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Abstract In silico investigation of skin permeation is an
important but also computationally demanding problem.
To resolve all scales involved in full detail will not only
require exascale computing capacities but also suitable par-
allel algorithms. This article investigates the applicability of
the time-parallel Parareal algorithm to a brick and mortar
setup, a precursory problem to skin permeation. The C++
library Lib4PrM implementing Parareal is combined with
the UG4 simulation framework, which provides the spatial
discretization and parallelization. The combination’s perfor-
mance is studied with respect to convergence and speedup.
It is confirmed that anisotropies in the domain and jumps in
diffusion coefficients only have a minor impact on Parareal’s
convergence. The influence of load imbalances in time due
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1 Introduction

Permeation of chemical substances through human skin is an
interesting and important process e.g. for the development of
cosmetics or drugs. In vitro studies with humans constitute
the “gold standard” but they are expensive and limited by eth-
ical and practical concerns. Here, in silico studies are a viable
alternative. They have been successfully used in the past (cf.
the reviews in [16,24]) and can be expected to become even
more important in the future. They allow for hypothesis test-
ing and may lead to experiments through which effects not
known today could be discovered.

Yet, numerical simulations in this field are demanding in
terms of computational resources. The problem covers vastly
different physical scales and, in case a complex full-fledged
model is used, massive computational parallelism needs to
be exploited to reach reasonable times-to-solutions. There-
fore, many interesting aspects such as substructures of lipid
bilayers or networks of keratin filaments [36,37] have not
yet been investigated in three spatial dimensions (3D) using
numerical simulations. Finally, modern imaging techniques
make resolving a spectral range of a few nanometers possi-
ble, which results in “big data” for analyses. Understanding
the functional mechanism of the skin is thus a candidate from
the life sciences for applying exascale computing.

Considering the technology trend towards more and more
parallelism, the application of new parallel methods to the
problem investigated here becomes relevant. Promising can-
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didates for such methods are parallel-in-time integration
methods that can add a direction of concurrency in addition
to spatial parallelization, e.g. as used here, parallel multi-
grid. In recent years, time-parallel methods have matured
from a mainly mathematical concept to an approach with
demonstrated efficiency in massively parallel computations
[29,33]. Theyhave been listed as a direction formathematical
research with the potential to help reaching exascale comput-
ing [10].

One of themostwidely investigated parallel-in-timemeth-
ods is Parareal, introduced in 2001 by Lions et al. [19]. It has
been used for benchmark problemsmotivated by applications
from fields as diverse as plasma physics [32], computational
fluid dynamics [7,25] or quantum chemistry [6]. Improve-
ments with respect to implementation are considered e.g. in
[4,11]. Parareal’s most appreciated aspect is probably that
it is non-intrusive and rather easy to integrate into existing
codes. Its drawback, on the other hand, is a quite severe
bound on achievable parallel efficiency. However, because
several other “across-the-step” time-parallel methods share
similar features with Parareal (e.g. PITA [14], MGRIT [13]
or PFASST [12]), studying Parareal’s performance often
already gives important insights.

Theoretical estimates for stability and convergence of
Parareal for linear diffusive problems with constant coef-
ficients can be found in [15]. Theory for diffusive prob-
lems with constant coefficients can also be found in [5].
For 2D diffusion with space–time dependent coefficients,
numerical experiments showed only a marginal reduction
in convergence speed [30]. In [3], the small impact of a
time dependent viscosity on Parareal’s convergence for an
advection–diffusion problem is demonstrated. However, per-
formance for a 3D diffusive problem on a complex geometry
with anisotropies has not yet been studied.

