly elliptic second order partial differential operator in divergence form

Lu = −div
(
A∇u

)
+ cu = −

d∑
i,j=1

∂

∂xi

(
aij

∂

∂xj
u

)
+ cu

with L∞(Ω)-functions aij , c where A := (aij)
d
i,j=1 and c ≥ 0, and where eigenvalues λ ∈ C and

associated eigenfunctions u 6= 0 are sought. Partial differential equation (short PDE) eigenvalue
problems of the form (1.1) arise in many fields of physical and engineering application, and
their efficient solution is of high importance, especially for costly three-dimensional real-world
problems.

In contrast to the common boundary value problem{
Lu = f in Ω,

u = 0 on ∂Ω
(1.2)

where for a fixed right-hand side f ∈ L2(Ω) a suitable solution u is sought, the eigenvalue problem
(1.1) is non-linear since both the eigenvalue λ and the eigenfunction u are unknown. For this
reason the analysis and the solution of eigenvalue problem (1.1) is much more challenging than
it is for boundary value problem (1.2). The Fredholm-Riesz-Schauder theory has to be applied
in order to show that eigenvalue problem (1.1) possesses, after some reformulation, a countable
family of weak eigensolutions(

λj , uj
)∞
j=1
∈ R>0 ×H1

0 (Ω) \ {0} with λj ≤ λj+1. (1.3)

In the most cases, the eigensolutions (1.3) cannot be computed analytically, they have to be
computed numerically. In practice typically the finite element discretisation is applied for this
purpose: Using an N -dimensional finite element space denoted by VN ⊂ H1

0 (Ω) and spanned by
its basis functions (ϕ(N)

i )Ni=1, the continuous eigenvalue problem is discretised and an algebraic
eigenvalue problem of the form{

find (λ(N), x(N)) ∈ R× RN \ {0} with

K(N) x(N) = λ(N) M (N) x(N)
(1.4)
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1. Introduction

is derived with symmetric sparse matrices K(N),M (N) ∈ RN×N , and with eigenpairs(
λ(N)

j , x(N)

j

)N
j=1
∈ R>0 × VN \ {0} with λ(N)

j ≤ λ(N)

j+1. (1.5)

The discrete eigensolutions (λ(N)

j , u(N)

j ) are then used for the approximation of the sought con-

tinuous eigensolutions (λj , uj) when N →∞, and where the functions u(N)

j ∈ VN are defined by

u(N)

j :=
∑N

i=1(x(N)

j )i ϕ
(N)

i for j = 1, . . . , N .

Using the finite element discretisation for the solution of eigenvalue problem (1.1), two elemen-
tary questions arise which are covered in this work: The first question is which of the discrete
eigensolutions (λ(N)

j , u(N)

j ) provide good approximations for the sought continuous eigensolutions
(1.3). From approximation theory (see, e.g., [9, 64]) it is known that only the smaller eigenvalues
λj and their corresponding eigenfunctions uj can be well approximated by the finite element
space VN because the approximation error increases with increasing size of the eigenvalue. To
the best of the author’s knowledge, results on the number of well approximable eigensolutions
are not available in literature. However, based on the error estimates presented in [64], the au-
thor could derive in this work asymptotic bounds for these quantities. To derive these bounds,
it is essential to show that the eigenvalues λj are asymptotically described by λj ∈ Θ(j2/d). This
result is proved as well in this work and is new to the best of the author’s knowledge. Altogether,
it is shown that, for example, for three-dimensional problems under certain smoothness assump-
tions on the data only the first Θ(N2/5) eigenvalues and only the first Θ(N1/4) eigenfunctions
can be well approximated by the finite element discretisation using the finite element spaces
(VN )N∈N of piecewise affine functions with uniform mesh refinement.

Hence, in this work we are only interested in computing a portion of the smallest eigenpairs
of the discrete problem (1.4), e.g., the first

nes = CN2/5 ∈ N or nes = CN1/4 ∈ N

eigenpairs with some constant C > 0. The computation of the remaining eigenpairs of (4.4),
that are associated associated to larger eigenvalues, is not reasonable because typically they do
not provide useful approximations for the continuous eigensolutions (1.3).

The second question, which is the focus of this work, is how for a given finite element space
VN all well approximable eigenvalues and eigenfunctions can be efficiently computed. In practice
the eigenpairs (λ(N)

j , x(N)

j )nes
j=1 of the discrete problem (1.4) are typically computed by a classical

approach, i.e., by some iterative algebraic eigensolver (such as the Lanczos method [8] or the
subspace iteration [10]) which is coupled with a preconditioner or a linear solver. Such classical
approaches are well suited if the number of sought eigensolutions nes is rather small, e.g., if
nes = 5. Another approach for the solution of eigenvalue problem (1.4), which is very efficient
when a large amount of eigenpairs is sought, is the so-called automated multi-level substructuring
(short AMLS) method.

The AMLS method is an efficient substructuring method for the solution of elliptic PDE
eigenvalue problems, which was mainly developed by Bennighof and co-authors [14, 16, 47].
The idea behind AMLS is to substructure the domain Ω of eigenvalue problem (1.1) recursively
into several subdomains that are separated by interfaces. On each of these subdomains and
interfaces certain eigenvalue problems are defined which are induced by the global problem, and
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which are typically small and easy to solve. In the next step, from each of these subproblems
a few eigensolutions are computed which are meant to represent the global problem on the
corresponding subdomain or interface. The computed eigensolutions of the subproblems are
then used to form a subspace onto which the global eigenvalue problem is projected. The
projection results in a reduced eigenvalue problem of smaller size which is typically easy to solve,
and whose eigenpairs finally provide approximations of the sought nes eigensolutions of the global
problems (1.1) and (1.4).

The AMLS method has proven to be very efficient for solving large-scale eigenvalue problems
arising in structural engineering analysis (see, e.g., [15, 47, 55]). Especially when a large number
of eigenpair approximations is required, AMLS has shown to be more efficient than classical
approaches (cf. [42]). Since the computational costs of AMLS increase only slightly with the
number of sought eigenpairs, AMLS can compute a large number of eigenpairs at once. A very
popular classical approach, which is commonly used in structural engineering analysis, is the
shift-invert block Lanczos (short block-SIL) algorithm [36]. Breakthrough calculations could be
presented in [55] when AMLS has been benchmarked against block-SIL within a vibro-acoustic
analysis of an automobile body, and when AMLS running on a commodity workstation has been
several times faster than block-SIL running on a supercomputer.

However, when AMLS is applied to a discrete eigenvalue problem it computes only approx-
imations of the discrete eigenpairs whereas classical approaches, like block-SIL, compute these
eigenpairs almost numerically exact. This seems to be disadvantageous, but since in our setting
discrete eigenvalue problems result always from a finite element discretisation of a continuous
problem, all eigenpairs of the discrete problem are related to a discretisation error. Hence, as
long as the projection error caused by AMLS is of the same order as the discretisation error,
the computed eigenpair approximations of AMLS are of comparable quality as the eigenpairs
computed by some classical approach.

Although AMLS has proven to be very efficient, one problem is the computation of the above-
mentioned interface eigenvalue problems via dense matrix operations. When AMLS is applied
to three-dimensional problems the complexity is dominated by this part.

In this work a new method is presented which combines a recursive version of the AMLS
method with the concept of hierarchical matrices (short H-matrices). The new method is called
H-AMLS has been already introduced in [31] by the author. The H-matrices [38, 39], which are
used, are a data-sparse approximation of dense matrices which e.g. result from the inversion
[13, 29] or the LU-factorisation [12, 29, 34, 59] of the stiffness matrix from the finite element
discretisation of an elliptic PDE operator. The big advantage of H-matrices is that they provide
matrix arithmetic with almost linear complexity [33, 35]. In the new method this fast H-matrix
arithmetic is used for the computation of the interface eigenvalue problems. This allows us
to treat also three-dimensional problems efficiently. Furthermore, it is essential in the AMLS
method that the size of the reduced eigenvalue problem is kept small. This is achieved by a new
recursive formulation of AMLS. This approach leads to a new method where all previously ex-
pensive steps of AMLS are performed in almost linear complexity O(N logαN) where N denotes
the size of eigenvalue problem (1.4). The remaining bottleneck is more of a theoretical nature:
In order to set up the reduced eigenvalue problem and to extract the eigenvectors from the
reduced problem, the H-AMLS method involves H-matrix times vector multiplications which
accumulate to costs of the order O(nesN logαN), and it involves the usual scalar product which
is accumulating to at most O(n2

esN) multiplications or additions. However, these operations
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1. Introduction

have very small constants involved so that their effect on practical computations is hardly vis-
ible. In numerical experiments it is observed that the computational costs of H-AMLS stay in
O(nesN) for very large-scale problems, i.e., optimal complexity is reached. Furthermore, the
different steps of the H-AMLS method are very well parallelisable. To benefit from the multiple
cores of today’s workstations and compute servers, the H-AMLS method has been parallelised
for shared memory systems. Last but not least, this work introduces an additional improvement
step for H-AMLS which further improves the accuracy of the computed eigenpair approxima-
tions. Altogether, this leads to a very efficient eigensolver for elliptic PDE eigenvalue problems
which is, in particular, well suited for problems posed in three dimensions.

The remainder of this work is organised as follows: In Chapter 2 the elliptic PDE eigenvalue
problem (1.1) is analysed and results concerning the existence and the regularity of eigensolu-
tions are presented. After this, in Chapter 3 the solution of eigenvalue problem (1.1) is discussed.
This chapter includes a detailed analysis of the finite element discretisation where a priori error
estimates for the eigenvalue and eigenfunction approximation are presented, and where asymp-
totic results concerning the number of well approximable eigenvalues and eigenfunctions are
derived. The results of Chapter 2 and 3 are summarised in Chapter 4 where the underlying
problem setting is specified. In Chapter 5 a description of the classical AMLS method is given,
where the method is first explained and motivated in a continuous setting and then described
in an algebraic setting to show how AMLS is applied in practice. Furthermore, it is outlined in
Chapter 5 why the classical AMLS method is getting expensive for three-dimensional problems.
In Chapter 6 a short introduction to H-matrices is given and in Chapter 7 the new H-AMLS
method is presented. For numerical experiments an efficient implementation of H-AMLS is
important, especially for the parallelisation on shared memory systems. The issue of implemen-
tation and parallelisation is discussed in detail in Chapter 8. Finally, in Chapter 9 numerical
results are presented where H-AMLS is applied to three-dimensional problems and the approxi-
mation error, the computational time and the parallel performance of the method are analysed.
The results of this work are summarised in Chapter 10 and an outlook is given.

To improve the readability, certain topics of this work are discussed in the appendix: In
Appendix A abstract variational eigenvalue problems are analysed using the Fredholm-Riesz-
Schauder theory, and in Appendix B results from the theory of Sobolev spaces are briefly recalled.
The results of Appendix A and B are used in Chapter 2 when the elliptic PDE eigenvalue problem
is analysed. Finally, in Appendix C results on the asymptotic distribution of the eigenvalues λj
are derived, and in Appendix D error estimates for the finite element discretisation are provided.
Appendix C and D are the foundation of Chapter 3 when the number of well approximable
eigensolutions is discussed.
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2. Analysis of Elliptic PDE Eigenvalue
Problems

This chapter is focused on the analysis of the elliptic PDE eigenvalue problem{
L[u](x) = λu(x) for all x ∈ Ω,

u(x) = 0 for all x ∈ ∂Ω
(2.1)

where Ω ⊂ Rd is a bounded Lipschitz domain and L is a uniformly elliptic second order partial
differential operator in divergency form

L[u](x) =− div
(
A∇u

)
(x) + c(x)u(x) (2.2)

=−
d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
u(x)

)
+ c(x)u(x) for all x ∈ Ω

with sufficiently smooth L∞(Ω)-functions aij , c where A := (aij)
d
i,j=1 and c ≥ 0.

Definition 2.1 (Ellipticity) The partial differential equation (2.1) and the associated operator

L in (2.2) are called elliptic if for all x ∈ Ω the matrix A(x) :=
(
aij(x)

)d
i,j=1

is symmetric positive

definite, i.e., that the eigenvalues of A(x) are positive. An elliptic operator L and the associated
partial differential equation are called uniformly 1 elliptic if the eigenvalues of A(x) are uniformly
bounded from below by a positive constant, i.e., if it holds

0 < amin := inf
x∈Ω

min
ξ∈Rd\{0}

ξTA(x)ξ

ξT ξ
.

Even though eigenvalue problem (2.1) is non-linear, its analysis is based in principle on the
analysis of the linear PDE problem{

L[u](x) = f(x) for all x ∈ Ω,

u(x) = 0 for all x ∈ ∂Ω
(2.3)

where for a fixed right-hand side f ∈ L2(Ω) a suitable solution u is sought. Since boundary
value problem (2.3) possesses for each f ∈ H1

0 (Ω) a unique weak solution uf ∈ H1
0 (Ω) a solution

operator T : H1
0 (Ω) → H1

0 (Ω) is induced which allows to reformulate the weak formulation of
eigenvalue problem (2.1) as an eigenvalue problem of an operator. The key in the analysis is
to show that the solution operator T is compact, which allows to apply the Fredholm-Riesz-
Schauder theory in order to characterise the spectrum of the operator T . This approach finally

1It is noted that in literature the definition of uniform ellipticity slightly differs: For example, in [37] the same
definition for uniform ellipticity is used as here, whereas in [32] it is required that the ratio of maximum to
minimum eigenvalue of the matrix A(x) is bounded for x ∈ Ω.
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2. Analysis of Elliptic PDE Eigenvalue Problems

makes the elliptic PDE eigenvalue problem (2.1) accessible and it can be shown that it possess a
countable family of weak eigensolutions. To improve the readability of this chapter, this approach
is discussed in detail in Appendix A where variational eigenvalue problems are discussed in a
general setting and where the Fredholm-Riesz-Schauder theory for compact operators is briefly
recalled. The results derived in Appendix A are finally used in this chapter for the analysis of
problem (2.1).

The remainder of this chapter is organised as follows: It is started in Section 2.1 with the
analysis of boundary value problem (2.3), where the weak formulation of (2.3) is derived which
guarantees the existence of a unique weak solution. In Section 2.2 the weak formulation of
eigenvalue problem (2.3) is derived whose special structure allows to prove, based on the results
derived in Appendix A, the existence of a countable family of weak eigensolutions. Beside
this, in Section 2.2 the regularity of the weak eigenfunctions is discussed, i.e., it is discussed
how the smoothness of the eigenfunctions depends on the smoothness of the domain and the
coefficients of the PDE operator. Finally, in Section 2.3 an example is discussed in order to
get a better understanding of the presented existence and regularity results for elliptic PDE
eigenvalue problems.

Remark 2.2 The restriction to homogeneous Dirichlet boundary conditions u = 0 on Γ := ∂Ω
in (2.1) is not essential in this work, it only simplifies the analysis. Beside homogeneous Dirichlet
boundary conditions the elliptic PDE eigenvalue problem Lu = λu in Ω can be equipped with
various other boundary conditions (cf. [37, Chapter 11]), for example with:

• Homogeneous Neumann boundary conditions (A~n)T∇u = 0 on Γ where ~n is the exterior
normal field on the boundary Γ (cf. Remark B.12).

• Mixed boundary conditions of the form u = 0 on ΓD and (A~n)T∇u = 0 on ΓN , where ΓD
and ΓN are parts of the boundary Γ with positive (d− 1)-dimensional measure such that it
holds Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

Throughout the whole chapter, if not differently noted, it is assumed that Ω ⊂ Rd is a bounded
domain with a Lipschitz boundary ∂Ω.

2.1. Analysis of the Boundary Value Problem

The equations (2.3) are also referred to as the classical formulation of the boundary value
problem, and the aim is to find a sufficiently smooth function u : Ω→ R which is fulfilling (2.3).

Definition 2.3 (Classical Solution) A function u is called classical solution of the boundary
value problem (2.3) if u ∈ C2(Ω) ∩ C0(Ω) and if u fulfils both equations in (2.3) point-wise.

However, finding such a classical solution can be difficult. The classical formulation of the
boundary value problem, respectively the underlying function space

V :=
{
u ∈ C2(Ω) ∩ C0(Ω) : u = 0 on ∂Ω

}
,

are rather unsuitable to derive satisfying results on existence or uniqueness of a solution. Instead
of searching for solutions in the function space V it is often advantageous to search for solutions
in a larger and less smooth function space, and to weaken the classical formulation slightly. The
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2.1. Analysis of the Boundary Value Problem

space which will be used instead is the Sobolev space H1
0 (Ω) =

{
ϕ ∈ H1(Ω) : ϕ|∂Ω = 0

}
, i.e.,

the space of L2(Ω)-functions which posses the first weak derivative and which vanish at the
boundary ∂Ω (cf. Appendix B.3). The resulting weak formulation of boundary value problem
(2.3) provides additional structure which allows us to derive results on existence, uniqueness
and regularity of a corresponding weak solution.

To derive the weak formulation of problem (2.3) the following identity is used: Let the func-
tions w ∈ C1(Ω) and v ∈ C∞0 (Ω) be given then we obtain by partial integration in the variable
xi (note that Ω ⊂ Rd is assumed to be a bounded Lipschitz domain) the identity∫

Ω
v(x)

∂w(x)

∂xi
dx = −

∫
Ω

∂v(x)

∂xi
w(x) dx (2.4)

where it is noted that in (2.4) no boundary integral occurs since v ∈ C∞0 (Ω) and correspondingly
the integrand vanishes close to the boundary ∂Ω. Hence, assuming aij ∈ C1(Ω) it holds for a
function u ∈ C2(Ω) that∫

Ω
v(x)

∂

∂xi

(
aij(x)

∂u(x)

∂xj

)
dx = −

∫
Ω

∂v(x)

∂xi
aij(x)

∂u(x)

∂xj
dx. (2.5)

If we assume that boundary value problem (2.3) has a classical solution u ∈ V , and if we multiply
the identity Lu = f from (2.3) by some test function v ∈ C∞0 (Ω) and integrate over Ω we obtain
from (2.5) that the classical solution fulfils∫

Ω
fv dx = −

∫
Ω

div
(
A∇u

)
v dx+

∫
Ω
cuv dx =

∫
Ω
∇vTA∇u dx+

∫
Ω
cuv dx. (2.6)

It follows that a function u ∈ V is a classical solution of problem (2.3) if and only if u is a
solution of the problem {

find u ∈ V such that

a(u, v) = l(v) ∀ v ∈ C∞0 (Ω)
(2.7)

with the bilinear form and the linear functional

a(u, v) :=

∫
Ω
∇uTA∇v + cuv dx and l(v) :=

∫
Ω
fv dx. (2.8)

Note that the assumption aij ∈ C1(Ω), which is needed for the classical formulation of the
boundary problem, can be weakened for problem (2.7) since a(·, ·) is also well defined for aij ∈
L∞(Ω) and c ∈ L∞(Ω). Furthermore, the bilinear form a(·, ·) and the linear functional l(·) are
also well defined on the Sobolev space H1

0 (Ω). Correspondingly, problem (2.7) can be generalised
in the following way: Instead of searching for solutions in the space V ⊂ H1

0 (Ω) we search for
solutions in the larger and less smooth Hilbert space H1

0 (Ω), and solve the variational problem{
find u ∈ H1

0 (Ω) such that

a(u, v) = l(v) ∀ v ∈ H1
0 (Ω)

(2.9)

which is called the weak formulation or the variational formulation of boundary value problem
(2.3). Since the space C∞0 (Ω) is dense in H1

0 (Ω), and because a(·, ·) and l(·) are continuous
(see proof of Theorem 2.5) it is equivalent to use in (2.9) test functions v ∈ H1

0 (Ω) instead of
v ∈ C∞0 (Ω).
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2. Analysis of Elliptic PDE Eigenvalue Problems

Definition 2.4 (Weak Solution) A solution u ∈ H1
0 (Ω) of problem (2.9) is called a weak

solution of the boundary value problem (2.3).

Note that a weak solution is by definition an element of H1
0 (Ω), but not necessarily of C2(Ω);

and that a classical solution is by definition an element of V , but not necessarily of H1
0 (Ω).

However, if there is a weak solution u fulfilling (2.9) with u ∈ H1
0 (Ω)∩C2(Ω) and if aij ∈ C1(Ω)

then from (2.6) follows that
∫

Ω(Lu − f)v dx = 0 for all v ∈ C∞0 (Ω). Since C∞0 (Ω) is dense in
L2(Ω) we have Lu = f , i.e., u is also a classical solution of (2.3) with u ∈ V . Vice versa, if
u ∈ V is a classical solution of (2.3) with u ∈ H1

0 (Ω) ∩ V then it follows that u is a solution
of problem (2.7) and hence a solution of (2.9), i.e., u is also a weak solution. In this sense the
weak formulation (2.9) and the classical formulation (2.3) of the elliptic eigenvalue problem are
equivalent.

The big advantage of the weak formulation is that it inherits additional structure which allows
to derive results on existence and uniqueness of a weak solution:

Theorem 2.5 Let the partial differential operator L in (2.2) be uniformly elliptic and

aij ∈ L∞(Ω) for i, j = 1, . . . , d and c ∈ L∞(Ω) with c(x) ≥ 0 almost everywhere in Ω.

Then the variational problem (2.9) has for every f ∈ L2(Ω) a unique solution u ∈ H1
0 (Ω) with

‖u‖1 ≤ C‖f‖0

where C > 0 is a constant independent of f .

Proof: The existence of a unique solution follows directly from the Lax-Milgram theorem
(cf. Appendix A.3). First of all, it is checked if the corresponding assumptions on the linear
functional l(·) and the bilinear form a(·, ·) are fulfilled (cf. Theorem A.18).

l(·) is continuous on H1
0 (Ω):

The linear functional l(·) in (2.8) is bounded on H1
0 (Ω) for each f ∈ L2(Ω) since

|l(v)| =
∣∣∣∫

Ω
fv dx

∣∣∣ ≤ ‖f‖0‖v‖0 ≤ ‖f‖0‖v‖1 ∀ v ∈ H1
0 (Ω).

a(·, ·) is continuous on H1
0 (Ω)×H1

0 (Ω):

For the bilinear form a(·, ·) defined in (2.8) we have for u, v ∈ H1
0 (Ω) that

|a(u, v)| ≤
n∑

i,j=1

‖aij‖L∞(Ω)

∥∥∥ ∂u
∂xi

∥∥∥
0

∥∥∥ ∂v
∂xj

∥∥∥
0

+ ‖c‖L∞(Ω)‖u‖0‖v‖0

≤
n∑

i,j=1

‖aij‖L∞(Ω)‖u‖1‖v‖1 + ‖c‖L∞(Ω)‖u‖1‖v‖1 ≤ CB‖u‖1‖v‖1

with some CB > 0 independent of u and v. Hence, the bilinear form a(·, ·) is continuous.

a(·, ·) is H1
0 (Ω)-elliptic:

Since the partial differential operator L in (2.2) is uniformly elliptic it follows from Definition
2.1 that there exists a constant CE > 0 such that for all ξ ∈ Rd it holds

ξTA(x) ξ ≥ CE ξT ξ ∀ x ∈ Ω.
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2.2. Analysis of the Eigenvalue Problem

Using ξ = ∇u for u ∈ H1
0 (Ω), and that c(x) ≥ 0 almost everywhere in Ω, we obtain

a(u, u) =

∫
Ω
∇uTA∇u dx+

∫
Ω
cu2 dx ≥ CE

∫
Ω
∇uT∇u dx = CE |u|21. (2.10)

Note that ‖ · ‖1 and | · |1 are equivalent norms in H1
0 (Ω) since Ω is bounded (cf. Theorem

B.17). Correspondingly, we obtain from (2.10) that there exists a constant C̃E > 0 such that
a(u, u) ≥ C̃E‖u‖21 for all u ∈ H1

0 (Ω) which proofs the ellipticity of a(·, ·).

Since H1
0 (Ω) is a Hilbert space and the bilinear form a(·, ·) is symmetric, all assumptions of

Theorem A.18 are fulfilled. Correspondingly for each f ∈ L2(Ω) in (2.9) exists a unique solution
uf ∈ H1

0 (Ω) which allows us to define a solution operator

T : L2(Ω)→ H1
0 (Ω) with f 7→ uf . (2.11)

As in the proof of Lemma A.20 it can be shown that the operator T is continuous, in particular
it holds ‖uf‖1 ≤ C̃−1

E ‖f‖0.

Based on the analysis of the boundary value problem (2.3), in the next section the elliptic
PDE eigenvalue problem (2.1) is analysed.

2.2. Analysis of the Eigenvalue Problem

In the first part of this section the weak formulation of the elliptic PDE eigenvalue problem
(2.1) is derived which is nearly equivalent to the classical formulation. Similar to the previous
section, the weak formulation of the eigenvalue problem inherits a special structure which allows
us to derive results on the existence of weak eigensolutions. In the second part of this section
the smoothness of the weak eigenfunctions is discussed.

2.2.1. Existence of Eigensolutions

The weak formulation of eigenvalue problem (2.1) is derived in the same way as the weak for-
mulation of the boundary value problem (2.3): Assume that eigenvalue problem (2.1) possesses
a classical eigensolution u ∈ V \ {0} with eigenvalue λ ∈ C. Multiplying Lu = λu by a test
function v ∈ C∞0 (Ω), integration over Ω and applying partial integration (2.5) we obtain that∫

Ω
λuv dx = −

∫
Ω

div
(
A∇u

)
v dx+

∫
Ω
cuv dx =

∫
Ω
∇vTA∇u dx+

∫
Ω
cuv dx,

which is leading (as in the previous section) to the variational problem{
find (λ, u) ∈ C×H1

0 (Ω) \ {0} such that

a(u, v) = λ (u, v)0 ∀ v ∈ H1
0 (Ω)

(2.12)

with bilinear form a(·, ·) from (2.8) and the L2(Ω) inner product (u, v)0 :=
∫

Ω uv dx. Problem
(2.12) is the weak formulation of the elliptic PDE eigenvalue problem (2.1).

The existence result presented in the following theorem is based on Corollary A.23 and Ap-
pendix A.3 where variational eigenvalue problems are discussed in a more general setting. The

19



2. Analysis of Elliptic PDE Eigenvalue Problems

key in the corresponding existence proof is to show that the solution operator T : H1
0 (Ω) →

H1
0 (Ω) [i.e., the operator from (2.11) restricted to H1

0 (Ω)] of the variational problem (2.9) is
compact, which allows us to characterise the spectrum of T by the Fredholm-Riesz-Schauder
theory (see Appendix A.3), which finally proves the existence of eigensolutions of the variational
eigenvalue problem (2.12).

Theorem 2.6 (Existence of Eigensolutions) Let the partial differential operator L in (2.2)
be uniformly elliptic and

aij ∈ L∞(Ω) for i, j = 1, . . . , d and c ∈ L∞(Ω) with c(x) ≥ 0 almost everywhere in Ω.

Then the variational eigenvalue problem (2.12) possesses a countable family of eigensolutions(
λj , uj

)∞
j=1
∈ R>0 ×H1

0 (Ω) \ {0} (2.13)

with eigenvalues λj ordered2 such that λj ≤ λj+1. In particular, it holds:

i) All eigenvalues λj are positive real and we have λj
j→∞−−−−−→∞.

ii) The eigenspace E(λj) ⊂ H1
0 (Ω) of the eigenvalue λj, which is defined by

E(λj) := span
{
u ∈ H1

0 (Ω) : a(u, v) = λj(u, v)0 ∀ v ∈ H1
0 (Ω)

}
, (2.14)

is finite-dimensional.

iii) If it holds λj 6= λk then the corresponding eigenfunctions uj and uk are orthogonal with
respect to a(·, ·) and (·, ·)0, i.e., we have a(uj , uk) = 0 and (uj , uk)0 = 0.

iv) The eigenfunctions
(
uj
)∞
j=1

form a basis of H1
0 (Ω) and without loss of generality it can be

assumed that all eigenfunctions are orthonormal with respect to a(·, ·) or (·, ·)0.

Proof: In the proof of Theorem 2.5 it is shown that the bilinear form a(·, ·) is symmetric, contin-
uous and elliptic. Furthermore, bilinear form (·, ·)0 fulfils assumption i) and ii) of Precondition
A.19 since (·, ·)0 is the inner product of H1

0 (Ω). Furthermore, for all in H1
0 (Ω) bounded sequences

(uj)j∈N there exists a subsequence (ujk)k∈N which is Cauchy w.r.t. ‖ · ‖0 = (·, ·)1/2
0 since the

embedding of H1
0 (Ω) in L2(Ω) is compact, and hence assumption iii) of Precondition A.19 is

fulfilled as well. Moreover, H1
0 (Ω) is a infinite-dimensional Banach space. Correspondingly, all

assumptions of Corollary A.23 are satisfied and thus the statement of this theorem is proven.

Theorem 2.6 answers the question of the existence of eigensolutions of the elliptic PDE eigen-
value problem (2.1): If the assumptions of Theorem 2.6 are fulfilled, the weak formulation (2.12)
of the eigenvalue problem possesses a countable family of weak eigensolutions (λj , uj)

∞
j=1. In

the case that the eigenfunction uj ∈ H1
0 (Ω) belongs as well to the space C2(Ω), then the weak

eigensolution (λj , uj) is also a classical solution of the original PDE eigenvalue problem (2.1).

2Eigenvalues are repeated in (2.13) according to their geometric multiplicity (the geometric multiplicity is the
dimension of the corresponding eigenspace).
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Remark 2.7 (Subspace Eigenvalue Problem) Let S be a closed subspace of H1
0 (Ω) and let

the assumptions of Theorem 2.6 be fulfilled. Because of S ⊂ H1
0 (Ω) the bilinear forms a(·, ·) and

(·, ·)0 from (2.12) can be restricted to S × S, and hence the variational problem{
find (λS , uS) ∈ R× S \ {0} such that

a(uS , v) = λS (uS , v)0 ∀ v ∈ S
(2.15)

is well defined. Note that S forms together with the norm of H1
0 (Ω) a Banach space since S is a

closed subspace in H1
0 (Ω). Furthermore, all the properties of the bilinear forms a(·, ·) and (·, ·)0

which have been checked in the proof of Theorem 2.6 hold as well for the bilinear forms restricted
to S × S. As in the proof of Theorem 2.6 we conclude from Corollary A.23 that the variational
eigenvalue problem (2.15) possesses a countable family of eigensolutions(

λSj , u
S
j

)N
j=1
∈ R>0 × S \ {0} with λSj ≤ λSj+1 (2.16)

with positive eigenvalues and where N = dimS. Furthermore, the eigenfunctions (uSj )Nj=1 form
a basis of S which can be assumed, without loss of generality, to be orthonormal with respect to
a(·, ·) or (·, ·)0.

2.2.2. Regularity Results

Another important question of elliptic PDE eigenvalue problems concerns the smoothness of
the eigenfunctions. In particular, one is interested in how the smoothness (in the sense of
Sobolev spaces) of the eigenfunctions (2.13) is linked to the smoothness of the domain and of
the coefficients of the PDE operator. These so-called regularity properties of the eigenfunctions
are important, especially, when the variational problem (2.12) gets discretised, and a priori error
estimates between the exact and the approximated eigensolutions have to be derived (cf. Section
3.2). In the following two relevant regularity results are presented.

Theorem 2.8 (Regularity I) Consider a fixed t ∈ N. Let Ω be a bounded domain with bound-
ary of class Ct,1 and let the partial differential operator L in (2.2) be uniformly elliptic with
c(x) ≥ 0 almost everywhere in Ω. Moreover, it is assumed that the coefficients of the PDE
operator L fulfil

Dαaij ∈ L∞(Ω) for all |α| ≤ t and all i, j = 1, . . . , d,

Dαc ∈ L∞(Ω) for all |α| ≤ t− 1.

Then the results of Theorem 2.6 become valid, and for each weak eigensolution (λ, u) of the
variational problem (2.12) it holds that u ∈ H1+t(Ω). In particular, we have E(λ) ⊂ H1+t(Ω)∩
H1

0 (Ω).

Proof: The results of Theorem 2.6 are valid since the assumptions made here are stronger. The
regularity result u ∈ H1+t(Ω) follows from [37, Theorem 9.1.16 and Theorem 11.1.5].

Theorem 2.8 shows how smoothness properties of the eigenfunctions are linked to the smooth-
ness of the domain and the PDE operator, and how raising the smoothness assumptions on the
data results in the regularity of the eigenfunctions in higher order Sobolev spaces. It can be
even shown that the eigenfunctions of problem (2.12) are analytic if corresponding smoothness
assumptions are made on the data:

21



2. Analysis of Elliptic PDE Eigenvalue Problems

Precondition 2.9 (Analytic Data) Let L be a partial differential operator of the form (2.2)
and Ω ⊂ Rd the underlying domain where the following assumptions are fulfilled:

Assumptions on the Domain

It is assumed that Ω ⊂ Rd is a bounded Lipschitz domain with analytic boundary (cf. Definition
B.10 and Definition B.11).

Assumptions on the PDE operator

L is a PDE operator of the form (2.2) and it is assumed that:

i) The matrix A(x) :=
(
aij(x)

)d
i,j=1

is symmetric for all x ∈ Ω and it holds

0 < amin := inf
x∈Ω

max
ξ∈Rd\{0}

ξTA(x)ξ

ξT ξ
≤ sup

x∈Ω
max

ξ∈Rd\{0}

ξTA(x)ξ

ξT ξ
=: amax <∞.

ii) It holds c(x) ≥ 0 for all x ∈ Ω.

iii) The coefficients of L are infinitely differentiable, i.e., it holds

aij ∈ C∞(Ω) for i, j = 1, . . . , d and c ∈ C∞(Ω).

iv) There exist constants CA, Cc, γA, γc ∈ R>0 such that for all n ∈ N0 it holds

|A|n,∞ :=

∥∥∥∥ { ∑
|α|=n

n!

α!
|DαA|2

}1/2 ∥∥∥∥
L∞(Ω)

≤ CA n! (γA)n

|c|n,∞ :=

∥∥∥∥ { ∑
|α|=n

n!

α!
|Dαc|2

}1/2 ∥∥∥∥
L∞(Ω)

≤ Cc n! (γc)
n

where |DαA(x)| is defined as the spectral norm of the matrix DαA(x) :=
(
Dαaij(x)

)d
i,j=1

.

In particular, this means that the PDE operator L is uniformly elliptic and that its coefficient
functions are analytic.

The requirements of Precondition 2.9 are fulfilled, for example, when Ω ⊂ Rd is a bounded
domain with a boundary which is a graph of a polynomial function, and when L is a PDE
operator of the form (2.2) with polynomial coefficients functions, where A(x) := (aij(x))di,j=1 is
symmetric and c(x) ≥ 0 for all x ∈ Ω, and where the eigenvalues of A(x) are uniformly bounded
from above and below by positive constants.

Theorem 2.10 (Regularity II) Let the domain Ω and the partial differential operator L fulfil
Precondition 2.9. Then the results of Theorem 2.6 become valid, and any eigenfunction of the
variational eigenvalue problem (2.12) is analytic. In particular, we have E(λ) ⊂ ∩H1

0 (Ω) and
each weak eigensolution of (2.12) is also a classical solution of the PDE eigenvalue problem
(2.1).

Proof: Note that from assumption iv) of Precondition 2.9 it follows that c ∈ L∞(Ω) and
aij ∈ L∞(Ω), and hence, together with the other assumptions of this theorem, it follows that
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the results of Theorem 2.6 become valid. Furthermore, in [41] and [64, Theorem 3.1] it is proven
that the eigenfunctions of (2.12) are analytic. More precisely, in [64, Theorem 3.1] it is shown
that E(λ) ⊂ Hk(Ω) for all k ∈ N. From Sobolev’s embedding theorem (cf. Theorem B.22)
it follows that E(λ) ⊂ Ck(Ω) for all k ∈ N0. Since it additionally holds E(λ) ⊂ H1

0 (Ω) we
conclude that E(λ) ⊂ C∞(Ω) ∩H1

0 (Ω). Furthermore, because of E(λ) ⊂ Ck(Ω) for all k ∈ N0

it follows that E(λ) ⊂ C2(Ω) ∩ C0(Ω), i.e., each weak eigensolution (λ, u) of problem (2.12) is
also a classical solution of (2.1).

To get a better understanding of the presented results for elliptic PDE eigenvalue problems,
in the next section an example is discussed.

2.3. Laplace Eigenvalue Problem on the Unit Cube

We consider the Laplace eigenvalue problem defined on the d-dimensional unit cube{
−∆u = λu in Ω = (0, 1)d,

u = 0 on ∂Ω.
(2.17)

The weak formulation of this eigenvalue problem is given by find (λ, u) ∈ R×H1
0 (Ω) \ {0} such that∫

Ω∇u
T∇v dx = λ

∫
Ω uv dx ∀ v ∈ H1

0 (Ω).
(2.18)

According to Theorem 2.6 problem (2.18) has a countable family of eigensolutions (2.13) with
positive eigenvalues, where the corresponding eigenfunctions form a basis of H1

0 (Ω).
Due to the rectangular structure of the domain Ω and the simple form of the PDE operator L,

eigenvalue problem (2.17) is one of the rare examples where the eigensolutions can be computed
analytically. This is done as follows: First we determine the eigensolutions in the one-dimensional
case. For this purpose, we consider the homogeneous linear differential equation −u′′(x1) −
cu(x1) = 0 in x1 ∈ (0, 1) with boundary conditions u(0) = 0 = u(1) where c > 0 is some
constant. All solutions of this problem are given by

u(x1) =

{
0 if c /∈

{
α2

1π
2 : α1 ∈ N

}
,

a sin(
√
cx1) if c ∈

{
α2

1π
2 : α1 ∈ N

} for x1 ∈ [0, 1]

where a ∈ R is some arbitrary constant. It follows that for d = 1 all eigenfunctions of the PDE
problem (2.17) are given by {

a sin(α1πx1) : α1 ∈ N, a ∈ R \ {0}
}
. (2.19)

Since the domain Ω = (0, 1) and the PDE operator L = −∆ fulfil the regularity assumptions3

of Theorem 2.10 we conclude that each weak eigensolution (λ, u) of problem (2.18) is also a
classical eigensolution of (2.17) with u ∈ C∞(Ω) ∩ H1

0 (Ω), and hence all eigenfunctions of the
variational problem (2.18) are given as well by (2.19). From Theorem 2.6 iii) we obtain that

3Note that the regularity assumptions of Theorem 2.10 on the boundary ∂Ω are only fulfilled for problem (2.18)
when d = 1, since we only have ∂Ω ∈ C0,1.
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2. Analysis of Elliptic PDE Eigenvalue Problems

the eigenfunctions
{

sin(α1πx1) : α1 ∈ N
}

are orthogonal on H1
0 (Ω) with Ω = (0, 1), and

from Theorem 2.6 iv) we conclude that these orthogonal eigenfunctions form a basis of H1
0 (Ω).

From [25, Chapter II, Section 1] it follows that the d-fold tensor product of the one-dimensional
orthogonal basis functions forms an orthogonal basis of H1

0 (Ω) with Ω = (0, 1)d, i.e., the function
system

{
uα(x) : α ∈ Nd

}
, with multi-index α = (α1, . . . , αd) and

uα(x) :=

d∏
i=1

sin(αiπxi) for x = (x1, . . . , xd)
T ∈ [0, 1]d, (2.20)

is orthogonal and complete in H1
0 (Ω). An easy calculation shows that for all α ∈ Nd the functions

uα(x) are eigenfunctions of the PDE problem (2.17) with the associated eigenvalues

λα := π2
d∑
i=1

α2
i , (2.21)

and because of uα ∈ H1
0 (Ω) it follows that (λα, uα) is also an eigensolution of (2.18). In

particular, all eigensolutions of (2.18) are described by (λα, uα)α∈Nd . The reason is as follows:
Assume that there exists an additional eigenfunction u ∈ H1

0 (Ω) of problem (2.18) which is
linear independent to the eigenfunctions uα with α ∈ Nd. Then we can assume, without loss of
generality, that u is orthogonal in H1

0 (Ω) to uα for all α ∈ Nd. However, this is in contradiction
to the completeness of the function system (uα)α∈Nd .

Note that it holds uα ∈ C∞(Ω) ∩H1
0 (Ω), and that the eigenvalues λα tend to infinity (as it

is claimed by Theorem 2.6) if αi → ∞ for some i ∈ {1, . . . , d}. Furthermore, we observe that
for d > 1 the dimension of the eigenspaces E(λα) can be larger than one. For example, if in
the three-dimensional case the indices α1, α2, α3 ∈ N are pairwise different, then there exist
at least 6 linear independent eigenfunctions (e.g., u(α1,α2,α3), u(α1,α3,α2), etc.) which share the
same eigenvalue λ = π2(α2

1 + α2
2 + α2

3).
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3. Solving Elliptic PDE Eigenvalue Problems

In contrast to the example given in (2.18), in general the variational eigenvalue problem (2.12)
cannot be solved analytically, it has to be solved numerically. For this purpose the Ritz-Galerkin
discretisation is introduced: In the Ritz-Galerkin discretisation the variational eigenvalue prob-
lem (2.12) gets discretised by the use of some finite dimensional subspace, and an algebraic
eigenvalue problem is obtained. Depending on the properties of the used subspace, the dis-
crete eigenpairs of the algebraic problem are approximating the sought eigensolutions of the
variational problem (2.12).

The remainder of this chapter is organised as follows: In Section 3.1 the Ritz-Galerkin discreti-
sation is described, and in Section 3.2 corresponding approximation properties are discussed and
general error estimates are presented. In Section 3.3 the well-known finite element spaces are
recalled, which are based on a triangulation of the domain Ω with some underlying mesh width
h > 0 and which consist of piecewise polynomial functions of degree p ∈ N. These finite element
spaces are very well suited, and widely used in practice, as a concrete choice for the underlying
subspace of the Ritz-Galerkin discretisation. The Ritz-Galerkin discretisation combined with
the finite element space is called finite element discretisation, and in Section 3.4 corresponding
a priori error estimates for the eigenvalue and eigenfunction approximation are presented which
are explicit in the underlying discretisation parameters h and p. Furthermore, the important
issue is discussed how many eigenvalues and eigenfunctions can be well approximated by a given
finite element space.

3.1. Ritz-Galerkin Discretisation of the Eigenvalue Problem

The basic idea of the Ritz-Galerkin discretisation is to replace the infinite-dimensional space
H1

0 (Ω) of the variational problem (2.12) by some suitable finite-dimensional subspace Vh with

Vh ⊂ H1
0 (Ω) and Nh := dimVh <∞.

The index h > 0 used for the subspace Vh will get relevant in the next section where h is used to
indicate a family of finite-dimensional subspaces (Vh)h>0 which are approximating the underlying
Sobolev space H1

0 (Ω) for h→ 0, and where h will refer to some mesh width parameter.

Since it holds Vh ⊂ H1
0 (Ω) the bilinear forms a(·, ·) and (·, ·)0 from (2.12) can be restricted to

Vh × Vh, and hence the finite-dimensional variational problem{
find (λ(h), u(h)) ∈ R× Vh \ {0} such that

a(u(h), v) = λ(h) (u(h), v)0 ∀ v ∈ Vh
(3.1)

is well defined. The transition of the variational eigenvalue problem (2.12) to the eigenvalue
problem (3.1) is called Ritz-Galerkin discretisation or short Galerkin discretisation. In literature
sometimes problem (3.1) itself is also referred to as the Ritz-Galerkin discretisation of problem
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3. Solving Elliptic PDE Eigenvalue Problems

(2.12). Furthermore, the Galerkin discretisation is called conforming since the space Vh is a
subset of H1

0 (Ω).
Since the subspace Vh ⊂ H1

0 (Ω) is finite-dimensional, it follows that Vh is closed, and we
conclude from Remark 2.7 that under the assumptions of Theorem 2.6 the discrete variational
eigenvalue problem (3.1) has Nh eigensolutions of the form(

λ
(h)
j , u

(h)
j

)Nh
j=1
∈ R>0 × Vh \ {0} with λ

(h)
j ≤ λ

(h)
j+1 (3.2)

where all eigenvalues are positive. The eigensolutions (3.2) are called Ritz-Galerkin eigenso-
lutions (associated to subspace Vh) of eigenvalue problem (2.12). In this context, we refer to

(3.1) and (λ
(h)
j , u

(h)
j ) as the discrete problem and the discrete eigensolution, and refer to (2.12)

and (λj , uj) as the continuous problem and the continuous eigensolution. Furthermore, the

eigenspaces for the discrete eigenvalues λ
(h)
j are defined by

Eh
(
λ

(h)
j

)
:= span

{
u ∈ Vh : a(u, v) = λ

(h)
j (u, v)0 ∀ v ∈ Vh

}
.

For the actual computation of the discrete eigensolutions a basis of the subspace Vh is needed

which shall be given in the following by
(
ϕ

(h)
i

)Nh
i=1

. Using this basis each v(h) ∈ Vh can be

uniquely represented by an suitable coefficient vector x(h) ∈ RNh via

v(h) =

Nh∑
i=1

x
(h)
i ϕ

(h)
i and x(h) := (x

(h)
1 , . . . , x

(h)
Nh

)T ∈ RNh .

The above representation leads to the so-called prolongation operator

P : RNh → Vh ⊂ H1
0 (Ω) with x(h) 7→

Nh∑
i=1

x
(h)
i ϕ

(h)
i (3.3)

which is bijective. Representing u(h) in (3.1) by its coefficient vector x(h) — i.e., it holds
u(h) = Px(h) — we can reformulate the Ritz-Galerkin discretisation (3.1) as find (λ(h), x(h)) ∈ R× RNh \ {0} such that∑Nh

j=1 a(ϕ
(h)
j , ϕ

(h)
i )x

(h)
j = λ(h)

∑Nh
j=1(ϕ

(h)
j , ϕ

(h)
i )0 x

(h)
j ∀ i = 1, . . . , Nh.

This finally leads to the generalised algebraic eigenvalue problem{
find (λ(h), x(h)) ∈ R× RNh \ {0} with

K(h) x(h) = λ(h)M (h) x(h)
(3.4)

with the symmetric and positive definite matrices

K(h) :=
(
a(ϕ

(h)
j , ϕ

(h)
i )
)Nh
i,j=1
∈ RNh×Nh and M (h) :=

(
(ϕ

(h)
j , ϕ

(h)
i )0

)Nh
i,j=1
∈ RNh×Nh . (3.5)

The matrix K(h) is called system matrix or stiffness matrix, and M (h) is called mass matrix.
The eigenvalue problems (3.4) and (3.1) are equivalent in the sense that(

λ(h), x(h)
)

is an eigenpair of (3.4)⇐⇒
(
λ(h),Px(h)

)
is an eigenpair of (3.1). (3.6)
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3.2. Approximation Properties of the Ritz-Galerkin Discretisation

The aim of the Ritz-Galerkin discretisation is to approximate the sought eigensolutions (λ, u)
of the continuous problem (2.12) by the eigensolutions (λ(h), u(h)) of the discrete problem (3.1),
i.e., that the corresponding discretisation errors λ − λ(h) and u − u(h) of the eigenvalues and
eigenfunctions shall tend to zero. For this purpose, a family of finite-dimensional subspaces
(Vh)h>0 ⊂ H1

0 (Ω) is needed which is approximating the underlying Sobolev space H1
0 (Ω) in the

sense that

lim
h→0

inf
v(h)∈Vh

‖u− v(h)‖1 = 0 for all u ∈ H1
0 (Ω). (3.7)

In the following basic approximation properties of the Ritz-Galerkin discretisation are presented,
and it is discussed under which assumptions the discrete eigenvalues and eigenfunctions of prob-
lem (3.1) converge to its continuous counterparts of problem (2.12).

Remark 3.1 The notation (Vh)h>0 which is used to indicate a family of subspaces is an abbre-
viation and has to be interpreted as follows: We consider a family of subspaces (Vh)h∈U where
U is some arbitrary subset of (0,∞) where 0 is an accumulation point of U .

The first observation which can be made in the analysis of the Ritz-Galerkin discretisation
is that the infinitely many eigensolutions of the continuous problem (2.12) are faced only with
finitely many eigensolutions of the discrete problem (3.1). Correspondingly a uniform approxi-
mation of all eigensolutions (λ, u) of the continuous problem by eigensolutions (λ(h), u(h)) of the
discrete problem is not possible. It is only possible to characterise a fixed eigenvalue λ and a
fixed eigenfunction u of (2.12) as an accumulation point of discrete eigenvalues {λ(h) : h > 0}
and discrete eigenfunctions {u(h) : h > 0}, and to estimate the corresponding approximation
errors. However, before corresponding convergence results are discussed in detail, certain varia-
tional principles are presented which allow to characterise the eigenvalues and eigenfunctions of
the continuous and discrete problem as various extrema of the Rayleigh quotient

R(u) := a(u, u) / (u, u)0 with u ∈ H1
0 (Ω) \ {0}.

Throughout the whole section we will assume that the eigensolutions of the continuous problem
(2.12) and of the discrete problem (3.1) are ordered as in (2.13) and (3.2) by the size and the
geometric multiplicity of the eigenvalues, i.e., it holds

(
λj , uj

)∞
j=1
∈ R>0 ×H1

0 (Ω) \ {0} with λj ≤ λj+1 for j ∈ N,(
λ

(h)
j , u

(h)
j

)Nh
j=1
∈ R>0 × Vh \ {0} with λ

(h)
j ≤ λ

(h)
j+1 for j = 1, . . . , Nh − 1.

Arranging the eigensolutions in this order enables the following well-known variational principles
which can be found for example in [5] or [7].
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3. Solving Elliptic PDE Eigenvalue Problems

Minimum-Maximum Principle:

λj = min
Hj⊂H1

0 (Ω)
with dimHj=j

max
u∈Hj\{0}

R(u) = max
u∈span{u1,...,uj}\{0}

R(u) for j = 1, 2, 3, . . . ,

λ
(h)
j = min

H
(h)
j ⊂Vh

with dimH
(h)
j =j

max
u∈H(h)

j \{0}
R(u) = max

u∈span{u(h)
1 ,...,u

(h)
j }\{0}

R(u) for j = 1, . . . , Nh.

Minimum Principle:

If it is additionally assumed (without loss of generality) that the eigenfunctions of the continuous
and discrete problem are chosen orthonormal with respect to (·, ·)0, i.e., we have

a(ui, uj) = λj(ui, uj)0 =λjδij for all i, j ∈ N

a
(
u

(h)
i , u

(h)
j

)
= λ

(h)
j

(
u

(h)
i , u

(h)
j

)
0

=λ
(h)
j δij for all i, j = 1, . . . , Nh,

then it holds

λ1 = min
u∈H1

0 (Ω)\{0}
R(u) = R(u1), λj = min

u∈H1
0 (Ω)\{0},

a(u,ui)=0
for i=1,...,j−1

R(u) = R(uj) for j = 2, 3, 4, . . . ,

λ
(h)
1 = min

u∈Vh\{0}
R(u) = R

(
u

(h)
1

)
, λ

(h)
j = min

u∈Vh\{0},
a(u,u

(h)
i )=0

for i=1,...,j−1

R(u) = R
(
u

(h)
j

)
for j = 2, . . . , Nh.

From the Minimum-Maximum principle directly follows that

λj ≤ λ(h)
j for j = 1, . . . , Nh.

Furthermore, the Minimum-Maximum principle helps to prove the following convergence result
of the Ritz-Galerkin discretisation.

Theorem 3.2 (Qualitative Convergence Results) Let the assumptions of Theorem 2.6 be
valid and let the family of finite-dimensional subspaces (Vh)h>0 ⊂ H1

0 (Ω) fulfil approximation
property (3.7). Then it holds:

i) The discrete eigenvalues are approximating the continuous ones, i.e., it holds

λ
(h)
j

h→0−−−−→ λj for all j ∈ N.

ii) Consider for some fixed j ∈ N a sequence of discrete eigenfunctions
(
u

(hi)
j

)
i∈N with u

(hi)
j ∈

Ehi
(
λ

(hi)
j

)
and ‖u(hi)

j ‖1 = 1 where hi
i→∞−−−−→ 0. Then there exists a subsequence

(
u

(hik )

j

)
k∈N

which converges in H1
0 (Ω) to an eigenfunction ũj ∈ E(λj) and we have

‖ũj − u
(hik )

j ‖1
k→∞−−−−−→ 0 and ‖ũj‖1 = 1.
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Proof: The result for the convergence of the eigenvalues follows directly from the Minimum-
Maximum principle, the approximation property (3.7) of Vh, and the continuity of the Rayleigh
quotient R(·). The result for the convergence of the eigenfunctions is a combination of [37,
Theorem 11.2.11] and the convergence result for the eigenvalues described in i).

In the following the convergence rate of the eigenvalue and eigenfunction approximation is

discussed. Note that dimE(λj) = dimEh(λ
(h)
j ) does not necessarily need to hold. In the case

that dimE(λj) > 1 it can happen that the multiple eigenvalue λj gets approximated by several
discrete eigenvalues which differ from each other. However, if the eigenvalue λj is simple (i.e.,

it holds dimE(λj) = 1) then the eigenvalues λ
(h)
j are the only discrete eigenvalues that are

converging to λj for h → 0 and it holds dimEh(λ
(h)
j ) = 1 when h is sufficiently small. This

issue eases the error analysis of simple eigenvalues and typically leads to better error estimates
than when λj is a multiple eigenvalue. For this reason, in literature the error analysis is often
restricted to the case of simple eigenvalues λj which will be done here as well. For error estimates
associated to multiple eigenvalues it is referred, for example, to [7].

Theorem 3.3 (Quantitative Convergence Results) Let the assumptions of Theorem 2.6
be valid and let the family of finite-dimensional subspaces (Vh)h>0 ⊂ H1

0 (Ω) fulfil approximation
property (3.7). Furthermore, let (λj , uj) be a continuous eigensolution with dimE(λj) = 1 and
‖uj‖1 = 1 with some fixed j ∈ N. Then there exists a constant C > 0 and discrete eigenfunctions

ũ
(h)
j ∈ Eh(λ

(h)
j ) such that for all h > 0 sufficiently small it holds:

i) |λj − λ(h)
j | ≤ C inf

v(h)∈Vh
‖uj − v(h)‖21,

ii) ‖uj − ũ(h)
j ‖1 ≤ C inf

v(h)∈Vh
‖uj − v(h)‖1.

Proof: The error estimates follow directly from [37, Theorem 11.2.19 and Theorem 11.2.20]
where it is noted that e∗ in [37, Theorem 11.2.19] has been chosen to e∗ := e/‖e‖20. Further-

more, it is noted that the eigenvalues λ
(h)
j are the only discrete eigenvalues that converge to λj

for h→∞ since dimE(λj) = 1, and that according to Theorem A.16 the index of λj is equal to
1. Correspondingly all assumptions of [37, Theorem 11.2.19 and Theorem 11.2.20] are fulfilled.

