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Abstract This work focuses on the Parareal parallel-

in-time method and its application to the viscous Burg-

ers equation. A crucial component of Parareal is the

coarse time stepping scheme, which strongly impacts

the convergence of the parallel-in-time method. Three

choices of coarse time stepping schemes are investigated

in this work: explicit Runge-Kutta, implicit-explicit

Runge-Kutta, and implicit Runge-Kutta with semi-

Lagrangian advection.

Manufactured solutions are used to conduct studies,

which provide insight into the viability of each consid-

ered time stepping method for the coarse time step of

Parareal. One of our main findings is the advantageous
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1 Introduction

Keeping the time-to-solution for simulations below a

given wall-clock time plays a crucial role for a variety

of applications such as wave propagation simulations in

the area of medical science, weather predictions to make

forecasts as accurate as possible (Wedi et al, 2015), and

early-warning systems for Tsunamis to improve evacu-

ation plans (Bauer et al, 2015). Over recent decades

one of the main factors to achieve improved results of

such simulations was by an increase in spatial resolu-

tion (e.g. Williamson, 2007). However, for time evolving

problems increasing the spatial resolution also usually

requires decreasing the time step size, which again leads

to an increase in workload and this workload has to be

finished within the same time frame. A steady increase

in computer clock speeds conveniently compensated for

this additional workload. However, this increase has

stagnated since about 20041.

Today, performance gains are no longer delivered

for free through increasing clock speed (Sutter, 2005),

but via additional parallelism at the instruction and

core levels. However, this yields increased communica-

tion and synchronization overheads and makes perfor-

mance gains for simulations which already stagnated in

their scalability very challenging. Performance improve-

ments are in particular required for simulations which

have to be finished within a particular time frame, and

these simulations are the focus of this work.

1 See http://www.top500.org statistics

http://www.top500.org
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Various kinds of approaches are currently under in-

vestigation to overcome such limitations. These range

from new hardware (networking, new instruction sets,

broader vector registers) to the software level (new al-

gorithms for latency hiding, optimized network stacks,

parallel-in-time methods). In this work, we concentrate

on the software side with parallel-in-time methods and

its mathematical realization to exploit resources beyond

spatial scalability.

Parallel-in-time methods have gained a growing in-

terest over recent decades with a rich history (Gander,

2015). A widely used and studied algorithm of this class

is the Parareal algorithm (Lions et al, 2001), which will

be the algorithm of choice in this work.

A closely related approach is the PITA algorithm

(Farhat and Chandesris, 2003), which adopts a slightly

different correction scheme. Expanding spectral deferred

corrections methods (Dutt et al, 2000) in a time-parallel

fashion leads to the PFASST algorithm (Emmett and

Minion, 2012). Another strategy is considering a pipeline

parallel deferred correction framework, which leads to

the RIDC scheme (Christlieb et al, 2010). Also,

multigrid-type fashioned solvers have been investigated

in the context of parallel-in-time. The space-time multi-

grid by Horton and Vandewalle (1995) is a multigrid

method which is applied to the whole space-time do-

main. Applying a multigrid reduction to the time di-

mension lead to the MGRIT algorithm (Friedhoff et al,

2013). Time parallelism was introduced to the multigrid

waveform relaxation (Lubich and Ostermann, 1987) by

using the partition method (Vandewalle and Van de

Velde, 1994) and later on by replacing the partition

method with cyclic reduction (Horton et al, 1995).

Parallel-in-time algorithms have in common that

they are less efficient regarding the improved time-to-

solution when applied to realistic and dominantly hy-

perbolic problems. These problems, mainly related to

stability, have already been investigated by multiple

authors (Farhat and Chandesris, 2003; Gander, 2008;

Ruprecht and Krause, 2012; Staff and Rønquist, 2005;

Steiner et al, 2015).

Various research shows that the convergence of par-

allel-in-time algorithms is highly dependent on the

coarse time stepper used within the algorithms (Bal,

2005; Gander and Vandewalle, 2007).

In this work, we study the dependency of different

coarse time stepping schemes with respect to the ef-

ficiency of a parallel-in-time algorithm applied to the

viscous Burgers equation, described in Section 2. Burg-

ers’ equation is a simplified fluid model frequently used

in the development stages of solvers for the Navier-

Stokes equations, being particularly relevant for flows

with high Reynolds numbers (small viscosities). It is

simple enough to allow more detailed theoretical and

experimental analyses, but at the same time sufficiently

sophisticated in terms of representing one part of the

complex non-linear phenomena of fluid dynamics.