In preparation for the eventual application of Parareal
to skin permeation, this article provides an investigation of
Parareal’s performance for a 3D brick and mortar problem.
From our point of view, this model serves as an excellent
benchmark because it features challenges resulting from
a complex anisotropic geometry and from jumping coef-
ficients, which need to be resolved adaptively over long
time intervals. Although locally the mathematical formu-
lation of the brick and mortar problem is clear, the global
picture is highly complex and linked to a real world appli-
cation requiring a sound simulation infrastructure in terms
of numerical methods and software. Here, we employ the
simulation framework UG4 [35] for the spatial discretization
and linear solvers, for which excellent parallel scaling has
been demonstrated [26]. We parallelize UG4’s serial tem-
poral solvers through the C++ Parareal library Lib4PrM,
which is integrated as a plugin.

The present article establishes the principle applicability
of Parareal to the 3D brick and mortar problem. In doing

so, it identifies a set of relevant issues to be tackled in order
to develop an improved parallel-in-time integrator that can
deliver reasonable efficiency for the skin transport problem.
In particular, load balancing in time is identified as a criti-
cal issue when combining implicit methods for a complex
PDE with Parareal. Because the number of iterations of the
spatial solver varies in time, balancing temporal subintervals
in Parareal simply by the number of time steps induces load
imbalances which can affect speedup.

2 Problem and methods

As a test case, we study a simplified version of the 3D brick
andmortar problem introduced earlier in [23,27]. The bench-
mark is defined on a biphasic domain Ω ⊂ R

3 that consists
of two disjoint subsets Ωcor,Ωlip ⊂ R

3 representing the so
called corneocyte and lipid phase respectively. To be more
specific, Ω is the interior of the union Ωcor ∪ Ω lip of clo-
sures. On this geometry we solve a diffusion equation with
space-dependent diffusion coefficients. The evolution of the
drug concentration cp(x, t), p ∈ {cor,lip}, is modeled by the
equation

∂t cp(x, t) = ∇ · (
Dp(x)∇cp(x, t)

)
(1)

with x ∈ Ωp, t ∈ [0, T ], and a phase-dependent diffusion
coefficient

Dp(x) =
{
Dcor : x ∈ Ωcor,

Dlip : x ∈ Ωlip.
(2)

For the simulation time we use T = λ2

6Deff
which is the char-

acteristic lag time of the problem. It is defined in terms of the
membrane thickness λ and the effective (homogenized) dif-
fusion coefficient Deff [23]. In terms of boundary conditions
we have an interior phase boundary Γ = Ωcor ∩Ω lip and an
exterior boundary ∂Ω . For the exterior boundarywe consider
a mix of Dirichlet and homogeneous Neumann conditions,
i.e. ∂Ω = ∂ΩD ∪ ∂ΩN with

cp(x, t)
∣∣
∂ΩD

= g(x), n · ∇cp(x, t)
∣∣
∂ΩN

= 0, (3)

where n denotes the outward pointing normal vector on ∂Ω .
At the phase boundaries Γ , the flux must be continuous, i.e.

Dlip∇clip(x, t) · n = Dcor∇ccor(x, t) · n. (4)

Along Γ , concentrations can be discontinuous. However,
they are often assumed to be linked by a Nernst’s equilibrium
Kcor/lipclip = ccor. When Kcor/lip is constant, the model may
be reformulated, e.g. in terms of a continuous concentration
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Fig. 1 A sketch of the 3D brick and mortar problem is shown. The geometry has ten layers of corneocytes (Ωcor, yellow) that are embedded in a
matrix of lipid bilayers (Ωlip, blue). aWith cornoecytes (yellow). b Corneocytes removed

[23,27]. Hence this work employs the simplifying assump-
tion clip = ccor. Note that more complex situations with
locally fluctuating or even concentration dependent coeffi-
cients also play an important role [1,2,28].

The geometry used in this article is a 3D brick and
mortar configuration as depicted in Fig. 1. It features ten
layers of corneocytes (yellow) that are embedded in a matrix
of lipid bilayers (blue). It is a simplified version of more
elaborate tetrakaidekahedral models with hybrid grids pre-
sented previously [23]; the brick and mortar model only
consist of hexahedrawith a reduced level of anisotropy.How-
ever, since jumping coefficients are present, it features some
of the issues one encounters also in more complex situa-
tions.