As it can be seen in Theorem 3.3 the errors of the eigenvalue and the eigenfunction approx-
imation depend both on infv(h)∈Vh ‖uj − v

(h)‖1, i.e., on the approximability of the continuous
eigenfunction uj by the underlying subspace Vh of the Ritz-Galerkin discretisation. In practice
typically the finite element spaces are used as a concrete choice for Vh, where the discretisation
parameter h refers to the mesh width of the corresponding triangulation (cf. Section 3.3). A
priori error estimates of the Ritz-Galerkin discretisation, which are explicit in the underlying
mesh width h of the used finite element space Vh, can then easily be derived by combining ap-
propriate regularity results of the continuous eigenfunctions (which describe their smoothness)
with corresponding approximation properties of the finite element space. For example, assuming
that Vh fulfils the approximation property

inf
v(h)∈Vh

‖u− v(h)‖1 ≤ C h ‖u‖H2(Ω) for all u ∈ H2(Ω) (3.8)
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with some constant C > 0 independent of h (which is valid, e.g., for the finite element space
Vh = X1

h,0 from Theorem 3.11), and combining this with the regularity result of Theorem 2.8
one obtains from Theorem 3.3 the following error estimates:

Corollary 3.4 Let the assumptions of Theorem 2.8 be valid for t = 1 and let the family of
finite-dimensional subspaces (Vh)h>0 ⊂ H1

0 (Ω) fulfil approximation property (3.8). Furthermore,
let (λj , uj) be a continuous eigensolution with dimE(λj) = 1 and ‖uj‖1 = 1 with some fixed

j ∈ N. Then there exists a constant C > 0 and discrete eigenfunctions ũ
(h)
j ∈ Eh(λ

(h)
j ) such that

for all h > 0 sufficiently small it holds

|λj − λ(h)
j | ≤ C h2 and ‖uj − ũ(h)

j ‖1 ≤ C h.

For the error estimate of uj − u(h)
j better results are obtained in the L2(Ω)-norm:

Theorem 3.5 Let the same assumptions as in Corollary 3.4 be fulfilled. Then there exists a

constant C > 0 and discrete eigenfunctions ũ
(h)
j ∈ Eh(λ

(h)
j ) such that for all h > 0 sufficiently

small it holds

‖uj − ũ(h)
j ‖0 ≤ C h2.

Proof: The error estimate follows directly from [37, Theorem 11.2.22]. Note that the eigenval-

ues λ
(h)
j are the only discrete eigenvalues that converge to λj for h → ∞ since dimE(λj) = 1,

and that according to Theorem A.16 the index of λj is equal to 1. Furthermore, the needed
H2-regularity of the bilinear form a(·, ·) follows from [37, Theorem 9.1.16], and E(λj) ⊂ H2(Ω)
follows from Theorem 2.8. Correspondingly, all assumptions which are made in [37, Theorem
11.2.22] are fulfilled.

Note that the constant C which is involved in the error estimates of Theorem 3.3 – Theorem 3.5
in general depends on each individual eigenvalue λj . Furthermore, the discretisation parameter

h has to be sufficiently small in order that the corresponding convergence rates for λ
(h)
j and u

(h)
j

become valid. This means that in practice these convergence rates get only visible when h ≤ hmax

where hmax > 0 is fixed maximal mesh width which depends on the size of the corresponding
eigenvalue λj and its spectral separation. This issue is discussed in detail in Section 3.4 for
the well-known finite element spaces which are typically used in practice as concrete choice for
the subspace Vh. But first of all, the finite element spaces are briefly recalled in the following
section.

3.3. Introduction of Finite Element Spaces

To apply the Ritz-Galerkin discretisation and to compute the discrete eigensolutions (λ(h), x(h))
[respectively the eigensolutions (λ(h), u(h))] of the algebraic eigenvalue problem (K(h),M (h))

from (3.4), a basis
(
ϕ

(h)
i

)Nh
i=1

of the underlying subspace Vh is needed. Using an arbitrary basis,

however, might be disadvantageous, since in that case the stiffness matrix K(h) ∈ RNh×Nh and
the mass matrix M (h) ∈ RNh×Nh from (3.5) are possibly dense, i.e., that for the most of the
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Ω

Figure 3.1.: Triangulation of a polygonal domain (middle): admissible (left), non-admissible
(right) with so-called hanging nodes (i.e., vertices of triangles lay on edges of other triangles).

indices i, j = 1, . . . , N (h) the matrix entries

(K(h))ij = a(ϕ
(h)
j , ϕ

(h)
i ) =

∫
Ω

(∇ϕ(h)
j )T A (∇ϕ(h)

i ) + c ϕ
(h)
j ϕ

(h)
i dx, (3.9)

(M (h))ij = (ϕ
(h)
j , ϕ

(h)
i )0 =

∫
Ω
ϕ

(h)
j ϕ

(h)
i dx (3.10)

are different to zero. A dense matrix structure is costly: For example, the matrix-vector multi-
plication K(h)x(h) results in costs of the order O(N2) with N := Nh. Correspondingly, if N (h)

is getting large the Ritz-Galerkin discretisation with a general basis is getting unfeasible, and
hence a basis is needed such that K(h), M (h) become sparse. The following observation shows
how the basis functions have to be chosen:

Lemma 3.6 Denote Ii := supp(ϕ
(h)
i ) \ ∂supp(ϕ

(h)
i ) the interior of the basis function ϕ

(h)
i then

the matrix entries K
(h)
ij and M

(h)
ij are zero if it holds Ii ∩ Ij = ∅.

Proof: Since the integration in (3.9) and (3.10) can be reduced to Ii ∩ Ij the matrix entries

K
(h)
ij and M

(h)
ij become zero in the case that Ii ∩ Ij = ∅.

The finite element spaces, which are discussed in the following, are based on the observation
made in Lemma 3.6. The finite element spaces are spanned by basis functions with a small local
support and are in general very well suited, and widely used in practice, for the Ritz-Galerkin
discretisation of scalar elliptic partial differential equations, and hence for the discretisation
of eigenvalue problem (2.12). The Ritz-Galerkin discretisation using finite element spaces for
Vh is simply called finite element method (short FEM) or finite element discretisation. In the
following main principles of finite element spaces are summarised and approximation properties
are presented. For ease of representation the discussion is restricted to the very important class
of simplicial finite element spaces. More information on finite elements can be found, e.g., in
[23], [24] and [37].

3.3.1. Simplicial Finite Elements

The construction of finite element spaces and its basis functions starts with the subdivision of
the domain Ω into a finite number of small subsets Ti ⊂ Ω for i = 1, . . . , t with some t ∈ N.
These small subsets Ti are called finite elements and are the foundation of the corresponding
basis functions respectively their supports. The subdivision of Ω is called triangulation1 and is
denoted by T = {T1, . . . , Tt}. In the following it is assumed that the triangulation consists of
simplices with the following properties.

1The term triangulation is used independently of the underlying spatial dimension d and independently of the
concrete shape of Ti, i.e., also when in the case of d = 3 cubes are used for Ti ⊂ Ω.
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3. Solving Elliptic PDE Eigenvalue Problems

Definition 3.7 (Admissible Triangulation) A triangulation T = {T1, . . . Tt} of the domain
Ω ⊂ Rd is called admissible if it holds:

i) Each Ti ⊂ Rd is an open d-simplex (i.e., an interval, a triangle or a tetrahedron for d = 1, 2
or 3),

ii) Ω =
⋃t
i=1 T i with Ti ∩ Tj = ∅ for i 6= j,

iii) Every vertex, edge, face of T i is either a subset of ∂Ω or a vertex, edge, face of another T j
with i 6= j.

According to Definition 3.7 an admissible triangulation is only possible when Ω ⊂ Rd is a
polytope2. For the sake of simplicity, we assume in the following that Ω has such a shape and
that d ≤ 3.

3.3.2. Simplicial Finite Element Spaces

In order to construct a family of finite element spaces (Vh)h>0 [cf. Remark 3.1] which is ap-
proximating the Sobolev space H1

0 (Ω) [as needed in (3.7) for the Ritz-Galerkin discretisation]
a family of admissible triangulations {Th}h>0 is needed. The discretisation parameter h of the
triangulations Th is chosen in the following such that h equals the value h(Th) where

h(Th) := max
{
hT : T ∈ Th

}
and hT := diam(T ),

i.e., the parameter h explicitly refers to the mesh width of Th. The finite element spaces are
defined as follows:

Definition 3.8 (Finite Element Space) Let Th be an admissible triangulation of Ω consist-
ing only of d-simplices (cf. Definition 3.7). Then the associated simplicial finite element spaces
are defined by

X0
h := X0

Th :=
{
v ∈ L2(Ω) : v|T ∈ P0 for all T ∈ Th

}
,

Xph := XpTh :=
{
v ∈ C0(Ω) : v|T ∈ Pp for all T ∈ Th

}
for p ≥ 1,

where Pp is the space of polynomials in Rd of total degree p ∈ N0 which is consisting of all
functions v : Rd → R of the form

v(x) =
∑
|α|≤p

cα x
α1
1 . . . xαdd for x ∈ Rd with α ∈ Nd0 and cα ∈ R.

Hence, the spaces Xph consist of piecewise polynomials of total degree p ∈ N0 which are continuous
for p ≥ 1. The relation between Xph and Sobolev space H1(Ω) is as follows:

Theorem 3.9 For p ≥ 1 it holds Xph ⊂ H
1(Ω).

2A polytope is a bounded set of points in Rd that has flat sides, i.e., for d = 2 it is a polygon and for d = 3 it is
a polyhedron.

32



3.3. Introduction of Finite Element Spaces

Proof: This result follows directly from [24, Theorem 5.1].

For the Ritz-Galerkin discretisation of eigenvalue problem (2.12) a finite-dimensional subspace
Vh ⊂ H1

0 (Ω) is required. Theorem 3.9 guarantees the inclusion Xph ⊂ H
1(Ω) for p ≥ 1, however, a

subspace Vh is needed consisting of functions that are zero on ∂Ω. For this purpose the following
finite element spaces are introduced

Xph,0 :=
{
v ∈ Xph : v|∂Ω = 0

}
= Xph ∩H

1
0 (Ω) for p ≥ 1. (3.11)

3.3.3. Approximation Properties of Finite Element Spaces

Using Vh = Xph,0 for the Ritz-Galerkin discretisation of eigenvalue problem (2.12), one is in-
terested if approximation property (3.7) is fulfilled, and motivated by Theorem 3.3, how well
the eigenfunctions u ∈ H1

0 (Ω) of the continuous problem (2.12) can be approximated by the
finite element space Xph,0. The approximability of u depends on its smoothness which can be
guaranteed, e.g., by the regularity result of Theorem 2.8: Depending on certain smoothness
assumptions on the data it holds u ∈ Hk(Ω) for some suitable k ≥ 2. Thus, one is interested in
error estimates between the spaces Xph,0 and Hk(Ω), which are typically derived by constructing

an interpolation operator Iph : C0(Ω)→ Xph and by estimating the approximation error of v−Iphv
for v ∈ C0(Ω) (see, e.g., [24]). Because of the Sobolev’s embedding theorem (Theorem B.22) it
holds Hk(Ω) ⊂ C0(Ω) for k ≥ 2 and d ≤ 3, and hence the error estimates of v−Iphv are also valid
for v ∈ Hk(Ω). The described approach results in error estimates which are summarised in The-
orem 3.11, however, an additional assumption has to be made on the triangulations associated
to the finite element spaces:

Definition 3.10 (Regular Family of Triangulations) A family of admissible triangulations
{Th}h>0 is called regular ([24, Section 17]) if it holds:

i) There exists a constant σ > 0 such that

hT
ρT
≤ σ for all T ∈ Th and all Th ∈ {Th}h>0

where ρT := sup{diam(B) : B is a ball with B ⊂ T}.

ii) It holds inf{h(T ) : T ∈ {Th}h>0} = 0, i.e., the mesh width of the triangulations approaches
zero.

Theorem 3.11 (Approximation Properties) Let Ω ⊂ Rd be a bounded polytopal domain
and d ≤ 3. Furthermore, let {Th}h>0 be a regular family of triangulations of Ω consisting only
of d-simplices with h = h(Th), and let Xph and Xph,0 be the associated finite element spaces with
p ≥ 1. Then there exists a constant C > 0 independent of h such that for t ∈ {0, 1} and k ∈ N
with 2 ≤ k ≤ p+ 1 it holds

inf
v(h)∈Xph

‖u− v(h)‖t ≤ Chk−t|u|k for all u ∈ Hk(Ω)

inf
v(h)∈Xph,0

‖u− v(h)‖t ≤ Chk−t|u|k for all u ∈ Hk(Ω) ∩H1
0 (Ω).

Proof: The result for k = p+ 1 follows directly from [24, Theorem 17.1] and by using Sobolev’s
embedding theorem. The results for k < p+ 1 follow from the error estimate associated to the
polynomial degree p̃ := k − 1 and using the relation Xp̃h ⊂ Xph.
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3. Solving Elliptic PDE Eigenvalue Problems

Figure 3.2.: Triangulation of the unit square with 9 inner nodal points that are associated to

the finite element space X1
h,0. Furthermore, the nodal basis function ϕ

(h)
i ∈ Xph,0, associated to

the nodal point in the centre, has been illustrated (right) and its support (left).

3.3.4. The Nodal Basis of the Finite Element Space

Last but not least a basis
(
ϕ

(h)
i

)Nh
i=1

of Xph,0 is needed such that the stiffness matrix K(h) and the

mass matrix M (h) become sparse. Such a basis is derived as follows: Each triangulation Th of Ω is

associated with certain nodal points b̃
(h)
i ∈ Ω with i = 1, . . . , Ñh such that each function v(h) ∈ Xph

is uniquely described by the point values v(h)(b̃
(h)
i ) for i = 1, . . . , Ñh. These nodal points are

allocated to the simplices T ∈ Th and their number Ñh depends on the polynomial degree p ≥ 1
and the spatial dimension. Due to the continuity condition Xph ⊂ C0(Ω) for p ≥ 1 the nodal
points have to coincide with the vertices of the simplices T (for p ≥ 1), and with certain edge
points of T (for p ≥ 2), and possibly with certain inner points of T (see, e.g., [24, Section 6] for

details). Using these nodal points the so-called nodal basis (ϕ̃
(h)
i )Ñhi=1 of Xph can be defined which

is uniquely described by these functions ϕ̃
(h)
i ∈ Xph satisfying ϕ̃

(h)
i (b̃

(h)
j ) = δij for i, j = 1, . . . , Ñh.

Considering only the inner points{
b
(h)
i : i = 1, . . . , Nh

}
:=

⋃
i=1,...,Ñh

{
b̃
(h)
i : b̃

(h)
i /∈ ∂Ω

}

that are not element of the boundary ∂Ω, one defines the nodal basis (ϕ
(h)
i )Nhi=1 of Xph,0 which is

uniquely described by these functions ϕ
(h)
i ∈ Xph,0 satisfying ϕ

(h)
i (b

(h)
j ) = δij for i, j = 1, . . . , Nh.

By construction the basis functions (ϕ
(h)
i )Nhi=1 have a small local support (cf. Figure 3.2) where

supp(ϕ
(h)
i ) ⊂

⋃
T∈Th

with b
(h)
i ∈T

T ,

which results in sparse matrices K(h) and M (h) (cf. Lemma 3.6).

3.3.5. Isoparametric Finite Elements

So far it has been assumed that the domain Ω ⊂ Rd is a polytope. However, finite element spaces
are not restricted to such domains and can be extended to domains with a curved boundary. A
well suited approach for this purpose are the so-called isoparametric finite elements (see, e.g.,
[23, 24, 37]) which are briefly described in the following.

Isoparametric finite elements generalise simplicial finite elements and the associated definition
of an admissible triangulation T as follows: Instead of assuming in Definition 3.7 that each finite
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FT1 FT2

T1 T̂
T2

Figure 3.3.: Mapping of the reference element T̂ (unit simplex) to the simplex finite element
T1 and to the isoparametric finite element T2 where FT1 is affine and FT2 not.

element T ∈ T is a d-simplex, it is only required that T is an image of the d-dimensional unit
simplex T̂ (so-called reference element). In particular it has to hold that

i) each finite element T ∈ T is described by an diffeomorphism FT : T̂ → T ,

ii) element maps of elements that share an edge or a face (or a higher-dimensional simplex at
their surface) possess the same parametrization on that edge or face (or a higher-dimensional
simplex).

If the element maps FT are affine, then the simplicial finite elements from Definition 3.7
are obtained, otherwise one obtains elements with a curved boundary (cf. Figure 3.3). Using
the isoparametric finite elements the definition of the finite element space Xph,0 is generalised:
Let Th be an admissible triangulation of Ω consisting of isoparametric finite elements then the
associated finite element space Xph,0 is defined by

Xph,0 :=
{
v ∈ C0(Ω) : v|T ◦ FT ∈ Pp for all T ∈ Th

}
∩H1

0 (Ω) for p ≥ 1. (3.12)

When certain assumptions are made on the element maps FT of a family of admissible isopara-
metric triangulations {Th}h>0, then the approximation properties presented in Theorem 3.11 can
be retained for the finite element space Xph,0 from (3.12). These assumptions basically generalise
the definition of a regular triangulation family for polytopal domains (cf. Definition 3.10) to
domains with curved boundaries with isoparametric finite elements, and in literature exist dif-
ferent approaches for doing this (see, e.g., [37, Section 8.6] and [24, Chapter VI]). More details
are presented in detail in the following section.

3.4. Approximation Properties of the Finite Element Discretisation

In Section 3.2 general approximation properties of the Ritz-Galerkin discretisation have been
discussed. Depending on the properties of the finite-dimensional subspace Vh the discrete eigen-

values λ
(h)
j and eigenfunctions u

(h)
j of problem (3.1) are approximating the sought continuous

eigenvalues λj and eigenfunctions uj of problem (2.12). In Theorem 3.3 corresponding error

estimates of λj − λ(h)
j and uj − u(h)

j can be found. In this section approximation properties of
the finite element discretisation are discussed, i.e., of the Ritz-Galerkin discretisation using the
finite element spaces Xph,0(cf. Section 3.3). More precisely, in this section error estimates of

λj − λ(h)
j and uj − u(h)

j are presented which will depend on the discretisation parameters h and
p, the spatial dimension d, the size of the eigenvalue λj and its spectral separation. Further-
more, the following important issue is discussed: In Section 3.2 it was already highlighted that
the discretisation parameter h has to be sufficiently small (cf. Theorem 3.3 – Theorem 3.5) in

order that the predicted convergence rates of λ
(h)
j and u

(h)
j become valid. In practice this means
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3. Solving Elliptic PDE Eigenvalue Problems

that the corresponding convergence rates get only visible when h ≤ hmax (cf. [9]) with a fixed
maximal mesh width hmax > 0. In this section this maximal mesh width will be (asymptoti-
cally) quantified. Directly connected to the question on the maximal mesh width hmax — or
respectively, the minimal dimension Nmin of the finite element space Xph,0 — is the question how
many eigenvalues and how many eigenfunctions can be well approximated by the finite element
discretisation using a given finite element space Xph,0. Under certain assumptions it is obtained
that, for example, in the three-dimensional case for the continuous problem (2.12) the smallest

CN
2/5
h eigenvalues and the eigenfunctions associated to the smallest CN

1/4
h eigenvalues can be

well approximated by the finite element method using the space X1
h,0 (space of piecewise affine

functions) where Nh = dimX1
h,0.

Throughout this section we will use the following precondition.

Precondition 3.12 (FEM Setting) We consider the variational eigenvalue problem (2.12)
and its Ritz-Galerkin discretisation (3.1) associated to a family of finite-dimensional subspaces
(Vh)h>0 with Vh ⊂ H1

0 (Ω), where the following assumption are made:

a) Assumptions on the data

We assume that Precondition 2.9 is fulfilled, in particular this means that L is a uniformly
elliptic PDE operator with analytic coefficients and that Ω ⊂ Rd is a bounded Lipschitz domain
with analytic boundary.

b) Assumptions on the numbering of the eigensolutions

We assume that the eigensolutions of the continuous problem (2.12) and the discrete problem
(3.1) are ordered by the size and the geometric multiplicity of the eigenvalues, i.e., for the
corresponding eigensolutions(

λj , uj
)∞
j=1
∈ R>0 ×H1

0 (Ω) \ {0} and
(
λ

(h)
j , u

(h)
j

)N
j=1
∈ R>0 × Vh \ {0} (3.13)

holds λj ≤ λj+1 for j ∈ N and λ
(h)
j ≤ λ

(h)
j+1 for j = 1, . . . , Nh − 1 where Nh := dimVh.

Furthermore, we assume (without loss of generality) that the eigenfunctions of the continuous
problem are orthonormal in L2(Ω), i.e., it holds

a(ui, uj) = λj(ui, uj)0 = λjδij for all i, j ∈ N.

c) Assumptions on the subspaces (Vh)h>0

We assume that the finite element spaces Vh = Xph,0 from (3.12) are used for the Ritz-Galerkin
discretisation with some fixed polynomial degree p ≥ 1, where the associated family of admissible
triangulations {Th}h>0 uses the isoparametric finite elements described in Section 3.3.5, which
admits domains with curved boundary. For the corresponding element maps it is assumed that
for each T ∈ Th the element map FT : T̂ → T can be written as FT = RT ◦ AT , where AT
is affine and the maps AT , RT fulfil for constants CA, CR, γR > 0 independent of T ∈ Th and
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3.4. Approximation Properties of the Finite Element Discretisation

independent of h = h(Th) that:

i) ‖DAT ‖∞ ≤ CAhT , ‖(DAT )−1‖∞ ≤ CAh−1
T , ‖(DRT )−1‖∞ ≤ CR (3.14)

where hT := diam(T ) and D denotes the total derivative.

ii) |R|n,∞ :=

∥∥∥∥ { ∑
|α|=n

n!

α!
|DαR|2

}1/2 ∥∥∥∥
L∞(AT (T̂ ))

≤ CR n! (γR)n for all n ∈ N0,

where |DαR(x)|2 :=
d∑
i=1

|DαRi(x)|2 and Ri are the component functions of R.

Remark 3.13 i) The assumptions made in Precondition 3.12 c) on the triangulations {Th}h>0

appear technically, however, they generalise Definition 3.10: In the case that Ω is a polytope
and all element maps FT are affine (i.e., RT is the identity mapping) then the requirements
on AT in (3.14) are equivalent with the requirements on a regular family of triangulations
from Definition 3.10. Furthermore, the assumptions made on RT imply that RT is an
analytic diffeomorphism (cf. inverse function theorem).

ii) A family of triangulations {Th}h>0 satisfying Precondition 3.12 c) can be obtained as follows
(cf. [64]): Let Tmacro be a fixed triangulation (possibly with curved elements) with analytic
element maps FT : T̂ → T that resolve the geometry of Ω. Furthermore, consider a regular
family of triangulations {T̂ĥ}ĥ>0 (cf. Definition 3.10) of the reference element T̂ (unit sim-
plex). Then triangulations Th of Ω satisfying Precondition 3.12 c) are obtained by mapping
the triangulations T̂ĥ of T̂ with the macro element maps FT : T̂ → T .

The error estimates of λj − λ(h)
j and uj − u(h)

j which are presented in the following have been
original derived in [64]. However, in this work the estimates of [64] have been slightly adjusted
(cf. Appendix D) with a special focus on the necessary conditions on h such that the predicted
convergence rates get visible. Furthermore, certain assumptions on the asymptotic behaviour
of the eigenvalues have been made in [64] in order to derive the error estimates: Firstly, it

is assumed that there exists a constant Cb > 0 independent of j such that j ≤ Cbλ
d/2
j , and

secondly, it is assumed that the spectral gap is bounded by ∆1(λj) ≥ cgλ
−d/2
j , see (C.8) for

details, where cg > 0 is a constant independent of j (which has been motivated under quite
technical assumptions for a special case). In this work, however, it could be shown that in
general there exist constants Cb, cb > 0 independent of j (cf. Theorem C.2) such that the
eigenvalues of problem (2.12) can be bounded by

cb λ
d/2
j ≤ j ≤ Cb λ

d/2
j and

(
j

Cb

)2/d

≤ λj ≤
(
j

cb

)2/d

for all j ∈ N. (3.15)

Although result (3.15) was not hard to establish it is not described (to the best of the author’s
knowledge) in literature in this form. Furthermore, it could be shown in this work that in

general the spectral gap of the eigenvalues can be bounded by ∆1(λj) ≥ cgλ
−d/2
j with some

constant cg > 0 independent of j when assumptions on a certain remainder term are fulfilled (cf.
Theorem C.4). Especially result (3.15) opens up the possibility to discuss not only the minimal
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3. Solving Elliptic PDE Eigenvalue Problems

dimension of a finite element space to well approximate a given eigenvalue or eigenfunction,
but also allows to measure asymptotically the number of well approximable eigenvalues and
eigenfunctions by the finite element method using a given finite element space. The correspond-
ing results are summarised in the following, however, the analysis and proofs can be found in
Appendix C (asymptotic distribution of eigenvalues) and Appendix D (preliminary work FEM
approximation).

Corollary 3.14 (Summary I) Consider the variational eigenvalue problem (2.12) and its Ritz-
Galerkin discretisation (3.1), and assume in the following that Precondition 3.12 is satisfied and
that j ∈ {1, . . . , Nh}.
Eigenvalue Approximation:

Let CEV
idx, C

EV
size > 0 be some sufficiently small constants and let the mesh width h of the finite

element space Vh be chosen such that one of the following conditions is fulfilled

i) h2p j1+
2p
d ≤ CEV

idx, (3.16)

ii) h2p λ
p+

d
2

j ≤ CEV
size. (3.17)

Then it holds

0 ≤
λ

(h)
j − λj
λj

≤ C ′4 j

( C2h

h+ σ

)2p

+

(√
λjh

σp

)2p
 with C ′4 :=

2C3

( min{λ1, 1} )3
. (3.18)

where C2, C3, σ > 0 are constants independent3 of j, h, p.

Eigenfunction Approximation:

Assume additionally that all continuous eigenvalues are simple, i.e., it holds

λ1 < λ2 < λ3 < . . . , (3.19)

and assume for j ∈ N (in view of Theorem C.4) that the spectral gap satisfies

min
i∈{j+,j+1}

λi − λi−1

2λi
≥ c6λ

−d2
j with j+ := max{j, 2} (3.20)

for some constant c6 > 0 independent of j. Furthermore, let CEF
idx, C

EF
size > 0 be some sufficiently

small constants and let the mesh width h of the finite element space Vh be chosen such that one
of the following conditions is fulfilled

i) h2p j2+
2p
d ≤ CEF

idx, (3.21)

ii) h2p λp+dj ≤ CEF
size. (3.22)

Then there exist a discrete eigenfunction ũ
(h)
j ∈ Eh

(
λ

(h)
j

)
such that

‖uj − ũ(h)
j ‖1

‖uj‖1
≤ C̃3

min{1, λ1}

(
1 +

C̃4

c6
λ

1+
d
2

j hmin{p,2}

)(
1√
λj

(
C2h

h+ σ

)p
+

(√
λjh

σp

)p)
.

(3.23)
where C2, C̃3, C̃4, σ > 0 are constants independent4 of j, h, p.

3The constants C2, C3 depend on CEV
idx and CEV

size respectively.
4The constants C2, C̃3 depend on CEV

idx and CEV
size respectively, and the constant σ is the same as in (3.18).
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Proof: The proof can be found in the end of Appendix D.

For reasons of simplification the error analysis of the eigenfunction approximation has been
restricted to the case that all continuous eigenvalues are simple. This restricting is quite strong,
however, similar error estimates can be derived for the general case by combining the approxima-
tion properties between the continuous eigenfunctions and the finite element space Vh (which are
described in [64]) with general results of the Ritz-Galerkin discretisation for multiple eigenvalues
(which can found, e.g., in [6] and [48]).

Furthermore, it is noted that result (3.15) allows to derive a priori error estimates for the
eigenvalue and eigenfunction approximation which are independent of the size of the (associated)
eigenvalue, and which depend instead on the corresponding index5: For example, from (3.23)
and (3.15) error estimate

‖uj − ũ(h)
j ‖1

‖uj‖1
≤
(
C̃ ′3 + C̃ ′4 j

1+
2
d hmin{p,2}

)(
1

j1/d

(
C2h

h+ σ

)p
+

(
j

cb

)p/d( h

σp

)p)

is derived with constants C2, C̃
′
3, C̃

′
4, σ > 0 independent of j, h, p.

The error estimates of Corollary 3.14 (and Theorem D.4) reveal the asymptotic dependence
of the approximation error on the discretisation parameters h and p, on the size (and index) of
the eigenvalue, and on the spectral gap. However, the error estimates become valid only when
the mesh width h of Vh is small enough to fulfil the conditions (3.16), (3.17), (3.21) or (3.22). In
particular, we observe that only the smallest eigenvalues λj and their associated eigenfunctions
uj can be well approximated by the finite element method: On one side the approximation error
increases with increasing size of the eigenvalue, and on the other side, even more crucial, the
necessary conditions on the mesh width h can be fulfilled more easily by the smallest eigenvalues.

Remark 3.15 (Refining the FEM Space) In the concrete application of FEM the mesh width
h is fixed. However, if the finite element space should be further refined the question arises which
type of refinement is more efficient: Is it more efficient to (locally) reduce the mesh width h (“h-
refinement”), or to (locally) increase the polynomial degree p (“p-refinement”), or to do both of
it. Under the assumption that dimVh ∈ O( (p/h)d ) the observation of (3.18) and (3.23) shows
that the p-refinement is more advantageous regarding a small dimension since (provided that h
is sufficiently small) the discretisation error is decreasing exponentially in p.

The conditions on the mesh width h in Corollary 3.14 allow to decide if an eigenvalue or
eigenfunction of the continuous problem (2.12) is well approximable by the finite element method.
In this context the question arises what is the maximal possible mesh width or the minimal
dimension of a finite element space to well approximate a given eigenvalue or eigenfunction
and, furthermore, how many eigenvalues and eigenfunctions can be well approximated by a
given finite element space Vh. These questions are answered in the following by Theorem 3.17,
but before, to ease the discussion, it is explicitly defined when an eigensolution is called well
approximable.

Definition 3.16 (Well Approximable) In view of Corollary 3.14 we call an eigenvalue of
the continuous problem (2.12) as “well approximable by (the finite element method using the

5In this section the index of an eigenvalue λj and eigenfunction uj denotes always the numbering index j (not
to be confused with the index of an eigenvalue defined in Theorem A.12).
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finite element space) Vh” if condition (3.16) or condition (3.17) is fulfilled. Analogically, we call
an eigenfunction of problem (2.12) as well approximable by Vh if condition (3.21) or (3.22) is
valid.

In particular, this means that if an eigenvalue or eigenfunction is called well approximable the
approximation error can be bounded by the right-hand side of (3.18) and (3.23).

Corollary 3.17 (Summary II) Consider the variational eigenvalue problem (2.12) and its
Ritz-Galerkin discretisation (3.1), and assume that Precondition 3.12 is fulfilled. Furthermore,
assume that h ≤ hasymp for some hasymp > 0 and that the dimension of the finite element space
Vh is bounded6 by

c
1

hd
≤ Nh ≤ C

1

hd
for all h with 0 < h ≤ hasymp. (3.24)

For the following results concerning the eigenfunction approximation it is additionally assumed
that all eigenvalues are simple and that the spectral gap fulfils condition (3.20).

Maximal Mesh Width of the Finite Element Space:

If we denote by hEV
max(j) and hEV

max(λ) the maximal mesh width of Vh in order to well approximate
the continuous eigenvalue λj = λ, and by hEF

max(j) and hEF
max(λ) the maximal mesh width to well

approximate the associated eigenfunction uj = u then these quantities are given by

hEV
max(j) = C̃EV

idx j
−2p+d

2pd and hEF
max(j) = C̃EF

idx j
−p+dpd ,

hEV
max(λ) = C̃EV

size λ
−2p+d

4p and hEF
max(λ) = CEF

size λ
−p+d2p

with suitable constants C̃EV
idx, C̃

EF
idx, C̃

EV
size, C̃

EF
size > 0 independent of j, λ, h.

Minimal Dimension of the Finite Element Space:

If we denote by NEV
min(j) and NEV

min(λ) the minimal dimension of Vh in order to well approximate
the continuous eigenvalue λj = λ, and by NEF

min(j) and NEF
min(λ) the minimal dimension to well

approximate the associated eigenfunction uj = u then these quantities are asymptotically given
by

NEV
min(j) = Θ

(
j

1+
d
2p

)
and NEF

min(j) = Θ

(
j

1+
d
p

)
, (3.25)

NEV
min(λ) = Θ

(
λ
d
2 +

d2

4p

)
and NEF

min(λ) = Θ

(
λ
d
2 +

d2

2p

)
. (3.26)

Maximal Number and Size of Well Approximable Eigensolutions:

If we denote by jEV
max(Nh) the maximal index of the continuous eigenvalues and by jEF

max(Nh) the

6The assumption (3.24) is not very restrictive. The assumption (3.24) is fulfilled, for example, when the triangu-
lations {Th}h>0 associated to finite element space Vh are constructed as described in Remark 3.13 ii) whereby
the triangulation of the reference element T̂ (unit simplex) is refined using uniform grids.
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maximal index of the continuous eigenfunctions which are well approximable by Vh then these
quantities are asymptotically given by

jEV
max(Nh) = Θ

(
N

2p
2p+d
h

)
and jEF

max(Nh) = Θ

(
N

p
p+d
h

)
. (3.27)

If we denote by λEV
max(Nh) the maximal size of the continuous eigenvalues which are well approx-

imable by Vh, and by λEF
max(Nh) the maximal size of the eigenvalues associated to the continuous

eigenfunctions which are well approximable by Vh, then these quantities are asymptotically given
by

λEV
max(Nh) = Θ

(
N

4p
d(2p+d)
h

)
and λEF

max(Nh) = Θ

(
N

2p
d(p+d)
h

)
. (3.28)

Proof: The proof can be found in the end of Appendix D.

From Corollary 3.17 follows that, for example, the eigenvalue λj is well approximable by all
finite element spaces Xph,0 when the underlying mesh width is fulfilling h ≤ hEV

max(j) or when the
dimension of the finite element space is fulfilling Nh ≥ CNEV

min(j)/c [cf. proof of Corollary 3.17]
for suitable constant C, c > 0 independent of j, h. The results of Corollary 3.17 are summarised
In Table 3.1 and Table 3.2 for the dimensions d = 1, 2, 3 where the important space X1

h,0 (space
of piecewise affine functions) is highlighted.

The maximal mesh widths hEV
max(λ), hEF

max(λ) and the asymptotic behaviour of the minimal
dimensions NEV

min(λ), NEF
min(λ) have been first derived in [64], however, by explicitly assuming

that there exists a constant Cb > 0 independent of j such that j ≤ Cbλ
d/2
j . In this work it is

shown that this assumption is fulfilled anyway (cf. Theorem C.2). Furthermore, in this work
the maximal mesh widths and the asymptotic behaviour of the minimal dimensions have been
derived in dependence of the index j of the eigenvalue or eigenfunction. Moreover, the question
on how many eigenvalues and eigenfunctions can be well approximated by a given finite element
space Vh has been answered and how large the (associated) eigenvalue can get in order to be
well approximable.

Remark 3.18 (Sharpness of the Results) i) In [9] first systematic numerical experiments
have been performed [for a 1D and 2D model problem with Vh = X1

h,0] in order to investi-
gate the asymptotic sharpness of the error estimates (3.18) and (3.23), and the asymptotic
sharpness7 of the maximal mesh widths hEV

max(λ) and hEF
max(λ). The sharpness of the results

for the eigenfunction approximation could be largely validated. The measured error of the
eigenvalue approximation, however, has been asymptotically slightly smaller than predicted
[on the right-hand side of (3.18) the factor j could not be observed], and hEV

max(λ) has been
slightly too strict, i.e., the asymptotic convergence rate became visible for mesh widths slightly
larger then hEV

max(λ). However, the benchmarked model problems exhibit a special structure
(cf. [9]) which facilitate the FEM approximation of the eigenvalues and eigenfunctions, so
that according to [9] this might be the reason for the slightly better approximation properties.

7Sharpness in the sense that the asymptotic convergence rates of the eigenvalue and eigenfunction approximation
become visible if and only if h ≤ hEV

max(λ) and h ≤ hEF
max(λ).
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ii) Since all other quantities described in Corollary 3.17 can be derived from hEV
max(λ) and

hEF
max(λ) using the estimates (3.15) and (3.24) the asymptotical sharpness of these quantities

follows from the sharpness of hEV
max(λ) and hEF

max(λ).

iii) If in Corollary 3.17 it is assumed that dimVh ∈ O(1/hd) instead of dimVh ∈ Θ(1/hd) then
the statements on the asymptotical behaviour of the minimal dimension, maximal index
and maximal size have to be weakened: For the minimal dimension we obtain the same
statements as in (3.25) and (3.26) but only of the form O(. . .), and for the maximal index
and the maximal size we derive the same statements as in (3.27) and (3.28) but only of the
form Ω(. . .). 8

Remark 3.19 (Analytic Data) For the results presented in Corollary 3.14 and Corollary 3.17
it is essential that the eigenfunctions u of problem (2.12) fulfil u ∈ C∞(Ω). By assuming
analytic data (Precondition 2.9) in Precondition 3.12a) the smoothness of the eigenfunctions
can be guaranteed using Theorem 2.10. However, if Precondition 3.12a) is not fulfilled but it can
be guaranteed anyway that for all eigenfunctions u of problem (2.12) it holds u ∈ C∞(Ω), then
the results presented in Corollary 3.14 and Corollary 3.17 remain valid (cf. [64] and Appendix
D).

8See the list of symbols for the definition of the asymptotic notations O(. . .), Θ(. . .) and Ω(. . .).
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FEM space Vh = X1
h,0 FEM space Vh = Xph,0

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

NEV
min(j) Θ( j3/2 ) Θ( j2 ) Θ( j5/2 ) Θ

(
j

2p+1
2p

)
Θ

(
j

2p+2
2p

)
Θ

(
j

2p+3
2p

)

NEF
min(j) Θ( j2 ) Θ( j3 ) Θ( j4 ) Θ

(
j
p+1
p

)
Θ

(
j
p+2
p

)
Θ

(
j
p+3
p

)

NEV
min(λ) Θ(λ3/4 ) Θ(λ2 ) Θ(λ15/4 ) Θ

(
λ

2p+1
4p

)
Θ

(
λ

4p+4
4p

)
Θ

(
λ

6p+9
4p

)

NEF
min(λ) Θ(λ1 ) Θ(λ3 ) Θ(λ6 ) Θ

(
λ
p+1
2p

)
Θ

(
λ

2p+4
2p

)
Θ

(
λ

3p+9
2p

)

Table 3.1.: In view of Corollary 3.17 the asymptotical behaviour of the minimal dimension of
the finite element space Vh in order to well approximate an eigenvalue (EV) or an eigenfunction
(EF) of the continuous problem (2.12) by the finite element method.

FEM space Vh = X1
h,0 FEM space Vh = Xph,0

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

jEV
max(Nh) Θ

(
N

2/3
h

)
Θ
(
N

1/2
h

)
Θ
(
N

2/5
h

)
Θ

(
N

2p
2p+1
h

)
Θ

(
N

2p
2p+2
h

)
Θ

(
N

2p
2p+3
h

)

jEF
max(Nh) Θ

(
N

1/2
h

)
Θ
(
N

1/3
h

)
Θ
(
N

1/4
h

)
Θ

(
N

p
p+1
h

)
Θ

(
N

p
p+2
h

)
Θ

(
N

p
p+3
h

)

λEV
max(Nh) Θ

(
N

4/3
h

)
Θ
(
N

1/2
h

)
Θ
(
N

4/15
h

)
Θ

(
N

4p
2p+1
h

)
Θ

(
N

4p
4p+4
h

)
Θ

(
N

4p
6p+9
h

)

λEF
max(Nh) Θ

(
N1
h

)
Θ
(
N

1/3
h

)
Θ
(
N

1/6
h

)
Θ

(
N

2p
p+1
h

)
Θ

(
N

2p
2p+4
h

)
Θ

(
N

2p
3p+9
h

)

Table 3.2.: In view of Corollary 3.17 the asymptotical behaviour of the maximal index and
the maximal size of the (associated) eigenvalue to well approximate an eigenvalue (EV) or an
eigenfunction (EF) of the continuous problem (2.12) by the finite element method.
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4. Summary and Problem Description

The objective of this work and the results of the previous chapters can be summarised as follows:
This work is focused on the efficient solution of the continuous eigenvalue problem{

Lu = λu in Ω,

u = 0 on ∂Ω
(4.1)

where Ω ⊂ Rd is a bounded domain (d = 2, 3) with Lipschitz boundary ∂Ω and L is a linear
uniformly elliptic second order PDE operator (cf. Definition 2.1) in divergence form

Lu = −div
(
A∇u

)
+ cu = −

d∑
i,j=1

∂

∂xi

(
aij

∂

∂xj
u

)
+ cu

with L∞(Ω)-functions aij , c where A := (aij)
d
i,j=1 and c ≥ 0. To solve problem (4.1) the

corresponding weak formulation{
find (λ, u) ∈ R×H1

0 (Ω) \ {0} such that

a(u, v) = λ (u, v)0 ∀ v ∈ H1
0 (Ω)

(4.2)

is derived where a(u, v) =
∫

Ω∇u
TA∇v + cuv dx is a symmetric elliptic bilinear form (cf. proof

of Theorem 2.5) and (u, v)0 =
∫

Ω uv dx is the inner product of L2(Ω). According to Theorem
2.6 the continuous eigenvalue problem (4.2) possesses a countable family of eigensolutions(

λj , uj
)∞
j=1
∈ R>0 ×H1

0 (Ω) \ {0} with λj ≤ λj+1 (4.3)

with positive real eigenvalues.
Solutions of the continuous eigenvalue problem (4.3) are approximated by discretisation: Using

a conforming finite element space Vh ⊂ H1
0 (Ω) [e.g., the space Xph,0 from Section 3.3] with

dimension Nh and nodal basis
(
ϕ

(h)
i

)Nh
i=1

the eigenvalue problem (4.2) is discretised by{
find (λ(h), x(h)) ∈ R× RNh \ {0} with

K(h) x(h) = λ(h)M (h) x(h)
(4.4)

(cf. Section 3.1) where the stiffness and mass matrix

K(h) :=
(
a(ϕ

(h)
j , ϕ

(h)
i )
)Nh
i,j=1
∈ RNh×Nh and M (h) :=

(
(ϕ

(h)
j , ϕ

(h)
i )0

)Nh
i,j=1
∈ RNh×Nh (4.5)

are both sparse, symmetric and positive definite. The eigenvalues of (4.4) are positive real, and
the corresponding eigenpairs are given by(

λ
(h)
j , x

(h)
j

)Nh
j=1
∈ R>0 × RNh \ {0} with λ

(h)
j ≤ λ

(h)
j+1. (4.6)
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4. Summary and Problem Description

As described in Section 3.2 the discrete eigenpairs (4.6) are approximating the continuous

eigensolutions (4.3): According to Theorem 3.2 it holds λ
(h)
j → λj for h→ 0; and for the discrete

eigenfunctions u
(h)
j := Px(h)

j ∈ Vh [with prolongation operator P from (3.3) and assuming that

‖u(h)
j ‖1 = 1] exists a subsequence

(
u

(hk)
j

)
k∈N which converges in H1

0 (Ω) to an eigenfunction

ũj ∈ E(λj) when hk
k→∞−−−−→ 0 [where E(λj) is the eigenspace of λj defined in (2.14)].

However, as discussed in Section 3.4 only the smaller eigenvalues λj and their corresponding
eigenfunctions uj can be well approximated by the finite element space Vh (see, e.g., [9] for exper-
imental studies) because the approximation error increases with increasing size of the eigenvalue.
Furthermore, the eigenvalues λj have to be small enough so that necessary conditions on the
discretisation mesh width h of the finite element space are fulfilled and thus the corresponding
convergence rates become valid (see, e.g., Corollary 3.14). If, for example, the assumptions of
Corollary 3.17 are fulfilled (i.e., analytic data is assumed) then, e.g., for three-dimensional prob-

lems only the first Θ(N
2/5
h ) eigenvalues and only the first Θ(N

1/4
h ) eigenfunctions (under the

assumption that all eigenvalues are simple) are well approximable by the finite element method
using the finite element spaces Vh = X1

h,0. If some of the assumptions of Corollary 3.17 are
not fulfilled it can be expected that even less eigenvalues and less eigensolutions can be well
approximated.

Correspondingly, in the following we are only interested in computing a portion of the smallest
eigenpairs of the discrete problem (4.4), e.g., the first

nes = CN
2/5
h ∈ N or nes = CN

1/4
h ∈ N

eigenpairs, for some constant C > 0. The computation of the remaining eigenpairs of (4.4)
associated to larger eigenvalues is not reasonable because typically they do not provide useful
approximations of continuous eigensolutions.

The solution of the algebraic eigenvalue problem (4.4) is typically performed by a classical
approach, i.e., by some iterative algebraic eigensolver such as the Lanczos method [8, 36] or the
subspace iteration [10]. Classical iterative approaches are well suited if the number of sought
eigensolutions nes is rather small, e.g., if nes = 5. However, because we are interested in a large
number of eigensolutions, we will use the AMLS method to solve the eigenvalue problem (4.2),
respectively (4.4). The AMLS method, which is presented in the next chapter, has proven to be
very efficient when a large number of eigensolutions is sought (cf. [42]). If, however, the number
of sought discrete eigenpairs approaches Nh, it is advisable to use instead of AMLS either a
cubic scaling direct method or an iterative method like shift-invert Lanczos (cf. [36]) with a
good shift strategy and an efficient solver for the arising shifted linear systems.
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5. Automated Multi-Level Substructuring

The so-called automated multi-level substructuring (short AMLS) method is a very efficient
approach to solve an elliptic PDE eigenvalue problem. The AMLS method was mainly developed
by Bennighof and co-authors [14, 16, 47], and is based on the classical component mode synthesis
(short CMS).

The CMS is as a substructuring method which was already developed in 1960 by Hurty [44]
for the solution of large scale eigenvalue problems arising in structural engineering analysis.
The idea behind CMS is to substructure the spatial domain of the PDE eigenvalue problem
into subdomains, and to approximate the sought eigensolutions of the global problem by using
eigensolutions of problems that are defined on the smaller subdomains. The method was further
improved by Craig and Bampton [26], and during the years CMS became very popular and
was studied by many researchers which developed refined versions. An overview over different
CMS versions can be found in [65]. The first mathematical analysis of CMS, however, has been
performed only in the early 1990s by Bourquin and d’Hennezel (see, e.g., [20, 21, 22]).

Bennighof extended and generalised in the AMLS method the single-level substructuring of
CMS to a multi-level version. The procedure of AMLS is as follows: In the first step the spatial
domain of the PDE eigenvalue problem is recursively subdivided into several subdomains. In
the next step, on each of these subdomains and additionally on the interfaces, which are sepa-
rating the subdomains, certain eigenvalue problems are defined that are induced by the global
problem, and which are typically small and easy to solve. From each of these subproblems a few
eigensolutions are computed which are meant to represent the global problem on the correspond-
ing subdomain or interface. In the next step, the computed eigensolutions of the subproblems
are used to form a subspace onto which the global eigenvalue problem is projected. The pro-
jection results in a reduced eigenvalue problem which is of much smaller size than the original
problem and typically easy to solve. Finally, the eigenpairs of the reduced eigenvalue problem
are computed which deliver approximations of the sought eigenpairs of the global eigenvalue
problem.

The AMLS method has proven to be very efficient for solving large-scale eigenvalue problems
arising in structural engineering analysis (see, e.g., [15, 47, 55]). Especially when a large number
of eigenpair approximations is required, AMLS has shown to be more efficient than classical
approaches using iterative algebraic eigensolvers that are coupled with a preconditioner or a
linear solver (cf. [42]). The big advantage of the AMLS method is that its computational
costs increase only slightly with the number of sought eigenpairs, and hence a large amount of
eigenpairs can be computed at once. A very popular classical approach is the shift-invert block
Lanczos (short block-SIL) algorithm [36] which is commonly used in structural engineering.
Kropp and Heiserer could present in [55] breakthrough calculations when they benchmarked
AMLS against block-SIL within a vibro-acoustic analysis of an automobile body. In these
benchmarks the AMLS method running on a commodity workstation has been several times
faster than block-SIL running on a supercomputer.

When the AMLS method is applied to a discrete eigenvalue problem it computes only approx-
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imations of the discrete eigenpairs whereas block-SIL computes the discrete eigenpairs almost
numerically exact. This seems to be disadvantageous, but in the setting of this work a discrete
eigenvalue problem results always from a finite element discretisation of a continuous eigenvalue
problem. Hence, all computed eigenpairs of the discrete problem are related to a discretisation
error. This means that, as long as the projection error caused by AMLS is of the same order
as the discretisation error, the computed eigenpair approximations of AMLS are of comparable
quality as the eigenpairs computed by block-SIL or some other classical approach.

Although AMLS has proven to be very efficient, one problem is the computation of the
interface eigenvalue problems via dense matrix operations. In the three-dimensional case the
complexity is dominated by this part.

In the following sections the AMLS method is described in detail. Although the method can
be described in a purely algebraic way without any geometry information of the underlying
partial differential equation the method is first explained, in Section 5.1, in a continuous setting.
In the continuous setting it is easier to understand the idea behind AMLS and why the method
is working. However, for reasons of simplification the discussion in the continuous setting is
restricted to the single-level version of AMLS, for the description of the corresponding multi-
level version it is referred to [16]. After that, in Section 5.2, the AMLS method is described in
an algebraic setting to show how the method is applied in practice. For ease of understanding
it is started with the description of the single-level version of AMLS which is extended to the
multi-level version afterwards. Finally, in Section 5.3 it is outlined why the AMLS method is
getting expensive for three-dimensional problems.

The AMLS method has been already described in [31, Section 3] by the author. This chapter
is a strongly revised version of [31, Section 3] and provides a more detailed discussion of the
topic.

5.1. The AMLS Method in the Continuous Setting

The initial point of AMLS in the continuous setting is the variational eigenvalue problem (4.2)
which will be denoted as global eigenvalue problem in this particular section. The single-level
version of the AMLS method, which is described in the following, is a generalisation of the
classical CMS.

In the first step of AMLS the Lipschitz domain Ω is subdivided into two non-overlapping
subdomains Ω1 and Ω2 such that both subdomains have as well a Lipschitz boundary. In
particular, we have

Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅ (5.1)

whereby the subdomains share the interface Γ := Ω1∩Ω2. Examples of such a domain substruc-
turing are given in Figure 5.1 for a two-dimensional domain.

After this suitable subspaces of H1
0 (Ω) are defined which are associated with the subdomains

Ωi (i = 1, 2) and the interface Γ: For the subdomains Ωi the subspaces

VΩi :=
{
v ∈ H1

0 (Ω) : v|Ω\Ωi = 0
}

are defined, which are built of all admissible functions that are equal to zero on Ω \Ωi. For the
interface Γ the subspace

VΓ :=
{
EΩτ : τ ∈ H1/2

00 (Γ)
}
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5.1. The AMLS Method in the Continuous Setting

Ω

(a) Underlying domain Ω of the
PDE eigenvalue problem (4.1)

Ω1

Ω2

Γ

(b) Example of a possible domain
substructuring.

Ω1

Ω2 Γ

(c) Example of a possible domain
substructuring.

Figure 5.1.: Substructuring of the domain Ω into two non-overlapping subdomains Ω1 and Ω2

with interface Γ := Ω1 ∩ Ω2.

is defined, where H
1/2
00 (Γ) denotes the trace space of H1

0 (Ω) on the interface Γ and EΩτ ∈ H1
0 (Ω)

is the extension of the trace function τ ∈ H1/2
00 (Γ) which is defined as the unique solution of the

variational problem {
find EΩτ ∈

{
u ∈ H1

0 (Ω) : u|Γ = τ
}

such that

a(EΩτ, v) = 0 ∀ v ∈
{
u ∈ H1

0 (Ω) : u|Γ = 0
}
.

(5.2)

Basic properties of the extension operator EΩ are summarised in the following lemma.

Lemma 5.1 (Extension Operator) The extension operator EΩ : H
1/2
00 (Γ)→ H1

0 (Ω) is linear

and injective. Furthermore, the operator is continuous, i.e., there exists a constant Ĉ > 0 such
that

‖EΩτ‖1 ≤ Ĉ ‖τ‖
H

1/2
00 (Γ)

for all τ ∈ H1/2
00 (Γ) (5.3)

where ‖ · ‖
H

1/2
00 (Γ)

is the the norm on H
1/2
00 (Γ) [cf. Remark B.20].

Proof: i) For the sake of completeness it is first proven that problem (5.2) has for each

τ ∈ H
1/2
00 (Γ) a unique solution EΩτ . Basic properties of trace spaces are presented in

Remark B.20 [in Remark B.20 the trace spaceH1/2(∂Ω) is discussed, however, the analogue

results hold as well for H
1/2
00 (Γ)]. It holds that for all τ ∈ H

1/2
00 (Γ) there exists some

τ̃ ∈ H1
0 (Ω) such that

τ̃ |Γ = τ and ‖τ̃‖H1
0 (Ω) ≤ C‖τ‖

H
1/2
00 (Γ)

(5.4)

with some constant C > 0 independent of τ . Furthermore, it holds that EΩτ ∈ H1
0 (Ω) is

a solution of problem (5.2) iff ẼΩτ := EΩτ − τ̃ is a solution of the variational problem{
find ẼΩτ ∈ U0 such that

a(ẼΩτ, v) = −a(τ̃ , v) ∀ v ∈ U0

(5.5)

where U0 :=
{
u ∈ H1

0 (Ω) : u|Γ = 0
}

. Since U0 ⊂ H1
0 (Ω) is a Hilbert space and l(v) :=

−a(τ̃ , v) defines a continuous linear functional on U0, it follows from Theorem A.18 that
problem (5.5) has a unique solution ẼΩτ ∈ U0. Thus, a solution of problem (5.2) exists
as well. Moreover, if it is assumed that u1 and u2 are solutions of (5.2) it follows that
u1−u2 ∈ U0 and a(u1−u2, v) = 0 for all v ∈ U0. Since a(·, ·) is H1

0 (Ω)-elliptic we conclude
that u1 − u2 = 0 in H1

0 (Ω) which proves the uniqueness of the solution EΩτ .
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ii) The linearity of the operator EΩ : H
1/2
00 (Γ) → H1

0 (Ω) is proven using the uniqueness of
the solution of problem (5.2), and the injectivity of EΩ is obvious. Moreover, it holds
a(EΩτ, ẼΩτ) = 0 because of (5.2) and ẼΩτ ∈ U0, and it follows

‖EΩτ‖21 ≤
a(·,·) is
elliptic

1

CE
a(EΩτ, EΩτ) =

1

CE
a(EΩτ, ẼΩτ + τ̃) =

1

CE
a(EΩτ, τ̃)

≤
a(·,·) is

continuous

CB
CE
‖EΩτ‖1‖τ̃‖1 ≤

(5.4)

C CB
CE

‖EΩτ‖1‖τ‖H1/2
00 (Γ)

.