For high Reynolds numbers, Burgers’ equation is

dominated by advection (dominantly hyperbolic), which

creates challenges for parallel-in-time schemes. To over-

come stability and convergence issues while ensuring

sufficient accuracy with large time steps, we investigate

the use of semi-Lagrangian schemes for the non-linear

advection part of the problem (see Sec. 4.4). Semi-

Lagrangian schemes are widely used in the geophys-

ical fluid dynamics community (Staniforth and Côté,

1991), mainly due their property of allowing time step

sizes beyond Eulerian CFL limitations. Apart from a

couple of suggestions of its benefits to parallel-in-time

frameworks (Côté, 2012; Reynolds-Barredo et al, 2013),

it appears to be a potentially promising scheme to be

investigated.

Our parallel-in-time algorithm of choice is the Para-

real algorithm, which is explained in Section 3. We com-

bine the semi-Lagrangian scheme for the coarse time-

integrator of a Parareal algorithm and compare this ap-

proach to standard time integrators (explicit and

implicit-explicit Runge-Kutta methods), as described

in Section 4. Additionally, the application of the semi-

Lagrangian method requires modifications of the com-

munication patterns in the Parareal algorithm as de-

picted in Section 5. The results of all numerical exper-

iments are summarized in Section 6. Finally, a conclu-

sion is drawn in Section 7.

2 Burgers’ equation

The Navier-Stokes equations are the fundamental equa-

tions for many problems in computational fluid dynam-

ics (CFD) (Wesseling, 2009). Here, in particular flow

problems with high Reynolds numbers (high ratio be-

tween advection and diffusion) lead to a dominantly hy-

perbolic problem. This poses particular challenges for

Parareal and leads to a decrease in the Parareal conver-

gence rate (Staff and Rønquist, 2005). In this work, we

put the focus on the part of the Navier-Stokes equations

with high Reynolds numbers which can be expressed

by the viscous Burgers equation with small viscosities.

This allows us to put the focus on this particular effect

for convergence studies with Parareal.

The viscous Burgers equation was introduced by

Bateman (1915) and extensively studied by Burgers

(e.g. Burgers, 1948). The close relation of these equa-

tions can be seen easily by starting from the momentum

conservation equation of the incompressible Navier-
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Stokes equations

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u +

1

ρ
F, (1)

where u denotes the velocity, ρ the density, p the pres-

sure, ν the kinematic viscosity, and F the external

forces. By dropping the pressure and external forces,

we avoid coping with the mass conservation equation.

This leads to the viscous Burgers equation

∂u

∂t
+ (u · ∇)u = ν∇2u. (2)

For a better presentation of the results, we use only one

dimension in space leading to

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+Q, (3)

where Q is a forcing term. Analytic solutions of Burg-

ers’ equation exist for some special cases (Wesseling,

2009), but, in this work, we apply manufactured solu-

tions using the source term Q.

3 Parareal

The Parareal algorithm was first presented by Lions

et al (2001) and has gained steadily increasing interest.

This section provides a short introduction to the idea

and the algorithm itself.

We are interested in the numerical solution of an au-

tonomous system. For the sake of simplicity, we consider

this to be an ordinary differential equations (ODE),

du

dt
= f(u), with u(t0) = u0, (4)

where f(u) is a Lipschitz continuous function.

Using the Parareal algorithm for this ODE requires

two different time stepping methods with different time

step sizes: a fine time step ∆t and a coarse time step

∆T . The fine time stepping integrator is denoted by

the functional F(un, tn, tn+1), and it uses many small

time steps ∆t within a period of a large time step ∆T

between tn and tn+1 = tn + ∆T . Usually, an accurate

state-of-the-art time integrator is adopted as the fine

time stepping scheme. These are naturally sequential in

time resulting in limitations with respect to the time-

to-solution.

The idea of Parareal is to split the time domain

[t0,T ] over which Eq. (4) is to be solved into multi-

ple time slices, each of size ∆T , and to compute the

numerical solution on those slices in parallel. In or-

der to do this, an initial condition is required for each

time slice [tn, tn+1], and the parallel solution will only

give adequate results if this initial condition agrees with

U0
0 ← Ũ0

0 ← u0

for n = 1 to N do

Ũ0
n ← C

(
U0
n−1

)
U0
n ← Ũ0

n

end

while |Uk
n −Uk−1

n | > ε ∃n do
Uk

0 ← u0

for n = 1 to N do

Ûk−1
n ← F

(
Uk−1
n−1

)
// Parallel step

end
for n = 1 to N do

Ũk
n ← C

(
Uk
n−1

)
// Predict

Uk
n ← Ũk

n + Ûk−1
n − Ũk−1

n // Correct

end

end

Algorithm 1 Pseudo code of the Parareal algo-

rithm. C and F denote the coarse and fine solver

respectively. The initial condition is u0, Uk
n denotes

the solution at iteration k and time point tn. The

solutions of C and F are Ũ
k

n and Û
k

n respectively.

the final condition obtained in the previous time slice.