Figure 2 shows the computed solution at three different
times. To allow for a view into the interior of the domain, a
cuboid representing a quarter of the total domain has been
removed in the representation. Initially (not shown), the solu-
tion is zero on the whole domain with a Dirichlet boundary
condition of cp(x, t) = 1 on the top side. Then, the tracer
starts to diffuse downwards in the lipid channels and much
slower in comparison through the corneocytes. In the first
subfigure, diffusion has just started and filled the upper half
of the domain but the concentration is still essentially zero in
the lower half. In the last subfigure, at the end of the simula-
tion, the tracer has diffused down through the whole domain.
Concentrations continue to change with smaller changes
from step to step, eventually approaching a steady state. A
prospective 3Dmodel with a fully resolved lipid-bilayer sub-
structure, as suggested for two dimensions in [36,37], will
feature a similar effect on an even smaller scale in time and
space.

2.1 Parareal

Let the temporal domain [0, T ] be decomposed into Nt

subintervals [t j , t j+1], j = 0, . . . , Nt − 1, such that t0 =

0, tNt−1 = T and

[0, t1] ∪ · · · ∪ [tNt−1, T ] = [0, T ]. (5)

LetC andF be a “coarse” and “fine” time integrationmethod1

with time step size Δt and δt � Δt , respectively. For the
sake of simplicity assume that all subintervals have the same
length and that a constant number of both δt and Δt steps
cover a subinterval exactly. Then, instead of serially integrat-
ing across [0, T ] with F, Parareal uses the iteration

ck+1
n+1 = C

(
ck+1
n

)
− C

(
ckn

)
+ F

(
ckn

)
(6)

with k as iteration index. For the first subinterval, i.e. for
[0, t1], set

ck0 = c0 (7)

for all k, where c0 is the given initial value. Note that as the
iteration converges and ck+1

n+1 − ckn+1 approaches zero for all

n = 0, . . . , Nt − 1, the Parareal solution ck+1
n+1 converges to

the serial fine solution F(cn).
Formulation (6) introduces concurrency because as soon

as the iterates ckn are known, the computationally expensive
evaluation of the fine method can be done in parallel over all
subintervals. That is, the time spent using the fine method
in parallel equals the runtime of the fine method across a
single subinterval instead of the full interval [0, T ]. However,
multiple iterations are typically required and the propagation
of corrections by the coarse method remains serial in time.
Speedup therefore depends on finding a cheap enough coarse
integrator that still leads to convergence in a small number
of iterations.

1 The coarse method is often represented byG, probably because of the
French word “gros” for coarse.
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Fig. 2 Solution at t = T/16 (top), t = T/2 (middle), and t = T
(bottom) where T denotes the lag-time of the problem. The block in the
front has been removed to allow for a view into the interior of the com-
putational domain. a Time t = T/16. b Time t = T/2. c Time t = T

2.2 Speedup from Parareal

Denote by Nc the number of coarse time steps per subinterval,
by Nf the number of fine time steps per subinterval and by Nt

the number of subintervals, which is assumed to be equal to
the number of processors in the temporal direction. Further,
denote by Ni the number of Parareal iterations and by τ c and
τ f the computational runtime for a coarse or fine time step,
respectively. If one assumes that every time step takes the
same amount of time, speedup from Parareal can be modeled
by

S(Nt) ≤ 1
(

1 + Ni

Nt

)
Nc

Nf

τ c

τ f
+ Ni

Nt

. (8)

See e.g. [21] or [3] for a more detailed discussion of this
bound.