Hence, for all τ ∈ H1/2
00 (Γ) there exists some Ĉ > 0 with ‖EΩτ‖1 ≤ Ĉ ‖τ‖

H
1/2
00 (Γ)

, i.e., the

extension operator EΩ is continuous.

For the subspaces VΩ1 , VΩ2 and VΓ defined above the following relation is valid:

Theorem 5.2 The direct sum
VΩ1 ⊕ VΩ2 ⊕ VΓ (5.6)

is an a-orthogonal decomposition of H1
0 (Ω).

Proof: The proof of this result is outlined in [16], however, for a better understanding of the
AMLS theory the proof is performed here as well: Let uΓ ∈ VΓ be given then there exists a

τ ∈ H1/2
00 (Γ) with uΓ = EΩτ . According to the definition of EΩτ it holds a(EΩτ, v) = 0 for all

v ∈ U0 :=
{
u ∈ H1

0 (Ω) : u|Γ = 0
}

. It follows that for all ui ∈ VΩi (i = 1, 2) it holds a(uΓ, ui) = 0
since VΩi ⊂ U0, and that a(u1, u2) = 0 since Ω1 ∩ Ω2 = ∅, which proves the orthogonality
statement. Furthermore, for u ∈ H1

0 (Ω) we define the functions

PΓu := EΩ(u|Γ), PΩ1u :=

{
u− PΓu in Ω1,

0 in Ω2

and PΩ2u :=

{
0 in Ω1,

u− PΓu in Ω2.

From the definition of VΩi and from the substructuring (5.1) of Ω it follows that PΓu ∈ VΓ and
PΩiu ∈ VΩi . Finally, from the orthogonality result from above and from the identity

PΓu+ PΩ1u+ PΩ2u = PΓu+ u− PΓu = u

we conclude that (5.6) is valid.

In the second step of AMLS for each subspace separate eigenvalue problems are defined: For
VΩi (i = 1, 2) the so-called fixed-interface eigenvalue problem{

find (λΩi , uΩi) ∈ R× VΩi \ {0} such that

a(uΩi , v) = λΩi (uΩi , v)0 ∀ v ∈ VΩi

(5.7)

is defined, and for VΓ the so-called coupling mode eigenvalue problem{
find (λΓ, uΓ) ∈ R× VΓ \ {0} such that

a(uΓ, v) = λΓ (uΓ, v)0 ∀ v ∈ VΓ.
(5.8)
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5.1. The AMLS Method in the Continuous Setting

Note that the only difference to the global eigenvalue problem (4.2) is that the functions u and
v in (5.7) and (5.8) are elements of VΩi or VΓ instead of H1

0 (Ω). Since VΩi and VΓ are closed
subspaces in H1

0 (Ω) it follows from Remark 2.7 that each of these problems possesses a countable
family of eigensolutions which are given by(

λΩi
j , uΩi

j

)∞
j=1
∈ R>0 × VΩi \ {0} with λΩi

j ≤ λ
Ωi
j+1

for the fixed-interface eigenvalue problem (5.7) and by(
λΓ
j , u

Γ
j

)∞
j=1
∈ R>0 × VΓ \ {0} with λΓ

j ≤ λΓ
j+1

for the coupling mode eigenvalue problem (5.8). The eigenfunctions (5.7) and (5.8) form a basis
of VΩi and VΓ. Furthermore, from Theorem 5.2 it follows that the eigenfunctions of (5.7) and
(5.8) are a-orthogonal to each other, and that they form a basis of H1

0 (Ω) with

H1
0 (Ω) =

2⊕
i=1

span
{
uΩi
j : j ∈ N

}
⊕ span

{
uΓ
j : j ∈ N

}
. (5.9)

It is important to note that even if the eigensolutions of the problems (5.7) and (5.8) are known,
the global eigenvalue problem (4.2) is not solved. However, the eigenfunctions of (5.7) and (5.8)
belonging to the smallest eigenvalues are well suited to approximate the sought eigensolutions
(λj , uj)

nes
j=1 of the global problem (4.2). This issue is reasoned by various numerical studies (see,

e.g., [16]) and is motivated by the error analysis done in [21, 22] for a method quite similar to
AMLS. Correspondingly, to approximate the sought eigensolutions of problem (4.2), in the third
step of AMLS the finite dimensional subspace Uk ⊂ H1

0 (Ω) is defined by

Uk :=

2⊕
i=1

span
{
uΩi
j : j = 1, . . . , ki

}
⊕ span

{
uΓ
j : j = 1, . . . , kΓ

}
(5.10)

which is obtained by applying a modal truncation in (5.9) and selecting only those eigenfunctions
which belong to the smallest k1, k2 and kΓ eigenvalues for given k1, k2, kΓ ∈ N and multi-index
k := (k1, k2, kΓ).

Using the finite dimensional subspace Uk the so-called reduced eigenvalue problem{
find (λ(k), u(k)) ∈ R× Uk \ {0} such that

a(u(k), v) = λ(k) (u(k), v)0 ∀ v ∈ Uk
(5.11)

is defined which possesses the eigensolutions(
λ

(k)
j , u

(k)
j

)|k|
j=1
∈ R>0 × Uk \ {0} with λ

(k)
j ≤ λ

(k)
j+1. (5.12)

The reduced problem (5.11) is a conforming Ritz-Galerkin approximation of the global eigen-
value problem (4.2). According to Theorem 3.2 the eigensolutions of the reduced problem are
converging to eigensolutions of the global eigenvalue problem when k1, k2, kΓ →∞.

Correspondingly in the fourth and last step of the AMLS method the first nes eigensolu-
tions (5.12) are computed (with nes ≤ |k|) which are approximating the sought eigensolutions
(λj , uj)

nes
j=1 of the global problem (4.2).
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5. Automated Multi-Level Substructuring

Theorem 5.3 The coupling mode eigenvalue problem (5.8) is equivalent to the eigenvalue prob-
lem  find (λ, u) ∈ R×H1/2

00 (Γ) \ {0} such that

〈Su, v〉 = λ 〈Mu, v〉 ∀ v ∈ H1/2
00 (Γ),

(5.13)

where S and M are operators acting on the trace space H
1/2
00 (Γ) which are given in strong form

by

Sτ :=
2∑
i=1

(
(A∇EΩiτ) · ni

)∣∣Γ and Mτ :=
2∑
i=1

−
(

(A∇GΩi(EΩiτ)) · ni
)∣∣Γ

for τ ∈ H1/2
00 (Γ), and where 〈·, ·〉 denotes the duality pairing between H

1/2
00 (Γ) and its dual space.

Furthermore, ni denotes the outward normal unit vector on Γ for the subdomain Ωi, EΩi is the
subdomain extension operator defined by EΩiτ := (EΩτ)|Ωi, and for f ∈ L2(Ωi) the function
GΩi(f) is defined as the solution of the variational problem{

find GΩi(f) ∈ H1
0 (Ωi) such that

a(GΩi(f), v)Ωi = (f, v)Ωi ∀ v ∈ H1
0 (Ωi)

(5.14)

with the restricted bilinear forms

a(u, v)Ωi :=

∫
Ωi

∇uTA∇v + cuv dx ∀ u, v ∈ H1(Ωi),

(u, v)Ωi :=

∫
Ωi

uv dx ∀ u, v ∈ L2(Ωi).

Properties of S and M are listed in the end of the following proof.

Proof: The proof of this theorem can be found in [16] in the context of an eigenvalue problem
from linear elastodynamics. However, for a better understanding of the AMLS theory the proof
is performed here as well for generic H1(Ω)-elliptic bilinear forms: First of all, it is noted that
the coupling mode eigenvalue problem (5.8) is equivalent to the eigenvalue problem find (λ, τ) ∈ R×H1/2

00 (Γ) \ {0} such that

a(EΩτ, EΩη) = λ (EΩτ, EΩη)0 ∀ η ∈ H1/2
00 (Γ)

(5.15)

since each element of VΓ is determined by its trace on Γ.

Derivation of operator S:

Note that for τ ∈ H1/2
00 (Γ) the subdomain extension EΩiτ := (EΩτ)|Ωi is the unique solution1 of

the variational problem{
find EΩiτ ∈

{
u ∈ H1(Ωi) : u|Γ = τ and u|∂Ωi\Γ = 0

}
such that

a(EΩiτ, v)Ωi = 0 ∀ v ∈ H1
0 (Ωi).

(5.16)

1The existence of a unique solution for problem (5.16) is proven in the same way as for problem (5.2) [cf. part
i) of the proof of Lemma 5.1].
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Since EΩiτ is the solution of problem (5.16) we obtain for v ∈ H1(Ωi) the identity2

a(EΩiτ, v )Ωi =

∫
∂Ωi

v|∂Ωi ( (A∇EΩiτ) · ni )|∂Ωi ds, (5.17)

where the surface integral
∫
∂Ωi

. . . ds on the right-hand side of (5.17) is formally interpreted as

a functional on H
1/2
00 (Γ). Correspondingly, for τ, η ∈ H1/2

00 (Γ) it follows that

a(EΩτ, EΩη ) =
2∑
i=1

a(EΩiτ, EΩiη )Ωi =
(5.17)

2∑
i=1

∫
∂Ωi

(EΩiη)|∂Ωi ( (A∇EΩiτ) · ni )|∂Ωi ds

=
2∑
i=1

∫
Γ
η ( (A∇EΩiτ) · ni )|Γ ds =

2∑
i=1

〈 (A∇EΩiτ) · ni, η 〉 = 〈Sτ, η〉.

Derivation of operator M:

Since GΩi(f) is the solution of problem (5.14) we obtain for v ∈ H1(Ωi) the identity3

a(GΩi(f), v )Ωi = ( f, v )Ωi +

∫
∂Ωi

v|∂Ωi ( (A∇GΩi(f)) · ni )|∂Ωi ds, (5.18)

where the surface integral
∫
∂Ωi

. . . ds on the right-hand side of (5.18) is formally interpreted

as a functional on H
1/2
00 (Γ). Using f := EΩiτ and v := EΩiη in (5.18) we conclude that for

τ, η ∈ H1/2
00 (Γ) it holds

a(GΩi(EΩiτ), EΩiη )Ωi = (EΩiτ, EΩiη )Ωi +

∫
∂Ωi

(EΩiη)|∂Ωi ( (A∇GΩi(EΩiτ)) · ni )|∂Ωi ds

which leads to

(EΩτ, EΩη )0 =

2∑
i=1

(EΩiτ, EΩiη )Ωi

=
2∑
i=1

a(GΩi(EΩiτ), EΩiη )Ωi −
∫
∂Ωi

(EΩiη)|∂Ωi ( (A∇GΩi(EΩiτ)) · ni )|∂Ωi ds

=
2∑
i=1

a(GΩi(EΩiτ), EΩiη )Ωi −
∫

Γ
(EΩiη)|Γ ( (A∇GΩi(EΩiτ)) · ni )|Γ ds.

2Identity (5.17) is proven using the following result: Let u ∈ H1
0 (Ω) be the solution of the variational problem

a(u, v) = (f, v)0 for all v ∈ H1
0 (Ω) with some given f ∈ L2(Ω). In the case that the coefficients of the associated

PDE operator L fulfil aij ∈ H1(Ω) and if u ∈ H2(Ω) holds, then we obtain by partial integration (P.I.) that

(f, v)0 =

∫
Ω

fv dx =

∫
Ω

Luv dx
P.I.
= a(u, v)−

∫
∂Ω

v|∂Ω ( (A∇u) · n )|∂Ω ds ∀ v ∈ H1(Ω)

where n denotes the outward normal unit vector on ∂Ω. Using this result, it can be shown that also in the
case when only aij ∈ L2(Ω) and u ∈ H1(Ω) is valid, that then the functional l(v) := a(u, v)− (f, v)0 fulfils the
equality l(v) =

∫
∂Ω
v|∂Ω((A∇u) · n)|∂Ω ds for all v ∈ H1(Ω) where the surface integral is formally interpreted

as a functional on H1/2(∂Ω).
3Identity (5.18) is derived in the same way as identity (5.17).
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Furthermore, using the function

Gi(EΩiτ) :=

{
GΩi(EΩiτ) in Ωi,

0 in Ω \ Ωi

we obtain from the orthogonality result of Theorem 5.2 that

a(GΩi(EΩiτ), EΩiη )Ωi = a(Gi(EΩiτ), EΩη ) = 0

since Gi(EΩiτ) ∈ VΩi and EΩη ∈ VΓ. Altogether, we obtain

(EΩτ, EΩη )0 =

2∑
i=1

−
∫

Γ
η ( (A∇GΩi(EΩiτ)) · ni )|Γ ds = 〈Mτ, η〉.

Properties of S and M:

S and M are linear operators of the form H
1/2
00 (Γ) → H−1/2(Γ) where H−1/2(Γ) denotes the

dual space of H
1/2
00 (Γ). Since the variational representation of S and M is given by

〈Sτ, η〉 = a(EΩτ, EΩη ) and 〈Mτ, η〉 = (EΩτ, EΩη )0 for τ, η ∈ H1/2
00 (Γ)

it follows that the operators S and M (and the bilinear forms associated to S and M) are
selfadjoint (symmetric). From

|〈Sτ, η〉| = |a(EΩτ, EΩη )| ≤
a(·,·) is

continuous

CB‖EΩτ‖1‖EΩη‖1 ≤
(5.3)

Ĉ2CB‖τ‖H1/2
00 (Γ)

‖η‖
H

1/2
00 (Γ)

and

|〈Mτ, η〉| = |(EΩτ, EΩη )0| ≤ ‖EΩτ‖0‖EΩη‖0 ≤ ‖EΩτ‖1‖EΩη‖1 ≤
(5.3)

Ĉ2 ‖τ‖
H

1/2
00 (Γ)

‖η‖
H

1/2
00 (Γ)

we conclude that the operators S and M are continuous on H
1/2
00 (Γ), and that the associated

bilinear forms are continuous onH
1/2
00 (Γ)×H1/2

00 (Γ). Basic properties of trace spaces are discussed
in Remark B.20 [in Remark B.20 the trace space H1/2(∂Ω) is discussed, however, the analogue

results hold as well for H
1/2
00 (Γ)]. In particular, the trace operator γ : H1

0 (Ω) → H
1/2
00 (Γ)

is continuous, i.e., there exists a constant C > 0 such that ‖γ(u)‖
H

1/2
00 (Γ)

≤ C‖u‖1 for all

u ∈ H1
0 (Ω). For τ ∈ H1/2

00 (Γ) we have

〈Sτ, τ〉 = a(EΩτ, EΩτ ) ≥
a(·,·) is
elliptic

CE ‖EΩτ‖21 ≥
CE
C2
‖τ‖2

H
1/2
00 (Γ)

and conclude that S (respectively, the associated bilinear form) is H
1/2
00 (Γ)-elliptic. Furthermore,

from the injectivity of the extension operator EΩ (cf. Lemma 5.1) we conclude that EΩτ 6= 0

for all τ ∈ H1/2
00 (Γ) \ {0}. It follows that for τ ∈ H1/2

00 (Γ) \ {0} it holds

〈Mτ, τ〉 = (EΩτ, EΩτ )0 = ‖EΩτ‖20 > 0,

i.e., the operator M (and the associated bilinear form) is positive definite.
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Remark 5.4 i) S is the so-called Steklov-Poincaré operator which is determined by the bi-
linear form a(·, ·). The Steklov-Poincaré operator is known, for example, from domain
decomposition methods for elliptic boundary value problems. See [60] for further informa-
tions. The operator M has been firstly described in [16] and is called mass operator. This
operator is determined by both the bilinear form a(·, ·) and the bilinear form (·, ·)0.

ii) The operators S and M are symmetric and continuous on H
1/2
00 (Γ), moreover, S is elliptic

and M is positive definite (cf. proof of Theorem 5.3). These properties (respectively, the
properties of the associated bilinear forms) are important for the numerical solution of the
coupling mode eigenvalue problem (5.13).

iii) The fixed-interface eigenvalue problem (5.7) is equivalent to the eigenvalue problem{
find (λ, u) ∈ R×H1

0 (Ωi) \ {0} such that

a(u, v) = λ (u, v)0 ∀ v ∈ H1
0 (Ωi).

(5.19)

iv) The benefit of the representation (5.19) and (5.13) compared to the representation (5.7) and
(5.8) is that the eigenvalue problems are solely solved and evaluated on the subdomains Ωi

respectively the interface Γ.

In this section we have seen that, in order to solve the global eigenvalue problem, the domain Ω
is subdivided into two subdomains which are separated by an interface. On the subdomains and
on the interface suitable eigenvalue problems are defined which, however, do not solve the global
problem but whose eigenfunctions are well suited to approximate the sought eigensolutions
of the global problem. In particular eigenfunctions belonging to the smallest eigenvalues are
selected from each subproblem to form a suitable subspace which is used for a Ritz-Galerkin
approximation of the global problem. Finally, we obtain from the resulting reduced eigenvalue
problem approximations of the sought eigensolutions of the global problem.

Remark 5.5 (Modal Truncation) To apply AMLS in practice the fixed-interface eigenvalue
problems (5.19) and the coupling mode eigenvalue problem (5.13) have to be discretised, e.g.,
by the finite element method, and eigensolutions of (5.19) and (5.13) associated to the smallest
eigenvalues are approximated. As already mentioned, the modal truncation performed in (5.10)
is motivated by theoretical and numerical results. However, there is a further reason for the
performed modal truncation: According to the approximation properties of finite element spaces
(see Section 3.4) only the first jEF

max(Nh)� Nh eigenfunctions can be well approximated by a given
finite element space Vh with Nh = dimVh degrees of freedom (short DOF). For example, under
certain smoothness conditions on the data (cf. Corollary 3.17) the number of well approximable

eigenfunctions is given, e.g., only by jEF
max(Nh) = CN

1/3
h or jEF

max(Nh) = CN
1/4
h . This issue

motivates the modal truncation in (5.10) from another point of view.

5.2. The AMLS Method in the Algebraic Setting

In this section the AMLS method is described in the algebraic setting to show how the method is
applied in practice. The initial point is the algebraic eigenvalue problem (4.4) which is the finite
element discretisation of the continuous problem (4.2). For reasons of convenience the upper
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Ω1

Ω2Γ

(a) DOF are associated to the interface Γ when their
basis functions have supports that are intersecting the
interface Γ.

Ω1

Ω2Γ

(b) Interface Γ is chosen in such a way that it does
not cut any finite element of the triangulation of Ω.

Figure 5.2.: Single-level substructuring of the domain Ω with triangulation. DOF of the FEM
space X1

h,0 are indicated by circles if they are associated to Ω1, by squares if associated to Ω2,
and by triangles if associated to Γ.

index of λ(h), x(h),K(h) and M (h), which is indicating in (4.4) the underlying mesh width h of
the finite element discretisation, is left out in this particular section and the eigenvalue problem{

find (λ, x) ∈ R× RN \ {0} with

K x = λM x
(5.20)

is considered with the eigenpairs(
λj , xj

)N
j=1
∈ R>0 × RN \ {0} and λj ≤ λj+1

where N := Nh = dimVh. To avoid misunderstandings, it is explicitly noted that in this
section λ and λj are interpreted as the eigenvalues of the discrete problem (5.20) and not as the
eigenvalues of the continuous problem (4.2).

The description starts in Section 5.2.1 with AMLS in the single-level version and is extended
in Section 5.2.2 to the multi-level version. In Section 5.2.3 a recursive version of AMLS is
presented, which has been first described in [31] by the author (to the best of his knowledge),
and which reduces the computational costs of the classical (multi-level) AMLS version.

5.2.1. Single-Level Version

In the first step of AMLS the domain Ω is substructured into two non-overlapping subdomains
Ω1 and Ω2 as done in (5.1) where the subdomains share the interface Γ := Ω1 ∩ Ω2. Since the
matrices K ∈ RN×N and M ∈ RN×N in (5.20) result from a finite element discretisation each
row and column index is associated with a basis function which has typically a small support
(see, e.g., Figure 3.2). Using the substructuring of Ω the row and column indices of K and M
are reordered in such a way that

K =


Ω1 Ω2 Γ

Ω1 K11 K13

Ω2 K22 K23

Γ K31 K32 K33

 and M =


Ω1 Ω2 Γ

Ω1 M11 M13

Ω2 M22 M23

Γ M31 M32 M33

 (5.21)

56



5.2. The AMLS Method in the Algebraic Setting

holds with Kij ,Mij ∈ RNi×Nj and N1 + N2 + N3 = N . The labels Ω1,Ω2 and Γ in (5.21) are
indicating to which subset the indices are associated, i.e., if the supports of the corresponding
basis functions are inside Ωi or intersecting Γ [cf. Figure 5.2(a)].

Remark 5.6 It is more convenient to substructure Ω in such a way that the resulting interface
does not cut any finite element of the triangulation Th of Ω [cf. Figure 5.2(b)]. This minimizes
the number of DOF associated to the interface, leading to smaller submatrices in (5.21) that are
associated to Γ, and correspondingly reduces the computational costs when the problem (K,M)
is transformed in the next steps of AMLS. Furthermore, when the interface Γ does not cut
the triangulation Th of Ω then the substructuring induces triangulations Th,1 of Ω1 and Th,2
of Ω2 that share the same edges on Γ [cf. Figure 5.2(b)]. In particular, it follows that the
eigenvalue problems (K11,M11) and (K22,M22) are the discrete equivalent of the continuous
eigenvalue problems (5.19), which eases the proof that AMLS in the algebraic setting is the
discrete equivalent of AMLS in the continuous setting (see Section 5.1).

In the next step of AMLS a block LDLT-decomposition is performed in order to block diago-
nalise the matrix K by K = LK̃LT where

L :=

 Id
Id

K31K
−1
11 K32K

−1
22 Id

 ∈ RN×N and K̃ = diag
[
K11,K22, K̃33

]
. (5.22)

The submatrix K̃33 given by

K̃33 = K33 −K31K
−1
11 K13 −K32K

−1
22 K23

is the Schur complement of diag[K11,K22] in K and it is typically dense. The matrix M is

transformed correspondingly by computing M̃ := L−1ML−T with

M̃ =

M11 M̃13

M22 M̃23

M̃31 M̃32 M̃33

 (5.23)

where the submatrices of M̃ are given by

M̃3i = M3i −K3iK
−1
ii Mii, and M̃i3 = M̃T

3i for i = 1, 2,

and

M̃33 = M33 −
2∑
i=1

(
K3iK

−1
ii Mi3 +M3iK

−1
ii Ki3 −K3iK

−1
ii MiiK

−1
ii Ki3

)
.

A part of the sparsity structure is lost in K̃ and M̃ . All submatrices K̃ii and M̃ij whose row
or column indices are associated with the interface Γ are now typically dense. The eigenvalue
problems (K,M) and (K̃, M̃) are equivalent, i.e., the eigenvalues of both problems are equal

and if x̃ is an eigenvector of (K̃, M̃) then x = L−T x̃ is an eigenvector of (K,M).
At first glance, the reason for the performed eigenvalue problem transformation from (K,M)

to (K̃, M̃) is not obvious. But it can be shown, cf. [16] and [60, Section 2], that the eigen-

value problem (K̃33, M̃33) is the discrete equivalent of the continuous coupling mode eigenvalue
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problem (5.13), and that the eigenvalue problems (K11,M11) and (K22,M22) are the discrete
equivalents of the continuous fixed-interface problems (5.19). The initial point of the corre-
sponding proof is the triangulation of Ω described in Remark 5.6 and Figure 5.2(b).

As in the continuous setting the global eigenvalue problem (K,M), respectively (K̃, M̃), is
not solved just by computing the eigensolution of the subproblems (K11,M11), (K22,M22) and

(K̃33, M̃33). However, the eigenvectors of these three subproblems are well suited to approximate

the sought eigenvectors of (K,M) and (K̃, M̃). As in the continuous setting, cf. (5.10), only
those subproblem eigenvectors are of interest which belong to the smallest eigenvalues.

Correspondingly in the next step of AMLS partial eigensolutions of the subproblems are
computed, i.e., only those eigenpairs of (K11,M11), (K22,M22) and (K̃33, M̃33) are computed
which belong to the smallest ki ∈ N eigenvalues for given ki ≤ Ni and i = 1, 2, 3. In the following
these partial eigensolutions are

Kii S̃i = Mii S̃i D̃i for i = 1, 2 and K̃33 S̃3 = M̃33 S̃3 D̃3 (5.24)

where the diagonal matrix D̃i ∈ Rki×ki contains the ki smallest eigenvalues and the matrix
S̃i ∈ RNi×ki column-wise the associated eigenvectors (i = 1, 2, 3). Furthermore, the eigenvectors

of the subproblems are normalised by S̃Ti MiiS̃i = Id (i = 1, 2) and S̃T3 M̃33S̃3 = Id.

Remark 5.7 (Mode Selection) How many eigenvectors have to be selected in (5.24) from
each subproblem is not easy to answer. On the one hand enough spectral information has to
be kept to obtain sufficiently good eigenpair approximations from the reduced problem. Selecting
all (discrete) eigenvectors from each subproblem would lead to exact eigenpairs of the discrete
global eigenvalue problem (K,M). On the other hand ki should be small to obtain in the further
proceeding of AMLS a reduced problem of small size which can be easily solved.

In the literature [28, 67] several heuristic approaches have been derived on how to select eigen-
pairs. These heuristics are based purely on the analysis of the algebraic eigenvalue problem
(K̃, M̃) without using any geometry information of the underlying partial differential equation
(4.1). One possible strategy for the eigenpair selection in (5.24) is as follows: Select in each
subproblem only those eigenpairs whose eigenvalues are smaller than a given truncation bound
ω> 0.

In this work a different approach is pursued. As already described the three subproblems
(K11,M11), (K22,M22) and (K̃33, M̃33) correspond to finite element discretisations of the contin-
uous problems (5.19) and (5.13). Therefore and because of the discussed approximation proper-
ties of finite element spaces (see Chapter 4 for summary), all eigenvectors in (5.24) are computed
which still lead to reasonable approximations of the corresponding continuous eigenfunctions.
Correspondingly only the eigenvectors belonging, e.g., to the smallest

ki = CN
1/3
i ∈ N or ki = CN

1/2
i ∈ N (5.25)

eigenvalues are computed with some constant C > 0. The size of the constant C and the used
exponent in (5.25) depend, among other things, on the spatial dimension d, on the polynomial
degree p of the used finite element space Vh, on the type of the subproblem (subdomain or interface
eigenvalue problem), and on the number nes of sought eigenpairs. The constant C and the
exponent from (5.25) will be specified in Chapter 9 where numerical results are presented. The
results of Corollary 3.17 where asymptotics on the number of well approximable eigenfunctions
are presented can be used as orientation, however, it might be useful to select slightly more
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eigenvectors which are possibly bad approximations of continuous eigenfunctions but still have
enough spectral information to approximate the associated eigenvalue.

In the next step the block diagonal matrix

Z := diag
[
S̃1, S̃2, S̃3

]
∈ RN×k̄ with k̄ := k1 + k2 + k3 � N

is defined which is built of all selected subproblem eigenvectors. The k̄-dimensional subspace
spanned by the columns of the matrix Z respectively of the matrix L−TZ is well suited to
approximate the sought eigenvectors of (K̃, M̃) respectively (K,M). In particular, the columns
of the matrix

L−TZ =

 S̃1 −(K−1
11 K13)S̃3

S̃2 −(K−1
22 K23)S̃3

S̃3

 ∈ RN×k̄

are the discrete equivalent of the selected eigenfunctions contained in subspace (5.10) from the
continuous setting (cf. [16, 60]). To be more precise, the columns vectors in the first and second
block column of the matrix L−TZ are the discrete analogue of the selected eigenfunctions from
the continuous problems (5.7), and the column vectors in the third block-column of L−TZ are
the discrete analogue of the selected eigenfunctions from the continuous problem (5.8).

In order to approximate the sought eigenpairs of (K,M) in the next step of AMLS, the

matrices K̂ := ZT K̃ Z and M̂ := ZT M̃ Z are computed where it holds

K̂ = diag
[
D̃1, D̃2, D̃3

]
∈ Rk̄×k̄ and M̂ =

 Id M̂13

Id M̂23

M̂31 M̂32 Id

 ∈ Rk̄×k̄,

and a reduced eigenvalue problem{
find ( λ̂, x̂ ) ∈ R× Rk̄ \ {0} with

K̂ x̂ = λ̂ M̂ x̂
(5.26)

with eigenpairs (
λ̂j , x̂j

)k̄
j=1
∈ R>0 × Rk̄ \ {0} and λ̂j ≤ λ̂j+1

is obtained. In particular, the reduced eigenvalue problem (5.26) is the discrete equivalent of
the reduced problem (5.11) from the continuous setting.

At the end of AMLS the smallest nes eigenpairs of (5.26) are computed. The vectors

ŷj := L−TZ x̂j with j = 1, . . . , k̄ (5.27)

are Ritz-vectors of the original eigenvalue problem (K,M) respective to the subspace spanned
by the columns of the matrix L−TZ, and λ̂j are the respective Ritz-values. Finally, the pairs(

λ̂j , ŷj
)nes

j=1
∈ R>0 × RN \ {0} with λ̂j ≤ λ̂j+1 (5.28)

are approximating the sought smallest nes eigenpairs of the eigenvalue problem (K,M). But
note that in the beginning of AMLS the original index ordering of the matrices K and M has

59



5. Automated Multi-Level Substructuring

Ω
(0)
1 7→

Ω
(1)
1

Ω
(1)
2

Γ
(0)
1

7→
Γ

(1)
1

Γ
(1)
2

Ω
(2)
1

Ω
(2)
2

Ω
(2)
3

Ω
(2)
4Γ

(0)
1

Figure 5.3.: Extending the single-level substructuring of Ω
(0)
1 := Ω to a two-level substructur-

ing.

been changed by some index permutation π : I → I with I := {1, . . . , N} in order to obtain
the block-structure form (5.21). To obtain eigenpair approximations of (K,M) with the original
ordering of the row and column indices the inverse index permutation π−1 has to be applied to
the vectors ŷj for j = 1, . . . , nes.

Remark 5.8 (Reduced Eigenvalue Problem) Because the eigenpairs of the reduced eigen-

value problem (K̂, M̂) are primarily used to approximate the eigensolutions of the continuous
problem (4.2) and not the eigenpairs of the discretised problem (K,M), the approximation error
of AMLS is influenced by the finite element discretisation and the modal truncation applied in
(5.24). As long as the error caused by the modal truncation is of the same order as the dis-

cretisation error, the eigenpair approximations derived from the reduced problem (K̂, M̂) are of
comparable quality as the eigenpair approximations derived from the problem (K,M).

The reduced eigenvalue problem (K̂, M̂) is much easier to solve than the original eigenvalue
problem (K,M) because the number of selected eigenpairs in (5.24) is typically quite small and
therefore the order of the reduced problem is much smaller than the order of the original problem.

If for example the mode selection strategy described in Remark 5.7 is used with ki = CN
1/3
i then

the size of the reduced problem can be bounded by O(N1/3) and the problem can be solved by
dense linear algebra routines in O(N).

5.2.2. Multi-Level Version

The single-level version of the AMLS method explained in the previous section can easily be
extended to a multi-level version. Using the substructuring from the single-level version we
recursively subdivide the subdomains Ω1 and Ω2 into additional levels. For this purpose a
more appropriate notation is introduced: The subdomain on level l ∈ N0 with numbering index

j ∈ N is denoted by Ω
(l)
j where Ω

(0)
1 corresponds to the global domain Ω. Each subdomain

Ω
(l)
j is further subdivided into two non-overlapping subdomains on level l + 1 which share the

interface Γ
(l)
j . This substructuring can be applied recursively to the resulting subdomains until

a certain level is exceeded or the size of the subdomains falls below some given limit. This
type of domain substructuring is also known as nested dissection. In Figure 5.3 the described
domain substructuring has been illustrated until the level l = 2 is reached. The performed
substructuring results in a subdivision of Ω into mdom subdomains which are separated by mint

interfaces (for the two-level substructuring from Figure 5.3 we have mdom = 4 and mint = 3).
The subdomains and interfaces will constitute in the following, similar to the single-level version
of AMLS, in total m = mdom +mint subproblems.
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The further proceeding of AMLS in the multi-level version is analogous to the single-level
version. As in (5.21) the row and column indices of the matrices K and M are reordered to
achieve a matrix partitioning according to the performed domain substructuring. For example
the matrix partitioning of K corresponding to the two-level domain substructuring applied in
Figure 5.3 is

K =



Ω
(2)
1 Ω

(2)
2 Γ

(1)
1 Ω

(2)
3 Ω

(2)
4 Γ

(1)
2 Γ

(0)
1

Ω
(2)
1 K11 K13 K17

Ω
(2)
2 K22 K23 K27

Γ
(1)
1 K31 K32 K33 K37

Ω
(2)
3 K44 K46 K47

Ω
(2)
4 K55 K56 K57

Γ
(1)
2 K64 K65 K66 K67

Γ
(0)
1 K71 K72 K73 K74 K75 K76 K77


(5.29)

where Kij ∈ RNi×Nj is the submatrix of K in block-row i and block-column j for i, j = 1, . . . ,m
and with N =

∑m
i=1Ni. It is explicitly noted that the multi-level version of AMLS does not

correspond to a recursive call of the single-level version. Instead the different matrix operations,
done in the single-level version, are applied analogously to the matrices from the multi-level
version, i.e., to matrices of the form (5.29) for example.

In the next step the eigenvalue problem (K,M) is transformed equivalently to (K̃, M̃), i.e.,
K is block diagonalised via K = LK̃LT by performing a block LDLT-decomposition and M
is transformed correspondingly by M̃ = L−1ML−T . Due to the transformation a part of the
sparsity structure is lost in K̃ and M̃ . All submatrices K̃ij and M̃ij are now typically dense if
their respective row or column indices are associated with an interface. Furthermore, it holds
K̃ii = Kii and M̃ii = Mii if the respective row and column indices are associated with a sub-
domain. For example, for the two-level substructuring described in Figure 5.3 the transformed

matrices are of the form K̃ = diag
[
K11,K22, K̃33,K44,K55, K̃66, K̃77

]
and

M̃ =



M11 M̃13 M̃17

M22 M̃23 M̃27

M̃31 M̃32 M̃33 M̃37

M44 M̃46 M̃47

M55 M̃56 M̃57

M̃64 M̃65 M̃66 M̃67

M̃71 M̃72 M̃73 M̃74 M̃75 M̃76 M̃77


(5.30)
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where the transformation matrix L is of the form

L =



Id

Id

L31 L32 Id

Id

Id

L64 L65 Id

L71 L72 L73 L74 L75 L76 Id


.

In the next step the partial eigensolutions of the subproblems (K̃ii, M̃ii) are computed. Let
the partial eigensolution be given again by

K̃ii S̃i = M̃ii S̃i D̃i with S̃Ti M̃ii S̃i = Id (5.31)

for i = 1, . . . ,m, where the diagonal matrix D̃i ∈ Rki×ki contains the ki ≤ Ni smallest eigenvalues
and S̃i ∈ RNi×ki column-wise the associated eigenvectors. In the next step the reduced matrices
K̂ := ZT K̃Z ∈ Rk̄×k̄ and M̂ := ZT M̃Z ∈ Rk̄×k̄ are computed where Z := diag

[
S̃1, . . . , S̃m

]
and

k̄ :=
∑m

i=1 ki. For example, for the two-level substructuring described in Figure 5.3 the reduced
matrices are of the form

K̂ = diag
[
D̃1, . . . , D̃7

]
and M̂ =



Id M̂13 M̂17

Id M̂23 M̂27

M̂31 M̂32 Id M̂37

Id M̂46 M̂47

Id M̂56 M̂57

M̂64 M̂65 Id M̂67

M̂71 M̂72 M̂73 M̂74 M̂75 M̂76 Id


.

Finally, the nes smallest eigenpairs (λ̂j , x̂j) of the reduced eigenvalue problem (K̂, M̂) are com-
puted where eigenpair approximations of the original eigenvalue problem (K,M) are obtained
by computing ŷj := L−TZ x̂j . To summarise the AMLS method an overview of all necessary
operations is given in Table 5.1 where the different tasks of the method are denoted by (T1)–(T8).

Remark 5.9 (Purely Algebraic Setting) The matrix partitioning in (5.21) can be obtained
also in a purely algebraic way by applying graph partitioning algorithms like nested dissection to
the graph of the matrix4 |K|+|M |, and AMLS is applied to the pure algebraic eigenvalue problem
Kx = λMx where symmetric sparse matrices K, M are given and where M is additionally
positive definite. For this reason, the AMLS method is often analysed in literature (e.g., in
[28, 30, 67]) only in a pure algebraic setting.

4For a given matrix A = (aij)
N
i,j=1 ∈ RN×N the matrix |A| ∈ RN×N is defined by |A| = ( |aij | )Ni,j=1.
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Task Matrix Operations AMLS

(T1) partition matrices K and M apply nested dissection reordering as done, for example,
in (5.21) and (5.29)

(T2) block diagonalise the matrix K K = L K̃ LT

(T3) transform M M̃ = L−1M L−T

(T4) compute partial eigensolutions
(for i = 1, . . . ,m)

K̃ii S̃i = M̃ii S̃i D̃i with S̃i ∈ RNi×ki and D̃i ∈ Rki×ki

(T5) define subspace Z := diag
[
S̃1, . . . , S̃m

]
∈ RN×k̄ with k̄ =

∑m
i=1 ki

(T6) compute matrices of the

reduced eigenvalue problem

K̂ := ZT K̃ Z ∈ Rk̄×k̄,

M̂ := ZT M̃ Z ∈ Rk̄×k̄

(T7) solve reduced eigenvalue problem K̂ x̂j = λ̂j M̂ x̂j for j = 1, . . . , nes

(T8) transform eigenvectors ŷj := L−TZ x̂j for j = 1, . . . , nes

(to restore the original index-ordering for the approxi-
mated eigenvector the inverse of the in task (T1) per-
formed index permutation π has to be applied to ŷj)

Table 5.1.: Overview of the AMLS method to compute eigenpair approximations ( λ̂j , ŷj) for
the smallest nes eigenpairs of (K,M).

The benefit of the multi-level approach is that the substructuring of the domain Ω or respec-
tively the partitioning of the matrices K and M can be applied recursively until eventually in
(5.31) the size of the subproblems (K̃ii, M̃ii) associated to subdomains is small enough to be
solved easily. However, if more and more levels are used in the multi-level approach of AMLS,
then the size of the reduced eigenvalue problem increases as k̄ =

∑m
i=1 ki grows with the num-

ber m of subproblems. Although the reduced problem is partially structured (K̂ is a diagonal

matrix and the structure of M̂ is inherited from the block-sparsity of M), eventually the total
complexity is dominated by this part. As a consequence, the number of levels has to be con-
trolled so that at most O(nes) eigenvectors are used from all subproblems together. Altogether,
to achieve both, i.e., subproblems that are easy to solve and a reduced eigenvalue problem of
size O(nes), it is proposed to apply the AMLS method only with a few levels and to apply the
method recursively to the large subdomain eigenvalue problems. Details of this approach are
presented in the following section.

5.2.3. Recursive AMLS

In the following we denote a subproblem (K̃ii, M̃ii) that is associated to an interface simply as in-

terface eigenvalue problem and a subproblem (K̃ii, M̃ii) associated to a subdomain as subdomain
eigenvalue problems.

The recursive version of AMLS has been first discussed in [31] by the author (to the best of his
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5. Automated Multi-Level Substructuring

knowledge). In the recursive approach the classical (multi-level) AMLS method is applied (as
described in Section 5.2.1 and Section 5.2.2) with only a few levels, and with the special feature

that in task (T4) large subdomain eigenvalue problems (K̃ii, M̃ii) are solved recursively by the
AMLS method. Since in this approach the number of levels from the multi-level substructuring
is kept small the number of subdomains (from the multi-level substructuring) can be bounded
by O(1).

As already discussed only jEF
max(N) eigenfunctions (cf. Corollary 3.17) of the continuous prob-

lem (4.2) can be well approximated by the discretised problem (K,M) using a finite element
space Vh with N = dimVh degrees of freedom and where jEF

max(N) ≤ nes � N . Furthermore, each

subdomain eigenvalue problem (K̃ii, M̃ii) is associated to a subdomain Ω
(l)
j (with suitable l ∈ N

and j ∈ N), in particular it holds (K̃ii, M̃ii) = (Kii,Mii), i.e., the subproblem corresponds to the

finite element discretisation of the continuous eigenvalue problem on Ω
(l)
j (cf. Remark 5.6) using

the finite element space Vh restricted5 to Ω
(l)
j with Ni < N degrees of freedom. Correspondingly,

in each of the subdomains Ω
(l)
j there are ki < nes eigenfunctions that can be represented well in

the associated finite element space. Since in the recursive approach the number of subdomains
(from the multi-level substructuring) is in O(1) it follows6 that the size of the reduced problem
is at most O(nes). If it holds, for example, that nes ∈ O(N1/3) then the reduced eigenvalue

problem (K̂, M̂) can be handled by a standard dense linear algebra solver with cubic complexity
whereby the computational costs for task (T7) still remain in O(N).

When in task (T4) the AMLS method is used for the solution of a subdomain problem

(K̃ii, M̃ii) then an approximated eigensolution

K̃ii S̃i ≈ M̃ii S̃i D̃i with S̃Ti M̃ii S̃i = Id (5.32)

is obtained. Although it is primarily aimed to approximate the continuous eigenfunctions and
not the discrete eigenvectors of (K̃ii, M̃ii), it is reasonable to compute slightly more eigenvectors

than in the case when, e.g., a direct solver is used for the solution of (K̃ii, M̃ii) [which computes
almost numerically exact eigenvectors], so that a possibly lower approximation quality of AMLS

can be compensated and enough spectral information of (K̃ii, M̃ii) is provided for the subspace
in task (T5). This issue is discussed in more detail in Section 8.7 and Section 9.2 where the
implementation is described and numerical results are presented.

The recursive approach and the multi-level approach of AMLS affect the size of the subdomain
eigenvalue problems, however, both approaches do not effect the size of subproblems that are
related to interfaces. When the spatial domain Ω of the problem is three-dimensional this is a
bottleneck, as it is shown in the following section.

5.3. Efficiency Problems in the Three-Dimensional Case

In the following we refer to a submatrix whose row or column indices are associated with an
interface as an interface matrix. When AMLS is applied to a three-dimensional problem the
interface matrices are getting relatively large which is leading to very high computational costs.

5More precisely, this is the finite element space which is spanned by the basis functions (ϕ
(h)
j )Nj=1 of Vh whose

index j is associated with the rows and columns of K̃ii or M̃ii.
6Provided that for interface problems the number of selected eigenvectors ki is bounded as well by ki < nes.
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Figure 5.4.: Two-level substructuring of the discretised domain Ω = (0, 1)3.

As discussed in the previous section further substructuring reduces only the size of submatrices
which are associated only with subdomains, but the substructuring reduces not the size of the
interface matrices.

To illustrate this bottleneck we consider the initial eigenvalue problem (4.2) with the under-
lying domain Ω = (0, 1)3. To solve this problem with the AMLS method it has to be discretised
first using finite elements. A triangulation of Ω = (0, 1)3 can be obtained, for example, by
decomposing Ω = (0, 1)3 into n+1 equispaced subintervals in each direction and using the finite
element space of piecewise affine functions X1

h,0 with mesh width h = 1/(n+1) [see Figure 5.4(b)
for illustration]. The discretisation results in the algebraic eigenvalue problem (5.20) where the
matrices K and M are of size N ×N with N = n3. If we assume that, for example, a two-level
substructuring is performed in AMLS then we obtain a matrix partitioning of the form (5.29)
where the number of rows or columns of the interface matrices are O(N2/3) [see Figure 5.4(c)
for illustration]. The size of these interface matrices is relatively large and cannot be reduced
by further substructuring.

During the procedure of AMLS a couple of matrix operations have to be performed on the
interface matrices, e.g, computing the inverse, the matrix product or the partial eigensolution.
The interface matrices are not only relatively large, they become dense as well when task (T2)
and (T3) is performed. For example in the two-level version of AMLS the inverse of the interface
matrices K̃33 and K̃66 has to be computed when in task (T2) the block LDLT-decomposition
K = LK̃LT is performed. These operations alone lead to costs of O

(
(N2/3)3

)
= O

(
N2
)
, and

hence AMLS is getting too expensive for three-dimensional problems. The so-called hierarchical
matrices which are introduced in the next chapter are a possibility to resolve this problem.
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The so-called hierarchical matrices (short H-matrices) [38, 39] are data-sparse but possibly
dense matrices. The basic idea is to reorder the rows and columns of a matrix such that certain
submatrices can be represented or approximated by low rank matrices. Using the low rank
approximation, a fully populated but data-sparse matrix of size N × N can be represented
using only O(N logαN) data instead of storing N2 entries where α = 1, . . . , 4 (cf. [33, 35]).
Most importantly, H-matrices provide exact matrix-vector multiplication and approximated
matrix(-matrix) operations (e.g. multiplication, addition, inversion, LU-factorisation) which are
performed in almost linear complexity O(N logαN).

As described in Section 3.3, the stiffness matrix resulting from the finite element discretisation
of an elliptic PDE operator is sparse. However, the inverse and the LU-factors of the stiffness
matrix are in general fully populated. In [13, 29] and [12, 29, 34, 59] it is shown that the inverse
and the LU-factors can be well approximated by H-matrices and that these approximations can
be computed with almost linear complexity. This motivates to use the fast H-matrix arithmetic
in task (T2) and (T2) of the AMLS method for the computation of the block diagonalisation

K = LK̃LT and the matrix transformation M̃ = L−1ML−T .
To use the fast H-arithmetic the sparse matrices K and M have to be converted into H-

matrices. For this purpose a suitable H-matrix format has to be provided which is based on
the geometry information of the partial differential equation (4.1). To introduce this H-matrix
format and the basics of H-matrices it is first explained how the inverse of a stiffness matrix is
approximated by an H-matrix.

A description of the H-matrices by the author has been already given in [31, Section 5]. This
chapter is a strongly revised version of [31, Section 5] and provides a more detailed discussion
of the topic.

6.1. H-Matrix Approximation of the Inverse Stiffness Matrix

Assume G ∈ RN×N is the stiffness matrix1 resulting from the finite element discretisation of
an elliptic partial differential operator. The matrix G is sparse, however, its inverse G−1 is
fully populated. Recalling the definition of the stiffness matrix in (4.5) each row and column

index i ∈ I := {1, . . . , N} of G and respectively of G−1 is associated with a basis function ϕ
(h)
i

of the underlying finite element space Vh with N = dimVh degrees of freedom. To emphasise
that the row and column indices of G and G−1 are associated with the index set I the notation
G,G−1 ∈ RI×I is used. The support of each index set t ⊂ I is defined by

Ωt :=
⋃
i∈t

supp
(
ϕ

(h)
i

)
. (6.1)

1To avoid misunderstandings, the stiffness matrix is denoted in this particular section by G and not by K since
the H-matrix structure used to approximate the inverse G−1 differs from the H-matrix structure which will
be used later in the AMLS method in order to approximate the factorisation K = LK̃LT .
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Correspondingly each submatrix

G−1
|s×t :=

(
(G−1)ij

)
i∈s,j∈t with s, t ⊂ I

of G−1 is associated with the geometry information of Ωs and Ωt. Based on the geometric
separation of the supports Ωs and Ωt certain subblocks s× t ⊂ I× I can be identified that allow
a low rank approximation of the respective submatrices G−1

|s×t. More precisely, submatrices
G−1

|s×t whose index sets s and t fulfil the so-called admissibility condition

min
{

diam(Ωs), diam(Ωt)
}
≤ η dist(Ωs,Ωt) (6.2)

are well suited for a low rank approximation (cf. [13]). The quantities

diam(Ωt) := max
{
‖x− y‖2 : x, y ∈ Ωt

}
, (6.3)

dist(Ωs,Ωt) := min
{
‖x− y‖2 : x ∈ Ωs, y ∈ Ωt

}
(6.4)

are the diameter and the distance of the supports of s and t, and the parameter η > 0 controls
the number of admissible subblocks s× t and is typically set to η = 1 (see, e.g., [33]). Subblocks
s× t fulfilling the admissibility condition (6.2) are called admissible and submatrices associated
to these subblocks are approximated by so-called R(k)-matrices which are defined as follows.

Definition 6.1 (R(k)-Matrix Representation) Let k,m, n ∈ N0 and R ∈ Rn×m be a matrix
of rank at most k. If the matrix R is stored in factorised form

R = ABT with A ∈ Rn×k and B ∈ Rm×k (6.5)

and when A,B are stored in full matrix representation2 then R is called an R(k)-matrix. Fur-
thermore, (6.5) is called the R(k)-matrix representation of R.

When the rank k is small compared to n and m the representation of an R(k)-matrix of size
n×m is much cheaper than in full matrix representation because only k(n+m) entries have to
be stored instead of nm. Furthermore, when k is small basic matrix operations can be evaluated
much more efficiently in R(k)-matrix representation than in full matrix representation. More
precisely, for an R(k)-matrix R = ABT ∈ Rn×m it holds:

• Matrix-Vector Multiplication: The matrix-vector product y := Rx for x ∈ Rm can be
computed in only O(k(n+m)) by first computing z := BTx ∈ Rk and afterwards y = Az.

• Matrix Addition: Let R̃ = ÃB̃T be an R(k)-matrix of size n×m then the sum

R+ R̃ = ABT + ÃB̃T =
[
AÃ ]︸ ︷︷ ︸
n×2k

[B B̃ ]T︸ ︷︷ ︸
2k×n

(6.6)

is an R(2k)-matrix and no computation is necessary.

2A matrix B ∈ Rm×k is said to be stored in full matrix representation if the matrix entries are stored (column-
wise) in an array of real numbers of length mk.

68



6.1. H-Matrix Approximation of the Inverse Stiffness Matrix

• Matrix Multiplication: Let R1 = A1B
T
1 ∈ Rl×n and R2 = A2B

T
2 ∈ Rm×l be R(k)-matrices.

Then the matrix products

R1R = ÃBT with Ã := A1(BT
1 A),

RR2 = AB̃T with B̃ := B2(AT2 B)

can be represented in the R(k)-matrix format where Ã ∈ Rl×k and B̃ ∈ Rl×k can be
computed in O(k2(l + n)) and O(k2(l + m)). Also, when R1 and R2 are in full matrix
representation the productsR1R andRR2 can be represented as R(k)-matrices withR1R =
ÃBT and RR2 = AB̃T where Ã := R1A and B̃ := RT2 B can be computed in O(lnk) and
O(lmk).

Algorithm 1 Geometric Bisection of an Index Set

procedure GeometricBisection( t, (ξi)i∈t)
for j = 1, . . . , d do . determine a bounding box containing all ξi

aj := min{ 〈ej , ξi〉 : i ∈ t }; . 〈·, ·〉 denotes the dot product in Rd
bj := max{ 〈ej , ξi〉 : i ∈ t };

end for
jmax := argmax{bj − aj : j = 1, . . . , d}; . jmax is the direction of maximal extent
c := (ajmax + bjmax)/2; . split the bounding box in the chosen direction
t1 := ∅, t2 := ∅;
for all i ∈ t do . distribute the indices i ∈ t to the sons t1 and t2

if 〈ejmax
, ξi〉 ≤ c then

t1 := t1 ∪ {i};
else

t2 := t2 ∪ {i};
end if

end for
return cluster t with S(t) := {t1, t2}

end procedure

In order to exploit the low rank approximation property of submatrices G−1
|s×t fulfilling (6.2)

the row and column indices of G−1 have to be reordered according to a suitable partitioning of
the product index set I × I. How a suitable partitioning of I × I is constructed is described in
the following.

At first the index set I is divided according to a geometric bisection of its support into two
disjoint index sets s, t ⊂ I with I = s ∪̇ t. This geometric bisection is applied recursively to the
index sets s and t until the cardinality of an index set falls below some given limit nmin ∈ N.
Using this approach a hierarchy of disjoint partitions of the index set I is obtained where the
corresponding subsets of the partitioning tend to be geometrically separated. In Figure 6.1(a)
and 6.1(b) such a partitioning of I is illustrated for a two-dimensional problem. The partitioning
of I can be obtained, for example, by applying Algorithm 1 recursively to the index set I (cf.
[18]), where for each index i ∈ I a geometric representative

ξi ∈ supp
(
ϕ

(h)
i

)
⊂ Rd (6.7)

is chosen which can be, e.g., the nodal point of the basis function ϕ
(h)
i or the geometric centre

of the corresponding support. Let {e1, ..., ed} be an arbitrary orthonormal basis in Rd (e.g.,
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6. Hierarchical Matrices

the standard basis) then Algorithm 1 will split a given index set t ⊂ I into disjoint index sets
t1, t2 ⊂ t such that the associated geometric representatives ξi are separated by a hyper-plane.
The described geometric partitioning of I is organised in a so-called cluster tree:

Definition 6.2 (Cluster Tree) Let TI = (V,E) be a tree with vertex set V and edge set E ⊂
V × V . For a vertex v ∈ V the set of its sons is defined by S(v) := {w ∈ V : (v, w) ∈ E}. The
tree TI is called a cluster tree over the index set I if the following conditions are fulfilled:

i) For all v ∈ V it holds v ⊂ I and v 6= ∅.

ii) I ∈ V is the root of TI .

iii) For all v ∈ V it holds S(v) = ∅ or v =
⋃̇
w∈S(v)w.

The nodes v ∈ V are called clusters. For reasons of simplification, we identify V and TI , i.e.,
we just write v ∈ TI instead of v ∈ V . Furthermore, we call a cluster without sons a leaf and
define the set of leaves of TI by L(TI) := {v ∈ TI : S(v) = ∅}.

Algorithm 2 Construction of the Block Cluster Tree

procedure ConstructBlockClusterTree( s× t, nmin, η )
if s× t is admissible then

S(s× t) := ∅;
else if min{#s,#t} ≤ nmin then

S(s× t) := ∅; . nmin affects the minimal size of the block clusters
else

S(s× t) :=
{
s′ × t′ : s′ ∈ S(s), t′ ∈ S(t)

}
;

for all s′ × t′ ∈ S(s× t) do
ConstructBlockClusterTree( s′ × t′, nmin, η );

end for
end if
return s× t;

end procedure

To obtain a partitioning of the product index set I × I the so-called block cluster tree TI×I is
introduced. The block cluster tree corresponding to the cluster tree TI and admissible condition
(6.2) is obtained by applying Algorithm 2 to the product index set I × I. Using this algorithm,
I × I is recursively subdivided into subblocks s × t until the subblock gets admissible (which
is controlled by the parameter η) or the size of the subblock falls below the limit nmin as it is
illustrated in Figure 6.1(c). The block cluster tree TI×I itself is a cluster tree over the product
index set I × I (cf. Definition 6.2) and provides a hierarchy of disjoint block partitions of the
product index set I × I. In particular, it holds

I × I =
⋃̇

s×t∈L(TI×I)

s× t (6.8)

where L(TI×I) is the set of leaves of TI×I . Using this block partitioning of I × I a hierarchical
matrix format can be defined which is well suited for the approximation of G−1:

70



6.1. H-Matrix Approximation of the Inverse Stiffness Matrix

Definition 6.3 (H-matrix Representation) Let k ∈ N0. The set of H-matrices induced by
the block cluster tree TI×I with block-wise rank k is defined by

H(TI×I , k) :=
{
A ∈ RI×I : rank(A|s×t) ≤ k for all admissible leaves s× t of TI×I

}
.

We say a matrix A ∈ H(TI×I , k) is stored in H-matrix representation if the submatrices A|s×t
associated to admissible leaves s × t of TI×I are stored as R(k)-matrices whereas submatrices
associated to inadmissible leaves are stored as full matrices.

H-matrices typically consist of large low rank matrices and small full matrices. The size of the
full matrices is controlled by the parameter nmin which has been used for the construction of the
trees TI and TI×I . For inadmissible leaves s× t of TI×I it holds min{#s,#t} ≤ nmin. Standard
values for nmin are in the range of 20 to 40 (cf. [50]).

Finally, when the rows and columns of G−1 are reordered according to the applied partitioning
of I, and G−1 is partitioned into blocks according to L(TI×I) [as illustrated in Figure 6.1(c)],
then the reordered matrix G−1 ∈ RN×N , which is in general fully populated, can be well ap-
proximated in the matrix format H(TI×I , k) and only O(N logαN) data is necessary instead of
storing N2 entries (cf. [13, 29]). Even more important: The H-matrix approximation of G−1

can be computed in O(N logαN) by an algorithm requiring only the matrix G and the used
H-matrix format. How this H-matrix approximation is computed is briefly described in the
following.

First of all, the rows and columns of the stiffness matrix G ∈ RI×I are reordered according to
the partitioning of I, and the matrix is partitioned into blocks according to L(TI×I). Since for
a block cluster s × t ∈ L(TI×I) fulfilling admissibility condition (6.2) the supports of the basis

functions ϕ
(h)
i with i ∈ s are geometrically separated from these of ϕ

(h)
j with j ∈ t it follows from

Lemma 3.6 that the respective submatrix G|s×t has only entries equal to zero and, therefore,
G|s×t can be represented exactly by an R(k)-matrix with rank zero. Correspondingly, no ap-
proximation is necessary to represent the reordered matrix G in the matrix format H(TI×I , k).
The (exact) H-matrix representation of G will be denoted in the following by GH.
H-matrices are implemented in a structured way which is guided by the block cluster tree

(cf. [39]) in order to ease the implementation of a corresponding H-matrix arithmetic: For the
matrix GH = GH|I×I and a block cluster s× t ∈ TI×I it holds

• if s× t ∈ L(TI×I) then GH|s×t is represented as a full matrix or an R(k)-matrix,

• if s× t /∈ L(TI×I) then GH|s×t is decomposed into a block matrix consisting of submatrices
that are associated to the sons of s× t, i.e., if S(s) = {s1, . . . , sr} and S(t) = {t1, . . . , tc}
with r, c ∈ N it holds3

GH|s×t =


GH|s1×t1 . . . GH|s1×tc

...
. . .

...

GH|sr×t1 . . . GH|sr×tc

 . (6.9)

3Using a geometric bisection for the construction of TI and Algorithm 2 for the construction of TI×I we obtain
in (6.9) a 2× 2 block structure.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

one-level bisection

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

two-level bisection

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

three-level bisection

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

four-level bisection

(a) Geometric bisection of the domain Ω = (0, 1)2 using nmin = 1. The indices i ∈ I = {1, . . . , 16} of the nodal
points of the basis functions are enumerated from 1 in the upper left to 16 in the lower right corner.

I =
{

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
}

{
1, 2, 5, 6, 9, 10, 13, 14

}
{

1, 2, 5, 6
}

{
1, 5
}

{
1
} {

5
}

{
2, 6
}

{
2
} {

6
}

{
9, 10, 13, 14

}
{

9, 13
}

{
9
} {

13
}

{
10, 14

}
{

10
} {

14
}

{
3, 4, 7, 8, 11, 12, 15, 16

}
{

3, 4, 7, 8
}

{
3, 7
}

{
3
} {

7
}

{
4, 8
}

{
4
} {

8
}

{
11, 12, 15, 16

}
{

11, 15
}

{
11
} {

15
}

{
12, 16

}
{

12
} {

16
}

(b) Disjoint partitioning of the index set I corresponding to the applied geometric bisection.

1
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1 5 2 6 9 13 10 14 3 7 4 8 11 15 12 16

(c) H-Matrix format for G−1 ∈ R16×16 according to the applied partitioning of I using admissibility condition
(6.2) with η = 50 and where nmin = 1; admissible blocks are coloured green, inadmissible ones are red.

Figure 6.1.: Construction of theH-matrix format for the inverse of the stiffness matrix resulting
from a finite element discretisation of an elliptic partial differential operator on Ω = (0, 1)2, where
the finite element space of piecewise affine functions X1

h,0 defined on an equispaced grid with 16
DOF is used for the discretisation.
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The computation of the H-matrix approximation of G−1 is based on the following approach:
The inverse of a regular matrix A can be computed by using the identify

A−1 =

A−1
11 +A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

 with A :=

[
A11 A12

A21 A22

]
(6.10)

and Schur complement S := A22 − A21A
−1
11 A12. After the computation of A−1

11 and S−1 only
multiplications and additions of submatrices have to be performed in order to obtain A−1.

Applying identity (6.10) recursively to the block structure (6.9) of GH its inverse can be
computed. In particular, the computation can be performed very efficiently when the R(k)-
matrix representation is exploited for the multiplication and addition of submatrices fulfilling
condition (6.2). However, since the sum of two R(k)-matrices leads to an R(k)-matrix of rank 2k
[see (6.6)] the problem arises that during the computation of the inverse the rank of submatrices
can become unacceptably large. Correspondingly, submatrices have to be replaced during the
computation by approximations with a reduced rank. Beside the possibility to reduce to a fixed
rank k (i.e., the matrix format H(TI×I , k) is retained) also an adaptive rank can be used in
order to control the approximation quality of the R(k)-matrix approximations: For a desired
approximation accuracy ε > 0 an arbitrary matrix M can be approximated by an R(k)-matrix
R such that

‖M −R ‖2
‖M ‖2

≤ ε (6.11)

where the rank k ∈ N0 is as small as possible (cf. [33]). There are many different approaches for
the efficient computation of such a low rank approximation (see, e.g., [39]). For example, a low
rank approximation with accuracy ε of the sum (6.6) of the two R(k)-matrices can be computed
in O(k2(n+m)) by the so-called truncated singular value decomposition (see [33]).

The corresponding H-matrix format using an adaptive rank with accuracy ε for the R(k)-
matrix approximation is denoted by H(TI×I , ε). Furthermore, let (GH)−1 ∈ H(TI×I , ε) denote
the H-matrix approximation of G−1 which is computed by the recursive approach outlined
above using an adaptive rank with accuracy ε. Then this approximated inverse is computed in
O(N logαN), see [33], and the error4 ‖G−1 − (GH)−1‖2 is controlled by the chosen accuracy ε
in (6.11).

6.2. H-Matrix Format for AMLS

To use the fast H-matrix arithmetic in task (T2) and (T3) of the AMLS method for the compu-

tation of the block diagonalisation K = LK̃LT and the matrix transformation M̃ = L−1ML−T

the described H-matrix format has to be changed slightly. First of all, a nested dissection is
applied as in the classical AMLS method, i.e., the domain Ω is recursively subdivided into sev-
eral subdomains which are separated by interfaces. The row and column indices of K and M
are reordered according to the performed substructuring of Ω and a matrix partitioning, e.g.,
of the form (5.21) or (5.29) is obtained. As discussed in Section 5.2 some of the submatrices

K̃ij and M̃ij are fully populated, however, they can be approximated in the H-matrix format.

4To compare (GH)−1 with G−1 and to compute the error ‖G−1 − (GH)−1‖2, both matrices need to have the
same ordering of the row and column indices.
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6. Hierarchical Matrices

Figure 6.2: H-matrix format for G−1 ∈ RN×N with
N = 2500 using admissibility condition (6.2) with η = 1
and nmin = 40 where G is the stiffness matrix resulting
from a finite element discretisation of an elliptic partial
differential operator on Ω = (0, 1)2.

For this purpose the index sets associated to the subdomains and interfaces are additionally
partitioned according to a recursive geometric bisection, and the row and column indices of the
submatrices K̃ij and M̃ij are reordered correspondingly. The described domain substructuring
has been illustrated in Figure 6.3.

To compute the transformed eigenvalue problem by the fastH-matrix arithmetic the reordered
matrices K and M have to be represented in the matrix format H(TI×I , ε) where TI×I is the
block cluster tree corresponding to the domain substructuring described above. Examples for
the matrix format H(TI×I , ε) are given in Figure 6.4. The resulting H-matrix representations
of K and M will be denoted in the following by KH and MH (note that the representations
are exact, cf. Section 6.1). Using these H-matrix representations the block diagonalisation of
K and the transformation of M can be computed by efficient algorithms (see, e.g., [34, 35, 39]),
similar to the recursive algorithm used for the computation of (GH)−1, in O(N logαN) leading
to

KH ≈ LH K̃H (LH)T and M̃H ≈ (LH)−1MH (LH)−T (6.12)

where K̃H, M̃H, LH ∈ H(TI×I , ε). The computation in (6.12) is performed not exactly but only

approximatively, in particular the approximation errors ‖L− LH‖2, ‖K̃ − K̃H‖2 and ‖M̃ − M̃H‖2
are influenced by the chosen accuracy ε in (6.11). In Section 8 the computation in (6.12) is dis-
cussed in more detail, especially an improved H-matrix format is introduced which is much more
efficient for the computation of (6.12).

74



6.2. H-Matrix Format for AMLS

Ω
(0)
1

Ω
(1)
1

Ω
(2)
1 Ω

(2)
2 Γ

(1)
1

Ω
(1)
2

Ω
(2)
3 Ω

(2)
4 Γ

(1)
2

Γ
(0)
1

nested dissection
needed for AMLS

geometric bisection
needed for H-matrix
arithmetic

Figure 6.3.: Schematic example of the in H-AMLS applied domain substructuring: A two-level
nested dissection (necessary for AMLS, cf. Figure 5.3) is performed followed by an additional
two-level geometric bisection of the subdomains and a one-level geometric bisection of the in-
terfaces (necessary for the approximative H-matrix arithmetic).

(a) one-level nested dis. (b) two-level nested dis. (c) three-level nested dis.

Figure 6.4.: H-matrix format H(TI×I , ε) used in H-AMLS for the finite element discretisation
of an elliptic PDE eigenvalue problem on Ω = (0, 1)3 with #I = 2744 degrees of freedom.
The matrix format H(TI×I , ε) is based on a one, two and three-level nested dissection with a
subsequent geometric bisection. Furthermore, η = 50 and nmin = 40 have been used for the
construction of TI×I . Red blocks represent full matrices, green blocks R(k)-matrices and white
blocks submatrices equal to zero which retain zero during the computation of (6.12) and don’t
cause computational costs.
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In this chapter a more refined version of the AMLS method is presented which is using the
fast H-matrix arithmetic. The benefit of the use of H-matrices is a substantial reduction in
computational time and storage requirements. However, due to the use of the approximative
H-matrix arithmetic, an additional error occurs which can influence the quality of the computed
eigenpair approximations.

This chapter is organised as follows: In Section 7.1 the new method, called H-AMLS, is
introduced. The computational costs of the method are analysed in Section 7.2 and the accuracy
of the computed eigenpair approximations is discussed in Section 7.3. Finally, in Section 7.4
an additional task is introduced which is basically one (approximative) iteration step of the
subspace iteration and which further improves the accuracy of the H-AMLS method.

The H-AMLS method has been introduced in [31, Section 6] by the author. This chapter is
a revised version of [31, Section 6]. It contains a more detailed description of the method, and
it introduces the new improvement task from Section 7.4.

7.1. Introduction of the H-AMLS method

As already described in Section 6.2, in the first step of the H-AMLS method the domain Ω is
substructured according to a nested dissection just like in the classical AMLS method, which
results in a substructuring of Ω with m ∈ N subdomains and interfaces. To use the fast H-matrix
arithmetic additionally a geometric bisection of the subdomains and interfaces is performed.
After the row and column indices of K and M are reordered corresponding to the performed
domain substructuring, the exact H-matrix representations KH and MH are constructed (cf.
Section 6.2). In the next step the block diagonalisation of KH is computed and the corresponding
matrix transformation of MH, see (6.12), using the fast H-matrix arithmetic.

The further proceeding of H-AMLS is analogous to the classical AMLS method. At first
the m ×m block partitioning of the matrices K̃H and M̃H is introduced corresponding to the
performed nested dissection [e.g., as in (5.21) or (5.29)], where K̃Hij ∈ RNi×Nj and M̃Hij ∈ RNi×Nj
denote the corresponding submatrices in block row i and block column j. In the next step of
H-AMLS the partial eigensolutions of the subproblems (K̃Hii , M̃

H
ii ) are computed for i = 1, . . . ,m

which are given by

K̃Hii S̃i = M̃Hii S̃i D̃i with S̃Ti M̃
H
ii S̃i = Id, (7.1)

where the diagonal matrix D̃i ∈ Rki×ki contains the ki ≤ Ni smallest eigenvalues and the
matrix S̃i ∈ RNi×ki column-wise the associated eigenvectors. Because in general the matrices
K̃Hii and M̃Hii slightly differ from K̃ii and M̃ii, the corresponding eigensolutions (5.31) and
(7.1) can differ as well. To indicate this difference in the H-AMLS method bold symbols are
used for the corresponding matrices and symbols. In the next step the block diagonal matrix
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Z := diag
[
S̃1, . . . , S̃m

]
is defined and the reduced matrices

K̂ := ZT K̃H Z ∈ Rk̄×k̄ and M̂ := ZT M̃H Z ∈ Rk̄×k̄

are computed where k̄ =
∑m

i=1 ki. These matrices lead to the so-called H-reduced eigenvalue
problem {

find ( λ̂, x̂ ) ∈ R× Rk̄ \ {0} with

K̂ x̂ = λ̂ M̂ x̂
(7.2)

which possesses the eigenpairs(
λ̂j , x̂j

)k̄
j=1
∈ R>0 × Rk̄ \ {0} with λ̂j ≤ λ̂j+1. (7.3)

In the end of H-AMLS the smallest nes eigenpairs of (7.2) are computed and the eigenvectors
x̂j of the reduced problem are transformed via

ŷj := (LH)−T Z x̂j for j = 1, . . . , nes.

The computed pairs
(
λ̂j , ŷj

)nes

j=1
are approximating the nes smallest eigenpairs of the original

problem (K,M). But note that in the beginning of H-AMLS the original index ordering of
the matrices K and M has been changed by some permutation π : I → I in order to obtain
the needed matrix partitioning and to derive the corresponding H-matrix representations. To
receive eigenpair approximations of the problem (K,M) with the original ordering of the row
and column indices, the inverse index permutation π−1 has to be applied to the vectors ŷj for
j = 1, . . . , nes.

In contrast to the classical AMLS method, in general λ̂j is not equal to the Rayleigh quotient

λ̂
(rq)
j :=

ŷTj K ŷj

ŷTj M ŷj
(7.4)

since the matrix operations in (6.12) are performed only approximatively. Typically the Rayleigh

quotients λ̂
(rq)
j deliver better approximations of the sought eigenvalues λj than λ̂j , especially

when the chosen accuracy ε of the H-matrix arithmetic is coarse. Correspondingly, the Rayleigh
quotients are computed as well in H-AMLS.

Furthermore, as already described in Section 5.2.3, it is intended to apply a low-level nested
dissection in the H-AMLS method in order to keep the number of subproblems small so that
the size k̄ of the H-reduced problem can be bounded by O(nes). In the case that in task (T4)

subdomain eigenvalue problems (K̃Hii , M̃
H
ii ) occur that are too large to be solved by a direct

solver, the H-AMLS method is applied recursively to this subproblem. However, note that in
this case instead of an (almost) exact eigensolution of the discrete problem, as obtained by an
classical eigensolver, an approximated eigensolution

K̃Hii S̃i ≈ M̃Hii S̃i D̃i (7.5)

is obtained, and correspondingly an additional error is introduced which can influence the quality

of the computed eigenpair approximations
(
λ̂

(rq)
j , ŷj

)nes

j=1
.

In the following the recursive version of H-AMLS is simply called recursive H-AMLS. In
order to compare classical AMLS with the new (recursive) H-AMLS method an overview of
both methods is given in Table 7.1 where the tasks (T1)–(T8) and a new task, denoted by task
(T9), are summarised.
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Remark 7.1 If the accuracy of the approximative H-arithmetic is not fine enough it can po-
tentially happen that the computed matrices K̃H and M̃H lose their positive definiteness (note
that the FEM matrices K,M and their corresponding H-matrix representations KH,MH are
positive definite), and that therefore the matrices K̃Hii , M̃Hii and K̂, M̂ may lose their positive

definiteness as well. In this case the problems (K̃Hii , M̃Hii ) and (K̂, M̂) may become defective
and eigensolutions of the form (7.1) and (7.3) do not exist. However, in numerical tests this
problem did not occur, even when the accuracy of the H-arithmetic has been chosen very coarse
the matrices K̃H and M̃H retained the positive definiteness.

7.2. Computational Costs

Beside the number of degrees of freedom N and the number of sought eigenpairs nes the compu-
tational costs of H-AMLS depend on the chosen accuracy ε of the H-matrix operations in (6.12)
and the applied modal truncation in (7.1), i.e, the number of selected eigenvectors ki. A coarser
accuracy ε and smaller ki result in faster computations and reduced memory requirements of
H-AMLS. Of course these parameters can be chosen arbitrarily, however, their choice influences
the approximation accuracy of the sought nes eigenpairs. This issue is discussed in the next
section and in Chapter 9. In the following the computational costs of recursive H-AMLS are
discussed in detail and compared with the costs of classical AMLS. The discussion is restricted
to three-dimensional problems where nes ∼ Nβ eigenpairs are sought with some β ∈ (0, 1/3].

The recursive version of H-AMLS is applied in detail as follows: In task (T1) a multi-level
substructuring is performed with a fixed number of few levels lloc ∈ N. The substructuring
results in 2lloc subdomain problems of approximate size N/2lloc , and 2lloc−1 interface eigenvalue
problems of size O(N2/3) [cf. Section 5.3]. In task (T4) the mode selection strategy proposed

by Remark 5.7 is applied, i.e., the eigenvectors of (K̃Hii , M̃
H
ii ) associated to the ki smallest

eigenvalues are computed where ki ∈ O(Nβdom
i ) for subdomain problems and ki ∈ O(Nβint

i ) for
interface problems with suitable constants βdom, βint ∈ (0, 1) fulfilling βdom ≤ β and βint ≤ 3β/2.
This mode selection strategy guarantees for three-dimensional problems that the size of the
H-reduced problem is bounded by O(nes), and is applied as well in Chapter 9 where numerical

results are presented. In the case that in task (T4) the size Ni of a subdomain problem (K̃Hii , M̃
H
ii )

is larger than a given threshold nAMLS
min ∈ N then, instead of using a direct solver, the subdomain

problem is solved recursively by H-AMLS. The depth of the recursion lrec ∈ N depends on the
size N of the problem (K,M) and is described by

N ≈ 2lrec lloc nAMLS
min ⇒ lrec ∈ O( logN ).

Comparing the different tasks it can be seen that the recursive H-AMLS method is much
faster than the classical AMLS method:

• The computational costs of task (T1) are negligible, O(N logN). The computational costs
for task (T2) and (T3) are of the order O(N logαN) in H-AMLS whereas in classical
AMLS they are at least of the order O(N2) for three-dimensional problems (cf. Section
5.3).
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Task Matrix Operations classical AMLS Matrix Operations (recursive) H-AMLS

(T1) partition
K and M

nested dissection reordering, cf.
(5.21) and (5.29)

nested dissection reordering, cf. (5.21)
and (5.29), with subsequent geometric
bisection (cf. Section 6.2)

(T2) block diagonalise
the matrix K

K = LK̃LT

→ expensive because of large-
sized, dense interface matrices

KH ≈ LH K̃H (LH)T

→ using fast H-matrix arithmetic
done in O(N logαN)

(T3) transform M M̃ = L−1ML−T

→ expensive because of large-
sized, dense interface matrices

M̃H ≈ (LH)−1MH (LH)−T

→ using fast H-matrix arithmetic
done in O(N logαN)

(T4) comp. partial
eigensolutions
(for i = 1, . . . ,m)

K̃ii S̃i = M̃ii S̃i D̃i

with S̃i ∈ RNi×ki and D̃i ∈ RNi×ki

K̃Hii S̃i = M̃Hii S̃i D̃i

( . . . ≈ . . . if recursive call)

with S̃i ∈ RNi×ki and D̃i ∈ RNi×ki

if interface EVP K̃ii and M̃ii are dense

→ expensive

K̃Hii and M̃Hii are H-matrices

→ use fast H-matrix arithmetic
for eigensolver

if subdomain EVP K̃ii = Kii and M̃ii = Mii are sparse

→ if small problem: cheap
→ if large problem: expensive

K̃Hii and M̃Hii are are H-matrices

→ if small problem: cheap
→ if large problem: when H-AMLS is

used cheap, otherwise expensive

(T5) define subspace Z := diag
[
S̃1, . . . , S̃m

]
∈ RN×k̄

with k̄ =
∑m

i=1 ki

Z := diag
[
S̃1, . . . , S̃m

]
∈ RN×k̄

with k̄ =
∑m

i=1 ki

(T6) comp. matrices
of reduced EVP

K̂ := ZT K̃ Z ∈ Rk̄×k̄,
M̂ := ZT M̃ Z ∈ Rk̄×k̄

K̂ := ZT K̃H Z ∈ Rk̄×k̄,
M̂ := ZT M̃H Z ∈ Rk̄×k̄

→ use fast H-matrix arithmetic
for computation

(T7) solve the
reduced EVP

K̂ x̂j = λ̂j M̂ x̂j for j = 1, . . . , nes K̂ x̂j = λ̂j M̂ x̂j for j = 1, . . . , nes

(T8) transform vectors ŷj := L−TZ x̂j for j = 1, . . . , nes ŷj := (LH)−T Z x̂j for j = 1, . . . , nes

(T9) comp. Rayl. quot. — λ̂
(rq)
j := ŷTj K ŷj/ŷ

T
j M ŷj , j = 1, . . . , nes

final eigenpair approx. ( λ̂j , ŷj) with j = 1, . . . , nes ( λ̂
(rq)
j , ŷj) with j = 1, . . . , nes

Table 7.1.: Overview of the classical AMLS and the new H-AMLS method (EVP is the abbre-
viation for eigenvalue problem).
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7.2. Computational Costs

• Also the computation of the partial eigensolutions [task (T4)] is faster in the H-AMLS

method: The submatrices K̃Hii and M̃Hii whose row and column indices are associated to
an interface are data-sparse H-matrices and not unstructured dense matrices as assumed
in the classical AMLS method. Correspondingly an eigensolver exploiting the H-matrix
structure of K̃Hii and M̃Hii can be applied in (7.1) instead of an eigensolver for dense matrices

as it is done in classical AMLS. Since interface eigenvalue problems (K̃Hii , M̃
H
ii ) are of size

Ni ∈ O(N2/3) for three-dimensional problems, the almost linear scaling of H-matrices
allows us to solve for ki ∈ O(nes) eigenvectors in complexity

O
(
kiNi logαNi + k2

i Ni

)
≤ O

(
nesN

2/3 logαN + n2
esN

2/3
)
, (7.6)

e.g. by using shift-invert Lanczos (see H-SIL in Section 8.4). Since we assume nes ∈
O(N1/3) and since the number of interface eigenvalue problems is bounded by O(1), it
follows from (7.6) that the computational costs for the solution of all interface eigenvalue
problems are bounded by O(nesN).

The number of subdomain problems is bounded as well by O(1). In the case that the
subdomain problems are small enough (i.e., it holds Ni ≤ nAMLS

min ) the subproblems are
solved by a direct solver leading to costs of the order O(1), otherwise the subdomain
problems are solved recursively by the H-AMLS method.

• Also the H-matrix structure of K̃H and M̃H can be exploited in H-AMLS using the
fast H-matrix-vector multiplication for the computation of the reduced matrices K̂, M̂ ∈
Rk̄×k̄: The multiplications ST (K̃HS) and ST (M̃HS) involve 2k̄ H-matrix times vector
multiplications in O(N logαN) plus 2k̄2 scalar products of length N . Both together sum
up to costs of the order

O
(
k̄ N logαN + k̄2N

)
≤ O

(
nesN logαN + n2

esN
)

for task (T6). Since the scalar products can be computed with peak performance on
todays workstations and compute servers, the costs for these are invisible in practice.
The 2k̄ H-matrix times vector multiplications are as well harmless since the logarithms
and constants involved in the matrix vector multiplications are much smaller than for the
H-matrix operations in (6.12).

• The computational costs of task (T7) are the same in both methods. The reduced

eigenvalue problems (K̂, M̂) and (K̂, M̂) are both of the same structure. Since it holds
k̄ ∈ O(nes) and since we aim at nes ∈ O(N1/3) eigenvalues, the size of the reduced prob-
lem allows us to use a dense linear algebra solver with cubic complexity whereby the
computational costs still remain in O(N).

• Finally, for task (T8) we can again exploit the fast H-matrix times vector multiplication
[backward substitution in (LH)T ] to complete this task in

O
(
nes ( k̄ N + N logαN )

)
≤ O

(
nesN logαN + n2

esN
)

and for the Rayleigh Quotients in task (T9) it is enough to use the sparsity of K and M
to perform the computation in O(nesN).
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7. Combination of AMLS and H-Matrices

Hence, the computational costs of recursive H-AMLS — without the costs of the recursive calls
of H-AMLS in task (T4) — are bounded by O(nesN logαN + n2

esN). Defining m̃ := 2lloc the
overall costs, including the costs for the recursive calls, can then be bounded by

O
(
nesN logαN + n2

esN
)

+

lrec∑
l=1

m̃l O
((N

m̃l

)βdom N

m̃l
logα

(N
m̃l

)
+
(N
m̃l

)2βdom N

m̃l

)

= O
(
nesN logαN + n2

esN
)

+

lrec∑
l=1

O
((N

m̃l

)βdom

N logαN +
(N
m̃l

)2βdom

N

)

≤ O
(
nesN logαN + n2

esN
)

+

lrec∑
l=1

O
(

nes

m̃lβdom
N logαN +

n2
es

m̃2lβdom
N

)

= O
(
nesN logαN

) lrec∑
l=0

1

C l
+ O

(
n2

esN
) lrec∑
l=0

1

C2l
where C := 2lloc βdom

= O
(
nesN logαN + n2

esN
)
.

We can sum up that the complexity of recursive H-AMLS is bounded1 by O(nesN logαN +
n2

esN) and theoretically dominated by tasks (T6) and (T8). The operations involved in task (T6)
and task (T8) are the H-matrix times vector multiplication, which accumulates to a total of
O(nesN logαN), and the usual scalar product accumulating to at most O(n2

esN) multiplications
or additions. Both of these operations have extremely small constants involved and are therefore
for problem sizes up to N = 6, 000, 000 not the bottleneck. Instead, most of the computational
time is spent in the transformation steps (T2) and (T3), both of them in O(N logαN) which is
asymptotically in o(nesN). In the numerical examples we can observe that the costs for (T6)
and (T8) are slowly increasing relative to the total cost, and that the total complexity stays in
O(nesN) for very large-scale problems.

7.3. Accuracy of the Eigenpair Approximation

The downside of faster computations and reduced memory requirements inH-AMLS — achieved
by a coarsening of the H-matrix accuracy ε in task (T2+T3) and a reduction of the number of
selected eigenvectors ki in task (T4) — is a possible loss in quality of the eigenpair approxima-
tions.

Keeping in mind the initial problem, the Rayleigh quotients λ̂
(rq)
j in (7.4) are used to ap-

proximate the nes smallest eigenvalues λj of the continuous problem (4.2). The corresponding
approximation error is bounded by

|λj − λ̂
(rq)
j |︸ ︷︷ ︸

error of the

H-AMLS method

≤ |λj − λ
(h)
j |︸ ︷︷ ︸

error caused by

the discretisation

+ |λ(h)
j − λ̂j |︸ ︷︷ ︸

error caused by the

modal truncation

+ | λ̂j − λ̂
(rq)
j |︸ ︷︷ ︸

error caused by the

H-matrix approximation

(and the recursive approach)

1Note that the upper bound O(nesN logαN+n2
esN) for the computational costs of recursiveH-AMLS computing

the nes ∼ Nβ smallest eigenpairs is obtained for all β ∈ (0, 1), i.e., also in the case when β > 1/3.
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7.3. Accuracy of the Eigenpair Approximation

elliptic PDE eigenvalue problem (classical formulation) → see Chapter 1{
Lu = λu in Ω,

u = 0 on Γ

• Ω ⊂ Rd is a bounded domain with Lipschitz boundary Γ := ∂Ω

• L is a uniformly elliptic PDE operator where

Lu = −div
(
A∇u

)
+ cu with A :=

(
aij
)d
i,j=1

and aij , c ∈ L∞(Ω)

elliptic PDE eigenvalue problem (weak formulation) → see Section 2.2{
find (λ, u) ∈ C×H1

0 (Ω) \ {0} such that

a(u, v) = λ (u, v)0 ∀ v ∈ H1
0 (Ω)

possesses eigensolutions(
λj , uj

)∞
j=1
∈ R>0×H1

0 (Ω)\{0} with λj ≤ λj+1

• a(u, v) :=
∫

Ω∇u
TA∇v + cuv dx is a symmetric

elliptic bilinear form

• (u, v)0 :=
∫

Ω uv dx is the inner product of L2(Ω)

Ritz-Galerkin discretisation using FEM space Xph,0 ⊂ H
1
0 (Ω) → see Chapter 3

K(h) x(h) = λ(h)M (h) x(h)

possesses eigensolutions(
λ

(h)
j , x

(h)
j

)Nh
j=1
∈ R>0×RNh\{0}, λ(h)

j ≤ λ
(h)
j+1

where (λ
(h)
j ,P x(h)

j ) ∈ R>0 ×H1
0 (Ω) approx. the

eigensolutions of the continuous problem and P
is the prolongation operator from (3.3)

• K(h),M (h) ∈ RNh×Nh are both sparse, symmet-
ric and positive definite, see (4.5)

• approx. error depends on FEM space Xph,0
• we are only interested, e.g., in the smallest nes =

CN
1/3
h eigensolutions → see Section 3.4

reduced EVP obtained by classical AMLS

K̂ x̂ = λ̂ M̂ x̂

possesses eigensolutions(
λ̂j , x̂j

)k̄
j=1
∈ R>0×Rk̄\{0} with λ̂j ≤ λ̂j+1

where ( λ̂j ,P ŷj) ∈ R>0 × H1
0 (Ω) approx. the

eigensolutions of the continuous problem and
the approx. error depends on:

• FEM space Xph,0
• modal truncation of the subproblems

reduced EVP obtained by (recursive) H-AMLS

K̂ x̂ = λ̂ M̂ x̂

possesses eigensolutions(
λ̂j , x̂j

)k̄
j=1
∈ R>0×Rk̄\{0}

where ( λ̂
(rq)

j ,P ŷj) ∈ R>0×H1
0 (Ω) approx. the

eigensolutions of the continuous problem and
the approx. error depends on:

• FEM space Xph,0
• modal truncation of the subproblems

• accuracy ε of the H-matrix arithmetic

• selected parameter of the recursion

Figure 7.1.: Overview of the different eigenvalue problems and the interconnection between
these problems.
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7. Combination of AMLS and H-Matrices

where λ
(h)
j is the eigenvalue of the discrete problem (4.4) and λ̂j is the eigenvalue of the reduced

problem (5.26) from classical AMLS. The upper index of λ
(h)
j is indicating the mesh width of the

underlying finite element space Vh. In Figure 7.1 an overview of the different eigenvalue problems
is given and the interconnection between them is summarised. The approximation error of the
non-recursive H-AMLS method is associated with the finite element discretisation, the modal
truncation, and the H-matrix approximation. The error caused by the modal truncation is
influenced by the number of selected eigenvectors ki in (7.1), and the error caused by the use of
the approximative H-matrix arithmetic is influenced by the chosen accuracy ε in (6.12). In the
recursive version of H-AMLS an additional error occurs when in task (T4) the H-AMLS method
is applied recursively for the solution of large-sized subdomain problems. The approximation
quality of the approximative eigensolution (7.5), and with it the approximation error of the
recursive H-AMLS method, is influenced by the chosen parameters ki and ε in the recursive
calls of H-AMLS.

In contrast to the H-AMLS method, the approximation error of classical approaches, like the
block-SIL algorithm (cf. [36]), is only associated with the finite element discretisation because

(almost) exact eigenvalues λ
(h)
j of the discrete problem (4.4) are computed. The corresponding

discretisation errors are used as reference values for the H-AMLS method. To compete with
a classical approach, the error caused by the modal truncation and the error caused by the
approximative H-matrix arithmetic have to be small enough that the error of the H-AMLS
method is of the same order as the discretisation error

|λj − λ̂
(rq)
j |︸ ︷︷ ︸

error of H-AMLS

≈ |λj − λ
(h)
j |.︸ ︷︷ ︸

discretisation error

(7.7)

Dividing (7.7) by |λj | one obtains the equivalent statement expressed in form of relative errors

δ̂j :=
|λj − λ̂

(rq)
j |

λj︸ ︷︷ ︸
relative error of

H-AMLS

≈
|λj − λ

(h)
j |

λj︸ ︷︷ ︸
relative error

of discretisation

=: δ̂
(h)
j . (7.8)

Ultimately, the overarching aim arises to choose the parameters ki and ε in such a way that
the approximation error of H-AMLS fulfils (7.8) while the computational costs and storage
requirements of H-AMLS are reduced as much as possible.

7.4. Improving the H-AMLS Approximations with Subspace Iteration

The H-AMLS method described in Section 7.1 is a projection method without any iterative
improvement where the accuracy of the computed eigenpair approximations depends on the a
priori chosen mode selection strategy and the accuracy of the H-matrix arithmetic. However,
even in the case that the accuracy of the computed eigenpair approximations is not satisfac-
tory for some reason, the performed H-AMLS computation was not useless since the computed
eigenvector approximations are at least well suited as an initial subspace of a subsequent sub-
space iteration. Using the subspace iteration the accuracy of the H-AMLS approximations can
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7.4. Improving the H-AMLS Approximations with Subspace Iteration

Algorithm 3 Basic Subspace Iteration with Rayleigh-Ritz Projection

1: procedure SubspaceIteration( K, M )
2: initialise iteration matrix Q(0) ∈ RN×nes with full rank;
3: . perform iteration where niter ∈ N is some given value
4: for i = 1, . . . , niter do
5: M -orthonormalize Q(i−1);
6: compute A := MQ(i−1) ∈ RN×nes ;
7: solve KQ(i) = A for Q(i) ∈ RN×nes ;
8: end for
9: . perform Rayleigh-Ritz projection where Q := Q(niter)

10: compute reduced stiffness matrix KQ := QT A; . note that A = KQ
11: compute reduced mass matrix MQ := QT M Q;
12: solve the reduced EVP KQ SQ = MQ SQDQ with STQMQSQ = Id ∈ Rnes×nes ;
13: transform eigenvectors S := QSQ;
14: return (DQ, S); . return the computed eigensolutions
15: end procedure

be improved up to the discretisation error if wanted, i.e., that (almost) exact eigenpairs of the
problem (K,M) are computed. In the following, the subspace iteration is briefly recalled and it
is explained why particularly this method is a good choice for the iterative improvement of the
H-AMLS approximations.

The subspace iteration [8, 10, 63] — which is sometimes also called orthogonal or simulta-
neous iteration — generalises the concept of the power iteration to multiple iteration vectors.
The subspace iteration, as described in Algorithm 3, computes eigenpair approximations of the
problem (K,M) associated to the smallest nes eigenpairs, and provided that the initial subspace
of the iteration is not M -orthogonal to one of the sought eigenvectors the convergence rate for
the approximation of the j-th eigenpair (see, e.g., [10, 63]) is given by

λj/λnes+1 for j = 1, . . . , nes. (7.9)

The Rayleigh-Ritz projection2 in Algorithm 3 is needed to extract the corresponding eigenvector
approximations from the iteration subspace which is spanned by the columns of the matrix Q(i).

To make out of Algorithm 3 an efficient and practically applicable eigensolver several improve-
ments are needed (see, e.g., [8, 11] for details) such as: Implementation of shift-invert techniques
to accelerate the convergence; implementation of a convergence check where already converged
iteration-vectors are locked (i.e., converged vectors are extracted from the subsequent iteration
process); performing the orthonormalization as infrequently as possible and only for those vec-
tors for which it is necessary; and operating on a subspace whose dimension is a little bit larger
than the number of sought eigenpairs (cf. [11]).

The subspace iteration is still widely used in practice because of its robustness and efficiency
[11], but typically the Lanczos method [8] is more efficient especially when many eigenpairs are

2The Rayleigh-Ritz projection in Algorithm 3 includes the computation and the solution of the reduced eigenvalue
problem (KQ,MQ), where the diagonal matrix DQ ∈ Rnes×nes contains the eigenvalues of (KQ,MQ) and
SQ ∈ RN×nes column-wise the corresponding eigenvectors. The matrix DQ together with the transformed
eigenvector matrix S := QSQ finally provide the sought eigenpair approximations of the problem (K,M).
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7. Combination of AMLS and H-Matrices

sought. However, in combination with H-AMLS the subspace iteration provides important ad-
vantages: As mentioned in the beginning the eigenvector approximations of H-AMLS (which are
already quite close to the exact ones) are well suited for the construction of the initial subspace
of the subspace iteration. The subspace iteration typically leads to a fast solution if the initial
subspace is already close to the sought eigenspace. Correspondingly, it is reasonable that the
accuracy of the H-AMLS eigenpair approximations is improved sufficiently by the subspace iter-
ation within a few iterations.3 Furthermore, the factorisation KH ≈ LHK̃H(LH)T , computed in
task (T2) of the H-AMLS method, can be reused as a preconditioner for the solution of the linear
system in line 7 of Algorithm 3. For these two reasons the subspace iteration is a good choice
for the iterative improvement of the H-AMLS approximations. The efficiency of this approach
has already been demonstrated in [68] in a purely algebraic setting. There a basic version of the
subspace iteration (without any acceleration techniques) has been used to improve the eigenpair
approximations of the classical AMLS method. It is shown in [68] for several problems that
the accuracy of the eigenvalue and eigenvector approximations of AMLS can be significantly
improved already within one or two iteration steps. The same results can be expected when
H-AMLS is combined with the subspace iteration. In particular, when H-AMLS is applied with
a subsequent subspace iteration the H-AMLS method becomes less dependent from the a priori
chosen mode selection strategy and the chosen accuracy of the H-arithmetic, since the accuracy
of the H-AMLS approximations can be improved in any case up to the discretisation error if
wanted. This should allow H-AMLS to become applicable to a wider range of problems, e.g., to
problems where a high accuracy of the computed eigenpair approximations has to be guaranteed.

The efficiency of the subspace iteration for the iterative improvement of the H-AMLS ap-
proximations (the accuracy can be significantly improved within one iteration step, cf. [68])
motivates to introduce a variation of the in Section 7.1 presented H-AMLS method: Instead
of applying task (T9) it is proposed to apply Algorithm 4 right after finishing task (T8). Let
S ∈ RN×nes be the matrix containing column-wise the H-AMLS eigenvector approximations
ŷj which have been computed in task (T8), then Algorithm 4 performs one (approximative)
iteration step of the subspace iteration using S as initial subspace. Note that, when in task (T7)
a partial eigensolution of the H-reduced eigenvalue problem of the form

K̂ Ŝ = M̂ Ŝ D̂ with ŜT M̂ Ŝ = Id

is computed where the diagonal matrix D̂ ∈ Rnes×nes contains the eigenvalues (λ̂j)
nes
j=1 and Ŝ ∈

Rk̄×nes column-wise the associated eigenvectors (x̂j)
nes
j=1, then the matrix S is approximatively M -

orthonormal. Furthermore, note that the computation of K−1(MS) in Algorithm 4 is performed
only approximatively, and correspondingly the error of the improved eigenvector approximations
is still associated with the error induced by the approximative H-arithmetic. The evaluation of
K−1(MS) can be performed also exactly by using the factorisation of KH as a preconditioner,
however, this would further increase the computational costs.

Note that, when Algorithm 4 is applied in the H-AMLS method right after task (T8) then
the Rayleigh quotients of the improved eigenvectors do not have to be computed, since already

3In particular, the convergence for the eigenpairs at the lower end of the spectrum should be faster because of
the convergence rate (7.9).
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Algorithm 4 Implementation of Task (TSI)

1: procedure ImproveEigensolution( K, M , LH, K̃H, S )

2: . perform one (approximative) iteration step of the subspace iteration

3: compute A1 := MS ∈ RN×nes ; . note that K and M are sparse

4: solve LHA2 = A1 for A2 using fast H-arithmetic; . LH is a lower triangular matrix

5: compute A3 := (K̃H)−1A2 using fast H-arithmetic; . K̃H is a block diagonal matrix

6: solve (LH)TA4 = A3 for A4 using fast H-arithmetic;

7: . perform the Rayleigh-Ritz projection where Q := A4

8: compute reduced stiffness matrix KQ := QT KQ;

9: compute reduced mass matrix MQ := QT M Q;

10: solve the reduced EVP KQ SQ = MQ SQDQ with STQMQSQ = Id ∈ Rnes×nes ;

11: transform eigenvectors Snew := QSQ;

12: return (DQ, Snew); . return improved eigensolution

13: end procedure

the equality

λ̂(SI)

j =
(ŷ(SI)

j )T K ŷ(SI)

j

(ŷ(SI)

j )T M ŷ(SI)

j

for j = 1, . . . , nes

is fulfilled, where λ̂(SI)

j denotes the j-th diagonal entry of the matrix DQ from Algorithm 4 and

ŷ(SI)

j is the j-th column vector of the matrix Snew. In particular, the computed eigenvector ap-

proximations ŷ(SI)

j are M -orthonormal. In the following Algorithm 4 is referred to as task (TSI),
and the H-AMLS method is simply called H-AMLS with (TSI)-improvement when task (TSI)
is performed instead of task (T9).

The computational costs of task (TSI) are as follows:

• The computation of MS is performed in O(nesN) using the sparsity of M .

• The computation of the matrices A2, A4 ∈ RN×nes in Algorithm 4 [forward and backward
substitution in LH and (LH)T ] can be performed column-wise in O(nesN logαN) using
the fast H-matrix arithmetic.

• The multiplication (KH)−1A2 is performed in O(nesN logαN) exploiting the fast H-
arithmetic for the computation of the inverse (KH)−1 and for the computation of nes

H-matrix times vector multiplications.

• The multiplications QT (KQ) and QT (MQ) involve 2nes sparse matrix times vector mul-
tiplications in O(N) plus 2n2

es scalar products of length N which sum up to costs of the
order O(n2

esN).

• Since we aim at nes ∈ O(N1/3) the solution of eigenvalue problem (KQ,MQ) in Algorithm
4 can be performed in O(N) by a dense linear algebra solver with cubic complexity.

• The multiplication QSQ involves Nnes scalar products of length nes leading to costs of
O(n2

esN).
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We can sum up that the complexity of task (TSI) is dominated by the H-matrix times vector
operations, which accumulates to a total of O(nesN logαN), and the usual scalar product ac-
cumulating to at most O(n2

esN) multiplications or additions. As described in Section 7.2, both
of these operations have constants involved that are much smaller than the constants involved
in the H-matrix operations in (6.12). Therefore, in H-AMLS task (TSI) is for problem sizes up
to N = 6, 000, 000 not the bottleneck, instead most of the time is spent in task (T2) and (T3),
both of them in O(N logαN) which is asymptotically in o(nesN).

Last but not least another feature is listed which possibly allows the application of H-AMLS
to a wider range of problems:

Remark 7.2 (Black Box H-AMLS) To perform the H-AMLS method the H-matrix repre-
sentations of K and M are needed. These H-matrix representations are based on a block cluster
tree TI×I and an admissibility condition that describe a partitioning of K and M into submatrices
that are stored in full matrix or R(k)-matrix representation (cf. Section 6.1). To construct the
needed block cluster tree geometry information of the underlying finite element space is needed
in order to determine a geometric partitioning of the index set I, and to determine diameters
and distances of clusters for the admissibility condition. The H-matrix arithmetic itself, which
is used in the H-AMLS method, requires only the H-matrix format induced by TI×I and does
not need any geometry information. However, in some applications geometry information might
not be available, and only the already assembled stiffness matrix K and mass matrix M can be
provided. In this case, the black box approach presented in [34] can be used to construct the nec-
essary block cluster tree TI×I and an algebraic admissibility condition. This black box approach
is based on the matrix graph of the sparse matrices K and M , and uses the connectivity infor-
mation of the indices i ∈ I to derive, e.g., a partitioning of the index set I. Using this approach
geometry data associated with the indices is no longer required, and hence the H-AMLS method
can be applied as well in a purely algebraic setting.
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8. Implementation of H-AMLS

The H-AMLS method has been implemented in C++ using the H-matrix software library
HLIBpro v2.3. The HLIBpro [50, 53] is a C++ library which provides a complete implementation
of the available H-matrix arithmetic, and which contains a wide range of routines for H-matrix
construction, index set clustering, low rank approximation, etc. Moreover, the HLIBpro has
been parallelised for shared and distributed memory machines [51, 52, 54]. Beside that, a LA-
PACK/BLAS [3, 56] library has been used for the implementation of H-AMLS since a direct
eigensolver routine is needed, and since a corresponding library is required by the HLIBpro itself
(the HLIBpro uses LAPACK/BLAS for all low-level linear algebra functions).

This chapter describes the implementation of the H-AMLS method. In particular, it is shown
how the computations involved in H-AMLS are performed in detail and how basic parameters of
H-AMLS have been chosen which lead to the numerical results presented in Chapter 9. Further-
more, most of the tasks of H-AMLS are very well parallelisable. To benefit from the multiple
cores of today’s workstations and compute servers the H-AMLS method has been parallelised for
shared memory systems. How the different tasks of H-AMLS have been parallelised is discussed
here as well. But before this topic is started the following Lemma is presented which enables to
change the block diagonalisation in task (T2) of the H-AMLS method:

Lemma 8.1 Consider the transformation matrix L arising in task (T2) of the classical AMLS
method when the matrix K is block diagonalised. Let B := diag[B1, . . . , Bm] be a block diagonal
matrix consisting of arbitrary regular matrices Bi ∈ RNi×Ni for i = 1, . . . ,m. If in the AMLS
method the transformation is performed with matrix LB := LB instead of L then the computed
eigenvector approximations ( λ̂j , ŷj) remain unchanged.

Proof: If in classical AMLS the transformation matrix L is replaced by LB then in task (T2) and

(T3) of AMLS the transformed matrices K̃B := (LB)−1K(LB)−T and M̃B := (LB)−1M(LB)−T

are computed instead of K̃ and M̃ , and it holds

K̃B = B−1K̃B−T and M̃B = B−1M̃B−T

with B−1 = diag[B−1
1 , . . . , B−1

m ]. Denote (K̃B)ii and (M̃B)ii for i = 1, . . . ,m the submatrices of

K̃B and M̃B in block row and block column i. Then in task (T4) of AMLS the partial eigenso-

lutions of the subproblems ( (K̃B)ii, (M̃B)ii ) are computed where it holds (K̃B)ii = B−1
i K̃iiB

−T
i

and (M̃B)ii = B−1
i M̃iiB

−T
i . Note that the eigenvalue problems ( (K̃B)ii, (M̃B)ii ) and (K̃ii, M̃ii)

are equivalent, i.e., the eigenvalues of both problems coincide and the eigenvectors are trans-
formed. More precisely, if in task (T4) a mode selection strategy is applied which only depends
on the size of the subproblem eigenvalues (see, e.g., Remark 5.7) then the partial eigensolution of

( (K̃B)ii, (M̃B)ii ) is given by (D̃i, B
T
i S̃i) where (D̃i, S̃i) is the partial eigensolution of (K̃ii, M̃ii).

Correspondingly, in task (T5) of AMLS the subspace spanned by the columns of the matrix
ZB := BTZ is used for the reduction, and in task (T6) the reduced matrices K̂B := ZTB K̃BZB
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8. Implementation of H-AMLS

Algorithm 5 Implementation of Non-Recursive and Recursive H-AMLS

1: . parameters that are used in H-AMLS and their corresponding default values
2: parameter {
3: do recursive HAMLS:=false; . switch between recursive and non-recursive version
4: apply task (TSI):=false; . switch to activate improvement task (TSI)
5: nmin := 40, η := 50; . parameters controlling shape of block cluster tree TI×I
6: nAMLS

min := 1000; . parameter controlling the size of subdomain problems
7: ε; . relative accuracy of the used H-arithmetic → see Chapter 9
8: βint, βdom, Cint, Cdom, C≈dom; . control number of selected eigenvectors → see Chapter 9
9: nes; . number of sought eigenpairs

10: };
11:

12: procedure ApplyHAMLS( K, M , (ξi)
N
i=1, parameter )

13: . task (T1): construct the H-matrix representations of K and M → see Section 8.1
14: I := {1, . . . , N};
15: TI := ConstructClusterTree( I, (ξi)i∈I , nmin ); . see Algorithm 6
16: TI×I := ConstructBlockClusterTree( TI , nmin, η ); . see Algorithm 2
17: reorder rows/columns of K and M to obtain KH,MH ∈ H(TI×I , ε);
18:

19: . task (T2+T3): transform eigenvalue problem (KH, MH) → see Section 8.2, Algorithm 7

20: (K̃H, M̃H, LH) := TransformEVP( KH, MH, TI×I , ε );
21:

22: . initialise the auxiliary data → see Section 8.3 and Algorithm 8
23: TAMLS := CreateSubstructureTree( TI , nAMLS

min );
24: m := #L(TAMLS); . m is the number of subproblems
25: create the bijection ψ : {1, . . . ,m} → L(TAMLS); . see (8.5) for the definition of ψ
26:

27: . task (T4): compute partial eigensolution of subproblems → see Section 8.4, Algorithm 9

28: (D̃i, S̃i)
m
i=1 := CompPartialEigensol( K̃H, M̃H, Cdom, Cint, βdom, βint );

29:

30: . apply the condensation of subproblems → see Section 8.7 and Algorithm 16
31: . note that (D̃i, S̃i) and TAMLS can change during the condensation process
32: if do recursive HAMLS then
33: ApplyCondensation( K̃H, M̃H, TAMLS, (D̃i, S̃i)

m
i=1, C≈dom, βdom );

34: end if
35:

36: . task (T6): compute the reduced matrices K̂ and M̂ → see Section 8.5 and Algorithm 11

37: (K̂, M̂) := CompReducedMatrices( K̃H, M̃H, TAMLS, (D̃i, S̃i)
m
i=1);

38:

39: . task (T7): compute partial eigensol. of the reduced eigenvalue problem → see Section 8.5

40: solve K̂ Ŝ = M̂ Ŝ D̂ with ŜT M̂ Ŝ = Id where D̂ ∈ Rnes×nes , Ŝ ∈ Rk̄×nes ;
41:

42: . task (T8+T9+TSI): transform and improve eigensolutions → see Section 8.6, Alg. 12

43: (D,S) := TransformEigensol( K, M , LH, K̃H, (S̃i)
m
i=1, Ŝ, apply task TSI );

44:

45: return (D,S);
46: end procedure
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and M̂B := ZTB M̃BZB are computed. Since

K̂B = ZTBB−1K̃B−TBTZ = K̂ and M̂B = ZTBB−1M̃B−TBTZ = M̂

it follows that the reduced eigenvalue problem which is obtained by using the transformation
matrix LB coincides with the reduced problem obtained by using transformation matrix L, and
hence in task (T7) the same eigenpairs ( λ̂j , x̂j)

nes
j=1 are computed. Furthermore, when in task

(T8) the eigenvectors x̂j are transformed we obtain

(LB)−TZB x̂j = (LB)−TBTZ x̂j = L−TZ x̂j = ŷj .

Altogether, it follows that the same eigenpair approximations are computed when in AMLS the
transformation matrix LB is used instead of L.

According to Lemma 8.1 the AMLS method can be applied with a modified transformation
matrix without changing the computed eigenpair approximations ( λ̂j , ŷj)

nes
j=1. For example, in-

stead of performing in task (T2) the block LDLT-factorisation K = LK̃LT [see, e.g., (5.22)] also
the complete LDLT-factorisation can be performed, i.e., that the factorisation K = LDDL

T
D is

computed where D is a diagonal matrix and LD a lower triangular matrix with unit diagonal.
Since the matrix LD can be written as LD = LB with a suitable regular block diagonal matrix
B the result of the AMLS approximation remains unchanged according to Lemma 8.1. By a
similar argumentation as done in the proof of Lemma 8.1 it can be shown that also in the recur-
sive version of AMLS the computed eigenpair approximations remain unchanged when instead
of the block diagonalisation a complete diagonalisation is performed.