For larger end times for the brick and mortar setup, how-
ever, this bound is too optimistic, because as the solution
approaches a steady-state, the spatial solver requires fewer
and fewer iterations per time step, making later time steps
cheaper. In the numerical simulations presented below, we
use a final time T for which the solution is still sufficiently
far away from the steady-state and this effect is minimal, but
we also discuss a formula valid for non-constant runtimes per
time step. Here, to simplify the notation, we omit the index
range for sums, maxima and minima; it is always implied to
be n = 0, . . . , Nt − 1. Now, denote by γ c

n and γ f
n the cost

of running the coarse and fine method across the subinter-
val [tn, tn+1]. Then, a serial run of the fine or coarse method
amounts to the duration

Γf =
∑

γ f
n, Γc =

∑
γ c
n (9)

while a Parareal run with Ni iterations costs

ΓP = Γc + Niγ
x, γ x ≡ max

n

{
γ c
n + γ f

n

}
, (10)

as the runtime for the parallel fine solve will be dominated
by the subinterval with the longest simulation time. Also,
using proper pipelining, the parallel runtime of the serial
coarse correction stepwill be governed by themost expensive
subinterval for C. The resulting estimate for the speedup of
Parareal is then

S(Nt) = Γf

ΓP
= 1

Γc

Γf
+ Ni

γ x

Γf

(11)

This is a slight generalization of (8) in the sense that if γ c
n =

Ncτ
c and γ f

n = Nfτ
f are constant for all subintervals, we get

Γc = NtNcτ
c, Γf = NtNfτ

f, (12)

and

γ x = Ncτ
c + N f τ

f (13)

for which (11) simplifies to (8). According to (11), in the case
of imbalances in the distribution of computational load across
subintervals, possible speedup is limited by the subinterval
with the longest runtime for both the fine and coarse method.

The optimal configuration therefore corresponds to equal
computing times for all subintervals. For explicit schemes,
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Numerical simulation of skin transport using Parareal 103

where the cost per time step is more or less constant, this
balance is relatively easy to achieve by making sure every
subinterval handles the same number of coarse and fine steps,
resulting in the simple speedup model (8). For implicit meth-
ods, however, cost per time step is mainly determined by the
cost of the spatial solver (typically depending mainly on the
number of iterations), which in turn depends on the a pri-
ori unknown dynamics of the solution. Therefore, naively
load balancing Parareal with implicit methods based on the
number of time steps alone can lead to a significant loss in
efficiency. Unfortunately, it seems that devising a proper load
balancing in time for the implicit case is not straightforward
and, to the best of our knowledge, has not yet been addressed
in the literature. The easiest approachmay be to use the infor-
mation from the initial coarse run in Parareal to determine
the size of the subintervals but this requires a non-negligible
amount of implementation, might inhibit proper pipelining
when requiring synchronization at some point and is thus left
for future work.

To illustrate the effect of load imbalances in time on
speedup from Parareal, Fig. 3 visualizes both the projected
speedup from (8) and (11): the ideal case assumes a constant
coarse-to-fine ratio of

Nc

Nf
= γ c

n

γ f
n

= 1

10
. (14)

The imbalanced case artificially increases γ f
3 = (1+b)×10

and reduces γ f
2 = (1−b)×10 while keeping all other γ f

n and
all γ c

n unchanged. Here, b is an artificial parameter modeling
load imbalance between the second and third slice in the
formula for projected speedup. For b = 0, both slices have
the same load (“ideal case”) while increasing b corresponds
to an increasing imbalance in load: for b = 1, the second slice
no longer does any work while the third slice does twice as

4 8 16 32
1

3

5

7

9

Cores

Sp
ee
du

p

Ideal
b = 0.5
b = 0.75

Fig. 3 Projected speedup for the ideally load balanced case and a case
where the second and third slice are imbalanced by a factor of b = 0.5
or b = 0.75

much work as in the ideal case. Note that the sum Γf, that is
the total workload, remains constant. Clearly, the introduced
imbalance has a noticeable detrimental effect on the projected
speedup.