Performing a complete LDLT-factorisation in task (T2) of the H-AMLS method has the
following advantages: The (complete) LDLT-factorisation of a symmetric H-matrix KH ∈
H(TI×I , ε) is already implemented in the HLIBpro library [50] with a computational complex-
ity of O(N logαN). Correspondingly, there is no need to implement an explicit block LDLT-
factorisation and instead the well proven and tested HLIBpro routine can be used in task (T2)
for the transformation of the stiffness matrix. Furthermore, this HLIBpro routine is already
parallelised very efficiently for shared memory systems [54]. Another advantage of performing a
complete LDLT-factorisation in task (T2) is that this eases the implementation of the recursive
H-AMLS method. Keep in mind that when in task (T2) a block LDLT-factorisation is performed

that then the submatrices on the block diagonal of the transformed matrices K̃ and M̃ remain
unchanged if they are associated with a subdomain, i.e., it holds K̃Hii = KHii and M̃Hii = MHii . If
in task (T4) the partial eigensolution of subproblem (KHii ,M

H
ii ) should be computed recursively

by H-AMLS then again the matrix KHii has to be block diagonalised and MHii has to be trans-
formed correspondingly. If in task (T2) instead a complete LDLT-factorisation is performed,
in connection with the appropriate matrix partitioning of KH and MH (cf. Section 8.1), then
the submatrices K̃Hii are already diagonalised and no further transformation is needed when
H-AMLS is applied recursively. This means when a complete LDLT-factorisation is performed
then the problem (KH,MH) is transformed globally. In this light, the recursive application of
H-AMLS can be seen as a condensation process (see Section 8.7 for details) where the spectral
information of several subproblems is condensed using H-AMLS into the (approximative) spec-
tral information of a single subproblem of larger size.
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8. Implementation of H-AMLS

The H-AMLS method has been implemented using the approach discussed above, i.e., where
in task (T2) a complete LDLT-factorisation is performed and the eigenvalue problem (KH,MH)
is transformed globally. The implementation of H-AMLS is summarised in Algorithm 5. For
given finite element matrices K,M ∈ RN×N from (5.20) and associated geometric representatives
(ξi)

N
i=1 from (6.7) Algorithm 5 computes the approximative partial eigensolution

K S ≈ M S D with STM S ≈ Id (8.1)

where D ∈ Rnes×nes is a diagonal matrix containing approximations of the nes smallest eigen-
values and S ∈ RN×nes the matrix containing column-wise approximations of the corresponding
eigenvectors. Algorithm 5 includes the implementation of the non-recursive and recursive version
of H-AMLS, and as well the version with (TSI)-improvement.1 In the following Algorithm 5 is
described in detail. The description starts with the implementation of non-recursive H-AMLS
(Section 8.1–8.6), and based on this, it is shown how recursive H-AMLS has been implemented
(Section 8.7). Finally, in Section 8.8 it is described how H-AMLS has been parallelised for
shared memory systems.

8.1. Task (T1): Construction of the H-matrices

Algorithm 6 Construction of the Cluster Tree

1: procedure ConstructClusterTree( t, (ξi)i∈t, nmin )
2: if #t ≤ nmin then
3: S(t) := ∅;
4: else if t is a domain-cluster then
5: geometric dissection of t into domain-clusters t1, t2 and interface-cluster t3;
6: S(t) := {t1, t2, t3};
7: else if t is an interface-cluster then
8: . level(t) is defined as the length of the path between t ∈ TI and the root of TI
9: if level(t) ≡ 0 mod d then

10: S(t) := {t};
11: else
12: geometric bisection of t into interface-clusters t1 and t2;
13: S(t) := {t1, t2};
14: end if
15: end if
16: for all s ∈ S(t) do
17: ConstructClusterTree( s, (ξi)i∈s, nmin )
18: end for
19: return cluster t;
20: end procedure

In order to compute in (6.12) the transformed eigenvalue problem (K̃H, M̃H) by the fast H-
matrix arithmetic, first of all, the matrices K and M have to be represented in the matrix
format H(TI×I , ε). For this purpose a cluster tree TI over the index set I = {1, . . . , N} has to

1Depending on whether task (T9) or task (TSI) has been applied in Algorithm 5 the diagonal matrix D contains

the eigenvalue approximations λ̂
(rq)
j or λ̂

(SI)
j , and the matrix S column-wise the eigenvector approximations

ŷj or ŷ
(SI)
j . Furthermore, it holds STMS = Id in (8.1) when task (TSI) has been applied.
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8.1. Task (T1): Construction of the H-matrices
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Figure 8.1.: Schematic example of the substructuring of the domain Ω applied in H-AMLS: A
two-level geometric nested dissection (necessary for AMLS, cf. Figure 5.3) is applied followed by
an additional two-level geometric nested dissection of the subdomains and a one-level geometric
bisection of the interfaces (necessary for H-matrix approximation).

be constructed. The substructuring of the domain Ω, which is associated to the construction
of TI , has already been discussed in Section 6.2. However, the described substructuring scheme
is not optimal for the computation of (6.12), especially when in task (T2) a complete LDLT-
factorisation is performed. Instead of applying a recursive geometric bisection of the index sets
associated to subdomains it is much more efficient regarding the computational costs of (6.12)
to apply as well a geometric nested dissection, cf. [35]. To be more precise, let t ⊂ I be a cluster
associated to a subdomain, then t is geometrically subdivided into two so-called domain-clusters
t1 and t2 which are separated by a so-called interface-cluster t3 such that

t =
⋃̇

i∈{1,2,3}

ti with Ωt1 ∩ Ωt2 = ∅, (8.2)

where Ωti is the support [see (6.1)] of the cluster ti. The implementation of such a subdivision is
typically based on a initial geometric bisection (cf. Algorithm 1) and followed by the construction
of an explicit separator t3, cf. [34, 35]. This substructuring scheme is applied recursively
to the domain-cluster t1 and t2 until the size of the clusters is small enough. In contrast
to this, interface-cluster are recursively subdivided by a geometric bisection. The resulting
partitioning of the index set I is organised in the cluster tree TI . The construction of TI is
summarised in Algorithm 6 which has to be applied to the index set I and the associated
geometric representatives (ξi)i∈I (the representatives ξi from (6.7) are needed for the geometric
subdivision), and where the parameter nmin is controlling the minimal size of the clusters. In the
numerical examples presented later in this work the parameter nmin has been set to 40 which is
a standard value for nmin (cf. [50]) and which lead to a good computational performance. Note
that in Algorithm 6 the subdivision of the interface-clusters is delayed every d-th step in order
to avoid that interfaces are substructured faster in smaller parts than subdomains, cf. [35]. The
domain substructuring of Ω associated to the construction of TI is illustrated in Figure 8.1.

In the next step the block cluster tree TI×I associated to TI has to be constructed. This is
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8. Implementation of H-AMLS

done by applying Algorithm 2 to the product index set I × I using the parameters nmin and η,
and the following adjusted admissibility condition

block cluster s× t is admissible :⇐⇒

{
if condition (6.2) is fulfilled or

if s and t are domain-clusters with s 6= t
. (8.3)

The adjusted admissibility condition takes into account that for a domain-cluster t which is
subdivided as in (8.2) typically the distance between Ωt1 and Ωt2 is very small in contrast to
the diameters of Ωt1 and Ωt2 , and that correspondingly the block cluster t1 × t2 is often not
admissible according to condition (6.2). However, since the submatrices of K and M associated
to the block cluster t1× t2 are zero and, most importantly, remain zero when (6.12) is computed
(cf. [35]), it follows that block cluster t1× t2 should be considered as well as admissible since the
corresponding submatrices can be represented as R(k)-matrices of rank zero. As mentioned in
Section 6.1 the parameter η > 0 controlling the number of admissible subblocks s× t is typically
set to η = 1 (see, e.g., [33]). However, in numerical tests better results have been obtained
according to the computational time using larger η and correspondingly having larger but fewer
admissible subblocks. In [40] better results have been obtained as well when even subblocks s×t
with s 6= t were accepted as admissible. In numerical tests η := 50 has been a good choice and
this value has been used in the rest of the work.

Finally, the rows and columns of K and M are reordered according to the partitioning of I
(which is described by the cluster tree TI), so that K and M are partitioned into blocks according
to L(TI×I). Since for block cluster s × t ∈ L(TI×I) fulfilling admissibility condition (8.3) the
associated supports Ωs and Ωt are geometrically separated it follows that the submatrices K|s×t
and M|s×t are equal to zero (cf. Lemma 3.6) and can be represented exactly by R(k)-matrices
with rank zero. Hence, no approximation is necessary to represent K and M in the matrix
format H(TI×I , ε). The (exact) H-matrix representations of K and M are denoted by KH and
MH.

The modified substructuring scheme described in Algorithm 6 has two advantages: First,
the computation of (6.12) becomes faster (see, e.g., [35]). Second, the matrices KH and MH

are partitioned in such a way that in the H-AMLS method the submatrices KHii and MHii
associated to a subdomain are already partitioned according to a nested dissection. This becomes
advantageous when in the recursive approach the subdomain eigenvalue problem (KHii ,M

H
ii ) is

solved recursively by H-AMLS and no further partitioning of KHii and MHii is needed.

8.2. Task (T2+T3): Transformation of the Eigenvalue Problem

The computation of the transformed eigenvalue problem (K̃H, M̃H) is described in Algorithm
7. First a nearly complete LDLT-factorisation KH ≈ LHK̃H(LH)T is computed using the
corresponding HLIBpro routine (cf. [50]) with approximation accuracy ε where K̃H ∈ H(TI×I , ε)
is symmetric and LH ∈ H(TI×I , ε) is a lower triangular, unit diagonal matrix. Nearly complete
LDLT-factorisation means that KH is diagonalised only up to the block diagonal matrices which
are associated to leaves of the block cluster tree TI×I , i.e., the matrix K̃H is zero except for the
dense block diagonal matrices K̃H|t×t which are associated to some t× t ∈ L(TI×I). According to

[50] the nearly complete LDLT-factorisation of an H-matrix is more stable than the complete
one. Because of Lemma 8.1 the transformation in task (T2) can be modified in such a way.
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Algorithm 7 Computation of the Transformed Eigenvalue Problem

1: procedure TransformEVP( KH, MH, TI×I , ε )
2: . diagonalise the stiffness matrix KH using the H-arithmetic with approximation accuracy ε
3: initialise lower triangular matrix LH ∈ H(TI×I , ε);
4: initialise symmetric matrix K̃H ∈ H(TI×I , ε);
5: compute (nearly) complete LDLT-decomposition KH ≈ LHK̃H(LH)T ;
6: . transform the mass matrix MH using the H-arithmetic with approximation accuracy ε
7: initialise matrix AH ∈ H(TI×I , ε);
8: solve LHAH = MH for AH;
9: initialise symmetric matrix M̃H ∈ H(TI×I , ε);

10: solve M̃H(LH)T = AH for M̃H; . compute only the lower triangular part of M̃H

11: return (K̃H, M̃H, LH);
12: end procedure

After factorising KH the transformed mass matrix M̃H is computed. This is done in two steps:
First the matrix AH ∈ H(TI×I , ε) is computed by solving LHAH = MH for AH ∈ H(TI×I , ε)
where the lower triangular structure of LH is exploited. The computation is performed using
the corresponding HLIBpro routine with approximation accuracy ε. By solving M̃H(LH)T =

AH for M̃H ∈ H(TI×I , ε) finally the transformed mass matrix is obtained. In order to save

computational time, explicitly only the lower block triangular part of the symmetric matrix M̃H

is computed.

8.3. Auxiliary Data

For the implementation of the remaining H-AMLS tasks the substructures of the domain Ω have
to be identified (respectively, the corresponding subsets of I) which induce the m subproblems
of the H-AMLS method and the m × m block partitioning [cf., e.g., (5.21) or (5.29)] of the

transformed matrices K̃H and M̃H. For this purpose a truncated version of the cluster tree
TI is introduced which is called in the following AMLS substructure tree (or short AMLS tree)
and which is referred to as TAMLS. The AMLS tree is obtained by applying Algorithm 8 to TI
using the parameter nAMLS

min ∈ N with nAMLS
min ≥ nmin: In the first step of Algorithm 8 the tree

TAMLS is initialised as a copy of TI . Thereafter TAMLS is traversed, starting from the root running
recursively through the sons, until an interface-cluster is reached or a domain-cluster which is
smaller or equal to nAMLS

min . In both cases the sons of these clusters are truncated, i.e., for the
corresponding t ∈ TAMLS the set of sons is set to S(t) := ∅. The parameter nAMLS

min ∈ N controls
the minimal size of the domain-clusters in TAMLS, and it is set to the largest size of an eigenvalue
problem which can still be solved easily by a direct solver. Note that all interface-cluster in the
resulting AMLS tree TAMLS are leaves. In numerical tests nAMLS

min := 1000 has been a good choice
and this value is used in the rest of the work. The difference between the AMLS tree TAMLS and
the cluster tree TI can be illustrated in Figure 8.1: The upper part of the described domain
substructuring in Figure 8.1 is associated with TAMLS, whereas both the upper and lower part is
associated with TI .

The leaves of the AMLS tree describe a disjoint partitioning of the index set I which results
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Algorithm 8 Creation of the Substructure Tree

1: procedure CreateSubstructureTree( TI , nAMLS
min )

2: initialise TAMLS as a copy of TI ;
3: U := {t} with t := root(TAMLS); . t is the root of the tree TAMLS

4: while U 6= ∅ do
5: select arbitrary t ∈ U and set U := U \ {t};
6: if t /∈ L(TAMLS) then
7: if t is a domain-cluster and #t > nAMLS

min then
8: U := U ∪ S(t); . append sons of large domain-clusters to the cluster set U
9: else

10: S(t) := ∅; . delete sons of small domain-clusters and interface-clusters
11: end if
12: end if
13: end while
14: return TAMLS;
15: end procedure

in a block partitioning of the product index set I × I of the form

I × I =
⋃̇

s∈L(TAMLS),
t∈L(TAMLS)

s× t, (8.4)

see Figure 8.2(b) for illustration. The partitioning of I × I in (8.4) corresponds to the m ×m
block partitioning of the transformed matrices K̃H and M̃H which has been described in Section
7.1 where m = #L(TAMLS). More precisely, there exists a unique bijection

ψ :
{

1, . . . ,m
}
→ L(TAMLS) with i 7→ ψ(i) ⊂ I (8.5)

corresponding to the m ×m block partitioning of K̃H and M̃H such that for i, j = 1, . . . ,m it
holds

K̃Hij := (K̃H)|s×t and M̃Hij := (M̃H)|s×t with s := ψ(i), t := ψ(j).

This bijection allows to assign to each subproblem index i ∈ {1, . . . ,m} the corresponding index
set ψ(i) ∈ L(TAMLS) and vice versa.

The block structure of the H-matrices K̃H, M̃H ∈ H(TI×I , ε), however, is described by the
leaves of the block cluster tree TI×I via

I × I =
⋃̇

s×t∈L(TI×I)

s× t,

and typically does not coincide with the m×m block structure described in (8.4), as it can be seen

in Figure 8.2. To implement the remaining tasks of H-AMLS the submatrices K̃Hij ,M̃Hij have to

be extracted from K̃H and M̃H. Note that the H-matrices are implemented in a recursive block
structure format which is guided by the block cluster tree TI×I , cf. (6.9). Correspondingly,

in order to obtain, for example, the submatrix M̃Hij associated to the clusters s := ψ(i) and

t := ψ(j), the block structure of (M̃H)|I×I has to be recursively truncated to the block cluster

s×t, and when finally a leaf matrix (M̃H)|u×v is reached with u×v ∈ L(TI×I) and u×v∩s×t 6= ∅
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8.4. Task (T4): Computation of the Partial Eigensolutions

(a) The used H-matrix format H(TI×I , ε) is
independent of the constructed substructure
tree TAMLS.

(b) m ×m block partitioning used in H-AMLS to access the

submatrices K̃Hii and M̃Hij . In this example the substructure
tree TAMLS has two levels resulting in m = 7 subproblems.

Figure 8.2.: Improved H-matrix format H(TI×I , ε) used in H-AMLS (cf. Section 8.1) for the
finite element discretisation of an elliptic PDE eigenvalue problem on Ω = (0, 1)3 with #I = 2744
degrees of freedom. Red blocks represent full matrices, green blocks R(k)-matrices and white
blocks submatrices equal to zero which don’t cause computational costs during the computations
performed in task (T2) and (T3).

the recursion is stopped and the corresponding full matrix or R(k)-matrix representation of

(M̃H)|u×v is truncated to the block cluster ū× v̄ where ū := u ∩ s and v̄ := v ∩ t. Note that for

an R(k)-matrix2 R = ABT ∈ Ru×v with A ∈ Ru×k and B ∈ Rv×k the restriction of R to the
block cluster ū× v̄ is given by the R(k)-matrix R̄ = ĀB̄T ∈ Rū×v̄ with Ā ∈ Rū×k and B ∈ Rv̄×k.

8.4. Task (T4): Computation of the Partial Eigensolutions

In task (T4) the partial eigensolutions (D̃i, S̃i) of the subproblems (K̃Hii , M̃
H
ii ) have to be com-

puted for i = 1, . . . ,m. D̃i ∈ Rki×ki is the diagonal matrix containing the ki ≤ Ni smallest
eigenvalues of (K̃Hii , M̃

H
ii ) and S̃i ∈ RNi×ki the matrix containing column-wise the correspond-

ing eigenvectors (cf. Section 7.1). In Remark 5.7 different mode selection strategies have been

discussed. It is proposed to compute all eigenvectors of the discrete problems (K̃Hii , M̃
H
ii ) which

still lead to reasonable approximations of the corresponding continuous eigenfunctions. More
precisely, for subdomain eigenvalue problems it is proposed to compute only eigenvectors be-
longing to the smallest ki := dCdom(Ni)

βdome eigenvalues are and for interface problems only the
eigenvectors belonging to the smallest ki := dCint(Ni)

βinte eigenvalues. The concrete choice of
the constants Cdom, Cint > 0 and βdom, βint ∈ (0, 1) is discussed in detail in Section 9.1.1 where
numerical results are presented. This mode selection strategy depends solely on the size and the
type of the subproblem.

2The notation Ru×v indicates that R is a matrix of size #u × #v whose row indices are associated with the
cluster u ⊂ I and whose column indices are associated with v ⊂ I. Correspondingly, A ∈ Ru×k and B ∈ Rv×k
are matrices of size #u× k and #v × k with k ∈ N, where the row indices are associated with the clusters u
and v.
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Algorithm 9 Computation of the Partial Eigensolutions

1: procedure CompPartialEigensol( K̃H, M̃H, Cdom, Cint, βdom, βint )
2: for i = 1, . . . ,m do
3: extract submatrices K̃Hii := (K̃H)|t×t and M̃Hii := (M̃H)|t×t with t := ψ(i);
4: if t is a domain-cluster then
5: . compute partial eigensolution of a subproblem associated to a subdomain
6: initialise full matrices D̃i ∈ Rki×ki , S̃i ∈ RNi×ki with ki := min{ dCdom(Ni)

βdome, Ni };
7: solve K̃Hii S̃i = M̃Hii S̃i D̃i using the dense LAPACK eigensolver dsygvx;
8: else
9: . compute partial eigensolution of a subproblem associated to an interface

10: initialise full matrices D̃i ∈ Rki×ki , S̃i ∈ RNi×ki with ki := min{ dCint(Ni)
βinte, Ni };

11: if #t ≤ nAMLS
min then

12: solve K̃Hii S̃i = M̃Hii S̃i D̃i using the dense LAPACK eigensolver dsygvx;
13: else
14: solve K̃Hii S̃i = M̃Hii S̃i D̃i using the eigensolver H-SIL;
15: end if
16: end if
17: end for
18: return (Di,Si)

m
i=1;

19: end procedure

Remark 8.2 Of course also other mode selection strategies can be implemented, for example, a
strategy motivated by the results of Corollary 3.17 on the maximal size λEF

max of well approximable

eigenfunctions. This means, depending on whether the eigenvalue problem (K̃Hii , M̃
H
ii ) is asso-

ciated to a subdomain or an interface all eigenvectors of subproblem (K̃Hii , M̃
H
ii ) are computed

whose eigenvalues are smaller than the truncation bound ωdom (for subdomains) and ωint (for
interfaces) where

ωdom := C̃domN
β̃dom
h and ωint := C̃intN

β̃int

h

with suitable constants C̃dom, C̃int, β̃dom, β̃int > 0 depending on the polynomial degree of the under-
lying finite element space Vh and the spatial dimension d. Using this mode selection strategy the
number ki of chosen eigenvectors is not known in advance which, however, is highly desirable
when the recursive version of H-AMLS is implemented (see Section 8.7 for details) and the size
ku has to be determined in order to check condensation condition (8.15).

The implementation of task (T4) is described in Algorithm 9. Depending on the type of the

subproblem a different eigensolver is used. If the eigenvalue problem (K̃Hii , M̃
H
ii ) is associated

to a subdomain (i.e., t := ψ(i) is a domain-cluster) then the size of the problem is relatively
small (according to Section 8.3 it holds Ni = #t ≤ nAMLS

min ) and it can be handled easily by a
direct eigensolver. For this purpose the dense eigensolver routine dsygvx of LAPACK [3] is used.

This eigensolver is used as well when the problem (K̃Hii , M̃
H
ii ) is associated to an interface of

small size, i.e., when it holds Ni ≤ nAMLS
min . However, if the interface problem is getting large the

solution by the dense LAPACK solver becomes too expensive. In the classical AMLS method
the matrices K̃ii and M̃ii associated to an interface are typically dense, however, in the H-AMLS
method the matrices K̃Hii and M̃Hii are represented in the H-matrix format. This data-sparse H-
matrix structure can be exploited by an iterative eigensolver. In the following two eigensolvers
are presented which have been implemented, and which can be used for the solution of large
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interface eigenvalue problems.

Eigensolver H-ARPACK

Let AH and BH be symmetric H-matrices and AH regular. We consider the eigenvalue problem

AH x = λBHx (8.6)

where the eigensolutions associated to the smallest eigenvalues are sought. To solve this problem
the FORTRAN 77 library ARPACK [57] can be used which provides routines for the solution
of large scale eigenvalue problems. The implementation of the corresponding eigensolver is as
follows: To solve problem (8.6) the eigensolutions of the transformed problem

(AH)−1BH x =
1

λ
x (8.7)

are computed which are associated to the largest eigenvalues 1/λ. The solution of (8.7) is per-
formed using the ARPACK routines dsaupd and dseupd that implement the so-called Implicitly
Restarted Lanczos Method which is a combination of the Lanczos process with the implicitly
shifted QR technique, see [57] for details. ARPACK provides a reverse communication interface
(cf. [57]) that allows the usage of the fastH-arithmetic for the involved matrix-vector multiplica-
tions. Note that the H-matrix-vector multiplication is performed exactly. Furthermore, the ma-
trix (AH)−1BH in (8.7) is not evaluated explicitly, instead an approximative LDLT-factorisation
AH ≈ LHAD(LHA )T is computed by the fast H-arithmetic which is used as an preconditioner (cf.
[34, 35, 49]) for the iterative solution of the linear system involved in (8.7). The accuracy of the
H-arithmetic used for the computation of this factorisation is chosen in such a way that it holds
‖Id − (LHAD(LHA )T )−1AH‖2 ≤ 10−2, and correspondingly, the preconditioner (LHAD(LHA )T )−1

guarantees in a linear iteration method a convergence with a convergence rate of at least 10−2.
The tolerance parameter tol used for the stopping criterion (cf. [57]) of the ARPACK routine
dsaupd has been set to 10−8. Altogether, this leads to an eigensolver which computes eigenpair
approximations (λ̃, x̃) with a relative residual error ‖AHx̃ − λ̃BHx̃‖2/‖AHx̃‖2 typically in the
order of single machine precision. In the following this eigensolver is referred to as H-ARPACK.

Unfortunately, the ARPACK library is not thread-safe (see Section 8.8), in particular, it is
not possible to solve several eigenvalue problems concurrently by the eigensolver H-ARPACK.
Correspondingly, another thread-safe eigensolver has to be implemented in order to parallelise
task (T4) efficiently. But due to the high accuracy of the H-ARPACK eigenpair approximations,
this eigensolver is used as reference solver when in Chapter 9 numerical results are presented
and the approximation quality of H-AMLS is compared with these of a classical approach.3

For the solution of large interface eigenvalue problems (in both the parallel and the sequential
implementation of H-AMLS), however, the following eigensolver is used:

Eigensolver H-SIL

Consider the eigenvalue problem (8.6) with the symmetric matrices AH := K̃Hii and BH := M̃Hii ,
where AH is positive definite. In order to solve this problem the eigensolutions of the transformed

3H-ARPACK is applied to the sparse problem (K,M) in the analogical way as to the problem (8.7). In order
to compute a preconditioner for K the corresponding H-matrix representation KH is factorised.
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Algorithm 10 Check if M̂ij is a Zero Matrix

1: procedure SubmatrixIsZero( i, j, TAMLS )
2: get clusters s := ψ(i) and t := ψ(j);
3: . F (t) ∈ TAMLS is defined as the father of t ∈ TAMLS, i.e., it holds t ∈ S(F (t))
4: if t is an interface-cluster then
5: t := F (t);
6: end if
7: if s is an interface-cluster then
8: s := F (s);
9: end if

10: . if F (s) ∩ F (t) = ∅ then M̂ij is a zero matrix, otherwise not
11: return ( F (s) ∩ F (t) ≡ ∅ );
12: end procedure

problem

L−1
A BHL−TA y =

1

λ
y with AH = LAL

T
A and y := LTAx (8.8)

are computed which are associated to the largest eigenvalues 1/λ, where AH = LAL
T
A in (8.8)

is the exact Cholesky factorisation of AH. Note that AH = K̃Hii is nearly diagonal (cf. Section
8.2) since in task (T2) a nearly complete LDLT-decomposition of KH is performed, and corre-
spondingly it is quite inexpensive to compute the (numerically) exact Cholesky factorisation of
AH. For the solution of problem (8.8) the Lanczos method (without shift) has been implemented
where the matrix L−1

A BHL−TA is not evaluated explicitly, instead the vector ynew := L−1
A BHL−TA y

is computed by solving the triangular system LTAy
′ = y for y′, computing y′′ := BHy′ using the

fast H-arithmetic, and solving LAynew = y′′ for ynew. Note that the matrix LA is nearly diag-
onal, and correspondingly the computation of y′ and ynew is inexpensive. In the following this
eigensolver is referred to as H-SIL.

For the solution of (8.8) only a basic version of the Lanczos method has been implemented
(see, e.g., [8]) with a fixed number of maximal iterations. Benchmarks have shown that in some
examples the accuracy of the eigenpair approximations computed byH-SIL is slightly worse than
the one of H-ARPACK. However, in task (T4) it is not necessary to compute (numerically) exact

eigensolutions of the discrete problems (K̃Hii , M̃
H
ii ). Instead the aim is to provide enough spectral

information from each subproblem (K̃Hii , M̃
H
ii ) in order to derive from the reduced problem

(K̂, M̂) sufficiently good eigenpair approximations ( λ̂
(rq)
j , ŷj)

nes
j=1 of the original problem (K,M)

[cf. Remark 5.7]. Hence, it is sufficient to compute only approximative eigenpairs of (K̃Hii , M̃
H
ii ),

and to compensate a possibly lower approximation quality of the computed partial eigensolution
by slightly increasing the number of computed eigenpairs.

8.5. Task (T6+T7): Computation and Solution of the Reduced EVP

In task (T6) the reduced matrices K̂ := ZT K̃HZ and M̂ := ZT M̃HZ have to be computed. The

computation of these matrices is described in Algorithm 11 where it is noted that K̂, M̂ ∈ Rk̄×k̄
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Algorithm 11 Computation of the Reduced Matrices

1: procedure CompReducedMatrices( K̃H, M̃H, TAMLS, (D̃i, S̃i)
m
i=1)

2: initialise full matrices K̂, M̂ ∈ Rk̄×k̄ with matrix entries equal to zero and k̄ =
∑m
i=1 ki;

3: initialise m×m block structure K̂ = ( K̂ij)
m
i,j=1 and M̂ = ( M̂ij)

m
i,j=1;

4: for i = 1, . . . ,m do
5: extract submatrices K̃Hii := (K̃H)|t×t with t := ψ(i);

6: compute K̂ii := S̃Ti K̃
H
ii S̃i ∈ Rki×ki using the H-arithmetic;

7: for j = 1, . . . , i do
8: extract submatrix M̃Hij := (M̃H)|s×t with s := ψ(i), t := ψ(j);
9: if ¬ SubmatrixIsZero(i, j, TAMLS) then . see Algorithm 10

10: compute M̂ij := S̃Ti M̃
H
ij S̃j ∈ Rki×kj using the H-arithmetic;

11: end if
12: end for
13: end for
14: return (K̂, M̂);
15: end procedure

possess the following m×m block structure

K̂ = diag[K̂11, . . . , K̂mm] with K̂ii = S̃Ti K̃
H
ii S̃i ∈ Rki×ki for i = 1, . . . ,m,

M̂ = ( M̂ij )mi,j=1 with M̂ij = S̃Ti M̃
H
ij S̃j ∈ Rki×kj for i, j = 1, . . . ,m.

Because of the symmetry of the reduced matrices only the lower triangular part of M̂ has to
be computed. Furthermore, some M̂ij are zero matrices (i.e., all entries of these matrices are

equal to zero). Note that M̂ij is a zero matrix if and only if M̃Hij is a zero matrix, and that a

large part of the block-sparsity structure of MH is retained in M̃H [see, e.g., (5.23) and (5.30)].

To see if M̃Hij and M̂ij are zero matrices the substructure tree TAMLS has to be observed. For a
cluster t ∈ TAMLS with t 6= root(TAMLS) we define the unique cluster F (t) := u ∈ TAMLS fulfilling

t ∈ S(u) as the father of t. For the clusters s = ψ(i) and t = ψ(j) associated to M̂ij it can be

observed that M̂ij is a zero matrix (for illustration see upper part of Figure 8.1):

• if s and t are domain-cluster with i 6= j,

• if s is a domain-cluster and t an interface-cluster with s ∩ F (t) = ∅,
• if s is an interface-cluster and t a subdomain-cluster with F (s) ∩ t = ∅,
• if s and t are both interface-clusters with F (s) ∩ F (t) = ∅.

This result is summarised in Algorithm 10. In the case that M̂ij has to be computed (the same

holds for K̂ii) then in the first step the matrix A := M̃Hij S̃j ∈ RNi×kj is computed (numerically

exact) where the data-sparse structure of the H-matrix M̃Hij is exploited, and in the second step

M̃Hij = S̃Ti A is computed as the product of two matrices in full matrix representation. Note

that K̂ii = D̃i ∈ Rki×ki and M̂ii = Id ∈ Rki×ki when a (numerically) exact partial eigensolution

(D̃i, S̃i) has been computed with normalisation S̃Ti M̃
H
ii S̃i = Id, and that in this case the com-

putation of K̂ii and M̂ii has not to be performed. However, in benchmarks could be observed
that the used eigensolvers dsygvx and H-SIL computed in some cases eigensolutions where the
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corresponding relative residual error4 has been larger than machine precision. Hence, to be on
the safe side the matrices K̂ii and M̂ii are computed in Algorithm 11 as well.

In the next step of H-AMLS, in task (T7), the partial eigensolution

K̂ Ŝ = M̂ Ŝ D̂ with ŜT M̂ Ŝ = Id (8.9)

of the H-reduced eigenvalue problem is computed, where the diagonal matrix D̂ ∈ Rnes×nes

contains the eigenvalues (λ̂j)
nes
j=1 and Ŝ ∈ Rk̄×nes column-wise the associated eigenvectors (x̂j)

nes
j=1.

Although the reduced problem is partially structured5 the computation is performed by the dense
LAPACK eigensolver dsygvx6. Since it is ultimately aimed that the size k̄ of the H-reduced
eigenvalue problem is bounded by O(nes) when H-AMLS is applied recursively (cf. Section 8.7),

the problem (K̂, M̂) will be small enough to be solved easily by the dense solver dsygvx.

8.6. Task (T8+T9+TSI): Transformation of the Eigensolutions

In task (T8) of H-AMLS the computed eigenvectors (x̂j)
nes
j=1 of the H-reduced problem have to

be transformed via

ŷj := (LH)−T Z x̂j with Z := diag[S̃1, . . . , S̃m] ∈ RN×k̄, (8.10)

The computation of ŷj in (8.10) can be performed vector-wise for j = 1, . . . , nes. However,
in terms of runtime it is typically much more efficient to represent (x̂j)

nes
j=1 by the full matrix

Ŝ from (8.9) and to perform the computation in (8.10) matrix-wise, since for most computer
systems with cache memories (cf. Section 8.8) data locality can be exploited much better in the
matrix-wise approach than in the vector-wise approach.

To compute (8.10) matrix-wise in the first step the matrix S̃ := Z Ŝ is computed via S̃(1)

...

S̃(m)


︸ ︷︷ ︸

= S̃ ∈ RN×nes

=

S̃1

. . .

S̃m


︸ ︷︷ ︸

= Z ∈ RN×k̄

 Ŝ(1)

...

Ŝ(m)


︸ ︷︷ ︸
= Ŝ ∈ Rk̄×nes

with S̃(i) := S̃i Ŝ
(i) for i = 1, . . . ,m (8.11)

where the block diagonal structure of Z is exploited, i.e., for S̃i ∈ RNi×ki the matrices S̃ and
Ŝ are decomposed correspondingly into blocks with S̃(i) ∈ RNi×nes , Ŝ(i) ∈ Rki×nes . Note that
(D̂, S̃) is an approximative eigensolution of eigenvalue problem (K̃H, M̃H) with D̂ from (8.9) and

where S̃T M̃HS̃ = Id. In the next step the transformed eigenvector matrix Stemp := (LH)−T S̃ is
computed by solving the triangular system (LH)TStemp = S̃ for Stemp via the fast H-arithmetic.
In particular, the computation of Stemp = (LH)−T S̃ is performed numerically exact. Finally, the

4We define the relative residual error of an eigenpair approximation (λ, x) of problem (K,M) by ‖Kx −
λMx‖2/‖Kx‖2.

5K̂ is a block diagonal matrix and M̂ has a block-sparsity structure similar to the structure of M̃H (cf. Figure
8.2). See Section 8.5 for details.

6Since eigensolver dsygvx (cf. [3]) requests only the lower triangular matrix part of the symmetric problem

(K̂, M̂) it is sufficient in Algorithm 11 to compute and store only the lower block triangular part of M̂.
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Algorithm 12 Transformation and Improvement of Eigensolutions

1: procedure TransformEigensol( K, M , LH, K̃H, (S̃i)
m
i=1, Ŝ, apply task TSI )

2: . compute the transformed eigenvectors S̃ := Z Ŝ
3: initialise full matrix S̃ ∈ RN×nes ;

4: partition S̃ and Ŝ in m block rows as it is done in (8.11);
5: for i = 1, . . . ,m do

6: compute S̃(i) = Si Ŝ
(i);

7: end for
8: . compute Stemp := (LH)−T S̃ ∈ RN×nes

9: solve the triangular system (LH)TStemp = S̃ for Stemp using fast (and exact) H-arithmetic;
10: . restore the original index ordering of the approximated eigenvectors
11: apply inverse of the in task (T1) performed index permutation π to column vectors of Stemp;
12: set S := Stemp;
13:

14: if apply task TSI then
15: . improve eigenvalue and eigenvector approximation by task (TSI)

16: (D,S) := ImproveEigensolution( K, M , LH, K̃H, S ); . see Algorithm 4
17: else
18: . compute Rayleigh quotients exploiting the sparse structure of K, M
19: initialise full matrix D ∈ Rnes×nes with entries equal to zero;
20: for j = 1, . . . , nes do

21: λ̂
(rq)
j := ŷTj K ŷj/ ŷTj M ŷj where ŷj denotes the j-th column of S;

22: set the j-th diagonal entry of D equal to λ̂
(rq)
j ;

23: end for
24: end if
25:

26: return (D,S);
27: end procedure

matrix S is obtained by applying the inverse of the in task (T1) performed index permutation
π (cf. Section 7.1) to the column vectors of the matrix Stemp, and hence the permutated matrix
S := Stemp is containing column-wise the eigenvector approximations ŷj of the initial eigenvalue
problem (K,M) with the original index ordering.

Benchmarks have shown that the matrix-wise approach for the computation of (8.10) is sig-
nificantly faster than the vector-wise approach, whereas the vector-wise approach scaled better
on shared memory systems (see Section 8.8) with the number of cores than the matrix-wise
approach. Nonetheless, also with many cores (benchmarks have been performed with up to 32
cores) the parallel implementation of the matrix-wise approach (cf. Section 8.8.6) still has been
significantly faster than the parallel implementation of the vector-wise approach.

Depending on the chosen parameter setting in the next step of Algorithm 12 the Rayleigh

quotients λ̂
(rq)
j are computed (which involves matrix-vector multiplications with the sparse ma-

trices K and M), or instead the in Section 7.4 described improvement task (TSI) is applied.
Finally, Algorithm 12 returns the eigenpair approximations (D,S) stated in (8.1) where de-
pending on whether task (T9) or task (TSI) has been applied the diagonal matrix D ∈ Rnes×nes

contains the eigenvalue approximations λ̂
(rq)
j or λ̂(SI)

j , and the matrix S ∈ RN×nes column-wise

the eigenvector approximations ŷj or ŷ(SI)

j . The approximation quality of the computed eigen-
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pair approximations has been discussed in Section 7.3, and it depends on the chosen accuracy
ε of the H-arithmetic used in task (T2) and (T3), and the chosen mode selection strategy in
task (T4). How the accuracy and the mode selection strategy should be chosen is discussed in
Chapter 9 where numerical results are presented.

8.7. Implementation of the recursive H-AMLS method

In the previous sections the implementation of non-recursive H-AMLS version has been de-
scribed. According to Section 8.3 the domain Ω (respectively the index set I) has been sub-

structured in so many levels until eigenvalue problems (K̃ii, M̃ii) associated to subdomains are
getting small enough (according to Alg. 8 it holds Ni ≤ nAMLS

min ) to be solved easily by a direct
solver. However, the downside of this is that the number of subproblems is getting large when
N increases: Applying the domain substructuring described in Section 8.1, Algorithm 8 leads
to an AMLS substructure tree with m subproblems where m = m(N) is typically of the order

m(N) ∈ O
(

N

nAMLS
min

)
= O(N) as N →∞. (8.12)

But as the number of subproblem increases with N also the size k̄ =
∑m(N)

i=1 ki of the reduced

eigenvalue problem (K̂, M̂) increases. Although the reduced problem is partially structured7,
eventually the total complexity of H-AMLS is dominated by the solution of the reduced eigen-
value problem. Beside that also the computation of the reduced matrix M̂ is getting expensive
when k̄ is getting large. To resolve this problem the H-AMLS method is applied recursively (cf.
Section 5.2.3 and Section 7.1) which enables both: small subdomain problems that are easy to

solve, and a reduced problem (K̂, M̂) whose size k̄ is bounded by the order of O(nes). To apply
the recursive version of H-AMLS the so-called condensation process has to be performed which
is applied right after task (T4) in Algorithm 5 (in non-recursive H-AMLS this process is omit-
ted). In the condensation process, which is described in the following, the spectral information
of many small subproblems is condensed using H-AMLS into the spectral information of few
superordinated subproblems of larger size.

8.7.1. Applying H-AMLS to a Superordinated Subproblem

Let u ∈ TAMLS be a cluster with u /∈ L(TAMLS). Then there exist unique subproblem indices
i first(u), i last(u) ∈ {1, . . . ,m} with i first(u) < i last(u) such that

u =
⋃̇

i first(u)≤ i≤ i last(u)

ψ(i) (8.13)

In the non-recursive version of the H-AMLS method the spectral information of the subproblems

(K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) has been used, together with the spectral information of the other subprob-

lems, to form in task (T6) the reduced eigenvalue problem (K̂, M̂). The spectral information of

(K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) is approximatively described by the partial eigensolutions (D̃i, S̃i)

i last(u)
i=i first(u),

7K̂ is a block diagonal matrix and M̂ has a block-sparsity structure similar to the structure of M̃H (cf. Figure
8.2). See Section 8.5 for details.
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Algorithm 13 Apply H-AMLS to the subproblem associated to the cluster u ∈ TAMLS

1: procedure ApplyHAMLSsub( K̃H, M̃H, TAMLS, (D̃i, S̃i)
m
i=1, u, C≈dom, βdom )

2: . comp. reduced matrices K̂u, M̂u ∈ Rk̄u×k̄u associated to the cluster u → see Algorithm 14

3: (K̂u, M̂u) = CompReducedMatricesSub( K̃H, M̃H, TAMLS, (D̃i, S̃i)
m
i=1, u );

4:

5: . determine number of needed eigenvectors

6: ku := min{ dC≈dom(Nu)βdome, Nu } with Nu :=
∑i last(u)

i first(u)Ni;
7:

8: . compute the partial eigensolution of the reduced eigenvalue problem
9: initialise full matrices D̂u ∈ Rku×ku and Ŝu ∈ Rk̄u×ku ;

10: solve K̂u Ŝu = M̂u Ŝu D̂u using the dense LAPACK eigensolver dsygvx;
11:

12: . transform the eigenvectors of the reduced eigenvalue problem → see Algorithm 15
13: S̃u :=TransformEigenvectorsSub( (S̃i)

m
i=1, Ŝu, u );

14:

15: . return (approximative) partial eigensolution (D̃u, S̃u) of (K̃Hu , M̃
H
u ) where D̃u := D̂u

16: return (D̃u, S̃u);
17: end procedure

and in total k̄u :=
∑i last(u)

i=i first(u) ki eigenvectors are selected from these subproblems for the for-

mation of the reduced problem (K̂, M̂). But instead, it is also possible to consider in the

further proceeding of H-AMLS the superordinated eigenvalue problem (K̃Hu , M̃
H
u ) associated to

the cluster u where

K̃Hu := (K̃H)|u×u ∈ RNu×Nu , M̃Hu := (M̃H)|u×u ∈ RNu×Nu and Nu :=

i last(u)∑
i=i first(u)

Ni.

Instead of using the spectral information of the subproblems (K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) the spectral

information of the superordinated problem can be used to form in task (T6) the reduced prob-

lem (K̂, M̂). For this purpose a partial eigensolution (D̃u, S̃u) of (K̃Hu , M̃
H
u ) has to be com-

puted. This eigensolution can be computed very efficiently by the H-AMLS method, especially
when Nu is large. Here the question arises how many eigensolutions of (K̃Hu , M̃

H
u ) have to

be computed. According to the mode selection strategy described in Section 8.4 only those
eigenvectors are computed which still lead to reasonable approximations of the corresponding
continuous eigenfunctions. Since (K̃Hu , M̃

H
u ) is an eigenvalue problem associated to a subdomain

(note that u is always a domain-cluster) these are the eigenvectors associated to the smallest
dCdom(Nu)βdome ∈ N eigenvalues (cf. Section 8.4). However, the H-AMLS method computes in
general only approximative eigenvectors of a discrete problem and not (numerically) exact ones
such as, for example, the dense LAPACK solver dsygvx does in task (T4) in the most cases.

Correspondingly, it is reasonable to compute slightly more eigensolutions for (K̃Hu , M̃
H
u ) when

H-AMLS is used, in order to compensate a possibly lower approximation quality and to provide
enough spectral information of (K̃Hu , M̃

H
u ) for the formation of the reduced problem (K̂, M̂) in

task (T6). This means, when H-AMLS is used for the solution of (K̃Hu , M̃
H
u ) then it is suggested

to compute the eigenvectors associated to the smallest ku eigenvalues where

ku := dC≈dom(Nu)βdome ∈ N with some constant C≈dom ≥ Cdom. (8.14)
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Algorithm 14 Computation of the reduced matrices associated to cluster u ∈ TAMLS

1: procedure CompReducedMatricesSub( K̃H, M̃H, TAMLS, (D̃i, S̃i)
m
i=1, u )

2: compute k̄u :=
∑i last(u)
i=i first(u) ki and mu := i last(u)− i first(u) + 1;

3: initialise full matrices K̂u, M̂u ∈ Rk̄u×k̄u with matrix entries equal to zero;

4: initialise mu ×mu block structure K̂u = ( K̂ij)
i last(u)
i,j=i first(u) and M̂u = ( M̂ij)

i last(u)
i,j=i first(u);

5: for i = i first(u), . . . , i last(u) do

6: extract submatrices K̃Hii := (K̃H)|t×t with t := ψ(i);

7: compute K̂ii := S̃Ti K̃
H
ii S̃i ∈ Rki×ki using the H-arithmetic;

8: for j = 1, . . . , i last(u) do

9: extract submatrix M̃Hij := (M̃H)|s×t with s := ψ(i), t := ψ(j);
10: if ¬ SubmatrixIsZero(i, j, TAMLS) then . see Algorithm 10

11: compute M̂ij := S̃Ti M̃
H
ij S̃j ∈ Rki×kj using the H-arithmetic;

12: end if
13: end for
14: end for
15: return (K̂u, M̂u);
16: end procedure

Algorithm 15 Transforming eigenvectors of the reduced EVP associated to cluster u ∈ TAMLS

1: procedure TransformEigenvectorsSub( (S̃i)
m
i=1, Ŝu, u )

2: . compute S̃u := Zu Ŝu where Zu := diag
[
S̃i first(u), . . . , S̃i last(u)

]
∈ RNu×k̄u

3: initialise full matrix S̃u ∈ RNu×ku with Nu :=
∑i last(u)

i first(u)Ni;

4: partition S̃u and Ŝu in mu block rows in a similar way as it is done in (8.11);
5: for i = i first(u), . . . , i last(u) do

6: compute S̃
(i)
u = S̃i Ŝ

(i)
u where S̃

(i)
u ∈ RNi×ku , S̃i ∈ RNi×ki and Ŝ

(i)
u ∈ Rki×ku ;

7: end for
8: return Su;
9: end procedure

The implementation of H-AMLS applied to eigenvalue problem (K̃Hu , M̃
H
u ) is described in

Algorithm 13: Tasks (T1)–(T4) of H-AMLS are omitted since K̃Hu has already block diagonal

structure and the partial eigensolutions of (K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) have been computed as well. The

first task to be performed is the computation of the reduced matrices

K̂u := ZTu K̃
H
u Zu ∈ Rk̄u×k̄u and M̂u := ZTu K̃

H
u Zu ∈ Rk̄u×k̄u

with Zu := diag
[
S̃i first(u), . . . , S̃i last(u)

]
∈ RNu×k̄u , which posses the mu ×mu block structure

K̂u = ( K̂ij)
i last(u)
i,j=i first(u) and M̂u = ( M̂ij)

i last(u)
i,j=i first(u)

where mu := i last(u) − i first(u). The computation of the reduced matrices is described in
Algorithm 14 and is done in the analogical way as the computation of the global reduced matrices
K̂ and M̂ (cf. Section 8.5). In the next step the partial eigensolution (D̂u, Ŝu) of the reduced

problem (K̂u, M̂u) is computed

K̂u Ŝu = M̂u Ŝu D̂u with ŜTu M̂u Ŝu = Id,
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where the diagonal matrix D̂u ∈ Rku×ku contains the ku ≤ k̄u smallest eigenvalues and Ŝu ∈
Rk̄u×ku column-wise the associated eigenvectors, and where ku is chosen as in (8.14). As for the
global reduced eigenvalue problem (cf. Section 8.5) the computation of the partial eigensolution
(D̂u, Ŝu) is done by the dense LAPACK eigensolver dsygvx. In the last step of Algorithm 13 the
eigenvectors of the reduced problem are transformed by computing S̃u := ZuŜu (see Algorithm
15 for implementation), and the approximative partial eigensolution

K̃Hu S̃u ≈ M̃Hu S̃u D̃u with S̃Tu M̃
H
u S̃u = Id

is obtained where D̃u := D̂u.
In summary, it could be seen how the spectral information (D̃i, S̃i)

i last(u)
i=i first(u) of the subprob-

lems (K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) has been condensed via H-AMLS into the spectral information of a

single subproblem of larger size. In particular, in the following it is said that the subprob-

lems (K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) have been condensed if in the further process of H-AMLS the data

(K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) and (D̃i, S̃i)

i last(u)
i=i first(u) is replaced by the data (K̃Hu , M̃

H
u ) and (D̃u, S̃u).

The question arises when subproblems should be condensed. The spectral information of

(D̃i, S̃i)
i last(u)
i=i first(u) and of (D̃u, S̃u) is considered as equivalent concerning their contribution to

the global reduced eigenvalue problem (K̂, M̂). Overall, it is aimed to bound the size k̄ of the
global reduced problem by O(nes). Correspondingly, in the case that ku < k̄u it is advantageous

to condense the subproblems (K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) in order to bound k̄. On the other side the

condensation of subproblems results in additional computational costs. Correspondingly, the

subproblems (K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) should only be condensed when, for example, it holds

k̄u > 2 ku. (8.15)

This means that if condensation condition (8.15) is fulfilled it is considered as more efficient to

condense the subproblems (K̃Hii , M̃
H
ii )

i last(u)
i=i first(u) and to use the spectral information of problem

(K̃Hu , M̃
H
u ) instead.

8.7.2. Implementation of the Condensation Process

The complete condensation process which is performed in the recursive version of H-AMLS is
described in Algorithm 16: In the first step of this process subproblems are identified which
should be condensed. This is done by applying Algorithm 17 to the AMLS substructure tree
TAMLS. Let depth(TAMLS) ∈ N0 be the length of the longest path in TAMLS, and level(t) ∈ N0 the
length of the path between the cluster t ∈ TAMLS and the root of TAMLS. Applying Algorithm
17 the AMLS tree is traversed level-wise, starting from level l = depth(TAMLS) − 1 up to level
l = 1, where every three levels clusters u ∈ TAMLS are tested if the cluster and the corresponding
subproblems fulfil condensation condition (8.15). If this is the case the cluster u is appended
to the set U . As soon as on a concrete level l′ ∈ N clusters8 are found whose associated
subproblems should be condensed, then Algorithm 17 finishes and returns the set U back to
Algorithm 16. Searching for clusters on levels l < l′ of the AMLS tree is first continued when
all subproblems associated to the clusters u ∈ U have been condensed. The corresponding

8Note that on one level there can be several clusters u fulfilling the condensation condition (8.15).
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Algorithm 16 Implementation of the Condensation Process

1: procedure ApplyCondensation( K̃H, M̃H, TAMLS, (D̃i, S̃i)
m
i=1, C≈dom, βdom )

2: while true do
3: . in the set U clusters are collected that represent subproblems which should be condensed
4: U :=FindSubproblemsToCondense( TAMLS, (ki)

m
i=1, C≈dom, βdom ); . see Alg. 17

5: if U ≡ ∅ then
6: return; . end condensation process when no further subproblems can be condensed
7: end if
8: . compute for u ∈ U (approx.) partial eigensol. (D̃u, S̃u) of (K̃Hu , M̃

H
u ) → see Alg. 13

9: for all u ∈ U do
10: (D̃u, S̃u) := ApplyHAMLSsub( K̃H, M̃H, TAMLS, (D̃i, S̃i)

m
i=1, u, C≈dom, βdom );

11: for i = i first(u), . . . , i last(u) do

12: delete (D̃i, S̃i); . eigensol.s which are not needed anymore can be deleted
13: end for
14: end for
15: . introduce cluster-notation for the partial eigensol.s of old subprobl.s which are still in use
16: for all u ∈

{
t ∈ L(TAMLS) : t * J with J :=

⋃
v∈U v

}
do

17: (D̃u, S̃u) := (D̃i, S̃i) with i := ψ−1(u);
18: end for
19: . truncate the substructure tree TAMLS by deleting the sons of the new used subproblems
20: for all u ∈ U do
21: S(u) := ∅;
22: end for
23: . update the auxiliary data according to the truncated substructure tree TAMLS

24: m := #L(TAMLS); . update the number of subproblems
25: initialise the bijection ψ : {1, . . . ,m} → L(TAMLS); . see (8.5) for definition of ψ
26: . initialise index-notation for the partial eigensol.s of the subprobl.s which are now in use
27: for i = 1, . . . ,m do
28: (D̃i, S̃i) := (D̃u, S̃u) with u := ψ(i);
29: end for
30: end while
31: end procedure

condensations are performed by Algorithm 13. Note that for all u ∈ U the partial eigensolutions

(D̃i, S̃i)
i last(u)
i=i first(u) are not needed anymore and that they can be deleted. Since old subproblems

are replaced by new ones the auxiliary data of H-AMLS has to be updated to the new situation.
However, typically not all subproblems are condensed into superordinated subproblems, i.e.,
some old subproblems are still in use. For the partial eigensolutions of these old but still used
subproblems (K̃Hii , M̃

H
ii ) the cluster-notation (D̃t, S̃t) := (D̃i, S̃i) is introduced where t := ψ(i).

The index-notation (D̃i, S̃i) which has been used so far depends on the shape of the AMLS tree
and becomes invalid when TAMLS is updated. To update TAMLS simply the sons of all u ∈ U
are deleted, i.e., it is set S(u) := ∅. Once the AMLS tree has been truncated the number of
used subproblems m and the bijection ψ from (8.5) is updated, and finally, the index-notation
for the partial eigensolutions of the old and the new created subproblems is introduced. After
the auxiliary data has been updated the condensation process in Algorithm 16 is restarted from
the beginning with the truncated tree until no further subproblems can be found which can be
condensed. The choice that every three level subproblems are condensed can be replaced by
other approaches, but ultimately this approach emulates a recursive H-AMLS method with a
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three-level substructuring.

Algorithm 17 Find subproblems which should be condensed

1: procedure FindSubproblemsToCondense( TAMLS, (ki)
m
i=1, C≈dom, βdom )

2: . collect in the set U clusters representing subproblems which should be condensed
3: U := ∅;
4: for l = depth(TAMLS)− 1, . . . , 1 do . depth(TAMLS) :=length of longest path in TAMLS

5: T (l)
AMLS := {u ∈ TAMLS : level(u) = l};

6: for all u ∈ T (l)
AMLS \ L(TAMLS) do

7: . k̄u eigenvectors are selected when subproblems associated to u are not condensed

8: k̄u :=
∑i last(u)
i=i first(u) ki;

9: . ku eigenvectors are selected when subproblems associated to u are condensed

10: ku := min{ dC≈dom(Nu)βdome, Nu } with Nu :=
∑i last(u)

i first(u)Ni;

11: . if k̄u is too large then the subproblems associated to cluster u should be condensed
12: if l ≡ 0 mod 3 and k̄u > 2 ku then
13: U := U ∪ {u};
14: end if
15: end for
16: . stop searching if on current level subproblems have been found which should be condensed
17: if #U > 0 then
18: return U ;
19: end if
20: end for
21: return U ;
22: end procedure

8.8. Parallelisation of the H-AMLS method

In this section it is described how the H-AMLS method has been parallelised for shared memory
systems. Shared memory systems are computer systems with multiple CPU cores and a shared
main memory which is directly accessible by all CPU cores. The communication between the
different cores is solely realised by reading and writing data to the shared memory. In contrast
to shared memory systems stand distributed memory systems, i.e., computer systems where
each CPU has its own private memory, and where cores, respectively computational tasks, have
to communicate explicitly via a message-passing system. However, this work is solely focused
on parallelising H-AMLS on shared memory systems. This topic is started by describing shared
memory systems in more detail and by discussing basic issues of parallel computing.