2.3 Weak scaling

When doubling the spatial resolution, the resulting increase
in the computational cost per time step can be compensated
for by a corresponding increase in the number of cores used
for the spatial parallelization—at least if both the employed
method and implementation show good weak scaling. For
the spatial solver and parallelization of UG4 applied to the
benchmark used here, this has been demonstrated success-
fully in [34]. However, when the number of fine time steps
Nf is also doubled, twice as many time steps have to be com-
puted in order to keep the ratio δt/δx constant, which leads
to a doubling of time-to-solution (see also the discussion
in [3]). Time parallelization can provide some mitigation by
also doubling the number of subintervals and thus of cores
used to parallelize along time—unless this leads to a massive
increase in the number of required iterations.

However, because of the serial coarse correction, just as
Parareal cannot achieve ideal strong scaling, it can also not
provide 100% efficiency in weak scaling. To see this, let h
denote a parameter governing accuracy of the discretization.
Estimated runtime for a Parareal run on Nt cores (in time) is
then

R2h(Nt) = NtNcτ
c
2h + Ni

(
Ncτ

c
2h + Nfτ

f
2h

)
. (15)

Doubling spatial resolution, i.e. using h instead of 2h and
performing twice as many fine and coarse steps on twice as
many subintervals (but keeping the number of coarse and fine
steps per subinterval constant) gives

Rh (2Nt) = 2NtNcτ
c
h + Ni

(
Ncτ

c
h + Nfτ

f
h

)
(16)

assuming the number of iterations does not change. In the
case of perfect weak scaling in space, by increasing the num-
ber of spatial cores the runtime per step can be kept constant,
that is τ c2h = τ ch and τ f2h = τ fh . Under this assumption, the
projected weak scaling efficiency of the space–time paral-
lelization is

R2h(Nt)

Rh(2Nt)
= Ntσ + Ni (1 + σ)

2Ntσ + Ni (1 + σ)
< 1 (17)

with σ := Ncτ
c
h/Nfτ

f
h > 0. Therefore, while weak scaling

can never be perfect, a cheap enough coarse integrator (σ �
1) should still allow for good weak scaling—as long as the
underlying spatial solver shows good weak scaling and the
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number of iterations is not affected by the increasing number
of subintervals.

2.4 Implementation

For Parareal we use the C++ library Lib4PrM that usesMPI
for the necessary communication of volume data in time. A
straightforward approach to implementing (6) is sketched as
pseudo code e.g. in [3]. Here, however, we use a somewhat
more elaborate implementation that is based on the following
observation. After the first iteration on the first subinterval
[0, t1], the coarse terms in the Parareal iteration (6) cancel
out, resulting in

ck+1
1 = F (c0) (18)

for k ≥ 1. That is, after one iteration, the first subinterval
is guaranteed to have converged and the processors respon-
sible for the first subinterval can “retire”. After the second
iteration, by the same argument, this will then be true for the
processors handling the second subinterval and so on. After
k iterations, the time-parallel fine method is guaranteed to
have converged on the first k subintervals and all processors
with anMPI rank (in time) smaller or equal to k could in prin-
ciple be used otherwise. Put differently, Parareal converges
always at least at a rate of one subinterval per iteration and
when k = n the Parareal method is guaranteed to have con-
verged at tk ≤ tn . While leaving processors idle according
to this implementation does not affect runtime negatively, it
has the potential to reduce the energy cost of a simulation,
particularly in combination with “dynamic voltage and fre-
quency scaling” [9]. Thiswill be studied in a futurework [17].
Also, if not enough processors are available to cover the
whole interval [0, T ] by subintervals of a given size, con-
verged processors could pick up subintervals at the end in a
caterpillar-like way. Such even more involved implementa-
tions are left for future studies, though. Finally, in production
runs one could also use some tolerance e.g. for the updates
between iterations or a proper residual to decide when the
solution at the end of a subinterval is converged [31].

2.5 Spatio-temporal discretization and solvers

Discretization in space and time is provided by the software
package UG4 [35]. We employ a plain vanilla vertex cen-
tered finite volume scheme in space that is combined with
an implicit Euler scheme in time. For each time step this
gives rise to a large linear system of equations, where the
number of degrees of freedom corresponds to the number of
vertices of the grid. The solver is a multi-grid method with
three steps of damped (ω = 0.6) Jacobi relaxation used for
pre- and post-smoothing. More details are provided in [34].