A shared memory system with a memory architecture where each position in the memory is
accessed in equal time by all CPU cores is called uniform memory access architecture (short
UMA-architecture). However, the memory of shared memory systems is often constructed in
some hierarchical form (especially for systems with many cores) where each core has — depend-
ing on its position in the system — local and non-local shared memory. If the access time to some
parts of the memory differs for some cores then the system architecture is called non-uniform
memory access architecture (short NUMA-architecture). Correspondingly, the parallel perfor-
mance of a program running on a NUMA-architecture may depend as well on the distribution
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of the data on the shared memory.
Another important issue of shared memory systems is that the memory can become easily

a bottleneck when too many cores access data at the same time. The problem is the limited
memory bandwidth of the system, and the contention between the cores over a shared memory
bus that can be used only by a single core at once. Correspondingly, the cores are forced to
wait until needed data is transferred to or from the memory. This problem is also referred to
as the so-called von Neumann bottleneck or the memory wall. One attempt to mitigate this
bottleneck is to provide caches between the cores and the main memory. Caches are very fast,
but small, hardware memories on the CPUs which hold recently accessed data. If data is reused
by a core and still present in the local cache, the core can access this data much faster than
when it has to get the data from the main memory. However, CPU caches are not part of the
shared main memory and, in particular, they are not considered for the classification of UMA-
or NUMA-architectures.

Nowadays, shared memory systems (with UMA- and NUMA-architectures) are realised on
nearly all workstations and compute servers, where the number of cores is typically in the range
of 2 up to 128 or even more, and where the cores are equipped with several levels of caches.

On a shared memory system a program is executed by the operating system as a process9. In
order to utilise multiple cores of the shared memory system within a process, threads are typically
used. Threads are execution paths within a single process which can execute concurrently and
which share all resources of the process such as the address space and the memory. Each thread
is assigned one-to-one to a core by the operating system. To access threads in C++ programming
a special interface is needed which is provided, for example, by the Threading Building Blocks
[46] or by OpenMP [27].

When implementing a multi-threaded program one has to take care when multiple threads
access (read/write) the same data. If the outcome of the program depends on the undetermined
timing of computational tasks a so-called race condition is present. To avoid these unwanted
race conditions the execution of data dependent tasks has to be scheduled. If no race condition
is present the program is called thread-safe.

The parallel performance of a program is often measured by the following quantities:

Definition 8.3 (Speedup and Efficiency) For a given algorithm let t(p) be the runtime of
the parallel implementation using p ∈ N \ {1} cores, and t(1) the runtime of the best sequential
implementation. Then the parallel speedup S(p) and the parallel efficiency E(p) of the parallel
program are defined by

S(p) :=
t(1)

t(p)
and E(p) :=

S(p)

p
=

t(1)

t(p) p
.

The speedup of a parallel program is optimal if it holds S(p) = p for p ∈ N. In practice, however,
an optimal speedup is often not achieved due to a variety of overheads which are associated with
the parallelisation: For example, overhead imposed by the use of parallel software, overhead
caused by spawning and finishing of threads, overhead due to synchronisation of data dependent
tasks (cores can become idle if for example input data for a tasks is not yet computed), and
overhead due to load imbalances (e.g., because of different workloads per thread some cores

9A process is an instance of a running program.

110



8.8. Parallelisation of the H-AMLS method

may finish before others and become idle), etc. Furthermore, the speedup of a program can
be limited by the von Neumann bottleneck. If for example the cores are required to perform
minimal processing on large amounts of data then the memory can become a bottleneck, and
cores become idle as well since they have to wait for data. Beside this, parts of the program
may be unparallelisable so that they can be processed only by a single tasks: Denote cseq ∈ [0, 1]
the fraction of the overall computational work in an algorithm which can be handled only
sequentially. Furthermore, it is assumed that the overall computational work is fixed for all
p ∈ N. Then the time needed for the parallel execution of the corresponding program is bounded
from below by

t(p) ≥ cseq t(1) +
(1− cseq) t(1)

p
,

and correspondingly the speedup of the program is bounded from above by

S(p) ≤ 1

cseq + (1− cseq)/p
=: Smax(p). (8.16)

Statement (8.16) is known as Amdahl’s Law [2], and it follows that the maximal speedup
of the program is limited by its sequential part (we have S(p) ≤ Smax(p) ≤ 1/cseq for all
p ∈ N) and that the parallel efficiency E(p) of the program tends to zero for p → ∞ (since
limp→∞ Smax(p) = 1/cseq). But note that Amdahl’s Law is only valid when the computational
work is fixed for all p ∈ N. However, in practice typically with increasing computer resources
(i.e., more available cores) larger problems are solved, where often the parallelisable part of
the overall computational work grows much faster than the sequential part. From this point of
view, Amdahl’s Law may be considered as too pessimistic concerning a realistic evaluation of
the parallel performance of a program.

The Threading Building Blocks (short TBB) mentioned above have been used for the par-
allelisation of the HLIBpro v2.3 on shared memory systems, cf. [50]. TBB [46, 62] is a C++
template library which offers standard parallel constructs, such as special commands for paral-
lelising loops. However, the main principle of the TBB parallelisation is the decomposition of the
computational work into many small tasks that can be performed concurrently. To define these
tasks and possible data dependencies certain TBB data structures and TBB commands have
to be used. When the parallel program is executed the tasks are automatically mapped by the
TBB library to worker threads where the scheduling of the threads is managed independently by
TBB. In particular, the programmer has neither access to the worker threads nor access to their
scheduling or management. The abstract task-based concept of the TBB parallelisation allows
the programmer to implement scalable and portable code without knowing details of the used
hardware and without knowing how the thread management is realised by the used operating
system. To obtain highly scalable code, the programmer only has to implement many tasks
which can be performed concurrently.

The TBB library (version 4.2) has been used as well to parallelise the most cost intensive
computational parts of the H-AMLS method. For the LAPACK/BLAS linear algebra routines
which are required by the HLIBpro the Intel Math Kernel Library v10.3 (short MKL) has been
used. MKL [45] is a parallel library for shared memory systems, in particular, the library is
thread-safe10. Although the MKL linear algebra routines can be executed by multiple threads,

10Note that the standard LAPACK/BLAS library provided by Netlib (www.netlib.org/lapack/) is not thread-
safe.
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multi-threading has been deactivated for these routines — by setting the number of threads for
the MKL routines globally to 1, cf. [45] — in order to avoid the overuse of multiple threads in the
HLIBpro routines and the H-AMLS method. The only exception from this is the parallelisation
of task (T7) where a multi-threaded MKL routine has been used. Details how task (T7) and all
other tasks of H-AMLS have been parallelised are presented in the following sections. Details
on the resulting parallel performance are given in Section 9.4 where numerical experiments are
presented.

8.8.1. Parallelisation of Task (T1)

The HLIBpro provides multi-threaded routines (cf. [50, 52]) for the construction of the cluster
tree TI (but not for the block cluster tree TI×I) and the construction of the H-matrix representa-
tions. However, benchmarks have shown (in Section 9.4 the used computer system is described)
that the runtime of the multi-threaded computation did not improve against the sequential one,
the computation became even slower. Beside the parallel overhead associated with the multi-
threaded computation, especially, the limited memory bandwidth of the system inhibits that
task (T1) benefits from the multi-threaded computation. The work to be performed in task
(T1) is mainly characterised by initialising data and allocating memory, and is not computa-
tionally intensive. Even the concurrent construction of the H-matrix representations KH and
MH using two threads did not accelerate the computation. Henceforth, task (T1) has been
implemented in such a way that by default always a single thread is used for the corresponding
computation.

8.8.2. Parallelisation of Task (T2+T3)

The computation of KH ≈ LHK̃H(LH)T and M̃H ≈ (LH)−1MH(LH)−T is performed using the
corresponding multi-threaded HLIBpro routines (cf. [50, 52]). The LDLT-factorisation in the
H-matrix format, which has to be performed for KH, is based on a block algorithm similar to
the algorithm used for the block LDLT-factorisation of a dense matrix, and which is applied
recursively to the block structure of the H-matrix [cf. (6.9)]. Beside the standard parallel im-
plementation of this recursive algorithm, where the involved matrix operations are performed in
parallel (taking data dependencies into account) on the local level of the recursion, the HLIBpro
v2.3 offers as well a parallel implementation where all individual computational tasks are con-
sidered on a global scope of the LDLT-factorisation (cf. [54]). The task-based implementation
with global scope shows a much improved parallel scaling behaviour compared to the standard
parallel implementation with the local scope (cf. [54]). Correspondingly, when H-AMLS is
applied with more than one thread the task-based implementation of the LDLT-factorisation
is used. However, due to additional overhead the runtime of the task-based implementation is
slightly larger when only a single thread is used than the runtime of the standard recursive im-
plementation. For this reason, the standard recursive implementation of the LDLT-factorisation
is used when H-AMLS is applied with a single thread.

8.8.3. Parallelisation of Task (T4)

In the parallel implementation of task (T4) the partial eigensolutions of the subproblems (K̃Hii , M̃
H
ii )

are computed in parallel for i = 1, . . . ,m. In context of the used TBB library in parallel means
here and in the following that each subproblem is labelled as an own computational task which
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is then scheduled independently by TBB to worker threads when the program is running. To
further improve the parallel performance of task (T4), the matrix-vector operations, which are
involved in the eigensolver H-SIL (cf. Section 8.4), are performed in parallel using the corre-
sponding multi-threaded HLIBpro routines. All this results in a very high parallel granularity
of task (T4) which is becoming higher with increasing problem size.

Note that the computational work associated to each subdomain problem (K̃Hii , M̃
H
ii ) is nearly

the same, however, for interface eigenvalue problems the work is varying. In general, the size
Ni of an interface problem (K̃Hii , M̃

H
ii ) and the number ki of sought eigenvectors are different

varying for different i. This can potentially lead to load imbalances when the subproblems are
solved in parallel, and the computational work assigned to the several threads is different. In
the case of load imbalances the TBB library applies the so-called concept of task-stealing where
computational tasks are transferred to other threads to avoid that threads become idle. But
since the parallel scalability of the iterative eigensolver H-SIL is limited, it may still happen that
in the parallel execution of task (T4) the solution of the largest interface problem is running
while all other subproblems have been finished.

8.8.4. Parallelisation of Task (T6)

The computation of the reduced matrices K̂ and M̂ is described in Algorithm 11. Note that
all submatrices K̂ij and M̂ij can be computed concurrently. In order to avoid in the parallel
implementation of Algorithm 11 load imbalances and overhead due to unnecessary task manag-
ing, in the first step all index pairs (i, j) are collected where a submatrix K̂ij or M̂ij has to be
computed. For this purpose, we define the set W ⊂ {1, . . . ,m}2 × {0, 1} by

W :=
{

(i, j, 0) : 1 ≤ i ≤ m, 1 ≤ j ≤ i, dist(Ωψ(i),Ωψ(j)) = 0
}
∪
{

(i, i, 1) : 1 ≤ i ≤ m
}

where the triple w ∈ W with w = (i, j, 0) indicates that submatrix M̂ij has to be computed,

and w = (i, i, 1) that K̂ii has to be computed. In the next step all submatrices associated to
the w ∈ W are computed in parallel where, as noted before, the TBB library manages inde-
pendently the scheduling of the parallel tasks to the worker threads. In general, however, the
computational effort associated to each w ∈ W is not equal. Furthermore, in the recursive ver-
sion of H-AMLS (i.e., when the condensation process is performed) the number of subproblems

m is bounded and typically only few, but relatively large, submatrices K̂ii and M̂ij have to be
computed. Hence, in order to avoid load imbalances and to provide a high parallel granularity
the computation of each submatrix is performed in parallel as well.

The parallel computation of M̂ij = STi M̃
H
ij Sj (respectively, of K̂ii = STi K̃

H
ii Si) has been

implemented as follows: In the first step the matrix C := AHB has to be computed where
AH := M̃Hij ∈ RNi×Nj is in H-matrix representation, and B := Sj ∈ RNj×kj and C ∈ RNi×kj are
in full matrix representation. In the case that the size of B and C is large enough both matrices
are subdivided in c ∈ N block columns of (nearly) equal size, and the matrix product C = AHB
is computed block-wise in parallel. More precisely, let Ccol ∈ N be a predefined column width
and Cmin ∈ N some predefined threshold. If the conditions

kj > Ccol and Ni > Cmin (8.17)
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are fulfilled the matrices C and B are decomposed into c := dki/Ccole block columns of (nearly)
equal size so that [

C1, . . . ,Cc

]
︸ ︷︷ ︸
= C ∈ RNi×kj

= AH︸︷︷︸
∈ RNi×Nj

[
B1, . . . ,Bc

]
︸ ︷︷ ︸

= B ∈ RNj×kj

, (8.18)

and the block columns Cl := AHBl are computed in parallel for l = 1, . . . , c. If condition (8.17)
is not fulfilled the block decomposition (8.18) is not performed.

Furthermore, depending on the size and structure of the involved matrices, the computation
of C′ := AHB′ with C′ := Cl and B′ := Bl [respectively, C′ := C and B′ := B if (8.17) is not
fulfilled] is performed in parallel as well. This is done the following way: If the H-matrix AH is
associated to a leaf in the block cluster tree TI×I then AH is a full matrix or an R(k)-matrix [cf.
(6.9)], and the product C′ = AHB′ is computed sequentially using the corresponding HLIBpro
routine. However, if AH is not associated to a leaf of TI×I , then the H-matrix AH possess a
block structure of the form (6.9). Assume in this case that AH is decomposed into r ∈ N block
rows and c ∈ N block columns, then the matrices B′ and C′ are decomposed correspondingly
such thatC′1

...
C′r


︸ ︷︷ ︸

= C′ ∈ RNi×k′

=

A
H
11 . . . AH1c
...

. . .
...

AHr1 . . . AHrc


︸ ︷︷ ︸

= AH ∈ RNi×Nj

B′1
...

B′c


︸ ︷︷ ︸
= B′ ∈ RNj×k′

with C′l :=

c∑
l′=1

AHll′B
′
l′ for l = 1, . . . , r. (8.19)

In the case that the conditions

r > 1 and max{Ni, Nj} k′ > Cmin (8.20)

are fulfilled then the block rows C′l in (8.19) are computed in parallel for l = 1, . . . , r; and if
(8.20) is not fulfilled the block columns are computed sequentially.11 The described approach
for the parallel computation of AHB′ is applied recursively in (8.19) for the computation of
the matrix products AHll′ B

′
l′ . In summary, one can say that for the parallel computation of

C := M̃Hij S̃j the matrices S̃j and C are decomposed (depending on the size and the structure)
first into block columns and then recursively into block rows.

After the computation of C the matrix M̂ij = S̃Ti C has to be computed, where S̃i ∈ RNi×ki
and C ∈ RNi×kj are both in full matrix representation and where typically max{ki, kj} � Ni.
If the conditions

ki > Ccol and kj > Ccol and Ni > Cmin (8.21)

are fulfilled the matrix E := M̂ij ∈ Rki×kj is decomposed into a r × c block structure with
submatrices of (nearly) same size where r := dki/Ccole and c := dkj/Ccole. Then the matrix

11The HLIBpro actually uses the same approach for the parallel computation of the matrix product AHB′,
however, the block rows C′l in (8.19) are computed in parallel only when min{Ni, k′} > C with some given
constant C > 0. However, since in our setting k′ is typically relative small and Ni � k′ condition (8.20) is
better suited as a criterion for the parallel computation of AHB′.
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8.8. Parallelisation of the H-AMLS method

D := S̃Ti is decomposed correspondingly into r block rows and C into c block columns so that
the matrix product E = DC can be written asE11 . . . E1c

...
. . .

...
Er1 . . . Erc


︸ ︷︷ ︸

= E ∈ Rki×kj

=

D1
...

Dr


︸ ︷︷ ︸

= D ∈ Rki×Ni

[
C1, . . . ,Cc

]
︸ ︷︷ ︸

= C ∈ RNi×kj

, (8.22)

and the submatrices Ell′ := DlCl′ are computed in parallel for 1 ≤ l ≤ r and 1 ≤ l′ ≤ c. If
condition (8.21) is not fulfilled decomposition (8.22) is not performed and the matrix E = DC
is computed sequentially.

In summary, due to the parallel computation of the submatrices M̂ij and K̂ii for w ∈ W ,
and due to the parallel computation of each submatrix itself, for task (T6) a very high parallel
granularity can be provided which is becoming higher with increasing problem size. In numerical
tests Ccol := 150 and Cmin := 15, 000 have been a good choice and this value are used in the rest
of the work.

8.8.5. Parallelisation of Task (T7)

The reduced eigenvalue problem (K̂, M̂) is solved using the dense LAPACK eigensolver dsygvx
which is provided by the MKL library. As already mentioned, throughout the H-AMLS method
all MKL linear algebra routines are executed with a single thread in order to avoid the overuse
of multiple threads in the parallel HLIBpro routines. Only in the case that the size k̄ of the
H-reduced eigenvalue problem is larger than a predefined threshold CMKL ∈ N the eigensolver
dsygvx routine is applied with the maximum number of available threads. In numerical tests
the threshold CMKL := 4000 has been a good choice (i.e., for problems larger than this size the
multi-threaded execution of dsygvx was noticeably faster than the single-threaded one) and has
been used in the rest of this work.

8.8.6. Parallelisation of Task (T8+T9)

The implementation of task (T8) is described in Algorithm 12. In the parallel version of H-
AMLS the computation of the matrices S̃(i) ∈ RNi×nes is performed in parallel for i = 1, . . . ,m.
Furthermore, in order to provide a high parallel granularity for large sized problems, the com-
putation of each matrix product S̃(i) = S̃i Ŝ

(i) is performed in parallel as well. This is done
in the following way: Let Crow ∈ N be a predefined threshold. In the case that Ni > Crow the
matrices F := S̃i ∈ RNi×ki and G := S̃(i) ∈ RNi×nes are decomposed in r := dNi/Crowe block
rows of (nearly) equal size such thatG1

...
Gr


︸ ︷︷ ︸

= G ∈ RNi×nes

=

F1
...

Fr


︸ ︷︷ ︸

= F ∈ RNi×ki

Ŝ(i)︸︷︷︸
∈ Rki×nes

(8.23)
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and the submatrices Gl = FlŜ
(i) are computed in parallel for l = 1, . . . , r. If Ni ≤ Crow

decomposition (8.23) is not performed and S̃(i) = S̃i Ŝ
(i) is computed sequentially. In numerical

tests Crow := 4000 has been a good choice and has been used in all benchmarks presented in this
work.

After the parallel computation of S̃ the matrix Stemp = (LH)−T S̃ has to be computed (cf.
Alg. 12). For this purpose the matrices Stemp and S̃ are subdivided into c ∈ N block columns of
(nearly) equal size such that[

S
(1)
temp, . . . ,S

(c)
temp

]
︸ ︷︷ ︸
= Stemp ∈ RN×nes

= (LH)−T︸ ︷︷ ︸
∈ RN×N

[
S̃(1), . . . , S̃(c)

]
︸ ︷︷ ︸

= S̃ ∈ RN×nes

. (8.24)

The number of block columns c is defined by

c := min
{
p,
⌊
nes/C

′
col

⌋}
(8.25)

where p ∈ N denotes the number of used threads and C ′col ∈ N is some predefined minimal
column width. Using block decomposition (8.24) the matrix Stemp is computed in parallel by

solving the triangular system (LH)TS
(l)
temp = S̃(l) for S

(l)
temp using the corresponding multi-threaded

HLIBpro routine and computing S
(l)
temp in parallel for l = 1, . . . , c. The number of block columns

c is defined in such a way that, if the problem is large enough, to each thread the same work
load is assigned. However, if the problem is not large enough the column width of the matrices

S̃(l) and S
(l)
temp is bounded from below by C ′col in order to avoid efficiency losses. Of course

the computation of Stemp can be performed as well vector-wise (i.e, where c = nes), however,
the matrix-wise approach is typically much more efficient in terms of runtime than the vector-
wise approach since the matrix-wise approach can exploit data locality much better (cf. [50]).
Although the vector-wise approach scales better with the number of cores, numerical tests have
shown that even with 32 used CPU cores the parallel computation of Stemp with the matrix-wise
approach has still been significantly faster than with the vector-wise approach. In numerical
tests C ′col := 20 has been a good choice for the minimal column width and has been used in all
benchmarks presented in this work.

In task (T9) the Rayleigh quotients λ̂
(rq)
j have to be computed (cf. Alg. 12). In the parallel

version of H-AMLS the computation of λ̂
(rq)
j is done in parallel for j = 1, . . . , nes.

8.8.7. Parallelisation of Task (TSI)

The implementation of task (TSI) is described in Algorithm 4. For the parallelisation of this
task the same approaches have been used as for the parallelisation of the previous tasks:

• The sparse matrix multiplication A1 := MS (cf. Algorithm 4) is performed in parallel by
computing each column of A1 in parallel. The computation of A2 := (LH)−1A1 and A4 :=
(LH)−TA3 is performed in parallel using the same approach as for the parallel computation
of Stemp = (LH)−T S̃ in task (T8). Furthermore, the computation of A3 := (K̃H)−1A2 is
performed in parallel by the corresponding multi-threaded HLIBpro routine.

• The matrices KQ and MQ from Algorithm 4 are computed concurrently. Furthermore, the
sparse matrix multiplications KQ and MQ are computed column-wise in parallel (same

116



8.8. Parallelisation of the H-AMLS method

approach as for A1 = MS). The computation of QT (KQ) and QT (MQ) is performed in
parallel using the approach described in (8.22).

• The reduced eigenvalue problem (KQ,MQ) is solved by the same parallel approach which
has been described for task (T7).

• The computation of Snew = QSQ is performed in parallel using the approach described in
(8.23).

8.8.8. Parallelisation of the Condensation Process

The condensation process, which is applied in the recursive version of H-AMLS, is described in
Algorithm 16. In the first step of Algorithm 16 clusters u ∈ TAMLS are collected in the set U which
represent subproblems that should be condensed. Since the condensations associated to different
clusters u ∈ U can be handled independently, these condensations are computed in parallel in the
parallel version of H-AMLS. Furthermore, each condensation for itself is performed in parallel
which is done in the following way: The condensation of the subproblems that are associated
to a cluster u ∈ U is performed by applying the H-AMLS method to the problem (K̃Hu , M̃

H
u ).

See Section 8.7 for details and Algorithm 13 for the corresponding implementation. In the first
step of Algorithm 13 the reduced eigenvalue problem (K̂u, M̂u) is computed. For the parallel

computation of (K̂u, M̂u) the same approach has been used as for the parallel computation

of task (T6). After the solution of the reduced eigenvalue problem (K̂u, M̂u) the transformed
eigenvector matrix S̃u := Zu Ŝu has to be computed. For the computation of S̃u the same
parallel approach has been used as for the computation of S̃ := Z Ŝ in task (T8).
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9. Numerical Results

In this chapter we analyse numerically the H-AMLS method for the Laplace eigenvalue problem{
−∆u = λu in Ω = (0, 1)3,

u = 0 on ∂Ω.
(9.1)

Note that the underlying domain of (9.1) is three-dimensional and that it is very costly to solve
this problem by the classical AMLS method (cf. Section 5.3). Problem (9.1) has already been
discussed in Section 2.3 and it is one of the few examples where the eigensolutions can be derived
analytically. In particular the eigenvalues of (9.1) are given by

λ = λ(a,b,c) := π2(a2 + b2 + c2) a, b, c ∈ N,

and correspondingly it is possible to evaluate the relative errors

δ̂j :=
|λj − λ̂

(rq)
j |

λj︸ ︷︷ ︸
relative error of

(recursive) H-AMLS

and δ̂
(h)
j :=

|λj − λ
(h)
j |

λj︸ ︷︷ ︸
relative error

of discretisation

which have been already introduced and discussed in Section 7.3, so that the approximation
quality of H-AMLS can be compared with the approximation quality of a classical approach.

To solve eigenvalue problem (9.1) by the H-AMLS method or by a classical approach it is
discretised as described in Section 5.3 using the finite element space of piecewise affine functions
X1
h,0 with mesh width h = 1/(n+ 1) and Nh := dimX1

h,0 = n3 degrees of freedom. As described

in Section 4.4 the discretisation results in the algebraic eigenvalue problem (K(h),M (h)) of size

Nh whose discrete eigenvalues λ
(h)
j are approximating the sought smallest nes eigenvalues λj

of the continuous eigenvalue problem (9.1). For convenience we use in the following the short
notation (K,M) instead of (K(h),M (h)) and N instead of Nh.

The theoretical behaviour of the approximation error of λ
(h)
j has been investigated in Section

3.4. Since it holds u ∈ C∞(Ω) [see (2.20)] for the eigenfunctions u of problem (9.1), it follows from
Remark 3.19 that the error bounds presented in Theorem 3.14 are valid for the approximations

λ
(h)
j . In particular, these bounds show how the error due to the discretisation depends on the

mesh width h. To investigate the discretisation error numerically the eigenpairs of (K(h),M (h))
associated to the smallest 500 eigenvalues have been computed for the mesh widths

• h1 := 0.05 =⇒ N = 6, 859,

• h2 := 0.025 =⇒ N = 59, 319,

• h3 := 0.0125 =⇒ N = 493, 039.
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Figure 9.1.: Relative discretisation errors δ̂
(h)
j for the smallest 500 eigenvalues of problem (9.1)

for varying mesh widths h.

For the computation of the discrete eigenpairs the eigensolver H-ARPACK, presented in Section
8.4, has been used. For all eigenpairs computed by H-ARPACK the relative residual error1 has
been smaller than 1e-9, however, it is noted that the discretisation error is significantly larger.
Therefore, the eigenpairs computed by H-ARPACK can be considered as numerically exact (as
allowed by the finite element discretisation), and they can be used as references for the eval-
uation of the approximation quality of the H-AMLS eigenpairs. In Table 9.1 and Figure 9.1

the discretisation errors of the computed eigenvalues λ
(h)
j are displayed. It can be seen that

smaller eigenvalues are better approximated than larger ones, and that the relative errors δ̂
(h)
j

form more or less a monotonically increasing sequence in j. In particular, it can be observed
that halving the mesh width reduces the errors by a factor of approximately 4 (as predicted by
Theorem 3.14) but at the same time the system size increases by a factor of 8. To approximate
more eigenvalues with the same accuracy a finer mesh width is necessary as it can be seen, e.g.,
in the last three columns of Table 9.1. For example, to compute the smallest 10 eigenvalues with
a relative accuracy of 1e-2 the mesh width h2 is sufficient while for the smallest 500 eigenvalues
a mesh width finer than h3 is necessary and correspondingly a model with more than 493,039
DOF is needed.

For a classical iterative eigensolver — such as H-ARPACK or the subspace iteration presented
in Section 7.4 — the leading computational costs are caused by the matrix-vector multiplications
of the iteration vectors, and beside that possibly by costs caused by the computation of precond-
tioners (which are needed to solve the involved linear systems) and by the orthogonalisation of
iteration vectors. However, neglecting possible computational costs for preconditioners and or-
thogonalisation, a lower bound for the best possible computational complexity of an eigensolver

1We define the relative residual error of an eigenpair approximation (λ, x) of (K,M) by ‖Kx− λMx‖2/‖Kx‖2.
In literature this error is also referred to as modal error.
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j λj error |λj − λ(h)
j | relative error δ̂

(h)
j max

{
δ

(h)
i : i = 1, . . . , j

}
h1 h2 h3 h1 h2 h3 h1 h2 h3

1 29.60 0.30 0.07 0.01 1.02e-2 2.57e-3 6.42e-4 1.02e-2 2.57e-3 6.42e-4

2 59.21 0.92 0.23 0.05 1.55e-2 3.88e-3 9.71e-4 1.55e-2 3.88e-3 9.71e-4

3 59.21 0.92 0.23 0.05 1.55e-2 3.88e-3 9.71e-4 1.55e-2 3.88e-3 9.71e-4

4 59.21 1.45 0.36 0.09 2.45e-2 6.11e-3 1.52e-3 2.45e-2 6.11e-3 1.52e-3

5 88.82 2.34 0.58 0.14 2.64e-2 6.62e-3 1.65e-3 2.64e-2 6.62e-3 1.65e-3

10 108.56 3.31 0.81 0.20 3.05e-2 7.48e-3 1.86e-3 3.50e-2 8.83e-3 2.21e-3

20 167.78 12.58 3.16 0.79 7.49e-2 1.88e-2 4.71e-3 7.50e-2 1.88e-2 4.71e-3

30 207.26 13.26 3.24 0.80 6.39e-2 1.56e-2 3.90e-3 7.50e-2 1.88e-2 4.71e-3

40 256.61 15.14 3.87 0.97 5.90e-2 1.50e-2 3.79e-3 8.38e-2 2.27e-2 5.78e-3

50 286.21 21.27 5.46 1.37 7.43e-2 1.91e-2 4.81e-3 1.01e-1 2.51e-2 6.27e-3

100 414.52 63.52 16.69 4.19 1.53e-1 4.02e-2 1.01e-2 1.53e-1 4.06e-2 1.09e-2

200 641.52 106.84 33.27 10.17 1.66e-1 5.18e-2 1.58e-2 2.03e-1 5.87e-2 1.59e-2

300 819.17 188.28 37.64 9.20 2.29e-1 4.59e-2 1.12e-2 2.60e-1 7.29e-2 2.20e-2

400 967.22 273.93 75.76 19.03 2.83e-1 7.83e-2 1.96e-2 2.92e-1 8.83e-2 2.36e-2

500 1115.26 344.35 77.18 20.26 3.08e-1 6.92e-2 1.81e-2 3.42e-1 9.40e-2 3.19e-2

Table 9.1.: Errors between the eigenvalues λj of the continuous problem (9.1) and the eigen-

values λ
(h)
j of the discretised problem (K(h),M (h)) for varying mesh widths h. (All values given

in this and the following tables are correct to two digits.)

would be
O
(
nes N

)
, (9.2)

when nes eigenpairs of (K,M) are computed. Accordingly a possible measure for the performance
of an eigensolver is the needed computational time per eigenpair and per one Million DOF,
formally defined by avg(tall), where tall is the total time needed for the computation of the first
nes eigenpairs of (K,M) and

avg(t) := avg(t, nes, N) :=
106 t

nesN
. (9.3)

Assume for example that a classical iterative approach has the best possible computational
complexity where in average 10 iterations are needed until an iteration vector converges, and
assume that the matrix-vector multiplication (by the inverse) takes 5 seconds per one million
DOF, then the average computational time of this eigensolver is then given by avg(tall) = 50s.

Applying the H-AMLS method, the matrices of the discrete eigenvalue problem (K,M) are
partitioned according to a geometric domain substructuring, represented in the corresponding
H-matrix format, and transformed using the fast H-matrix arithmetic. Thereafter, the trans-
formed problem (K̃H, M̃H) is projected onto a subspace derived from the partial eigensolutions
of the subproblems and the H-reduced eigenvalue problem (7.2) is obtained where the Rayleigh

quotients λ̂
(rq)
j of the corresponding Ritz-vectors are approximating the sought eigenvalues λj

of (9.1). An overview of the involved eigenvalue problems and their interconnection is given
in Figure 7.1. Beside the DOF of the model, the relative errors δ̂j depend on the number of
selected eigenvectors ki (modal truncation of the subproblems), the chosen accuracy ε of the
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H-matrix arithmetic, and if the recursive version of H-AMLS is applied δ̂j depends as well on
the parameters of the recursion. In the following we investigate how these parameters have to
be chosen so that the eigenvalue approximations of H-AMLS match the discretisation errors. In

particular we will test for nes = N
1/3
h , 2N

1/3
h , 5N

1/3
h how the parameters have to be selected so

that the inequality

γ(h)
nes

< 3 (9.4)

is fulfilled where

γ(h)
nes

:= max
{
δ̂j / δ̂

(h)
j : j = 1, . . . , nes

}
(9.5)

is defined as the maximal ratio between the relative error δ̂j associated to H-AMLS and the rel-

ative discretisation error δ̂
(h)
j . In the case that inequality (9.4) is fulfilled it can be said that the

approximation error of H-AMLS is of the same order as the discretisation error (cf. Section 7.3).

Beside the approximation quality of H-AMLS we investigate as well the computational time
of the method, in particular its average time introduced in (9.3). We start in Section 9.1 with
the analysis of non-recursive H-AMLS, proceed in Section 9.2 with the analysis of the recursive
version, and study in Section 9.3 the effect on H-AMLS when task (TSI) is performed instead of
task (T9). The numerical experiments presented in Section 9.1 – 9.3 apply the sequential version
of H-AMLS, and are performed on a 64-bit Linux platform with an Intel Xeon E5-4640 processor
(2.40 GHz, 8 Cores). Furthermore, it is noted that H-AMLS is implemented as described in
Chapter 8 using the H-matrix software library HLIBpro v2.3 where low-level linear algebra
functions are provided by the Intel Math Kernel Library v10.3. If not indicated differently the
H-AMLS parameters are chosen as described in Chapter 8. The parallel performance of H-
AMLS (see Section 8.8 for implementation) is investigated in Section 9.4. Finally, in Section
9.5 results concerning the approximation quality of H-AMLS are presented for more challenging
elliptic PDE eigenvalue problems.

9.1. Analysis of Non-Recursive H-AMLS

The analysis of non-recursiveH-AMLS is started by investigating how the approximation quality
of the computed eigenpairs depends on the chosen modal truncation and the accuracy of the
approximative H-arithmetic. Non-recursive H-AMLS is applied as described in Algorithm 5
(without performing the condensation process) where the multi-level domain substructuring is
performed as described in Section 8.1 and Section 8.3. After determining a suitable parameter
setting for non-recursive H-AMLS the computational time of the method is analysed.

9.1.1. Influence of the Modal Truncation

To investigate solely the influence of the modal truncation — i.e., the influence of the number
of selected eigenvectors ki in task (T4) — the parameter η from (6.2) is set to η = 0 in order to
deactivate the H-matrix approximation in (6.12). Correspondingly no subblock in the H-matrix
format is admissible, no R(k)-matrix approximation is applied and the computation of the trans-

formed problem (K̃H, M̃H) in (6.12) is performed exactly (up to machine precision). Using this
parameter setting H-AMLS is equivalent with the classical AMLS method and correspondingly
the computations will be very expensive as described in Section 5.3.

122



9.1. Analysis of Non-Recursive H-AMLS

nes γ
(h)
nes for h1 γ

(h)
nes for h2 γ

(h)
nes for h3

S1 S2 S1 S2 S1 S2

N1/3 1.74 1.77 1.98 1.76 2.65 1.91

2N1/3 1.79 1.80 2.36 2.00 5.12 2.16

5N1/3 2.91 2.58 3.82 2.06 5.66 2.36

Table 9.2.: Influence of the mode selection strategy to the maximal ratios γ
(h)
nes for varying mesh

widths and varying nes. The H-matrix approximation has been deactivated in this benchmarks
by setting the parameter η to 0.

For the modal truncation the approach discussed in Remark 5.7 has been used and the fol-
lowing two mode selection strategies have been benchmarked:

strategy subdomain problem interface problem

• S1 ki = 1.5N
1/3
i ki = 2N

1/3
i

• S2 ki = 1.5N
1/3
i ki = N

1/2
i

If for example strategy S2 is applied then in task (T4) for a subproblem associated to a subdomain

the smallest ki = 1.5N
1/3
i eigenpairs are computed and for a subproblem associated to an

interface the smallest ki = N
1/2
i eigenpairs. The resulting relative errors δ̂j of the H-AMLS

eigenvalue approximations are displayed in Figure 9.2(a) for the mesh widths h1, h2 and h3,

and for comparison the discretisation errors δ̂
(h)
j are displayed as well. The maximal ratio γ

(h)
nes

between both errors can be seen in Table 9.2 for nes = N
1/3
h , 2N

1/3
h , 5N

1/3
h . Obviously, the

approximation quality of H-AMLS using mode selection strategy S1 (where only 2N
1/3
i modes

from the interface are selected) deteriorates as h→ 0.
Furthermore, it can be seen in Table 9.2 that strategy S2 is sufficient in such a way that for

h1,h2 and h3 postulation (9.4) is fulfilled for nes = N
1/3
h , 2N

1/3
h , 5N

1/3
h . However, since η = 0

the computational costs of H-AMLS are getting very expensive with increasing DOF.

9.1.2. Influence of the H-Matrix Approximation

To accelerate the computation of the transformed matrices K̃H and M̃H in (6.12) the H-matrix
approximation is activated by setting the parameter η in (6.2) back to η = 50 (see Section
8.1 for details concerning the choice of η). Hence certain subblocks in the H-matrix format
get admissible and the respective submatrices are approximated by R(k)-matrices with a given
approximation accuracy ε.

In the previous subsection could be seen that mode selection strategy S2 is sufficient for
the mesh widths h1, h2 and h3. Using this mode selection strategy the computations from
the previous subsection have been repeated applying the following accuracies for the H-matrix
approximation

• ε1 := ε1(h) := 12h

• ε2 := ε2(h) := 240h2.
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(a) Influence of the mode selection strategy to the rel-

ative errors δ̂j . The H-matrix approximation has been
deactivated in this benchmarks by setting the param-
eter η to 0. Displayed are the approximation errors of
the smallest 5N

1/3
h eigenvalues.

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50  60  70  80  90

re
la

ti
v
e
 e

rr
o
r

j

mesh width h1 (using mode selection strategy S2)

accuracy eps1 and eps2
discretization

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50  60  70  80  90

re
la

ti
v
e
 e

rr
o
r

j

mesh width h2 (using mode selection strategy S2)

accuracy eps1
accuracy eps2

discretization

 0.0001

 0.001

 0.01

 0.1

 0  10  20  30  40  50  60  70  80  90

re
la

ti
v
e
 e

rr
o
r

j

mesh width h3 (using mode selection strategy S2)

accuracy eps1
accuracy eps2

discretization

(b) Influence of the H-matrix approximation accuracy

ε to the relative errors δ̂j . In this tests mode selection
strategy S2 has been applied. To highlight the influ-
ence of the H-matrix accuracy on the approximation
of the smallest eigenvalues only the errors of the first
95 eigenvalues are displayed.

Figure 9.2.: Influence of the mode selection strategy and the H-matrix accuracy to the relative
approximation errors δ̂j of H-AMLS for varying mesh widths and comparison with the relative

discretisation errors δ̂
(h)
j .
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9.1. Analysis of Non-Recursive H-AMLS

nes γ
(h)
nes for h1 γ

(h)
nes for h2 γ

(h)
nes for h3

ε1 ε2 η = 0 ε1 ε2 η = 0 ε1 ε2 η = 0

N1/3 1.92 1.92 1.77 3.23 2.12 1.76 7.16 1.96 1.91

2N1/3 1.97 1.97 1.80 4.53 2.12 2.00 7.16 2.26 2.16

5N1/3 2.62 2.62 2.58 4.53 2.54 2.06 7.16 2.39 2.36

Table 9.3.: Influence of the H-matrix approximation accuracy ε = ε1(h), ε2(h) on the maximal

ratios γ
(h)
nes for varying mesh widths and varying nes. In this tests mode selection strategy S2 has

been applied.

The accuracies ε1 and ε2 depend on the discretisation mesh width of the underlying model, and
for h1, h2, h3 we obtain:

h1 h2 h3

ε1(h) 0.6 0.3 0.15

ε2(h) 0.6 0.15 0.0375

The relative errors δ̂j of this benchmark are displayed in Figure 9.2(b) and the maximal ra-

tios γ
(h)
nes in Table 9.3. In Table 9.3 can be seen that mode selection strategy S2 and H-matrix

accuracy ε2 are sufficient for the mesh widths h1, h2 and h3 to fulfil postulation (9.4) for all

nes = N
1/3
h , 2N

1/3
h , 5N

1/3
h . In particular, it is emphasised that this parameter setting adjusts the

number of selected eigenpairs ki automatically to the size of the corresponding subproblem, and
the H-matrix accuracy automatically to the underlying mesh width. Furthermore, in Figure
9.2(b) can be seen that especially the approximation of the smallest eigenvalues behaves sensi-
tively to the chosen accuracy ε.

Altogether we could observe in our benchmarks that for the underlying model problem (9.1)

the number of selected eigenpairs ki in (7.1) should be of the order O
(
N

1/3
i

)
for subdomain

problems (which are associated to three-dimensional subdomains) and of the order O
(
N

1/2
i

)
for interface problems (which are associated to hyperplanes in R3). The accuracy of the approx-
imative H-matrix arithmetic in (6.12) should be proportional to h2, or respectively, expressed
in DOF proportional to N−2/3. This parameter setting is recommended for similar problems.
If more accuracy of the H-AMLS approximations is needed, ki should be scaled by a constant
larger than 1 and ε2 by a constant smaller than 1.

9.1.3. Timing of the Method

The computational costs of non-recursive H-AMLS, using mode selection strategy S2 and H-

matrix accuracy ε2, are given in Table 9.4 for nes = 5N
1/3
h and the mesh widths h1, h2 and h3.

Displayed are the costs of the different tasks (indicated in Table 7.1) and basic characteristics of
the method such as the level of the applied domain substructuring (lvl), the resulting number of

subproblems m, and the order k̄ of the H-reduced eigenvalue problem (K̂, M̂). We observe that
the computation of the block diagonalisation KH ≈ LHK̃H(LH)T and the matrix transformation
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9. Numerical Results

parameter setting of H-AMLS

• mode selection strategy S2

• H-matrix accuracy ε2

• condensation process has
been deactivated

• task (T9) has been performed
instead of task (TSI)

characteristics of non-recursive H-AMLS

nes Nh lvl m k̄ γ
(h)
nes

h1 95 6,859 3 15 185 2.62

h2 195 59,319 6 127 1,649 2.54

h3 395 493,039 9 1023 13,537 2.39

computational time of tasks in relation to total time computational time

(T1) (T2) (T3) (T4) (T6) (T7) (T8) (T9) tall avg(tall)

h1 1.8% 19.5% 55.2% 21.1% 0.4% 0.2% 0.9% 0.4% 5s 8.70s

h2 1.3% 13.2% 69.0% 11.8% 0.5% 1.5% 1.7% 0.7% 1min 24s 7.34s

h3 0.3% 6.0% 41.7% 3.8% 0.4% 45.4% 1.4% 0.5% 40min 09s 12.37s

Table 9.4.: Characteristics and computational costs of non-recursive H-AMLS computing the

smallest nes = 5N
1/3
h eigenpairs for varying mesh widths. tall is the total computational time

and avg(tall) the average time defined in (9.3) using nes = 5N
1/3
h . Since no computational costs

are associated with task (T5) it is left out in this and the following tables.

M̃H ≈ (LH)−1MH(LH)−T , task (T2) and (T3), are dominating the costs of the other tasks.
However, with increasing DOF the portion of task (T2) and (T3) to the total computational
time is decreasing. To keep in the benchmarks the computational costs of task (T4) small the
domain Ω has been substructured several times in order to obtain in (7.1) small subdomain
eigenvalue problems which can be solved easily (see Section 8.1 and Section 8.3 for details). In
particular, in order to keep the size of the subdomain problems constant when h is decreased,
the number of substructuring levels in H-AMLS (cf. Figure 8.1) has to increase as it can be seen
in the column (lvl) of Table 9.4. The downside of a multi-level substructuring with constant
sized subdomain problems is that the size k̄ of the H-reduced eigenvalue problem is O(N). Note

particularly that the H-reduced problem (K̂, M̂) is only partially structured2 and not sparse.
Nevertheless, the cost savings achieved in task (T4) outweigh the additional computational
costs in tasks (T6)–(T8) due to the larger k̄. The eigenpairs of the H-reduced problem have
been computed by the dense LAPACK eigensolver dsygvx (cf. Section 8.5), and correspondingly
we observe in Table 9.4 that the computational costs of task (T7) are increasing much stronger
than the costs of tasks (T6) and (T8). However, this issue can be resolved by applying the
recursive version of H-AMLS as it is shown in the following.

9.2. Analysis of Recursive H-AMLS

In the previous section we observed that the transformed eigenvalue problem, task (T2) and
(T3), can be successfully computed using the fast H-matrix arithmetic which massively reduces

2K̂ is a block diagonal matrix and M̂ has a block-sparsity structure similar to the structure of M̃H (cf. Figure
8.2). See Section 8.5 for details.
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9.2. Analysis of Recursive H-AMLS

k̄ for h3 γ
(h)
nes for h3 with nes equal to k̄ for h4 γ

(h)
nes for h4 with nes equal to

N
1/3
h 2N

1/3
h 5N

1/3
h 100 200 267

re
cu

rs
iv

e
H

-A
M

L
S

w
it

h
C
≈ d
o
m

eq
u
al

to

6 2,209 2.91 3.07 3.07 4,483 4.49 4.79 4.79

8 2,833 2.58 2.80 2.85 5,747 3.92 4.07 4.07

10 3,457 2.48 2.66 2.79 7,011 3.45 3.53 3.53

12 4,081 2.26 2.55 2.73 8,275 3.21 3.36 3.36

14 4,705 2.20 2.47 2.61 9,539 3.01 3.18 3.18

16 5,329 2.12 2.42 2.55 10,803 2.84 2.95 2.95

non-recursive
H-AMLS

13,537 1.96 2.26 2.39 108,995 (?) (?) (?)

Table 9.5.: Influence of the parameter C≈dom to the maximal ratios γ
(h)
nes for recursive H-AMLS

and the mesh widths h3 and h4. The error ratios (?) could not be evaluated since it was beyond
the available computing capabilities to apply non-recursive H-AMLS to the problem associated
with mesh width h4.

the computational time of AMLS. Task (T2) and (T3) are the computational bottleneck of the
classical AMLS method, each with costs of at least the order O(N2) for problems with a three-
dimensional domain (cf. Section 5.3). Using the fast H-matrix arithmetic these two tasks are
now computed in almost linear complexity O(N logαN) where the costs are independent of the
number nes of sought eigenvectors.

In this section we consider the recursive version of H-AMLS where the size k̄ of the H-reduced
eigenvalue problem can be bounded by O(N1/3), cf. Section 5.2.3. To apply the recursive version
of H-AMLS the condensation process in Algorithm 5 has to be performed. The condensation
process, which is described in Section 8.7, implements the recursive call of H-AMLS in a bottom-
up fashion where the spectral information of several subproblems is condensed using H-AMLS
into the spectral information of a single subproblem of larger size.

The parameters for recursive H-AMLS have been chosen as follows:

1. The H-matrix accuracy ε2(h) from the previous section has been used in task (T2) and
(T3) for the computation of the transformed eigenvalue problem.

2. The multi-level substructuring is applied in such a way that the size of the subdomain
eigenvalue problems is smaller than the threshold nAMLS

min = 1000 (cf. Section 8.3).

3. In task (T4) mode selection strategy S2 has been applied, i.e., the smallest ki = 1.5N
1/3
i

eigenpairs have been computed if the subproblem is associated to a subdomain and the

smallest ki = N
1/2
i eigenpairs if the subproblem is associated to an interface. The small-

sized subdomain eigenvalue problems have been solved directly by the dense LAPACK
solver dsygvx. For small-sized interface problems the dense LAPACK solver has been
used as well, for large-sized interface problems the iterative eigensolver H-SIL introduced
in Section 8.4 has been used.
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9. Numerical Results

4. The condensation process, which is performed after task (T4) in Algorithm 5, is applied in
such a way that subdomain eigenvalue problems are condensed every 3 levels and only if
condition (8.15) has been fulfilled (cf. Algorithm 17). In the case that several subproblems

are condensed by H-AMLS into a single subdomain problem (K̃Hu , M̃
H
u ) of larger size, then

the smallest ku = C≈dom(Nu)1/3 eigenpairs are computed with some constant C≈dom > 0.

In plain words the parameter setting described above implements a recursive approach, where
after 3 levels of multi-level substructuring a total of m = 15 subproblems arise (8 subdomain
and 7 interface eigenvalue problems), where small-sized subdomain problems are solved by the

LAPACK solver dsygvx computing the smallest ki = 1.5N
1/3
i eigenpairs, and where large-sized

subdomain problems are solved recursively by H-AMLS computing the smallest ki = C≈domN
1/3
i

eigenpairs.

Using the parameter setting described above recursive H-AMLS has been benchmarked for
the mesh widths h1, h2 and h3; and even for the finer mesh width h4 := h3/2 which leads to a
discrete eigenvalue problem (K,M) with roughly 4 million DOF. Since the problems associated
to the mesh widths h1 and h2 are too small to fulfil condition (8.15) no condensation has been
performed, and the same results are obtained as when the non-recursive version of H-AMLS
would have been applied (cf. Table 9.4). However, the problems associated to h3 and h4 are large
enough so that subproblems can be condensed, and recursiveH-AMLS has been benchmarked for
these problems using different choices of C≈dom. In Table 9.5 the influence of the parameter C≈dom

to the maximal ratios γ
(h)
nes has been displayed, as well as the resulting size k̄ of the H-reduced

eigenvalue problem, and for comparison the corresponding results of the non-recursive approach.

However, for the mesh width h4 the maximal ratios γ
(h)
nes are displayed in Table 9.5 only up to

nes = 267. Due to computational limits it was only possible to compute with H-ARPACK the
smallest 267 eigenpairs of the discrete problem (K,M) associated to mesh width h4. In Table
9.5 we observe that for mesh width h3 already C≈dom = 8 is sufficient to fulfil postulation (9.4) —
i.e. that the approximation error of recursive H-AMLS matches the discretisation error — while
for mesh width h4 at least C≈dom = 16 is needed. Furthermore, the size k̄ of the problem (K̂, M̂)
is massively reduced by the recursive approach while nearly the same approximation quality is
obtained as when the non-recursive approach is applied (cf. results for mesh width h3 in Table
9.5).

In Table 9.6 the computational costs of recursive H-AMLS are displayed for the computation

of the smallest nes = 5N
1/3
h eigenpairs and using the parameter setting described above with

C≈dom = 16. This parameter setting is sufficient to obtain for the mesh widths h1, h2 and h3 that

γ
(h)
nes < 3 is valid for nes = 5N

1/3
h (cf. Table 9.6). For the mesh width h4 postulation γ

(h)
nes < 3

could be validated due to computational limits only up to nes = 267, but it is noted that the

error ratios γ
(h)
nes are only slowly increasing in nes (cf. Table 9.5). Beside the computational

costs of the different tasks, in Table 9.6 are displayed basic characteristics of recursive H-AMLS
such as the order k̄ of the H-reduced problem (after condensation), and an overview of the
performed condensation process. For example, for the problem associated to mesh width h3 in
total 8 condensations have been performed, all on level 3 of the AMLS tree (cf. Section 8.7).
We remark that in Table 9.6 and in the following the time measurements concerning the tasks
(T6)–(T8) are accumulative, e.g., for task (T7) the computational time indicated by

∑
(T7) in

Table 9.6 includes beside the time spent for task (T7) as well the time spent for the solution
of the H-reduced eigenvalue problems of all recursive calls of H-AMLS. In the benchmarks of
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9.3. Analysis of Recursive H-AMLS with (TSI)-improvement

parameter setting of H-AMLS

• mode selection strategy S2

• H-matrix accuracy ε2

• condensation process has been
activated with C≈dom = 16

• task (T9) has been performed
instead of task (TSI)

characteristics of recursive H-AMLS

nes Nh #condensations k̄ γ
(h)
nes

h1 95 6,859 0 185 2.62

h2 195 59,319 0 1,649 2.54

h3 395 493,039 8 on lvl 3 5,329 2.55

h4 795 4,019,679 64 on lvl 6, 8 on lvl 3 10,803 (?)

computational time of tasks in relation to total time computational time

(T1) (T2) (T3) (T4)
∑

(T6)
∑

(T7)
∑

(T8) (T9) tall avg(tall)

h1 1.9% 22.4% 50.8% 22.4% 0.5% 0.2% 1.0% 0.4% 5s 8.14s

h2 1.1% 13.1% 70.0% 11.2% 0.5% 1.4% 1.6% 0.6% 1min 30s 7.83s

h3 0.6% 9.4% 65.9% 5.7% 10.4% 3.7% 3.2% 0.8% 25min 19s 7.80s

h4 0.2% 6.1% 51.3% 3.2% 27.1% 5.4% 5.7% 0.6% 8h 9min 37s 9.19s

Table 9.6.: Characteristics and computational costs of recursive H-AMLS computing the small-

est nes = 5N
1/3
h eigenpairs for varying mesh widths. The error ratio (?) was beyond our com-

puting capabilities (for mesh width h4 only the smallest 267 discrete eigenpairs λ
(h)
j could be

computed, cf. Table 9.5)

non-recursive H-AMLS we observed that the computational costs of task (T7) became dominant
with decreasing mesh width h, the cost became even so expensive that it was infeasible to apply
non-recursive H-AMLS to the problem associated with mesh width h4. Since the size k̄ of the H-
reduced eigenvalue problem has been bounded by O(N1/3) by the recursive approach, we observe
in Table 9.6 that the computational costs associated with task (T7) are massively reduced. The
computational costs of recursive H-AMLS are dominated by the computation of the transformed
eigenvalue problem, i.e., by the computation of the LDLT-factorisation KH ≈ LHK̃H(LH)T in

task (T2) and the computation of the matrix M̃H ≈ (LH)−1MH (LH)−T in task (T3).

9.3. Analysis of Recursive H-AMLS with (TSI)-improvement

In this section we analyse recursive H-AMLS where the improvement task (TSI) is performed
instead of task (T9). See Section 7.4 and Algorithm 3 for a description of task (TSI). The
benchmarks from the previous section are repeated and in Table 9.7 the resulting maximal error

ratios γ
(h)
nes are displayed for nes = 5N

1/3
h with mesh widths h3 and h4, and for varying C≈dom.

Analogously to (9.5), the value γ
(h)
nes is the maximal ratio between the relative error associated

to recursive H-AMLS with (TSI)-improvement and the relative discretisation error. Note that
in contrast to the version of H-AMLS where task (T9) is applied, the maximal error ratios

γ
(h)
j (with j ≤ nes) depend as well on the number nes of computed eigenvectors since in the

improvement task (TSI), where an approximative iteration step of the subspace iteration is
applied (cf. Section 7.4), the improvement of each eigenpair approximation becomes better the
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9. Numerical Results

k̄ for h3 γ
(h)
j for h3 with j equal to k̄ for h4 γ

(h)
j for h4 with j equal to

N
1/3
h 2N

1/3
h 5N

1/3
h 100 200 267

re
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C
≈ d
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0.5 497 1.64 5.39 44.31 1,011 1.57 3.72 5.86

1 649 1.20 1.74 7.72 1,323 1.21 1.52 1.77

1.5 809 1.21 1.53 3.93 1,643 1.22 1.47 1.87

2 961 1.21 1.27 2.60 1,955 1.22 1.24 1.41

4 1,585 1.21 1.21 1.39 3,219 1.22 1.22 1.22

6 2,209 1.21 1.21 1.23 4,483 1.22 1.22 1.22

non-recursive
H-AMLS applied
with task (TSI)

13,537 1.20 1.20 1.20 108,995 (?) (?) (?)

Table 9.7.: Influence of the parameter C≈dom to the maximal ratios γ
(h)
j for recursive H-AMLS

with (TSI)-improvement with nes = 5N
1/3
h and mesh widths h3 and h4. The error ratios (?) could

not be evaluated since it was beyond the available computing capabilities to apply non-recursive
H-AMLS to the problem associated with mesh width h4.

larger the dimension of the iterative subspace is [see (7.9)]. Comparing Table 9.5 and Table
9.7 we observe that replacing task (T9) by task (TSI) leads to a clear improvement of the
approximation quality. In particular, we observe that already for C≈dom = 2 postulation (9.4)
is fulfilled (for h4 it could be only verified up to the 267-th eigenvalue), and that for the mesh
width h3 the approximation quality of recursive H-AMLS is nearly as good as of non-recursive
H-AMLS [where both versions are applied with task (TSI)] when the parameter C≈dom = 6 is
used.