The coarse grid problem with 7581 degrees of freedom was
solved using sequential SuperLU [8,18].

3 Numerical results

We report results from solving the brick and mortar problem
described in Sect. 2 with the simulation framework described
above. For bothC andFweuse an implicit Eulermethodwith
the time step size Δt for C being significantly larger than the
time step size δt for F.

All runs are performed on the Cray XC40 Piz Dora
supercomputer at the Swiss National Supercomputing Cen-
tre (CSCS) in Lugano, Switzerland. This supercomputer is
equipped with 1256 compute nodes, each of which consists
of two 12-core Intel Xeon E5-2690v3 CPUs, making for a
total of 30,144 compute cores.2 Its peak performance is 1.254
PFlops, placing it at position 56 in the Top500 November,
2014 list.3 As compiler we used version 4.9.2 of the the GNU
compiler collection4 and, in the following, report runtimes
of simulations without I/O operations.

3.1 Convergence of Parareal

Generally speaking, convergence of Parareal is affected by a
number of parameters: The time step sizes and methods used
for C and F, the number of concurrently computed subinter-
vals, the discretization used for the spatial derivatives, and
the dynamics of the problem to be solved. To measure con-
vergence, below the relative defect dkn between Parareal after
k iterations and the fine solution run in serial is reported, i.e.

dkn =
∥
∥ckn − cn

∥
∥
2

‖cn‖2 , n = 0, . . . , Nt − 1 (19)

with

cn = F(cn−1), n = 1, . . . , Nt − 1. (20)

In order to avoid distortions through I/O times, only the
final solution values are written out and the defect dkNt−1
is reported except for in section Sect. 3.3. There, the defect
is analyzed not only as a function of the number of iterations
but also time.

Figure 4 shows the defect dkNt−1 versus the number of
iterations k. In addition, the estimated discretization error
of the fine method resulting from a comparison against a
run of F with a time step four times smaller than δt is
shown. Parareal converges rapidly in all configurations. As

2 http://user.cscs.ch/computing_systems/piz_dora/.
3 http://www.top500.org/list/2014/11.
4 https://gcc.gnu.org.
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Fig. 4 The defect dkNt−1 between the Parareal and the serial fine solu-
tion at t = T versus the number of Parareal iterations for different
numbers of subintervals Nt is illustrated. The discretization error of the
serial fine method is indicated by the black horizontal line

can be expected, computing more subintervals in parallel
slows down convergence somewhat. Here, for all Nt ∈
{4, 8, 16, 32}, one iteration suffices to reduce the defect
below the discretization error of the fine method. This con-
firms the usability of Parareal also for complex diffusion
problems with anisotropic geometries and large jumps in the
coefficients. Particularly the relativelymild reduction of con-
vergence speed as Nt is increased illustrates the potential for
using larger numbers of cores to parallelize in time for this
kind of problem, should a sufficiently largemachine be avail-
able.

3.2 Effect of spatially varying coefficients

In the brick and mortar problem, the diffusion coefficients
jump between Dlip = 1 in the lipid channels and Dcor =
10−3 in the corneocytes. To assess the impact these jumps
have on the convergence of Parareal, Fig. 5 gives a compari-
son of the defect for the brick and mortar problem (red) and
a reference configuration with Dlip = Dcor = 10−3 through-
out the whole domain. For the setup studied here, in line with
the findings for 2D problems in [30], the jump in coefficients
has almost no effect on how Parareal convergence. Exper-
iments not documented here suggest that a larger T (that
is, a final configuration closer to the steady state) can lead
to a larger detrimental effect of coefficient jumps: However,
even there this only resulted in a small number of additional
iterations required for convergence.

3.3 Error over time

So far only the defect at the end of the simulation has been
reported. In contrast, Fig. 6 shows both the defect dkn of
Parareal for k = 1 (red) and k = 2 (green) as well as the

1 2 3 4
−7
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−5

−4

−3

Iterations

lo
g 1

0
(E

rr
or
)

Jumping
Constant

Fig. 5 The defect dkNt−1
at t = T between the Parareal Nt = 32 solu-

tion and the fine serial solution versus the number of Parareal iterations
for the brick and mortar problem (red) and a reference configuration
with constant diffusion coefficients (blue) is shown

1/16 6/16 11/16 1
−6

−4

−2

0

Time [T ]

lo
g 1

0
(E

rr
or
)

Coarse
k = 1
k = 2
Fine

Fig. 6 The discretization error over time for the fine and coarse solu-
tion, and the defect of Parareal with Nt = 32 subintervals after k = 1
and k = 2 iterations is illustrated

estimated discretization error of the coarse (blue) and fine
(yellow) integrator. The figure shows the defect after every
second subinterval for Parareal using Nt = 32 .

Already after one iteration, the solution at T = 1 provided
by Parareal has the same quality as when running the fine
method serially. Therefore, speedup is reported below using
k = 1. However, one iteration is not sufficient to reduce the
defect of the whole transient to the discretization error: here,
two iterations would be required after which the green line
(Parareal) is completely below the yellow line (fine integra-
tor).

3.4 Scaling of Parareal

Figure 7 shows the speedup from Parareal compared to run-
ning F in serial with the number of iterations chosen such
that the defect of Parareal at T = 1 is below the estimated
discretization error of F (for Nt ∈ {4, 8, 16, 32} this means
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Fig. 8 The convergence of Parareal for four different configurations is
shown. The ratios δt/δx and Δt/δx are kept constant and the number
of degrees-of-freedom per core as well as the number of time steps per
subinterval are kept constant, too. Thus, e.g. in the run with 8 cores in
time and 192 cores in space the spatio-temporal resolution is twice as
good as in the run with 4 cores in time and 24 cores in space. Note that
because the problem is in 3D, doubling the spatial resolution requires
eight times more cores

one iteration). The projected speedups for ideal load balanc-
ing according to (8) are marked by blue circles while the
projected speedups according to (11), including differences

in runtime between subintervals, are shown as red squares.
Here, runtimes per subinterval γ c

n and γ f
n aremeasured exper-

imentally from serial runs of C and F. Measured speedups
are shown as green diamonds. Up to 16 subintervals, speedup
follows the projected value reasonably well, but for 32 subin-
tervals noticeable drop-off is observed—in small parts, this is
due to imperfect load balancing as indicated by the difference
between the red and blue curve. The major part, however, is
overhead from communication and other factors, which are
not incorporated in the speedup model.

3.5 Spatio-temporal weak scaling

Figure 8 shows convergenceofParareal runs for four different
setups with increasing spatial and temporal resolution but
keeping both the number of elements in space and time steps
per core constant. The first one (blue) uses a time step size
of Δt = 1/8 and δt = 1/128 in units of T . The second one
(red) on the other hand uses half the coarse and fine time
step and half the spatial mesh width so that δt/δx andΔt/δx
are the same in both runs. It also uses twice as many cores
in time and eight times more cores in space, so that both
the number of elements per core and the number of time
steps per core remain constant, too. The green and yellow
line then correspond to runs that again double spatial and
temporal resolution. Higher spatio-temporal resolution leads
to smaller defects for Parareal, while the rates of convergence
(i.e. the slopes of the lines) remain roughly the same.