In Table 9.8 basic characteristics and the computational costs of recursive H-AMLS with

(TSI)-improvement are displayed for the computation of the smallest nes = 5N
1/3
h eigenpairs.

In addition to that in Table 9.9 the memory consumption is displayed of the different matrices
that are involved in the corresponding computations. Although the computational costs of
tasks (TSI) are in general larger than those of task (T9) the overall costs of recursive H-AMLS
could be decreased which is due to the fact that instead of the parameter C≈dom = 16 only
C≈dom = 6 could be used for the computations. Of particular note here is that in the benchmarks
also the approximation quality of recursive H-AMLS has been further improved, leading to an
approximation error of the eigenvalues which is only slightly larger than the discretisation error.

To get a better impression of the practical performance of H-AMLS we investigate the average
computational time avg(tall) of the method. The average computational time (per eigenpair and
per DOF) is defined in (9.3) and in the following we analyse avg(tall) in detail only for recursive
H-AMLS with (TSI)-improvement since this H-AMLS version shows the best performance re-
garding computational time and approximation quality. In Figure 9.3 the average time of this
H-AMLS version is displayed for the computation of the smallest nes = 5N1/3 eigenpairs for
varying DOF with N up to 6 million. Beside the total average time also the average time of
each task (for (T6)–(T8) accumulated as explained above) has been measured separately and dis-
played in Figure 9.3 in order to profile the complexity of the involved tasks [(T1),...,(T8),(TSI)]
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9.3. Analysis of Recursive H-AMLS with (TSI)-improvement

parameter setting of H-AMLS

• mode selection strategy S2

• H-matrix accuracy ε2

• condensation process has been
activated with C≈dom = 6

• task (TSI) has been performed
instead of task (T9)

characteristics of recursive H-AMLS

nes Nh #condensations k̄ γ
(h)
nes

h1 95 6,859 0 185 1.77

h2 195 59,319 0 1,649 1.53

h3 395 493,039 8 on lvl 3 2,209 1.23

h4 795 4,019,679 64 on lvl 6, 8 on lvl 3 4,483 (?)

computational time of tasks in relation to total time computational time

(T1) (T2) (T3) (T4)
∑

(T6)
∑

(T7)
∑

(T8) (TSI) tall avg(tall)

h1 1.7% 21.2% 49.9% 21.7% 0.4% 0.2% 1.0% 3.4% 5s 8.39s

h2 1.3% 12.8% 65.8% 11.2% 0.4% 1.4% 1.6% 5.1% 1min 30s 7.84s

h3 0.6% 9.8% 65.7% 5.9% 3.9% 0.9% 2.8% 10.0% 24min 55s 7.67s

h4 0.3% 7.1% 59.9% 3.7% 10.6% 0.6% 4.0% 13.5% 6h 58min 14s 7.85s

Table 9.8.: Characteristics and computational costs of recursive H-AMLS with

with (TSI)-improvement computing the smallest nes = 5N
1/3
h eigenpairs for varying mesh

widths. The error ratio (?) was beyond our computing capabilities (for mesh width h4 only the

smallest 267 discrete eigenpairs λ
(h)
j could be computed, cf. Table 9.7).

K & M KH & MH K̃H LH M̃H K̂ & M̂ S

h1 3.12 32.38 1.66 19.12 16.86 0.54 5.21

h2 28.26 376.32 15.00 247.99 212.17 43.50 92.53

h3 239.78 3,580.34 127.34 2,527.60 2,478.40 78.06 1,558.00

h4 1,974.4 31,340.46 1,049.00 24,058.38 29,103.95 321.54 25,565.15

Table 9.9.: Corresponding to the benchmarks presented in Table 9.8 the memory consumption
of the matrices in megabyte which are involved in the corresponding computations. Note that

S ∈ RN×nes is the full matrix containing column-wise the computed eigenvector approximations
(cf. Algorithm 5).
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Figure 9.3.: Average computational time (per eigenpair and per one million DOF) of recursive
H-AMLS with (TSI)-improvement for the computation of the smallest nes = 5N1/3 eigenpairs in
relation to the degrees of freedomN . Displayed are the total average computational time avg(tall)
and the average computational time of the different tasks. To provide a better presentation these
times are displayed in separate figures.

in more detail. First of all it can be observed in Figure 9.3 that the total average time of the
method is constant, which means in particular that recursive H-AMLS reaches in the presented
benchmarks the optimal complexity O(nesN). Furthermore, the results in Figure 9.3 show that
for all involved tasks the average computational time is roughly constant, and that the compu-
tational costs are clearly dominated by task (T3), i.e., by the computation of transformed mass

matrix M̃H.

In the benchmarks presented in Section 9.1 – Section 9.3 the parameter setting ofH-AMLS (for
both the recursive and the non-recursive version) has been chosen in such a way that postulation
(9.4) is fulfilled, i.e., that the error of the H-AMLS eigenvalue approximations matches the
discretisation error. In Table 9.3, Table 9.5 and Table 9.7 we observe that the ratio between the

errors δ̂j and δ̂
(h)
j is only slowly increasing in j. Correspondingly it seems that in the presented

benchmarks much more than 5N
1/3
h eigenvalue approximations can be computed with nearly the

same approximation quality as the discretisation. Increasing the number of sought eigenpairs,
however, increases only slightly the computational costs ofH-AMLS as it can be seen for example
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9.3. Analysis of Recursive H-AMLS with (TSI)-improvement

H-ARPACK recursive H-AMLS with (T9) recursive H-AMLS with (TSI)

nes avg(tall) avg(tall)
γ

(h)
j with j equal to

avg(tall)
γ

(h)
j with j equal to

dnes/4e dnes/2e nes dnes/4e dnes/2e nes

10 269.86s 284.73s 2.05 2.05 2.07 286.41s 1.23 1.23 1.23

20 164.24s 143.30s 2.05 2.05 2.07 143.98s 1.23 1.23 1.23

50 100.62s 57.96s 2.07 2.07 2.25 58.48s 1.22 1.22 1.22

N1/3 = 79 119.85s 36.13s 2.07 2.07 2.25 36.68s 1.22 1.22 1.22

2N1/3 100.46s 17.14s 2.07 2.25 2.56 17.50s 1.22 1.22 1.22

5N1/3 109.92s 7.68s 2.25 2.56 2.73 8.20s 1.20 1.20 1.20

10N1/3 128.71s 3.83s 2.56 2.73 2.96 4.64s 1.19 1.19 1.77

20N1/3 128.80s 2.25s 2.73 2.96 3.32 3.24s 1.18 1.67 1.96

50N1/3 (?) 1.20s (?) (?) (?) 2.83s (?) (?) (?)

Table 9.10.: The average computational time of recursive H-AMLS for computing the smallest
nes eigenpairs of the problem associated to mesh width h3 with N = 793 degrees of freedom.
The parameter setting of H-AMLS has been chosen as described in Section 9.2 with the fixed
parameter C≈dom = 12 used for all nes (cf. Figure 9.4). For the sake of completeness, the average
computational time of the reference solver H-ARPACK is displayed as well, and the maximal

ratios γ
(h)
j for j ≤ nes. The values (?) are unavailable since the computation of the smallest

nes = 50N
1/3
h eigenpairs using H-ARPACK was beyond the computing capabilities.

in Figure 9.4. In Figure 9.4 the total computational time of recursive H-AMLS, applied once
with task (T9) and once with task (TSI) instead, is displayed for varying nes with nes up to
50N1/3. We observe that the computational costs of recursive H-AMLS are nearly constant
in nes when task (T9) is applied, and that the costs are slowly increasing in nes when instead
of task (T9) the improvement task (TSI) is applied. In Figure 9.5 the corresponding average
computational time avg(tall) is displayed which is decreasing very fast until it reaches (already
for nes ≥ 10N1/3) a range of less than 5s. In particular, this runtime behaviour makes the H-
AMLS method very attractive when many eigenpairs are sought. Furthermore, in Table 9.10 can
be seen that the accuracy of the computed H-AMLS eigenpair approximations reaches nearly
the approximation quality of a classical approach, in particular, when task (TSI) is applied. For
the sake of completeness, the average computational time of H-ARPACK is displayed in Table
9.10 as well. Note that the classical eigensolver H-ARPACK uses the efficient and in practice
widely used ARPACK library for the computation of the sought eigensolutions. Furthermore,
H-ARPACK uses the fast H-arithmetic for the computation of the needed preconditioner (cf.
Section 8.4) which is performed in (nearly) optimal complexity O(N logαN) and hence is very
inexpensive especially for three-dimensional problems.
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Figure 9.4.: Total computational time of recursive H-AMLS, applied once with task (T9) and
once with task (TSI) instead, for computing the smallest nes eigenpairs of the problem associated
to mesh width h3. nes is varying from N1/3 = 79 up to 50N1/3 = 3950. The parameter setting
of H-AMLS has been chosen as described in Section 9.2. In order to have a sufficiently large
reduced eigenvalue problem (k̄ ≥ 3950 is needed) the parameter C≈dom has been set to 12 for all
nes in both benchmarks.
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Figure 9.5.: The average time of recursive H-AMLS corresponding to the benchmarks presented
in Figure 9.4.
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9.4. Parallel Performance of H-AMLS

9.4. Parallel Performance of H-AMLS

The H-AMLS method has been parallelised for shared memory systems using Threading Build-
ing Blocks v4.2 [46] to provide thread parallelism. See Section 8.8 for the corresponding im-
plementation and for further details. In the following the parallel performance of the H-AMLS
implementation is analysed, however, the discussion is restricted to the recursive version apply-
ing the improvement task (TSI) and using the parameter setting described in Section 9.2 with
C≈dom = 6. The benchmarks presented in this section have been performed on the following two
NUMA-architectures, both of which equipped with 32 cores.

System A: 4-socket system with Intel Xeon processors X7550 (Nehalem-microarchitecture, 2.00
GHz, 8 cores)

System B: 4-socket system with Intel Xeon processors E5-4640 (Sandy-Bridge-microarchitecture,
2.40 GHz, 8 Cores)

A basic difference between both NUMA systems is that system B is equipped with processors
of the more modern Intel Sandy-Bridge-microarchitecture (which has replaced Intel’s Nehalem-
microarchitecture) and that system B has more memory bandwidth than system A.

In Figure 9.6 and Figure 9.7 the parallel performance ofH-AMLS (using the parameter setting

described above) has been displayed computing the smallest nes = 5N
1/3
h eigenpairs for the mesh

widths h1, h2, h3 and h4. Figure 9.6 displays the parallel speedup and the parallel efficiency on
system A for up to 32 threads, and Figure 9.7 displays the corresponding results on system
B. First of all it can be observed that the parallel performance of H-AMLS on NUMA-system
B is better than on system A for the larger problems associated to mesh widths h3 and h4.
This effect is primarily caused by the von Neumann bottleneck (see Section 8.8) where the
speedup of a parallel program is limited by the data transfer rate between the CPU cores and
the shared memory. Since NUMA-system B is equipped with a higher memory bandwidth than
system A, the parallel performance of H-AMLS on this system is better. In particular the
results show how strongly the speedup of H-AMLS depends on the memory bandwidth and the
NUMA-architecture. Furthermore, it can be observed in Figure 9.6 and Figure 9.7 that the
parallel efficiency of H-AMLS increases with increasing DOF, in particular that it is inefficient
to apply H-AMLS with many threads when the problem size is small. For example, the problem
associated to mesh width h1 is too small to benefit from a larger number of threads, as it can
be seen in Table 9.11 the computational time using one thread (i.e., the sequential version of
H-AMLS is applied) is less than 6s on system B. For small problems the parallel overhead (see
Section 8.8) is too large and the granularity of working tasks, which can be performed in parallel,
is too small.

However, also on the more efficient NUMA-system B the implementation of H-AMLS has
for the largest problem, the problem associated to mesh width h4, only a parallel speedup of
around 16 when 32 threads are used. To investigate the parallel performance on system B in
more detail the speedup of each involved task has been benchmarked separately for the mesh
width h4. Since in the parallel implementation of H-AMLS in the condensation process different
condensations (which are basically recursive calls of H-AMLS) are performed concurrently it is
not possible to measure the speedups concerning the tasks (T6)–(T8) accumulatively. In contrast
to the previous section, in the following the time measurements concerning tasks (T6)–(T8) do
not include the times of the recursive calls, instead the computational costs of the recursive call
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Figure 9.6.: Parallel performance on NUMA-system A of recursive H-AMLS with (TSI)-

improvement for computing the smallest nes = 5N
1/3
h eigenpairs for different mesh widths.
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Figure 9.7.: Parallel performance on NUMA-system B of recursive H-AMLS with (TSI)-

improvement for computing the smallest nes = 5N
1/3
h eigenpairs for different mesh widths.
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9.4. Parallel Performance of H-AMLS

#threads for h1 for h2 for h3 for h4

p tall E(p) tall E(p) tall E(p) tall E(p)

1 5.47s 100.0% 90.75s 100.0% 1,495.67s 100.0% 25,094.71s 100.0%

8 2.03s 33.6% 18.71s 60.6% 237.97s 78.5% 3,321.88s 94.4%

16 2.14s 15.9% 14.98s 37.8% 161.66s 57.8% 2,122.20s 73.9%

24 1.93s 11.8% 13.25s 28.5% 128.20s 48.6% 1,693.65s 61.7%

32 2.15s 7.9% 12.77s 22.2% 121.00s 38.6% 1,556.72s 50.3%

Table 9.11.: Parallel performance on NUMA-system B of recursive H-AMLS with (TSI)-

improvement for computing the smallest nes = 5N
1/3
h eigenpairs for different mesh widths.

are included in the measured time of the condensation process, and the parallel performance
of the condensation process has been measured on its own. In Figure 9.8 the separate speedup
of each task [(T1)–(T8), (TSI), condensation process] is displayed, and in order to assess the
speedup of each task regarding the total speedup of the method in Figure 9.9 the computational
time of each task relative to the total computational time is displayed in dependence of the
number p of used threads. As described in Section 8.8 task (T1) is always applied sequentially,
since the performance of the task depends heavily on the memory bandwidth of the system and
the performance did not benefit from a parallel implementation (more details in the following).
Correspondingly the speedup of (T1) is equal to 1 for all p ∈ N and is not displayed in Figure
9.8. In order to evaluate the limitations of the parallel speedup on NUMA-system B due to the
limited memory bandwidth the speedup of the following reference task is displayed as well in
Figure 9.8.

Definition 9.1 (Reference Task) The reference task associated to problem (K,M) with N
degrees of freedom and nes sought eigenpairs is given by computing the matrix vector product

yi := KMx for i = 1, . . . , nes where x := (1, . . . , 1)T ∈ RN

where the matrix-vector multiplication is performed using the compressed row storage format of
the sparse matrices K and M . If the number of used threads is larger than 1 the computation of
(yi)

nes
i=1 is performed in a parallel for loop using the corresponding TBB routine. In the following

the reference task is referred to as (TRef).

Task (TRef) is perfectly parallelisable when nes = kp for some k ∈ N or when nes � p, however,
the performance of the sparse matrix-vector multiplication is highly dependent on memory
bandwidth.

In Figure 9.8 and Figure 9.9 the following observations can be made:

• As expected the speedup of the reference task (TRef) is limited. In particular, the speedup
of (TRef) indicates in general the limitation of the parallel speedup on NUMA-system B
for tasks whose parallel performance depends increasingly on the memory bandwidth of
the system.
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Figure 9.8.: Parallel speedup on NUMA-system B of recursive H-AMLS with (TSI)-
improvement for computing the smallest nes = 5N1/3 eigenpairs of the problem associated
to mesh width h4. Displayed are the total speedup and the speedup of the involved tasks. To
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the speedup of the reference task (TRef) from Remark 9.1 is shown.
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H-AMLS.
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9.4. Parallel Performance of H-AMLS

• Although task (T1) is the only task which is applied sequentially (see Amdahl’s Law in
Section 8.8) its portion to the total computational time is even for 32 threads only around
10% and correspondingly limits the overall speedup only moderately. Benchmarks on
NUMA-system B have shown that even when the construction of each H-matrix repre-
sentations KH and MH is performed concurrently by two threads then no speedup could
be observed, which is due to the limited memory bandwidth of the system. More modern
NUMA-systems with a higher memory bandwidth could overcome this issue so that task
(T1) benefits from multiple cores.

• The speedup of task (T2), i.e, the computation of the LDLT-factorisationKH ≈ LHK̃H(LH)T ,
is worse than most of the other tasks. However, the portion of task (T2) to the total com-
putational time is only around 10% and keeps nearly constant for varying number of used
threads. As mentioned in Section 8.8.2 for the parallel computation of task (T2) a HLIBpro
routine is used which implements a task-based approach of the LDLT-factorisation. This
implementation, however, exhibits in HLIBpro v2.3 still a sequential part which can be
parallelised and possibly increases the speedup (cf. [54]). Moreover, the H-matrix format
which is used for K can be replaced by the refined and improved H2-matrix format (cf.
[17]) and the computation of K̃ can be performed using the corresponding parallel H2-
matrix arithmetic [19, 61] which is possibly leading to a general reduction of computational
time of task (T2) and to a better speedup.

• The speedup of task (T3) is moderate, in particularly the task (T3) clearly remains the
computational most dominant part of H-AMLS also when up to 32 threads are used. As
described in Section 8.2 the computation of M̃H ≈ (LH)−1MH(LH)−T is performed by
solving triangular systems which is done by the corresponding parallel HLIBpro routines
for H-matrices. The solution of the triangular system is performed in a recursive approach
applied to the block hierarchy of the H-matrix structure and inherits a sequential bottle-
neck. However, a better parallel performance of the computation can be expected when
the same task-based approach (with a global scope on the computational tasks) is imple-
mented which is used for the parallel LDLT-factorisation (cf. Section 8.8.2). Furthermore,
as proposed for task (T2), also in task (T3) the refined and improved H2-matrix format

can be used for the computation of M̃ which is possibly leading to a general reduction of
computational time of task (T3) and to a better speedup.

• The speedup of task (T4) is better than most of the remaining tasks, however, as already
mentioned in Section 8.8.3, the speedup is partially limited by the speedup of the H-SIL
eigensolver which is applied to the large interface eigenvalue problems. Beside many small-
sized subdomain and many small-sized interface eigenvalue problems (which create an even
workload per thread) in task (T4) also few large-sized interface eigenvalue problems have
to be solved whose size is varying. Since the speedup of the H-SIL eigensolver for a
single subproblem is limited due to sequential parts of the Lanczos method, the overall
speedup can be partially limited by the solution of one single large interface eigenvalue
problem. This issue can be partially overcome by applying a scheduling which prioritises
the processing of the large interface problems, and by improving the speedup of the H-SIL
eigensolver. Nonetheless, task (T4) only makes a small portion of the total computational
time.
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9. Numerical Results

• Task (T6) shows the best parallel performance, however, an even better speedup is expected
on shared memory system with a higher memory bandwidth. Task (T6) is perfectly paral-
lelisable and according to Section 8.8.4 the parallel implementation of task (T6) provides
a very high granularity of working tasks that can be performed concurrently.

• As described in Section 8.8.5 task (T7) has been parallelised using the multi-threaded
MKL version of the LAPACK eigensolver dsygvx. The speedup of task (T7) is quite
weak, however, a better speedup is expected when the size k̄ of the H-reduced problem is
getting larger (in the benchmark k̄ was equal to 4, 483). Nonetheless, the portion of task
(T7) to the total computational time is only minor also for 32 threads.

• Task (T8) shows only a moderate speedup, nonetheless the portion of this task to the total
computational time remains relative small even when 32 threads are used. Theoretically,
task (T8) is perfectly parallelisable, see Section 8.8.6 for the corresponding implementation.
The majority of the computational costs of task (T8) are caused by the computation of
the matrix Stemp in (8.24). As already mentioned in Section 8.8.6 the efficiency of the
matrix-wise approach for the parallel computation of Stemp depends on the column size k′

of the block columns S
(l)
temp ∈ RN×k′ . With the number of used threads the column size k′

is decreasing and with it the efficiency of the matrix-wise approach for the computation
of Stemp. For example, using 32 threads we have k′ ≈ 25 while for one thread k′ = 795.
Correspondingly, if number nes of sought eigenpairs is getting larger also a better speedup
is expected.

• Task (TSI) shows as well only a moderate speedup, although most of the individual work-
ing steps of task (TSI) are perfectly parallelisable. The implementation of task (TSI) is
described in Algorithm 4 and its parallelisation in Section 8.8.7. The computational costs
of task (TSI) are dominated by the costs of the sparse matrix multiplications MS, KQ,
MQ and by the costs of the matrix computations A2 := (LH)−1A1, A4 := (LH)−TA3

(cf. Section 8.8.7). The parallel performance of the sparse matrix multiplication, however,
depends heavily on the memory bandwidth of the system which thus limits the speedup of
task (TSI). Furthermore, the matrices A2 and A4 are computed by the same parallel ap-
proach which is used for the matrix Stemp in task (T8), and hence the parallel performance
of their computation benefits as well from a larger number of sought eigenpairs.

• The parallelisation of the condensation process is described in Section 8.8.8. In the bench-
mark the condensation process shows a satisfying speedup and its portion to the total
computational time is minor.

In summary, the implementation of H-AMLS shows a reasonable parallel performance. How-
ever, better speedups are expected when H-AMLS is applied to larger problems and, most
importantly, when H-AMLS is performed on more modern NUMA-architectures with improved
memory performance. In particular, a better speedup is expected when the distribution of the
data to the memory is optimised to the NUMA-architecture such that locality of memory ac-
cess is guaranteed. Some tasks of H-AMLS are perfectly parallelisable, however, the optimal
speedup is not achieved due to the limited memory bandwidth of NUMA-system B and due to
some parallel overhead [as described, e.g., for task (T8)].

Furthermore, as noted above, a better speedup of H-AMLS is expected when the parallel
implementation of the H-matrix routines used in task (T2) and (T3) is further improved, or
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9.5. H-AMLS for Challenging Problems

possibly when the used H-matrix format is replaced by the refined H2-matrix format. Also the
scheduling in (T4) can be improved. Beyond that, the execution of the different tasks of H-

AMLS can be merged partly — for example, as soon as the eigensolutions of problem (K̃Hii , M̃
H
ii )

and (K̃Hjj , M̃
H
jj ) have been computed the computation of submatrix M̂ij can be started — which

increases the parallel granularity of H-AMLS even further and might get relevant for many-core
shared memory systems with high memory bandwidth.

9.5. H-AMLS for Challenging Problems

In the previous sections we analysed the H-AMLS method for the Laplace eigenvalue problem
on the unit cube. In this section additional numerical results are presented which investigate
the approximation accuracy of the H-AMLS method for elliptic PDE eigenvalue problems{

Lu = λu in Ω,

u = 0 on ∂Ω
(9.6)

with a more challenging domain Ω and a general PDE operator of the form

L[u](x) = −div
(
A∇u

)
(x) + c(x)u(x) for all x ∈ Ω. (9.7)

We consider the following three-dimensional elliptic PDE eigenvalue problems:

Example 1: Eigenvalue problem (9.6) with PDE operator Lu = −∆u and domain

Ω := (0, 1)3 \ [1
2 , 1]× [0, 1

2 ]× [1
2 , 1] → unit cube with internal corner, cf. Figure 9.10(a)

Example 2: Eigenvalue problem (9.6) with PDE operator Lu = −∆u and domain

Ω := (0, 1)3 \ [1
5 , 1]× [2

5 ,
3
5 ]× [0, 1] → unit cube with slit, cf. Figure 9.10(b)

Example 3: Eigenvalue problem (9.6) with the same domain as in Example 2 and where the
coefficients of the PDE operator L in (9.7) are of the form

A(x) =

3 2 1
2 2 1
1 1 1

 and c(x) = 2 ∀ x ∈ Ω.

Example 4: Eigenvalue problem (9.6) with the same domain as in Example 2 and where the
coefficients of the PDE operator L in (9.7) are of the form

A(x) =

{
B if x /∈ U
Id if x ∈ U

and c(x) =

{
2 if x /∈ U
0 if x ∈ U

with B :=

3 2 1
2 2 1
1 1 1

 ∀ x ∈ Ω

and where

U :=
{
x ∈ Rd : x ∈ [k1, k1 + 1

10)× [k2, k2 + 1
10)× [k3, k3 + 1

10) with k1, k2, k3 ∈ 2Z
}
.
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9. Numerical Results

To solve the eigenvalue problems described in Example 1 – Example 4 by H-AMLS or a classical
approach, the problems have to be discretised. This is done by using the finite element space
of piecewise affine functions X1

h,0 and where the triangulation of the corresponding domain is
obtained by decomposing Ω into equispaced subintervals in each direction [cf. Figure 9.10(c)].
For the Laplace eigenvalue problem on the unit cube the approximation quality of H-AMLS
could be evaluated by comparing the relative errors of the H-AMLS approximation and of the
discretisation

δ̂j :=
|λj − λ̂

(rq)
j |

λj︸ ︷︷ ︸
relative error of

H-AMLS

and δ̂
(h)
j :=

|λj − λ
(h)
j |

λj︸ ︷︷ ︸
relative error

of discretisation

. (9.8)

However, since for Example 1 – Example 4 the exact eigenvalues λj are not known, the eigen-

values λj in (9.8) are approximated by the discrete eigenvalues λ
(h4)
j associated to the finest

mesh width h4. Using these approximated relative errors the approximation quality of H-AMLS
has been benchmarked for Example 1 – Example 4 by investigating the corresponding maximal
error ratios

γ(h)
nes

:= max
{
δ̂j / δ̂

(h)
j : j = 1, . . . , nes

}
(9.9)

where the following setting has been used:

• The discrete eigenvalues λ
(h)
j have been computed for h = h1, h2, h3 and for the reference

mesh width h4 by the eigensolver H-ARPACK. The relative residual errors3 of the com-
puted discrete eigenpairs has been smaller than 1e-9, so that they can be considered as
numerically exact (as allowed by the finite element discretisation). However, due to com-
putational limits it was only possible to compute for the mesh width h4 with H-ARPACK
the smallest 267 discrete eigenpairs.

• The H-AMLS method has been applied in the recursive version with (TSI)-improvement

and C≈dom = 6 for the computation of the smallest nes = 3N
1/3
h discrete eigenpairs of the

problems associated to the mesh widths h1, h2, h3.

The results of these benchmarks are summarised in Table 9.12 and show that the approximation
quality of H-AMLS is comparable to the approximation quality of a classical approach.

3We define the relative residual error of an eigenpair approximation (λ, x) of (K,M) by ‖Kx− λMx‖2/‖Kx‖2.
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(a) Unit cube with internal corner
Ω = (0, 1)3 \ [ 1

2
, 1]× [0, 1

2
]× [ 1

2
, 1].

(b) Unit cube with slit
Ω = (0, 1)3 \ [ 1

5
, 1]× [ 2

5
, 3

5
]× [0, 1].

(c) Triangulation of do-
main from Figure 9.10(a)

Figure 9.10.: The underlying domains and associated triangulations of Example 1 – 4.

Example 1 Example 2 Example 3 Example 4

Nh nes γ
(h)
nes Nh nes γ

(h)
nes Nh nes γ

(h)
nes Nh nes γ

(h)
nes

h1 5,859 54 1.14 5,339 51 1.16 5,339 51 1.43 5,339 51 1.40

h2 51,319 111 1.10 48,087 108 1.60 48,087 108 1.23 48,087 108 1.13

h3 429,039 225 1.16 407,087 222 1.08 407,087 222 1.19 407,087 222 1.12

Table 9.12.: Approximation accuracy of the recursive H-AMLS with (TSI)-improvement for

computing the smallest nes = 3N
1/3
h eigenpairs with varying mesh widths.
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10. Conclusion

To solve an elliptic PDE eigenvalue problem in practice typically the finite element discretisation
is used. From approximation theory it is known that only the smaller eigenvalues λj and their
corresponding eigenfunctions uj can be well approximated by the finite element discretisation
because the approximation error increases with increasing size of the eigenvalue. However,
results on the number of well approximable eigenvalues or eigenfunctions are not available in
literature (to the best of the author’s knowledge). In this work asymptotic estimates on these
quantities could be derived. For example, it is shown that for three-dimensional problems under
certain smoothness assumptions on the data only the first Θ(N2/5) eigenvalues and only the
first Θ(N1/4) eigenfunctions can be well approximated by the finite element discretisation using
N -dimensional finite element spaces of piecewise affine functions with uniform mesh refinement.

To solve the discretised elliptic PDE eigenvalue problem and to compute all well approx-
imable eigenvalues and eigenfunctions, in this work a recursive version of the automated multi-
level substructuring has been combined with the concept of hierarchical matrices. Whereas the
classical AMLS method is very efficient for two-dimensional problems, it is getting very expen-
sive in the three-dimensional case. One computational bottleneck of classical AMLS is in the
three-dimensional case the required computation of the transformed eigenvalue problem (K̃, M̃).
Using the fast H-matrix arithmetic, however, the transformed problem can be computed very
efficiently in almost linear complexity O(N logαN) which is even independent of the number

of sought eigenpairs. Also the solution of the interface eigenvalue problems (K̃ii, M̃ii) and the

computation of the reduced eigenvalue problem (K̂, M̂) are performed much more efficiently
using the fast H-matrix arithmetic. Moreover, the new recursive version of AMLS allows us to
bound the size of the reduced eigenvalue problem (K̂, M̂) which substantially further reduces the
costs for its computation and solution. Overall, this leads to the new H-AMLS method which
is well suited for three-dimensional problems and which allows us to compute a large amount
of eigenpair approximations in optimal complexity. Furthermore, H-AMLS is well parallelisable
and shows in numerical experiments a satisfying parallel performance.

The H-AMLS method has to be benchmarked in further examples, especially for problems
arising from applications. The numerical results presented in this work, however, demonstrate
the potential of the method in solving large-scale elliptic PDE eigenvalue problems. Furthermore,
a black box approach allowsH-AMLS to be applied in a purely algebraic way without the need of
geometry information. Beside that, H-AMLS can be combined very efficiently with a subsequent
subspace iteration in order to improve the accuracy of the H-AMLS eigenpair approximations
when needed. These aspects possibly allow H-AMLS to become applicable to a wide range of
problems.
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The elliptic PDE eigenvalue problem (2.1) is analysed in Chapter 2. The corresponding existence
result of (weak) eigensolutions which is presented in Theorem 2.6 is based on this section which
provides a general analysis of abstract variational eigenvalue problems of the form{

find (λ, u) ∈ C×H \ {0} such that

a(u, v) = λ d(u, v) ∀ v ∈ H
(A.1)

where a(·, ·) and d(·, ·) are bilinear forms defined on a Hilbert space H. In this section it is shown
that under certain assumptions on the bilinear forms the eigenvalue problem (A.1) possesses a
countable family of eigensolutions. The key in the corresponding existence proof is to reformulate
the variational eigenvalue problem (A.1) as an eigenvalue problem of a linear operator, and to
show that this operator is compact. The Fredholm-Riesz-Schauder theory allows to characterise
the spectrum of that compact operator, which finally proves the existence of a countable family
of eigensolutions of the variational eigenvalue problem (A.1).

The remainder of this section is organised as follows: In Section A.1 basic definitions from
functional analysis are recalled and the mathematical framework for compact operators is stated,
and in Section A.2 the Fredholm-Riesz-Schauder theory for compact operators is formulated.
The statements made in Section A.1 and Section A.2 are basic results from functional analysis
and can be found, e.g., in [43] or any textbook on this topic. In Section A.3 the variational
eigenvalue problem (A.1) is reformulated as an eigenvalue problem of an operator and it is
proven by the author that, under certain assumptions, this operator is compact. As described
above, this finally proves the existence result for eigensolutions of problem (A.1).

A.1. Basic Definitions and Compact Operators

In this section basic results from functional analysis are recalled and the mathematical framework
for compact operators is stated. The following discussion is restricted to real-valued linear spaces.

Definition A.1 (Normed Space) Let X be a linear space (vector space) over the field R. A
mapping ‖ · ‖ : X → [0,∞) is called a norm if it fulfils

∀ x ∈ X : ‖x‖ = 0⇒ x = 0,

∀ α ∈ R, x ∈ X : ‖αx‖ = |α|‖x‖,
∀ x, y ∈ X : ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The linear space X associated with the norm ‖ · ‖ is called normed space and is identified by the
pair (X, ‖·‖). If the underlying space X is not clear the notation ‖·‖X is used. On a linear space
several different norms can be defined. Two norms ‖ · ‖1 and ‖ · ‖2 on X are called equivalent if
a constant C > 0 exists such that

1

C
‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 ∀ x ∈ X.
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Definition A.2 (Bounded Operator) Let X,Y be normed spaces. A linear mapping T :
X → Y is called operator. The operator T is called bounded or continuous if it holds

‖T‖Y←X := sup

{
‖Tx‖Y
‖x‖X

: x ∈ X \ {0}
}
<∞

where ‖ ·‖Y←X is the corresponding operator norm. The set of all bounded operators T : X → Y
is denoted by L(X,Y ). In the case of X = Y we simply write L(X) instead of L(X,X). With
the addition operation and the scalar multiplication

(T1 + T2)x := T1x+ T2x, (αT1)x := T1(αx) ∀ x ∈ X,α ∈ R and T1, T2 ∈ L(X,Y ) (A.2)

the set of all bounded operators L(X,Y ) forms a linear space, and together with the operator
norm ‖ · ‖Y←X it is a normed space. Introducing the multiplication operation

(T1T2)x := T1(T2x) ∀ x ∈ X and T1, T2 ∈ L(X)

the space L(X) constitutes an algebra with the identity (neutral) element

I ∈ L(X) with I(x) := x ∀ x ∈ X.

In this context Tn ∈ L(X) denotes for n ∈ N the n-times operator composition of T ∈ L(X).

Definition A.3 (Banach Space) A sequence (xn)n∈N ⊂ X is called Cauchy convergent or
Cauchy sequence if it holds

sup
{
‖xn − xm‖ : n,m ≥ k

}
k→∞−−−−−→ 0.

A normed space X is called complete if every Cauchy sequence (xn)n∈N converges to an element
x ∈ X, i.e., it holds limn→∞ ‖xn−x‖ = 0. A normed and complete space is called Banach space.

Theorem A.4 (Bounded Inverse) Let X,Y be Banach spaces and T ∈ L(X,Y ). If T is
bijective then it holds T−1 ∈ L(Y,X).

Definition A.5 (Dual Space) Let X be a normed linear space over R. The dual space X ′ of
X is the space of all linear and bounded mappings, i.e., it holds X ′ := L(X,R). The dual space
X ′ is a Banach space with the norm

‖x′‖X′ := ‖x′‖R←X = sup

{
|x′(x)|
‖x‖X

: x ∈ X \ {0}
}
.

An element x′ ∈ X ′ is called linear functional on X.

Definition A.6 (Precompact, Compact) Let X be a Banach space. A subset M ⊂ X is
called precompact if every sequence (xn)n∈N ⊂ M has a convergent subsequence (xni)i∈N, i.e,
there exists an element x ∈ X such that limi→∞ ‖xni−x‖X = 0. The subset M is called compact
if it additionally holds x ∈M .
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Definition A.7 (Compact Operator) Let X,Y be Banach spaces. A bounded operator T ∈
L(X,Y ) is called compact if the set{

Tx : x ∈ X with ‖x‖X ≤ 1
}

is precompact in Y . The set of all compact operators from X into Y is denoted by K(X,Y ) and
in the case of X = Y we write K(X) instead of K(X,X).

Definition A.8 (Embedding) Let X,Y be Banach spaces with X ⊂ Y . The linear mapping

I : X → Y with Ix := x ∀ x ∈ X

is called embedding of X in Y . If it holds I ∈ L(X,Y ), i.e., there exists a constant CB > 0
such that ‖x‖Y ≤ CB‖x‖X for all x ∈ X, we call X continuously embedded in Y and formally
write X ↪→ Y . If it holds I ∈ K(X,Y ) the embedding is called compact. If X is dense1 in Y the
embedding I is called dense.

A.2. The Fredholm-Riesz-Schauder Theory

In this section the spectrum of bounded operators is introduced. The spectrum generalises the
concept of eigenvalues of matrices and is used for the characterisation of operators. We say a
complex number λ ∈ C is in the spectrum of an operator T ∈ L(X) iff the mapping T − λI
is not bijective. If the underlying linear space X is finite-dimensional the operator T can be
described by a matrix, and the spectrum and the set of eigenvalues are the same. In the infinite-
dimensional case, however, not every spectral value has to be an eigenvalue and a more detailed
distinction is made.

Throughout the whole section it is assume that (X, ‖ · ‖) is a Banach space with X 6= {0}.

Definition A.9 (Resolvent Set, Spectrum) The resolvent set ρ(T ) of an operator T ∈ L(X)
is defined by

ρ(T ) :=
{
λ ∈ C : Ker(T − λI) = {0} ∧ Im(T − λI) = X

}
,

where Ker(·) is the kernel and Im(·) is the image of an operator. The spectrum of T is defined
by σ(T ) := C \ ρ(T ) where it is distinguished between the point spectrum σp(T ), the residual
spectrum σr(T ) and the continuous spectrum σc(T ) which are defined by

σp(T ) :=
{
λ ∈ σ(T ) : Ker(T − λI) 6= {0}

}
, (A.3)

σr(T ) :=
{
λ ∈ σ(T ) : Ker(T − λI) = {0} ∧ Im(T − λI) 6= X

}
, (A.4)

σc(T ) :=
{
λ ∈ σ(T ) : Ker(T − λI) = {0} ∧ Im(T − λI) = X ∧ Im(T − λI) 6= X

}
. (A.5)

The statement that it holds λ ∈ ρ(T ) is equivalent to the statement that the operator T −λI :
X → X is bijective, i.e., that the inverse (T − λI)−1 exists. Because of Theorem A.4 we have

Rλ(T ) := (T − λI)−1 ∈ L(X)

1A subset X ⊂ Y is called dense in a normed space Y when for each y ∈ Y there exists some sequence
(xn)n∈N ⊂ X with limn→∞ ‖xn − y‖Y = 0.
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where the operator Rλ(T ) is called the resolvent2 of T . If it holds instead that λ ∈ σ(T ) then
the spectral value λ can be assigned to one of the three distinct types (A.3) – (A.5). In the
following discussion, however, we are only interested in the point spectrum σp(T ) where we have

λ ∈ σp(T ) ⇐⇒ ∃ u ∈ X \ {0} with Tu = λu. (A.6)

Definition A.10 (Eigenvalue, Eigenvector) If it holds λ ∈ σp(T ) then λ is called eigenvalue
of T and all u ∈ X \{0} fulfilling Tu = λu are called eigenvectors. The eigenspace of λ is defined
by

E(λ) := Ker(T − λI)

and dimE(λ) is called the multiplicity of λ.

Basic results on the spectrum are summarised in the following remark.

Remark A.11 Let T ∈ L(X) be a continuous operator. Then it holds:

i) The eigenspace E(λ) ⊂ X of an eigenvalue λ ∈ σp(T ) is T -invariant3.

ii) The spectrum σ(T ) ⊂ C is compact and non-empty. In particular, it holds

r(T ) := sup
λ∈σ(T )

|λ| = lim
n→∞

‖Tn‖1/nX←X ≤ ‖T‖X←X

where r(T ) is called the spectral radius of T .

iii) If dimX <∞ then it holds σ(T ) = σp(T ).

iv) If dimX =∞ and the operator T is compact then it holds 0 ∈ σ(T ).

The following important theorem characterises the spectrum of compact operators.

Theorem A.12 (Riesz-Schauder I) Let T ∈ K(X) be a compact operator. Then the follow-
ing statements are valid:

i) It holds σ(T )\{0} ⊆ σp(T ). More precisely, σ(T )\{0} consists of countably many (finitely
or infinitely many) eigenvalues with zero as the only possible accumulation point.

ii) For λ ∈ σ(T ) \ {0} it holds

1 ≤ nλ := max
{
n ∈ N : Ker((T − λI)n) 6= Ker((T − λI)n−1)

}
<∞

where nλ is called the index of λ.

iii) For λ ∈ σ(T ) \ {0} the space X can be decomposed into the direct sum

Ker((T − λI)nλ)⊕ Im((T − λI)nλ)

where both subspaces are closed and T -invariant, and where dim Ker((T − λI)nλ) <∞.

iv) For all λ, µ ∈ σ(T ) \ {0} it holds

PλPµ =

{
Pλ if λ = µ,

0 if λ 6= µ

where Pλ ∈ L(X) is the projection4 onto Ker((T − λI)nλ) according to the decomposition

2In literature the definition Rλ(T ) := (λI − T )−1 can be found as well which only changes the sign of the
operator.

3A subset M ⊂ X is called T -invariant if T (x) ∈M for all x ∈M .
4Let X be a Banach space, then an operator T ∈ L(X) is called projection if it holds T 2 = T .
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described in iii).

Remark A.13 (Fredholm Alternative) Statement i) of Theorem A.12 is also known as the
Fredholm alternative: For any operator T ∈ K(X) and for λ ∈ C \ {0} it either holds

∀ y ∈ X !∃x ∈ X with Tx− λx = y or ∃x ∈ X \ {0} with Tx− λx = 0.

The statements made in Theorem A.12 can be strengthened when compact operators are
considered which are defined on Hilbert spaces and which are selfadjoint. As it can be seen in
Theorem A.16, these operators can be completely described by their eigenvalues and eigenvec-
tors.

Definition A.14 (Inner Product, Hilbert Space) Let X be a linear space. A mapping
(·, ·) : X ×X → R is called inner product on X if it holds

∀ x ∈ X \ {0} : (x, x) > 0,

∀ x, y, z ∈ X,α ∈ R : (αx+ y, z) = α (x, z) + (y, z),

∀ x, y ∈ X : (x, y) = (y, x).

A Banach space X is called Hilbert space, if an inner product (·, ·) is defined on X with ‖x‖ =
(x, x)1/2.

Definition A.15 (Selfadjoint Operator) Let X be a Hilbert space. An operator T ∈ L(X)
is called selfadjoint (or symmetric) if

(Tx, y) = (x, Ty) ∀ x, y ∈ X.

A selfadjoint operator is called positive definite if it additionally holds

(x, Tx) > 0 ∀ x ∈ X \ {0}.

Theorem A.16 (Riesz-Schauder II) Let X be a Hilbert space and let T ∈ K(X) be selfad-
joint with T 6= 0. Then it holds:

i) All eigenvalues of T are real, i.e., we have σp(T ) ⊂ R. Furthermore, there exists an
eigenvalue λ ∈ σp(T ) with |λ| = ‖T‖X←X .

ii) For all λ ∈ σp(T ) it holds nλ = 1.

iii) The eigenspaces E(λ) and E(µ) are orthogonal for eigenvalues λ, µ ∈ σp(T ) with λ 6= µ.

iv) Let
{
eλ,i
}d(λ)

i=1
be an orthonormal basis of eigenspace E(λ) for eigenvalue λ ∈ σp(T ) \ {0}

where d(λ) := dimE(λ). Then the operator T is described by

Tx =
∑

λ∈σp(T )\{0}

λ

( d(λ)∑
i=1

(
x , eλ,i

)
eλ,i

)
for all x ∈ X.

v) An orthogonal decomposition of X is given by⊕
λ∈σp\{0}

E(λ) ⊕ Ker(T ). (A.7)

vi) If T is additionally positive definite then it holds σp(T ) ⊂
(
0, ‖T‖X←X

]
. In particular,

‖T‖X←X is an eigenvalue of T .
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A.3. Analysis of Abstract Variational Eigenvalue Problems

In this section it is discussed under which assumptions the variational eigenvalue problem (A.1)
possesses eigensolutions. For this purpose, eigenvalue problem (A.1) is reformulated as an eigen-
value problem of an operator. Under certain assumptions on the involved bilinear forms in (A.1)
it can be shown that this operator is compact. Hence, the Fredholm-Riesz-Schauder theory from
the previous section can be applied to characterise the spectrum of this compact operator which
finally constitutes the existence of countably many eigensolutions of problem (A.1).

Throughout the whole section it is assumed that H is a Banach space with H 6= {0}.

Definition A.17 (Bilinear Form) A mapping a(·, ·) : H × H → R is called bilinear form if
for all α ∈ R and for all x, y, z ∈ H it holds

a(x+ αy, z) = a(x, z) + αa(y, z) and a(x, y + αz) = a(x, y) + αa(x, z).

Bilinear forms can have the following properties:

• a(·, ·) is called symmetric if it holds a(x, y) = a(y, x) for all x, y ∈ H.

• a(·, ·) is called continuous or bounded on H × H if there exists a constant CB > 0 such
that

|a(x, y)| ≤ CB‖x‖‖y‖ ∀ x, y ∈ H.

• a(·, ·) is called H-elliptic5, or short elliptic, if a(·, ·) is continuous on H ×H and if there
exists a constant CE > 0 such that

a(x, x) ≥ CE‖x‖2 ∀ x ∈ H.

Theorem A.18 (Lax-Milgram) Let l ∈ H ′ be a continuous linear functional and let a(·, ·) :
H ×H → R be a symmetric elliptic bilinear form. Then the functional

J : H → R with J(v) := 1
2a(v, v)− l(v) ∀ v ∈ H

has a unique minimizer u ∈ H. This minimizer is the unique solution of the variational problem{
find u ∈ H such that

a(u, v) = l(v) ∀ v ∈ H.
(A.8)

Based on problem (A.8) the variational eigenvalue problem{
find (λ, u) ∈ C×H \ {0} such that

a(u, v) = λ d(u, v) ∀ v ∈ H.
(A.9)

is introduced where d(·, ·) : H ×H → R is a bilinear form fulfilling the following assumptions:

Precondition A.19 i) d(·, ·) is symmetric and d(u, u) > 0 for all u ∈ H \ {0}.
5In [23] a symmetric elliptic bilinear form is also referred to as coercive. However, in literature coercivity often

describes a property which is weaker than ellipticity (see, e.g., [37]).
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ii) d(·, ·) is continuous on H ×H, i.e., it holds ‖d‖R←H×H =: Cd <∞.

iii) For all sequences (uj)j∈N ⊂ H with ‖uj‖H ≤ C for all j ∈ N and some C > 0 there exists
a subsequence (ujk)k∈N which is Cauchy w.r.t. the norm induced by d(·, ·)1/2.

Theorem A.18 constitutes the existence of a unique solution of the variational problem (A.8).
In the following an analogue result is derived for the variational eigenvalue problem (A.9). For
this purpose the variational problem{

find uf ∈ H such that

a(uf , v) = d(f, v) ∀ v ∈ H.
(A.10)

is introduced for some given f ∈ H. Since d(f, ·) : H → R is a continuous linear functional
for all f ∈ H we conclude from Theorem A.18 that problem (A.10) possesses a unique solution
uf ∈ H for all f ∈ H. This induces the solution operator

T : H → H with f 7→ uf := Tf. (A.11)

Lemma A.20 Let the bilinear form a(·, ·) be symmetric elliptic and let the bilinear form d(·, ·)
satisfy the assumptions made in Precondition A.19. Then the solution operator T in (A.11) is
compact.

Proof: Before it is proved that T is compact, it has to be proved that the solution operator is
linear and bounded on H.

T is linear:

Let u, f ∈ H and uf := Tf , ug := Tg, uf+g := T (f + g) then it holds

a(uf + ug, v) = a(uf , v) + a(ug, v) = d(f, v) + d(g, v) = d(f + g, v) ∀ v ∈ H.

Since the solution of problem (A.10) is unique we obtain uf+g = uf + ug and correspondingly
T (f + g) = Tf + Tg. Analogical, we obtain for α ∈ R and uαf := T (α f) because of

a(αuf , v) = αa(uf , v) = αd(f, v) = d(α f, v) ∀ v ∈ H

that uαf = αuf is valid, i.e., it holds T (αf) = αTf .

T is continuous:

For all f ∈ H it holds

‖Tf‖2 ≤
a(·,·) is
H-elliptic

1

CE
a(Tf, Tf) =

(A.10)

1

CE
d(f, Tf) ≤

d(·,·) is
continuous

Cd
CE
‖f‖‖Tf‖.

Correspondingly, we have ‖Tf‖ ≤ Cd
CE
‖f‖ for all f ∈ H, i.e., it holds T ∈ L(H).

T is compact:

It remains to prove that the subset

B :=
{
Tf : f ∈ H with ‖f‖H ≤ 1

}
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is precompact in H. Consider for this purpose a sequence (Tfi)i∈N ⊂ B, then it holds

‖Tfi − Tfj‖2H =
T is
linear

‖T (fi − fj)‖2H ≤
a(·,·) is
H-elliptic

1

CE
a
(
T (fi − fj), T (fi − fj)

)
=

(A.10)

1

CE
d
(
fi − fj , T (fi − fj)

)
≤

Precondition
A.19 i)

1

CE
d
(
fi − fj , fi − fj

)1/2
d
(
T (fi − fj), T (fi − fj)

)1/2
≤

Precondition
A.19 ii)

(Cd)
1/2

CE
d
(
fi − fj , fi − fj

)1/2 ‖T (fi − fj)‖H

≤
T is

continuous

(Cd)
3/2

(CE)2
d
(
fi − fj , fi − fj

)1/2 ‖fi − fj‖H
≤ (Cd)

3/2

(CE)2
d
(
fi − fj , fi − fj

)1/2 ( ‖fi‖H + ‖fj‖H
)

≤
‖fi‖H≤1,
‖fj‖H≤1

2
(Cd)

3/2

(CE)2
d
(
fi − fj , fi − fj

)1/2
.

Since ‖fi‖H ≤ 1 for all i ∈ N it follows from Precondition A.19 iii) that there exists a subsequence
(fik)k∈N which is Cauchy w.r.t. d(·, ·)1/2. Altogether we obtain that

‖Tfik − Tfil‖
2
H ≤ 2

(Cd)
3/2

(CE)2
d
(
fik − fil , fik − fil

)1/2 k,l→∞−−−−−−→ 0,

i.e., each sequence (Tfi)i∈N ⊂ B has a subsequence which is convergent in H. Hence, the subset
B is precompact and it follows that operator T is compact.

Remark A.21 The assumption made in Lemma A.20 on the bilinear form d(·, ·) can be replaced
by the following stronger assumption: To prove that the solution operator T is compact it is
sufficient to assume that d : U × U → R is a bilinear form operating on a larger Banach space
U , i.e., H ⊂ U where

i) d(·, ·) is symmetric and d(u, u) > 0 for all u ∈ U \ {0}.

ii) d(·, ·) is continuous on U × U , i.e., it holds ‖d‖R←U×U =: Cd <∞.

iii) The embedding of H in U is compact.

Since the solution operator T in (A.11) is compact, Theorem A.12 can be applied and we
obtain that the operator eigenvalue problem{

find (µ, u) ∈ C×H \ {0} such that

Tu = µu
(A.12)
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has countably many eigensolutions. Note that the variational eigenvalue problem (A.9) is equiv-
alent to problem (A.12) in such a way that for λ 6= 0 it holds

(λ, u) ∈ C×H \ {0} is an eigenpair of (A.9)

⇐⇒ (A.13)(
1

λ
, u

)
∈ C×H \ {0} is an eigenpair of (A.12).

Since it is assumed that the bilinear form a(·, ·) : H ×H → R is symmetric elliptic, an inner
product is induced on H by

(·, ·)a(·,·) : H ×H → R with (u, v)a(·,·) := a(u, v) ∀ u, v ∈ H.

Furthermore, the associated norm ‖u‖a(·,·) := a(u, u)1/2, which is also called energy norm in
literature, is equivalent to the norm ‖·‖H because the bilinear form a(·, ·) is elliptic and continu-
ous. Hence, the Banach space H forms together with the inner product (·, ·)a(·,·) a Hilbert space.
Using the inner product induced by a(·, ·) for the underlying space one can derive additional
properties for the solution operator T .

Lemma A.22 Let the assumptions of Lemma A.20 be fulfilled. Then the solution operator T
in (A.11) is selfadjoint and positive definite regarding to the inner product (·, ·)a(·,·).

Proof: From the symmetry of a(·, ·) and d(·, ·) it follows for all u, v ∈ H that

(Tu, v)a(·,·) = a(Tu, v) = d(u, v) = d(v, u) = a(Tv, u) = a(u, Tv) = (u, Tv)a(·,·),

i.e., T is selfadjoint. Because of

(u, Tu)a(·,·) = a(u, Tu) = a(Tu, u) = d(u, u) > 0 ∀ u ∈ H \ {0} (A.14)

it follows that T is positive definite.
Altogether the following result is obtained for the variational eigenvalue problem (A.9).

Corollary A.23 Consider the variational eigenvalue problem (A.9). Let a(·, ·) be symmetric
elliptic and let d(·, ·) satisfy the assumptions made in Precondition A.19 or the assumptions
made in Remark A.21. Then problem (A.9) possesses a countable family of eigensolutions(

λj , uj
)N
j=1
⊂ R>0 ×H \ {0} (A.15)

with N ∈ N ∪ {∞} and eigenvalues λj ordered6 such that λj ≤ λj+1. Furthermore, it holds:

i) All eigenvalues are real and positive. Furthermore, it holds #N = dimH and in the case

of dimH =∞ we have λj
j→∞−−−−−→∞.

ii) The eigenspace E(λj) ⊂ H of the eigenvalue λj, which is defined by

E(λj) := span
{
u ∈ H : a(u, v) = λjd(u, v) ∀ v ∈ H

}
,

is finite-dimensional.

6Eigenvalues are repeated in (A.15) according to their geometric multiplicity.
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iii) If it holds λj 6= λk then the corresponding eigenfunctions uj and uk are orthogonal with
respect to a(·, ·) and d(·, ·), i.e., we have a(uj , uk) = 0 and d(uj , uk) = 0.

iv) The eigenfunctions
(
uj
)N
j=1

form a basis of H and without loss of generality it can be

assumed that all eigenfunctions are orthonormal with respect to a(·, ·) or d(·, ·).

Proof: According to Lemma A.20 and Lemma A.22 the solution operator T associated to
eigenvalue problem (A.9) is compact, selfadjoint and positive definite. Correspondingly, Theo-
rem A.12 and Theorem A.16 can be applied to characterise the spectrum and the eigensolution
of the operator T . Equivalence (A.13) proves the remaining statements. In particular, for
eigenvalues λk 6= λl it holds because of the symmetry of a(·, ·) and d(·, ·) that

λk d(uk, ul) = a(uk, ul) = a(ul, uk) = λl d(ul, uk) = λl d(uk, ul).

Since λk 6= λl it follows that d(uk, ul) = 0, and from a(uk, ul) = λk d(uk, ul) it follows that
a(uk, ul) = 0.
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In this section basic definitions and results from the theory of Sobolev spaces are recalled which
are used for the analysis of elliptic PDE eigenvalue problems. To introduce this topic, basic func-
tion spaces are recalled (Section B.1) and the smoothness of the boundary of a domain Ω ⊂ Rd
is discussed (Section B.2). Afterwards the weak derivatives is introduced and basic results from
the theory of the associated Sobolev spaces are discussed (Section B.3). More information on
Sobolev spaces can be found in [37] or any textbook on this topic.

Throughout the whole section it is assumed that Ω is an open subset of Rd.

B.1. Basic Function Spaces

First of all, different differentiability classes of functions f : Ω→ R are listed.

Definition B.1 (Ck(Ω)-functions) • Let M be a subset of Rd, then the space of functions
f : M → R which are continuous on M is denoted by C0(M).

• For k ∈ N we denote by Ck(Ω) the space of functions f : Ω → R for which all (partial)
derivatives Dαf of order |α| ≤ k exist, with α ∈ Nd0, and where all these derivatives are
continuous on Ω. Note that α = (α1, . . . , αd) is a multi-index and that the notation

Dαf :=
∂|α|f

∂xα1
1 . . . ∂xαdd

with |α| := α1 + . . .+ αd.

is used.

For the closure of the open set Ω ⊂ Rd the space Ck(Ω) is introduced which is defined by
the set of all functions f ∈ Ck(Ω) ∩ C0(Ω) where all (partial) derivatives Dαf of order
|α| ≤ k can be continuously extended to Ω.

• The space of functions f : Ω→ R which have (partial) derivatives of any order is denoted
by C∞(Ω). Functions f ∈ C∞(Ω) are called smooth.

• A function f ∈ C∞(Ω) is called analytic, if f is equal to its Taylor series expansion around
any point x ∈ Ω. The space of all these functions is denoted by f ∈ Cω(Ω) and is a proper
subset of C∞(Ω).

Definition B.2 (C∞0 (Ω)-function) The support of a function f : Ω→ R is defined by

supp(f) := {x ∈ Ω : f(x) 6= 0}.

The so-called space of test (or bump) functions is then defined by

C∞0 (Ω) :=
{
f ∈ C∞(Ω) : supp(f) is compact, supp(f) ⊂ Ω, supp(f) ∩ ∂Ω = ∅

}
.
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The Sobolev spaces, which are introduced in Section B.3, are based on the Lebesgue space
L2(Ω) which is defined as follows:

Definition B.3 (L2(Ω)-function) The set of all functions f : Ω → R where |f |2 is Lebesgue
integrable on Ω is denoted by L2(Ω). Two functions f, g ∈ L2(Ω) are considered as equal (f = g),
if it holds f(x) = g(x) for almost all x ∈ Ω, i.e., the equality holds for all x ∈ Ω \M where M
is a suitable measure-zero set.

Theorem B.4 • L2(Ω) is a Hilbert space together with the inner product and the norm

( f, g )0 := ( f, g )L2(Ω) :=

∫
Ω
f(x)g(x) dx with f, g ∈ L2(Ω),

‖f‖0 := ‖f‖L2(Ω) :=

{ ∫
Ω
|f(x)|2 dx

}1/2

with f ∈ L2(Ω).

• The spaces C∞(Ω) ∩ L2(Ω) and C∞0 (Ω) are densein L2(Ω).

Definition B.5 (L∞(Ω)-function) The set of all functions f : Ω→ R that are bounded almost
everywhere and locally Lebesgue integrable on Ω is denoted by L∞(Ω). It is not distinguished
between functions which are equal almost everywhere on Ω. The supremum norm is defined by

‖f‖L∞(Ω) := inf

{
sup

x∈Ω\M
|f(x)| : M is a measure-zero set

}
and with this norm the linear space L∞(Ω) forms a Banach space.

B.2. Classification of the Boundary

In the analysis of partial differential equations and in the theory related to Sobolev functions
f : Ω→ R it is often required that the subset Ω ⊂ Rd has a sufficiently smooth boundary.

Definition B.6 (Boundary) The boundary ∂Ω of a subset Ω ⊂ Rd is defined by

∂Ω := Ω ∩ (Rd \ Ω).

To classify the smoothness of the boundary ∂Ω the so-called Hölder spaces are introduced.

Definition B.7 (Hölder Spaces) Let M be an open and bounded subset of Rd. Then the
Hölder spaces C0,λ(M) and Ck,λ(M) are defined as follows:

• A function f ∈ C0(M) is called (uniformly) Hölder continuous on M with exponent λ ∈
(0, 1], if there exists a constant Cf > 0 such that

|f(x)− f(y)| ≤ Cf‖x− y‖λ for all x, y ∈M.

The set of all Hölder continuous functions forms a linear space which is denoted by
C0,λ(M). In the special case λ = 1 we call a function f ∈ C0,1(M) Lipschitz continu-
ous.
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• For k ∈ N and λ ∈ (0, 1] the space Ck,λ(M) is defined by

Ck,λ(M) :=
{
f ∈ Ck(M) : Dαf ∈ C0,λ(M) for all α ∈ Nd0 with |α| ≤ k

}
.

A function f ∈ Ck,λ(M) is called k-fold Hölder continuously differentiable.

For the Hölder spaces defined above the following inclusions are valid:

Remark B.8 For all k ∈ N0 and all λ, µ ∈ (0, 1] with λ < µ we have

Ck,λ(M) ⊂ Ck(M) and Ck,µ(M) ⊂ Ck,λ(M).

The definition of the Hölder spaces can be generalised to functions f : M → U where U is
a subset of Rd. Note that a function f : M → U can be entirely described by its component
functions fi for i = 1, . . . , d with

fi : M → R and f(x) = ( f1(x), . . . , fd(x) )T for all x ∈M. (B.1)

Definition B.9 Let M ⊂ Rd be open and bounded, and U ⊂ Rn for some n ∈ N. For k ∈ N0

and λ ∈ (0, 1] we define the space Ck,λ(M,U) by all functions f : M → U which possess
component functions fi : M → R with fi ∈ Ck,λ(M) for all i = 1, . . . , n.

Finally, the smoothness of the boundary of Ω ⊂ Rd is characterised as follows:

Definition B.10 (Boundary Classification) Let k ∈ N0 and λ ∈ (0, 1]. Furthermore, we
denote by Br(x0) :=

{
x ∈ Rd : ‖x− x0‖ < r

}
the d-dimensional open ball of radius r > 0 and

centre x0 ∈ Rd.

• We say the boundary ∂Ω is of class Ck,λ and write ∂Ω ∈ Ck,λ if for every point x0 ∈ ∂Ω
there exists a radius r > 0 and a bijection ψ : Br(x0)→ B1(0) such that

ψ(Br(x0) ∩ Ω ) = B+
1 (0) :=

{
(x1, . . . , xd)

T ∈ B1(0) : xd > 0
}
, (B.2)

ψ(Br(x0) ∩ ∂Ω ) = B0
1 (0) :=

{
(x1, . . . , xd)

T ∈ B1(0) : xd = 0
}
, (B.3)

ψ(Br(x0) ∩ Rd \ Ω ) = B−1 (0) :=
{

(x1, . . . , xd)
T ∈ B1(0) : xd < 0

}
, (B.4)

and
ψ ∈ Ck,λ(Br(x0), B1(0) ), ψ−1 ∈ Ck,λ(B1(0), Br(x0) ). (B.5)

• Furthermore, a boundary ∂Ω ∈ Ck,λ is called analytic if in addition to (B.2)—(B.5) it
holds that all component functions ψi : Br(x0) → R of the bijection ψ : Br(x0) → B1(0)
are analytic. In particular, it is assumed that there exist constants Cψ, γψ ∈ R>0 such that
for all n ∈ N0 it holds

|ψ|n,∞ :=

∥∥∥∥ { ∑
|α|=n

n!

α!
|Dαψ|2

}1/2 ∥∥∥∥
L∞(Br(x0) )

≤ Cψ n! (γψ)n

where |Dαψ(x)|2 :=
∑d

i=1 |Dαψi(x)|2.
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In the analysis of partial differential equations and the theory of Sobolev spaces it is often
sufficient to have a boundary ∂Ω of class C0,1, i.e., the boundary can be represented locally
by the graph of Lipschitz-continuous functions. Beside this, it is often needed that Ω is open,
connected1 and bounded:

Definition B.11 (Lipschitz Domain) A set Ω ⊂ Rd which is open and connected is called
domain. If it additionally holds ∂Ω ∈ C0,1 then Ω is said to have a Lipschitz boundary, and Ω
is called Lipschitz domain.

The assumption that a partial differential equation is defined on a Lipschitz domain is not very
restrictive, since these properties are usually fulfilled by the domains used in practice.

Remark B.12 Let Ω ⊂ Rd be a domain with Lipschitz boundary ∂Ω. Then, there exists an
exterior normal field ~n almost everywhere on ∂Ω. That means ~n(x) ∈ Rd is a unit vector,
orthogonal to the tangential hyperplane in x ∈ ∂Ω, and directed to the outside. The normal
derivative of u in x ∈ ∂Ω is defined by

∂u(x)

∂n
:= (~n(x))T∇u(x).

B.3. The Weak Derivative and the Sobolev Space

The theory for the solution of elliptic PDE eigenvalue problems is based on the concept of weak
derivatives and the corresponding Sobolev spaces. Important definitions and results which are
related to this topic are summarised in the following.

Definition B.13 (Weak Derivative) Consider u ∈ L2(Ω) and the multi-index α = (α1, . . . , αd) ∈
Nd0 with |α| > 0. We say, the function u has the α-th weak derivative Dαu, if there exists a
function Dαu := w ∈ L2(Ω) with2

(v, w)0 = (−1)|α|(Dαv, u )0 for all v ∈ C∞0 (Ω) (B.6)

where Dαv is the α-th (partial) derivative of v with

Dαv =
∂|α|v

∂xα1
1 . . . ∂xαdd

and |α| := α1 + . . .+ αd.

Lemma B.14 If the weak derivative Dαu ∈ L2(Ω) exists for a function u ∈ L2(Ω) and α ∈ Nd0,
then it is unique in L2(Ω). If it additionally holds that u ∈ Ck(Ω) for some k ∈ N and if
0 < |α| ≤ k, then the α-th weak derivative and the α-th classical derivative are equal almost
everywhere in Ω.

Remark B.15 As noted above, the weak derivative and the classical derivative — if both exist
— are equal in the L2(Ω) sense. However, the existence of the classical derivative does not
imply the existence of the corresponding weak derivative, and also not the other way around.
For example, even the condition u ∈ C∞(Ω)∩C0(Ω) does not guarantee the existence of the first
weak derivative.

1A set Ω ⊂ Rd is called connected if for all x, y ∈ Ω exists a function ϕ ∈ C0([0, 1]) with ϕ : t ∈ [0, 1] 7→ ϕ(t) ∈ Ω
and ϕ(0) = x, ϕ(1) = y.

2The requirement (B.6) on the weak derivative is adapted to Green’s formula: For given k ∈ N and α ∈ Nd0 with
|α| ≤ k it holds

∫
Ω
Dαu(x)v(x) dx = (−1)|α|

∫
Ω
u(x)Dαv(x) dx for all u ∈ Ck(Ω) and v ∈ C∞0 (Ω).
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Definition B.16 (Sobolev Space I) For k ∈ N0 the Sobolev space Hk(Ω) is given by

Hk(Ω) :=
{
f ∈ L2(Ω) : Dαf ∈ L2(Ω) exists for all α ∈ Nd0 with |α| ≤ k

}
where Dαf denotes the α-th (partial) weak derivative of f .

Theorem B.17 For Ω ⊂ Rd it holds:

i) Hk(Ω) is a Hilbert space with the inner product and norm

( f, g )k := ( f, g )Hk(Ω) :=
∑
|α|≤k

∫
Ω
Dαf(x)Dαg(x) dx with f, g ∈ Hk(Ω),

‖f‖k := ‖f‖Hk(Ω) :=

{ ∑
|α|≤k

‖Dαf‖2L2(Ω)

}1/2

with f ∈ Hk(Ω).

ii) A seminorm3 on Hk(Ω) is given by

|f |k := |f |Hk(Ω) :=

{ ∑
|α|=k

‖Dαf‖2L2(Ω)

}1/2

.

iii) If Ω is a bounded Lipschitz domain, then | · |k and ‖ · ‖k are equivalent norms on Hk
0 (Ω).

iv) C∞(Ω) ∩Hk(Ω) is dense in Hk(Ω).

In contrast to C∞(Ω) the smaller function space C∞0 (Ω) is in general not dense in Hk(Ω).
Since C∞0 (Ω)-functions vanish close to the boundary ∂Ω, the closure of C∞0 (Ω) with respect to
the Hk(Ω)-norm is used to define the Sobolev space with a zero-boundary in a “weak” sense.

Definition B.18 (Sobolev Space II) The space Hk
0 (Ω) is defined as the closure of C∞0 (Ω)

with respect to the norm ‖ · ‖k of Hk(Ω).

For the investigation of partial differential equations and their weak formulations, it is neces-
sary to evaluate boundary values of Sobolev functions. For a function u ∈ C0(Ω) the boundary
values are described by the restriction u|∂Ω. However, for a function u ∈ H1(Ω) it is not clear
how to describe its values on the boundary ∂Ω, since ∂Ω is a measure-zero set. This problem,
however, is resolved by the following theorem.

Theorem B.19 (Trace Operator) Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary
Γ := ∂Ω. Then there exists a unique bounded linear operator γ : H1(Ω)→ L2(Γ) with

∀ u ∈ C1(Ω) : γ(u) = u|Γ,

∀ u ∈ H1(Ω) : ‖γ(u)‖L2(Γ) ≤ CΩ ‖u‖H1(Ω),

where CΩ > 0 is a constant depending only on Ω. The operator γ is called the trace operator,
and for a given u ∈ H1(Ω) the function γ(u) ∈ L2(Γ) is called the trace of u.

3A seminorm on a linear space X is a mapping | · | : X → [0,∞) which has the same properties as a norm except
that it has not to hold that | · | is positive definite.
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Remark B.20 i) The function γ(u) represents the “values” of the function u ∈ H1(Ω) on
the boundary Γ := ∂Ω. Correspondingly, the notation u|Γ is often used for γ(u). For
example, for a given u ∈ H1(Ω), the equation u|Γ = 0 has to be interpreted as γ(u) = 0 in
L2(Γ).

ii) In general the trace operator is not surjective. It can be only shown that Im(γ) is dense
in L2(Γ). However, Im(γ) can be characterised by the so-called Sobolev-Slobodeckij space
H1/2(Γ) via

H1/2(Γ) = Im(γ) =
{
v ∈ L2(Γ) : ∃u ∈ H1(Ω) with v = γ(u)

}
.

The Sobolev-Slobodeckij spaces Hs(Γ) are Hilbert spaces with inner product (·, ·)Hs(Γ) and
defined for indices s ∈ R≥0 (cf. [37, Theorem 6.2.39]). These spaces can be seen as a
generalisation of the usual Sobolev spaces with quite similar properties as Hk(Γ) with k ∈ N.
In particular, if Ω is a bounded Lipschitz domain then the trace operator γ : H1(Ω) →
H1/2(Γ) is continuous (cf. [37, Theorem 6.2.40]), i.e., there exists a constant C > 0

such that ‖γ(u)‖H1/2(Γ) ≤ C‖u‖H1(Ω) where ‖τ‖H1/2(Γ) := (τ, τ)
1/2

H1/2(Γ)
is the norm of

τ ∈ H1/2(Γ). Vice versa, there exists a bounded linear (extension) operator Φ : H1/2(Γ)→
H1(Ω) such that for all τ ∈ H1/2(Γ) it holds γ(τ̃) = τ with τ̃ := Φ(τ). In particular, there
exists a constant C ′ > 0 such that ‖Φ(τ)‖H1(Ω) ≤ C ′‖τ‖H1/2(Γ).

Using the trace operator from Theorem B.19 the space Hk
0 (Ω) can be characterised for the

special case k = 1 in a more natural way:

Theorem B.21 If Ω ⊂ Rd is a Lipschitz domain, then it holds

H1
0 (Ω) =

{
u ∈ H1(Ω) : u|∂Ω = 0

}
where u|∂Ω is the value of u on the boundary ∂Ω according to Remark B.20 i).

In Lemma B.14 and Remark B.15 the connection between the weak and the classical derivative
has been discussed. The following theorem partially treats this issue. More precisely, in Theorem
B.22 the smoothness of Sobolev functions in the sense of weak derivatives is related to the
classical smoothness in the sense of Cm(Ω). For example, in the one-dimensional case with
Ω ⊂ R it can be shown that all H1(Ω)-functions are continuous on Ω, however, in the two-
dimensional case this is in general not true.

Theorem B.22 (Sobolev’s Embedding Theorem) Let Ω ⊂ Rd be a bounded Lipschitz do-
main and m ∈ N0. Furthermore, the notations H0(Ω) := L2(Ω) and H0

0 (Ω) := L2(Ω) are used.
Then, depending on the index k ∈ N0 of the Sobolev space and the spatial dimension d ∈ N, the
following embeddings are continuous and compact:

Hk+1(Ω) ↪→ Hk(Ω),

Hk+1
0 (Ω) ↪→ Hk

0 (Ω)

}
for k ≥ 0, and

Hk(Ω) ↪→ Cm(Ω),

Hk
0 (Ω) ↪→ Cm(Ω)

}
for k − d

2 > m.

Especially, the embeddings

Hk(Ω) ↪→ L2(Ω) for k ∈ N and Hk
0 (Ω) ↪→ L2(Ω) for k ∈ N

are continuous, compact and dense.
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In this section fundamental results on the asymptotic distribution of the eigenvalues of the
elliptic PDE eigenvalue problem (1.1) are presented. These result derived here will be used in
Appendix D to refine the error estimates of the finite element discretisation.

Since the numerical computation of eigenvalues λj becomes very difficult for large j (and only
for some problems the eigenvalues can be computed analytically), in literature the asymptotic
behaviour of the eigenvalues has been investigated as j →∞. However, instead of deriving the
asymptotics for λj it has been shown that it is more convenient to calculate the asymptotic
distribution of the eigenvalues. The first important results in this field have been derived by
Weyl in 1911 (cf. [66]) where he described the asymptotic behaviour1 of the eigenvalues of the
Laplace eigenvalue problem on bounded Lipschitz domains. From then on this field has been
investigated by many (see, for example, [1], [4], [25, Chapter VI, Section 4], [58]). The main
result reads as follows.

Theorem C.1 (Weyl’s Law) Consider the variational eigenvalue problem (2.12) and assume
that a) and b) of Precondition 3.12 are fulfilled. Furthermore, define the eigenvalue counting
functions N1, N2 : R→ N0 by

N1(t) := card
{
j : λj < t

}
and N2(t) := card

{
j : λj ≤ t

}
.

Then the asymptotic distribution of the eigenvalues is described by

lim
t→∞

N1(t)

td/2
= CWeyl and lim

t→∞

N2(t)

td/2
= CWeyl (C.1)

where CWeyl > 0 is a constant which only depends on the underlying domain Ω and on the
coefficients of the underlying partial differential operator L.

Proof: In [58, Theorem 13.1] it is proven that for all s ∈ (0, 1
3) it holds

N1(t) = CWeyl t
d/2 + O

(
t(d−s)/2

)
as t→∞. (C.2)

It follows that statement (C.1) is valid for counting function N1. Statement (C.1) for counting
function N2 is derived as follows: Since eigenvalue problem (2.12) has a discrete spectrum there
exist for all t ∈ R some δ1(t) > 0 such that N2(t) = N1(t+ δ) for all 0 < δ < δ1(t). Furthermore,
for all ε > 0 and all t > 0 there exists an δ2(t, ε) > 0 such that∣∣∣N2(t)

td/2
− N2(t)

(t+ δ)d/2

∣∣∣ < ε for all 0 < δ < δ2(t, ε).

1The behaviour of the asymptotic distribution of the eigenvalues for the Laplace problem became known as
Weyl’s Law.
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We conclude that

N1(t+ δ)

(t+ δ)d/2
− ε <

N2(t)

td/2
<

N1(t+ δ)

(t+ δ)d/2
+ ε ∀ 0 < δ < min

{
δ1(t), δ2(t, ε)

}
. (C.3)

From (C.3) we obtain for t→∞, by using the already proven statement (C.1) for N1, that

CWeyl − ε ≤ lim
t→∞

N2(t)

td/2
≤ CWeyl + ε

which finally leads to statement (C.1) for counting function N2 when ε→ 0.

As seen in Theorem C.1 counting function N1 and N2 can be equivalently used to express
the asymptotic statement (C.1). In literature counting function N2 is more commonly used.
Note that the counting functions take the multiplicities of the eigenvalues into account. Using
statement (C.1) the following bounds for the eigenvalues of problem (2.12) can be derived.

Theorem C.2 (Eigenvalue Bounds) Let the assumptions of Theorem C.1 be fulfilled. Then
there exist constants Cb, cb > 0 independent of j (with cb < CWeyl < Cb), such that the eigenvalues
of problem (2.12) can be bounded by

cb λ
d/2
j ≤ j ≤ Cb λ

d/2
j and

(
j

Cb

)2/d

≤ λj ≤
(
j

cb

)2/d

for all j ∈ N. (C.4)

Proof: From the definition of the counting functions it follows

N1(λj) < j and j ≤ N2(λj) for all j ∈ N. (C.5)

Furthermore, since the sequence (λj)j∈N is monotonically increasing with λj →∞ for j →∞ it
follows from (C.1) that

lim
j→∞

N1(λj)

λ
d/2
j

= CWeyl and lim
j→∞

N2(λj)

λ
d/2
j

= CWeyl. (C.6)

Hence, there exist constants Cb, cb > 0 independent of j (with cb < CWeyl < Cb) such that

cb ≤
N1(λj)

λ
d/2
j

and
N2(λj)

λ
d/2
j

≤ Cb for all j ∈ N. (C.7)

Combining (C.5) with (C.7) we obtain that

cb λ
d/2
j ≤ N1(λj) < j and j ≤ N2(λj) ≤ Cb λ

d/2
j for all j ∈ N

which finally leads to statement (C.4).

In the following the asymptotic behaviour of the spectral gap is analysed. In particular, it is
discussed when a lower bound for the relative spectral gap

∆1(λj) :=
dist( λj , σ(L) \ {λj} )

λj
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can be found where σ(L) ⊂ R is defined as the spectrum of eigenvalue problem (2.12). To the
best of the author’s knowledge in literature asymptotic sharp lower bounds for the spectral gap
are not available. Only in [64] it has been motivated that under quite technical assumptions
on the right-hand side of (C.2), and provided that λj has multiplicity 1 and λj−1 is sufficiently
large, it holds

∆1(λj) = λ
−d/2
j

(
C ± O

(
λ
−d/2
j−1

) )
as j →∞ (C.8)

with for some constant C > 0.

For the analysis of the spectral gap an additional notation and ordering of the eigenvalues
of problem (2.12) is introduced in this particular section: For j ∈ N we denote with λ̃j the
eigenvalues of (2.12) which are ordered by the size but where — in contrast to the ordering
(3.13) — the multiplicity of the eigenvalues is not taken into account, i.e., we have

0 < λ̃1 < λ̃2 < λ̃3 < . . . .

For j ∈ N we define

k̃j := dimE( λ̃j ) and m̃j :=

j∑
l=1

dimE( λ̃l )

and obtain the following relation

λm̃j︸ ︷︷ ︸
= λ̃j

< λm̃j+1 = . . . = λm̃j+k̃j+1︸ ︷︷ ︸
= λ̃j+1

< λm̃j+1 +1︸ ︷︷ ︸
= λ̃j+2

for all j ∈ N. (C.9)

Lemma C.3 Let the assumptions of Theorem C.1 be fulfilled, then it holds

lim
j→∞

k̃j+1

m̃j
= 0 and lim

j→∞

k̃j
m̃j

= 0 (C.10)

Proof: Analogically to the proof of the estimates (C.4) it can be shown that there exists for all
ε > 0 some j0(ε) ∈ N such that(

j

CWeyl + ε

)2/d

≤ λj ≤
(

j

CWeyl − ε

)2/d

for all j ≥ j0(ε). (C.11)

From this and (C.9) it follows that for all j ∈ N with m̃j + 1 ≥ j0(ε) it holds(
m̃j + k̃j+1

CWeyl + ε

)2/d

≤ λm̃j+k̃j+1
= λm̃j+1 ≤

(
m̃j + 1

CWeyl − ε

)2/d

. (C.12)

If we assume that the left-hand side of (C.10) is not valid, then there exists some constant % > 0
and a strictly increasing sequence (jn)n∈N ⊂ N such that

k̃jn+1 > % m̃jn . (C.13)
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According to (C.12) it has to hold for all jn with m̃jn + 1 ≥ j0(ε) that

m̃jn + k̃jn+1

CWeyl + ε
≤ m̃jn + 1

CWeyl − ε

which is equivalent to

k̃jn+1 ≤
2ε

CWeyl − ε
m̃jn +

CWeyl + ε

CWeyl − ε
. (C.14)

However, if we choose ε such that % ≥ (4ε)/(CWeyl − ε) and jn such that

m̃jn ≥ max
(
j0(ε)− 1,

2

%

CWeyl + ε

CWeyl − ε

)
it follows from (C.13) that

k̃jn+1 > % m̃jn =
%

2
m̃jn +

%

2
m̃jn ≥

2ε

CWeyl − ε
m̃jn +

CWeyl + ε

CWeyl − ε

which stands in contradiction to (C.14), i.e., it has to hold k̃j+1/m̃j → 0 for j → ∞. Finally,
the right-hand side of (C.10) follows from

k̃j
m̃j
≤ k̃j

m̃j−1

j→∞−−−−−→ 0.

From the right-hand side of (C.6) it follows that

lim
j→∞

λ̃j(
N2(λ̃j)

)2/d = C ′Weyl with C ′Weyl :=
(
CWeyl

)−2/d
. (C.15)

From the definition of the counting function N2 we conclude that N2(λ̃j) = m̃j and we obtain
from (C.15) the identity

λ̃j = C ′Weyl m̃
2/d
j + r̃(j) (C.16)

with some suitable remainder term r̃(j) ∈ o
(
m̃

2/d
j

)
as j →∞.

Theorem C.4 (Spectral Gap Bounds) Let the assumptions of Theorem C.1 be fulfilled. If
the remainder term r̃(j) in (C.16) fulfils one of the following conditions

i) d̃(j) := r̃(j)− r̃(j − 1) ∈ o
(
k̃j m̃

2/d−1
j

)
as j →∞, (C.17)

ii) r̃(j) ≥ r̃(j − 1) ∀ j ≥ j0 for some j0 ∈ N, (C.18)

then there exist constants cg1, cg2, cg3 > 0 independent of j such that the spectral gap can be
bounded from below by

∆1(λ̃j) := min

{
λ̃j−λ̃j−1

λ̃j
,
λ̃j+1−λ̃j

λ̃j

}
≥ cg1

min
{

dimE( λ̃j ),dimE( λ̃j+1 )
}

λ̃
d/2
j

∀ j > 1, (C.19)

∆2(λ̃j) := min

{
λ̃j−λ̃j−1

λ̃j
,
λ̃j+1−λ̃j
λ̃j+1

}
≥ cg2

min
{

dimE( λ̃j ),dimE( λ̃j+1 )
}

λ̃
d/2
j

∀ j > 1, (C.20)

∆3(λ̃j) :=
λ̃j−λ̃j−1

λ̃j
≥ cg3

dimE( λ̃j )

λ̃
d/2
j

∀ j > 1. (C.21)
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Proof: According to (C.9) we have λ̃j = λm̃j and it follows from Corollary C.2 that

cb λ̃
d/2
j ≤ m̃j ≤ Cb λ̃

d/2
j and

(
m̃j

Cb

)2/d

≤ λ̃j ≤
(
m̃j

cb

)2/d

for all j ∈ N. (C.22)

Let be j > 1 in the following. Using identity (C.16) and that m̃j−1 = m̃j − k̃j we obtain

λ̃j − λ̃j−1

λ̃j
≥

(C.22)
c

2/d
b

λ̃j − λ̃j−1

m̃
2/d
j

= c
2/d
b C ′Weyl

m̃
2/d
j − m̃2/d

j−1

m̃
2/d
j

+ c
2/d
b

r̃(j)− r̃(j − 1)

m̃
2/d
j

= c
2/d
b C ′Weyl

m̃
2/d
j − (m̃j − k̃j)2/d

m̃
2/d
j

+ c
2/d
b

d̃(j)

m̃
2/d
j

.

For d ∈ N a Taylor argument leads to

(m̃j − k̃j)2/d = m̃
2/d
j − 2

d k̃j m̃
2/d−1
j + 2−d

d2 k̃2
j (m̃j − ξj)2/d−2 for some ξj ∈ (0, k̃j).

It follows that

λ̃j − λ̃j−1

λ̃j
≥ c

2/d
b

(
2
dC
′
Weyl

k̃j m̃
2/d−1
j

m̃
2/d
j

− 2−d
d2 C

′
Weyl

k̃2
j (m̃j − ξj)2/d−2

m̃
2/d
j

+
d̃(j)

m̃
2/d
j

)

= c
2/d
b

k̃j
m̃j

(
2
dC
′
Weyl − 2−d

d2 C
′
Weyl

k̃j (m̃j − ξj)2/d−2

m̃
2/d−1
j

+
d̃(j)

k̃j m̃
2/d−1
j

)
(C.23)

Because of Lemma C.3 there exists some j0 ∈ N such that k̃j ≤ m̃j/2 for all j ≥ j0. Hence, for
all j ≥ j0 and all d ∈ N it follows that ξj < k̃j ≤ m̃j/2 and that∣∣∣∣∣ k̃j(m̃j − ξj)2/d−2

m̃
2/d−1
j

∣∣∣∣∣ ≤ k̃j(
1
2m̃j)

2/d−2

m̃
2/d−1
j

=
k̃j 22−2/d

m̃j
< 4

k̃j
m̃j

j→∞−−−−→ 0. (C.24)

Correspondingly, if we assume that (C.17) or (C.18) is valid then we obtain from (C.23) by using
(C.24) that for sufficiently large j it holds

λ̃j − λ̃j−1

λ̃j
≥ c

2/d
b

k̃j
m̃j

1
dC
′
Weyl ≥

(C.22)

k̃j

λ̃
d/2
j

c
2/d
b C ′Weyl

dCb

.

We conclude that there exists some constant cg3 > 0 independent of j such that

∆3(λ̃j) =
λ̃j − λ̃j−1

λ̃j
≥ cg3

k̃j

λ̃
d/2
j

for all j > 1

and (C.21) is proven. Furthermore, for j > 0 it holds

∆2(λ̃j) = min
{

∆3(λ̃j),∆3(λ̃j+1)
}

and ∆1(λ̃j) = min
{

∆3(λ̃j),∆3(λ̃j+1)
λ̃j+1

λ̃j

}
. (C.25)
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Because of Lemma C.3 there exists some j0 ∈ N such that k̃j+1 ≤ m̃j for all j ≥ j0 which leads
to

∆3(λ̃j+1) ≥
(C.21)

cg3

k̃j+1

λ̃
d/2
j+1

≥
(C.22)

cg3

cb k̃j+1

m̃j+1
= cg3

cb k̃j+1

m̃j + k̃j+1

≥
(if j≥j0)

cg3

cb k̃j+1

m̃j + m̃j
=

cg3 cb

2

k̃j+1

m̃j
≥

(C.22)

cg3 cb

2Cb

k̃j+1

λ̃
d/2
j

and

∆3(λ̃j+1)
λ̃j+1

λ̃j
≥ ∆3(λ̃j+1) ≥

(if j≥j0)

cg3 cb

2Cb

k̃j+1

λ̃
d/2
j

.

These estimates combined with (C.21) and (C.25) lead to the statement that there exist constants
cg1, cg2 > 0 independent of j such that

∆2(λ̃j) ≥ cg2

min
{
k̃j , k̃j+1

}
λ̃
d/2
j

and ∆1(λ̃j) ≥ cg1

min
{
k̃j , k̃j+1

}
λ̃
d/2
j

.

Furthermore, it is noted that — if condition (C.17) is valid — one can proof in an analogical
way that there exist constants Cg1, Cg2, Cg3 > 0 independent of j such that

∆3(λ̃j) ≤ Cg3

k̃j

λ̃
d/2
j

, ∆2(λ̃j) ≤ Cg2

min
{
k̃j , k̃j+1

}
λ̃
d/2
j

, ∆1(λ̃j) ≤ Cg1

min
{
k̃j , k̃j+1

}
λ̃
d/2
j

.

A very easy example where this condition is fulfilled is the Laplace eigenvalue problem (2.17)
for d = 1. All eigenvalues of this problem are simple and given by λ̃j = λj = j2π2. Correspond-
ingly, we have r̃(j) = 0 and hence the spectral gap can be estimated by

cg λ
−1/2
j ≤ ∆k(λj) ≤ Cg λ

−1/2
j for all j ∈ N (with k=1,2,3).

However, it is quite challenging to prove for a general elliptic PDE eigenvalue problem that

the remainder term r̃(j) ∈ o(m̃2/d
j ) from (C.16) fulfils condition (C.17) or (C.18). In literature

typically only asymptotic statements for the counting functions N1 or N2 of the form (C.2) can
be found. These statements are not sufficient to derive for the difference d̃(j) = r̃(j)− r̃(j − 1),

for example, a bound of the form d̃(j) ∈ o
(
k̃j m̃

2/d−1
j

)
. Hence, the asymptotic analysis has to

be extended to the difference term d̃(j) and further research is needed, so far it is only known

that d̃(j) ∈ o( m̃j m̃
2/d−1
j ). However, Corollary C.4 shows that the remainder term r̃(j) has to

fulfil certain properties [such as (C.17) or (C.18)] in order to derive sharp lower bounds for the
spectral gap. Furthermore, Corollary C.4 gives an orientation what we can possibly expect from
the spectral gap.
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D. Preliminary Work for Results on the FEM
Approximation

This section forms the basis of Section 3.4 where approximation results for the finite element
discretisation of eigenvalue problem (2.12) are derived. First of all, the error estimates presented
in [64] are summarised and slightly adjusted. These results are combined with the results from
Appendix C on the asymptotic behaviour of the continuous eigenvalues and their spectral sepa-
ration. The resulting approximation properties are finally summarised in Section 3.4, however,
the corresponding proofs can be found here.

Starting point of the following discussion is the setting described in Precondition 3.12 from
Section 3.4. To derive error estimates for the discretised eigenvalues and eigenfunctions the
approximation quality of the finite element space Vh = Xph,0 has to be measured, more precisely,
it has to be measured how good the space Vh is approximating the continuous eigenfunctions.

For this purpose the spaces Uj and quantities d̃
2
(Uj , Vh) are introduced for j = 1, . . . , Nh by

Uj := span
{
ui : 1 ≤ i ≤ j

}
and d̃

2
(Uj , Vh) :=

j∑
i=1

(
‖(I −Qh)ui‖1
‖ui‖1

)2

(D.1)

where Qh : H1
0 (Ω)→ Vh is the H1

0 (Ω)-orthogonal projection onto Vh.
The connection between the finite element discretisation of eigenvalue problem (2.12) and the

approximation properties of the underlying finite element space Vh is described by the following
theorem.

Theorem D.1 Consider the variational eigenvalue problem (2.12) and its Ritz-Galerkin dis-
cretisation (3.1). Let Precondition 3.12 be satisfied and j ∈ {1, . . . , Nh}. Then the relative error

of the continuous eigenvalue λj and its finite element approximation λ
(h)
j can be estimated from

above by

0 ≤
λ

(h)
j − λj
λ

(h)
j

≤ d̃
2
(Uj , Vh).

In the case that it holds d̃
2
(Uj , Vh) < 1 for some j ∈ {1, . . . , Nh} the discretisation error can be

estimated by

0 ≤
λ

(h)
j − λj
λj

≤ d̃
2
(Uj , Vh)

1− d̃ 2
(Uj , Vh)

. (D.2)

Proof: The result can be found in [64, Theorem 4.1].

Estimates for the quantities d̃
2
(Uj , Vh) have been derived in [64] by combining the regularity

result of Theorem 2.10 with suitable approximation properties of the underlying finite element
space Vh:
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Theorem D.2 Consider the variational eigenvalue problem (2.12) and assume that Precon-
dition 3.12 is fulfilled. Let C1 > 0 be some given (arbitrary) constant. If the discretisation
parameters h and p of the finite element space Vh are chosen such that the condition√

λjh

p
≤ C1 (D.3)

is fulfilled then it holds

d̃
2
(Uj , Vh) ≤ C3

( min{λ1, 1} )2

j∑
i=1

(
1

λi

(
C2h

h+ σ

)2p

+

(√
λih

σp

)2p
)

(D.4)

where C2, C3, σ > 0 are constants independent1 of j, h, p.

Proof: The result and the corresponding proof can be found in [64, Theorem 3.2 and Corollary
4.2]. To avoid misunderstandings, it is noted that the constant C3 differs from the constant C3

used in [64].

The combination of Theorem D.1 and Theorem D.2 leads to the following error estimates
between the continuous and discrete eigenvalues. It is noted that in [64, Corollary 4.2] quite
similar error estimates have been derived already.

Corollary D.3 Let the assumptions of Theorem D.2 be fulfilled, then it holds:

i) The quantities d̃
2
(Uj , Vh) can be estimated from above by

d̃
2
(Uj , Vh) ≤ C4 j

( C2h

h+ σ

)2p

+

(√
λjh

σp

)2p
 with C4 :=

C3

( min{λ1, 1} )3
. (D.5)

ii) If the discretisation parameters h and p of the space Vh fulfil additionally the condition

h2p j λpj ≤
1

2C5
with C5 :=

C4

σ2p

(
C2p

2

λp1
+ 1

)
(D.6)

then it holds d̃
2
(Uj , Vh) ≤ 1/2 and the discretisation error of the eigenvalue approximation

can be estimated from above by

0 ≤
λ

(h)
j − λj
λj

≤ 2C4 j

( C2h

h+ σ

)2p

+

(√
λjh

σp

)2p
 . (D.7)

Proof: Estimate (D.5) directly follows from (D.4). Furthermore, we obtain from (D.5) for p ∈ N

1The constants C2, C3 depend on the concrete choice of C1.
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and h > 0 that

d̃
2
(Uj , Vh) ≤ C4 j

( C2h

h+ σ

)2p

+

(√
λjh

σp

)2p
 ≤ C4 j

(C2h

σ

)2p

+

(√
λjh

σ

)2p


= C4 j

(
h

σ

)2p

λpj

(
C2p

2

λpj
+ 1

)
≤ C4 j

(
h

σ

)2p

λpj

(
C2p

2

λp1
+ 1

)

= C5 h
2p j λpj with constant C5 =

C4

σ2p

(
C2p

2

λp1
+ 1

)
.

We conclude that d̃
2
(Uj , Vh) ≤ 1/2 if condition (D.6) is valid. Combining this result with (D.2)

and (D.5) estimate (D.7) is obtained. It is noted that the constant C5 depends on λ1, p and the
concrete choice of C1, apart from that, the constant C5 is independent of the underlying mesh
width h and the eigenvalues (λj)

∞
j=2.

As noted in Section 3.2 the error analysis of the eigenfunction approximation is more challeng-
ing in the case of multiple eigenvalues. The error estimates for the eigenfunction approximation
which are presented in the following have been derived in [64]. These estimates are restricted to
the special case that all eigenvalues of the continuous problem (2.12) have multiplicity 1, i.e., it
is assumed that it holds

λ1 < λ2 < λ3 < . . . . (D.8)

Theorem D.4 Consider the variational eigenvalue problem (2.12) and its Ritz-Galerkin dis-
cretisation (3.1). In the following it is assumed that Precondition 3.12 and (D.8) are fulfilled.
Let C1 > 0 be some given (arbitrary) constant and j ∈ {1, . . . , Nh}. Furthermore, let the dis-
cretisation parameters h and p of the space Vh be chosen such that the condition√

λjh

p
≤ C1 (D.9)

is fulfilled, and let in the case that j > 1 the parameters h and p be chosen such that it holds

d̃
2
(Uj−1, Vh) ≤ 1

2

λj − λj−1

λj
. (D.10)

Then there exists a discrete eigenfunction ũ
(h)
j ∈ Eh

(
λ

(h)
j

)
such that it holds

‖uj − ũ(h)
j ‖1

‖uj‖1
≤ C̃3

min{1, λ1}

(
1 +

C̃4 h
min{p,2}

δj

)(
1√
λj

(
C2h

h+ σ

)p
+

(√
λjh

σp

)p)
(D.11)

where C2, C̃3, C̃4, σ > 0 are constants independent2 of j, h, p and where

δj := min
i∈{j+,j+1}

λi − λi−1

2λiλi−1
with j+ := max{j, 2}.

2The constants C2, C̃3 depend on the concrete choice of C1. Furthermore, it is noted that the constants C2 and
σ are the same as in Theorem D.2.
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Proof: This result and the corresponding proof can be found in [64, Corollary 5.2].

In Appendix C results on the asymptotic behaviour of the eigenvalues and the spectral gaps
have been derived. Using these results the analysis of the finite element discretisation is refined
as follows.

Corollary D.5 Let all assumptions of Theorem D.4 be fulfilled except for condition (D.10).
Instead it is assumed for j ∈ N, in view of Theorem C.4, that the spectral gap satisfies

min
i∈{j+,j+1}

λi − λi−1

2λi
≥ c6λ

−d2
j with j+ := max{j, 2}, (D.12)

for some constant c6 > 0 independent of j, and it is assumed that the discretisation parameters
h and p of the finite element space Vh are chosen such that the condition

h2p j λ
p+

d
2

j ≤ c6

C5
(D.13)

is fulfilled where the constant C5 is chosen as in (D.6). Then the relative error of the eigenfunc-
tion approximation can be estimated from above by

‖uj − ũ(h)
j ‖1

‖uj‖1
≤ C̃3

min{1, λ1}

(
1 +

C̃4

c6
λ

1+
d
2

j hmin{p,2}

)(
1√
λj

(
C2h

h+ σ

)p
+

(√
λjh

σp

)p)
.

(D.14)

Proof: In the proof of Corollary D.3 it is shown that

d̃
2
(Uj , Vh) ≤ C5 h

2p j λpj = C5 λ
−d2
j h2p j λ

p+
d
2

j

where the constant C5 is chosen as in (D.6). Correspondingly, if condition (D.12) and (D.13)
are fulfilled we obtain

d̃
2
(Uj , Vh) ≤

(D.13)
C5 λ

−d2
j

c6

C5
≤

(D.12)
min

i∈{j+,j+1}

λi − λi−1

2λi
≤ 1

2

λj − λj−1

λj

with j+ = max{j, 2}. From the definition (D.1) we conclude that

d̃
2
(Uj−1, Vh) ≤ d̃ 2

(Uj , Vh)

and it follows that condition (D.10) is fulfilled. From Theorem D.4 it follows that there exist a

discrete function ũ
(h)
j ∈ Eh

(
λ

(h)
j

)
with

‖uj − ũ(h)
j ‖1

‖uj‖1
≤ C̃3

min{1, λ1}

(
1 +

C̃4 h
min{p,2}

δj

)(
1√
λj

(
C2h

h+ σ

)p
+

(√
λjh

σp

)p)
.

From the assumption (D.12) on the spectral gap we obtain for δj that

δj = min
i∈{j+,j+1}

λi − λi−1

2λiλi−1
≥ 1

λj
min

i∈{j+,j+1}

λi − λi−1

2λi
≥

(D.12)

1

λj
c6 λ

−d2
j = c6 λ

−1−d2
j
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which finally leads to the error estimate (D.14).

The results of Corollary D.3 and Corollary D.5 show that various conditions on the discreti-
sation parameters h and p of the finite element space have to be satisfied in order that the
corresponding error estimates for the eigenvalue and eigenfunction approximation become valid.
For the eigenvalue approximation condition (D.3) and (D.6) are needed, for the eigenfunction
approximation condition (D.9) and (D.13). In Corollary 3.14 from Section 3.4 it is shown that
these conditions can be summarised. The corresponding proof is as follows.

Proof of Corollary 3.14:

Proof for the Eigenvalue Approximation:

From Corollary D.3 follows that error estimate (3.18) is valid if the discretisation parameters h
and p of the space Vh are chosen such that it holds√

λjh

p
≤ C1 and h2p j λpj ≤

1

2C5
(D.15)

where C1 > 0 is an arbitrary chosen constant, and where C5 > 0 is a constant chosen as in
(D.6) which depends on λ1, p and C1, but which is independent from the mesh width h and the
eigenvalues (λj)

∞
j=2. We introduce the following new condition

h2p j λpj ≤ CEV with CEV := min
{
C2p

1 ,
1

2C5

}
. (D.16)

If condition (D.16) is fulfilled then it follows that also the right inequality in (D.15) is fulfilled.
Furthermore, condition (D.16) can be reformulated as follows

(D.16) ⇐⇒ h2p j λpj ≤ CEV ⇐⇒ h
√
λj ≤

(
CEV j

−1
) 1

2p ⇐⇒
h
√
λj

p
≤
(
CEV j

−1
) 1

2p

p
.

Hence, if (D.16) is valid it holds for p ∈ N that

h
√
λj

p
≤
(
CEV j

−1
) 1

2p

p
≤
(
CEV j

−1
) 1

2p ≤
(
CEV

) 1
2p ≤

(D.16)

(
C2p

1

) 1
2p = C1,

i.e., the left inequality in (D.15) is fulfilled as well. We conclude if condition (D.16) is satisfied
then it follows from Corollary D.3 that error estimate (3.18) is valid. Furthermore, condition
(D.16) can be replaced by stronger conditions as follows: According to Corollary C.2 there exist
constants Cb, cb > 0 independent of j such that

j ≤ Cb λ
d/2
j and λj ≤ (j/cb)2/d for all j ∈ N. (D.17)

Using these inequalities condition (D.16) can be replaced by the following stronger conditions

h2p j1+
2p
d ≤ CEV

idx with CEV
idx := c

2p/d
b CEV, (D.18)

h2p λ
p+

d
2

j ≤ CEV
size with CEV

size := CEV/Cb (D.19)

173



D. Preliminary Work for Results on the FEM Approximation

since it holds

h2p j λpj ≤
(D.17)

h2p c
−2p
d

b j1+
2p
d ≤

(D.18)
CEV,

h2p j λpj ≤
(D.17)

h2pCb λ
p+

d
2

j ≤
(D.19)

CEV.

Altogether, we conclude that if the mesh width fulfils condition (3.16) or condition (3.17) where
the constants CEV

idx and CEV
size are chosen sufficiently small [e.g., the constants are chosen as in

(D.18) and (D.19)] then it follows that error estimate (3.18) is valid.

Proof for Eigenfunction Approximation:

From Corollary D.5 follows that estimate (3.23) is valid if the spectral gap satisfies condition
(3.20), if all continuous eigenvalues have multiplicity 1, and if the discretisation parameters h
and p of Vh are chosen such that it holds√

λjh

p
≤ C1 and h2p j λ

p+
d
2

j ≤ c6

C5
(D.20)

where C1 > 0 is an arbitrary chosen constant and C5 is a constant chosen as in (D.6). We
introduce the following new condition

h2p j λ
p+

d
2

j ≤ CEF with CEF := min
{
C2p

1 λ
d/2
1 ,

c6

C5

}
. (D.21)

If condition (D.21) is fulfilled then it follows that also the right inequality in (D.20) is fulfilled.
Furthermore, (D.21) can be reformulated as

(D.21) ⇐⇒ h2p λpj j λ
d/2
j ≤ CEF ⇐⇒ h

√
λj ≤

(
CEF j

−1λ
−d/2
j

) 1
2p

⇐⇒
h
√
λj

p
≤
(
CEF j

−1λ
−d/2
j

) 1
2p

p
.

Hence, if (D.21) is valid we follow for p ∈ N that

h
√
λj

p
≤

(
CEF j

−1λ
−d2
j

) 1
2p

p
≤
(
CEF j

−1λ
−d2
j

) 1
2p ≤

(
CEF λ

−d2
1

) 1
2p ≤

(D.21)

(
C2p

1 λ
d
2
1 λ
−d2
1

) 1
2p

= C1,

i.e., the left inequality in (D.20) is fulfilled as well. We conclude if condition (D.21) is satisfied
then it follows from Corollary D.5 that error estimate (3.23) is valid. As in the proof for
eigenvalue approximation condition the estimates (D.17), are used to replace (D.21) by the
following stronger conditions

h2p j2+
2p
d ≤ CEF

idx with CEF
idx := c

1+2p/d
b CEF,

h2p λp+dj ≤ CEF
size with CEF

size := CEF/Cb.
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Proof of Corollary 3.17: By definition the continuous eigenvalue λj is called well approximable
by Vh if condition (3.16) or (3.17) is fulfilled. In particular it holds

condition (3.16) ⇐⇒ h ≤
(
CEV

idx

) 1
2p j

−2p+d
2pd︸ ︷︷ ︸

=: hEV
max(j)

(D.22)

⇐⇒
(
CEV

idx

)−d
2p j

2p+d
2p︸ ︷︷ ︸

=: ÑEV
min(j)

≤ 1

hd
(D.23)

⇐⇒ j ≤
(
CEV

idx

) d
2p+d

(
1

hd

) 2p
2p+d

︸ ︷︷ ︸
=: jEV

max(h)

(D.24)

where CEV
idx > 0 is some sufficiently small constant. The quantities defined in (D.22) – (D.24)

can be interpreted as follows: hEV
max(j) is the maximal possible mesh width of Vh in order to well

approximate the eigenvalue λj ; since we assume that Nh ∈ Θ(1/hd) the quantity ÑEV
min(j) can

be seen as an orientation value for the minimal dimension of Vh in order to well approximate
λj ; and the quantity b jEV

max(h) c ∈ N is the maximal index j such that eigenvalue λj is well
approximable by Vh. Because of the assumption that Nh ∈ Θ(1/hd), and because of (D.23)
and (D.24), it can be easily seen that the asymptotic behaviour of the quantities NEV

min(j) and
jEV
max(Nh) is described by (3.25) and (3.27). However, for the sake of completeness this result is

formally proven in the following.

By definition NEV
min(j) is the minimal dimension of the finite element space Vh such that

eigenvalue λj is well approximable, i.e., such that condition (3.16) is fulfilled. If we consider the

space Vh where the mesh width h is chosen such that the dimension of Vh fulfils Nh ≥ CÑEV
min(j)

we obtain that

ÑEV
min(j) ≤ Nh

C
≤

(3.24)

1

hd
,

and from (D.23) it follows that condition (3.16) is fulfilled — i.e., λj is well approximable by Vh
— and we conclude that NEV

min(j) ≤ CÑEV
min(j). On the other side, if h′ denotes the mesh width of

the finite element space Vh′ with minimal dimension Nh′ = NEV
min(j) it has to hold h′ ≤ hEV

max(j)
because otherwise condition (3.16) is not valid and λj would not be well approximable by Vh′ .
From

ÑEV
min(j) =

1(
hEV

max(j)
)d ≤ 1(

h′
)d ≤

(3.24)

Nh′

c
=

NEV
min(j)

c
(D.25)

we follow that NEV
min(j) ≥ cÑEV

min(j). Using these results and the definition of ÑEV
min(j) we finally

conclude that NEV
min(j) ∈ Θ

(
j(2p+d)/(2p)

)
. In particular, it is noted that a space Vh, whose

dimension fulfils Nh ≥ CNEV
min(j)/c, is well approximating the eigenvalue λj since λj is well
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approximable when Nh ≥ CÑEV
min(j) and because of

Nh ≥ C
NEV

min(j)

c
≥

(D.25)
C ÑEV

min(j).

To analyse the asymptotic behaviour of jEV
max(Nh) we define the auxiliary quantity

j̃EV
max(Nh) :=

(
CEV

idx

) d
2p+d (Nh)

2p
2p+d (D.26)

which can be seen as an orientation value for jEV
max(Nh). By definition jEV

max(Nh) is the index of
the largest eigenvalue which is well approximable by the finite element space Vh with dimension
Nh. If the index j of an eigenvalue λj fulfils j ≤ C̃ j̃EV

max(Nh) with C̃ := C−2p/(2p+d) we obtain

j ≤ C̃ j̃EV
max(Nh)

(D.26)

≤
(3.24)

C̃
(
CEV

idx

) d
2p+d

(
C

hd

) 2p
2p+d

=
(D.24)

jEV
max(h).

According to (D.24) condition (3.16) is fulfilled — i.e., λj is well approximable by Vh — and

we conclude that jEV
max(Nh) ≥ C̃ j̃EV

max(Nh). On the other hand, if we choose j ≤ jEV
max(Nh) then

by definition eigenvalue λj is well approximable, and in particular inequality (D.24) has to be
valid. We conclude

jEV
max(Nh) ≤ jEV

max(h)
(D.24)

≤
(3.24)

(
CEV

idx

) d
2p+d

(
Nh

c

) 2p
2p+d

=
(D.26)

c̃ j̃EV
max(Nh)

with c̃ := c−2p/(2p+d), i.e., we have jEV
max(Nh) ≤ c̃ j̃EV

max(Nh). Using these results and using the

definition of j̃EV
max(Nh) we finally obtain that jEV

max(Nh) ∈ Θ
(
N

2p/(2p+d)
h

)
.

In an analogical way we derive from

(3.21) ⇔ h ≤
(
CEF

idx

) 1
2p j

−p+dpd ⇔
(
CEF

idx

)−d
2p j

p+d
p ≤ 1

hd
⇔ j ≤

(
CEF

idx

) d
2(p+d)

(
1

hd

) p
p+d

,

(3.17) ⇔ h ≤
(
CEV

size

) 1
2p λ

−2p+d
4p

j ⇔
(
CEV

size

)−d
2p λ

d
2p+d

4p
j ≤ 1

hd
⇔ λ ≤

(
CEV

size

) 2
2p+d

(
1

hd

) 4p
d(2p+d)

,

(3.22) ⇔ h ≤
(
CEF

size

) 1
2p λ

−p+d2p
j ⇔

(
CEF

size

)−d
2p λ

d
p+d
2p

j ≤ 1

hd
⇔ λ ≤

(
CEF

size

) 1
p+d

(
1

hd

) 2p
d(p+d)

the asymptotical behaviour of the minimal dimensions NEF
min(j), NEV

min(λ), NEF
min(λ); the maximal

index jEF
max(Nh); and the maximal sizes λEV

max(Nh), λEF
max(Nh).
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[6] I. Babuška and J. E. Osborn. Estimates for the errors in eigenvalue and eigenvector approx-
imation by Galerkin methods, with particular attention to the case of multiple eigenvalues.
SIAM J. Numer. Anal., 24(6):1249–1276, 1987.
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