Exact configurations are shown in Table 1: note how
Δt−1/Nt and δt−1/Nt as well as # Elements/Pspace are con-
stant in all configurations. Also, each refinement step halves
the estimated fine discretization error, which matches the
behavior expected for the employedfirst-order discretization.
The number of Parareal iterations required for convergence
to the accuracy of F stays constant: every configuration is
converged after one iteration. Runtimes are increasing as the
problem size grows, so space–time weak scaling is not opti-
mal. Partly, this is because of the overhead from the coarse

Table 1 Configuration of the runs shown in Fig. 8

Run Δt−1 δt−1 No. of elements Pspace Nt Ptotal efine d1Nt
R (s) Factor

(2t, 3s) 8 128 277,440 3 2 6 10−2.9 10−2.8 132.79 –

(4t, 24s) 16 256 2,219,520 24 4 96 10−3.2 10−3.2 239.34 1.80

(8t, 192s) 32 512 17,756,160 192 8 1536 10−3.5 10−3.7 316.83 1.32

(16t, 1536s) 64 1024 142,049,280 1536 16 24,576 10−3.8 10−4.3 508.70 1.61

Both the number of coarse and fine time steps per core in time and the number of elements per core in space are kept constant in all runs. Here,
efine indicates the estimated discretization error of the fine integrator and d1Nt

is the defect after one iteration. R indicates runtime in seconds. Note
that Nt is the number of subintervals and equal to the number of cores in time. The last column gives the factor between runtimes: ideal space–time
weak scaling corresponds to a factor of 1.0, ideal spatial weak scaling with no time parallelization corresponds to a factor of two while no weak
scaling at all would lead to a factor of 8 × 2 = 16 because the simulations use a 3D spatial discretization
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method, see the discussion above, partly because of less
than optimal weak scaling of the spatial solver. Nevertheless,
Parareal helps to mitigate some of the increase in runtime
from increasing the spatio-temporal problem size.

4 Conclusions

Computational modeling of skin permeation is of interest
for different applications. However, the full problem requires
resolution of a vast range of scales, leading to enormous com-
putational requirements. Massively parallel computers are
needed but these require suitable parallel numerical methods
to be used efficiently.

This article investigates the applicability and performance
of the time-parallel Parareal integrator to a relevant precur-
sory problem of skin transport, namely a 3D brick andmortar
configuration. For this, the C++ Parareal libraryLib4PrM is
integrated as a plug-in into the simulation environment UG4
using implicit integrators and a geometric multi-grid as spa-
tial solver. While the brick and mortar problem does not yet
feature the same geometric level of detail as the skin transport
problem, it already has jumps in the diffusion coefficients of
several orders of magnitude on a highly anisotropic domain.
The article is an extension of a previous study of a 2D prob-
lem on a domain with a much simpler structure [30].

Performance of the space–time parallel solver is studied in
several numerical experiments. It is confirmed that Parareal
still converges quickly for the brick and mortar case. More-
over, strong and weak scaling as well as implications for the
“trap of weak scaling” are illustrated and discussed.

As the solutionof thebrick andmortar problemapproaches
a steady state in time, initial guesses for the geometric multi-
grid become more accurate if time steps of constant length
are used. This leads to faster convergence of the geometric
multigrid, which in turn induces an imbalance in workload
between the different processors in time. For the chosen
setup, this effect is small but by deriving a simple theoretical
model, imbalances in time are shown to have a potentially
significant effect on parallel efficiency. For Parareal with
implicit integrators applied to complex PDEs, the resulting
load imbalance is an important issue that has to be addressed.

Anumber of possible directions for future research emerge
from the experiments presented here. So far, coarsening in
Parareal was done only in time by using a larger time step.
Better results can be expected if the spatial discretization
is coarsened simultaneously. This requires a closer integra-
tion of Parareal with the spatial multi-grid solver, in order
to provide interpolation and restriction routines. Also, this
approach can be taken further by interweaving iterations of
the time-parallel method with iterations of the spatial solver,
as discussed e.g. for Parareal in [22] or for PFASST in [20].
Another important issue that is also connected to load bal-

ancing is spatial and temporal adaptivity. While both can
in principle be used in Parareal, they greatly complicate
the load balancing problem. Finally, as energy consumption
is becoming a more and more important issue in high-
performance computing, a thorough benchmarking in terms
of energy-to-solution is also an important direction for future
work.
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