An estimator is used to predict these initial values for

each slice with a coarse propagator C(un, tn, tn+1). This

coarse propagator has to be able to cope with large time

steps (of size ∆T ) and should take significantly less

computation time than the fine time stepping method.

Accurate results are obtained considering an itera-

tive scheme, using the coarse integrator as prediction

and the fine integrator as correction, where the fine in-

tegrator can run in parallel. Starting with the initial

conditions u0
0 the resulting iteration can be written as

uk+1
n+1 = C(uk+1

n ) + F(uk
n)− C(uk

n) (5)

for time step tn to tn+1, where the superscripts k refer

to the iterations of the scheme (Baffico et al, 2002).

The pseudocode representation of the scheme is given

in Algorithm 1.

Based on the accuracy and smoothness of the fine

and coarse integrators, it is possible to estimate analyt-

ical upper bounds of the error achieved after a certain

number of iterations (Bal, 2005; Gander and Hairer,

2014).

Clearly, if the number of iterations is equal to or ex-

ceeds the number of time slices, then no acceleration is

gained. Additional overhead due to the execution of the

coarse propagator and communication would even lead

to an increase in wall-clock time compared to a non-

Parareal execution. Therefore, two requirements have

to be met for this method to gain a speedup:

1. The coarse solver C needs to take substantially less

wall-clock time than the fine solver F per time slice,

by adopting either a reduced order method (with

reduced cost) and/or very large time step sizes.
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Table 1 Summary with description and accuracy of the schemes used in this work. “Spec” refers to spectral differ-

entiation, “expl” and “impl” refer to explicit and implicit schemes, respectively. “Helm” refers to the requirement

of solving a definite Helmholtz equation. “Interp” refers to interpolation schemes, which are of order 2 or higher.

Scheme
Spatial approximations Time stepping

Reference Eq.
Advection Diffusion Advection Diffusion

Explicit Spec (expl) Spec (expl) RK2 O(∆t2) (expl) Euler O(∆t) (expl) (6), (7)
IMEX Spec (expl) Spec (Helm) RK2 O(∆t2) (expl) Euler O(∆t) (impl) (11), (12), (13)

SL Interp O(∆x2) Spec (Helm) SETTLS O(∆t2) (expl) Euler O(∆t) (impl) (22), (23), (24)

2. The Parareal algorithm needs to take far fewer it-

erations than the number of time slices, which are

computed in parallel.

These two requirements are typically in contradiction

to each other. This poses the main challenge of finding

an adequate coarse propagator. The challenge is highly

problem specific, and ODEs of different nature can re-

quire different schemes.

4 Time stepping methods

In this section, we describe the numerical schemes used

in the numerical studies for the Parareal method. All

the methods have in common at least a 1st order scheme

(in time and space) for the diffusive part and the forc-

ing term, and a 2nd order scheme (in time and space)

for the advective term. A special focus lies on the semi-

Lagrangian formulation. Table 1 summarizes the

schemes employed.

4.1 Spatial discretizations

The primary aim of this study is to investigate effects of

the time-integration scheme, so we will adopt accurate

spectral methods for the spatial discretizations when

possible. We use the periodic Fourier basis to represent

the solution in spectral space (see e.g. Durran, 2010).

Therefore, all linear operators are directly applied

element-wise in spectral space with spectral accuracy.

For functions exactly represented in the spectral space

with a given number of modes, the error of the linear

operator is of the same order of magnitude as the round-

off errors.

The non-linear terms could, in principle, be calcu-

lated in spectral space with a convolution of all spec-

tral series, which would be of quadratic complexity.

To avoid this complexity, a pseudo-spectral approach

is usually adopted (Gottlieb and Orszag, 1977; Barros

and Peixoto, 2011), where the non-linearities are com-

puted node-wise in physical space. This can lead to spu-

rious modes, and a standard anti-aliasing technique is

applied to overcome this, in which a higher resolution

in physical space followed by a truncation of modes in

spectral space is used after each non-linear operation

(see e.g. Press et al, 1989).

Using a Fourier spectral basis also provides advan-

tages for the solution of linear systems, which usually

correspond to a definite Helmholtz equation (see Eq. (13)

and (24)). This can be solved accurately and efficiently

with an element-wise vector-vector multiplication in

spectral space (see e.g. Swarztrauber and Sweet, 1996;

Schreiber et al, 2016).

4.2 Explicit Runge-Kutta

The simplest method we use for our study is a two stage

explicit Runge-Kutta (RK) method (LeVeque, 2007).

To reach the aforementioned orders, we use the mid-

point rule for the advective part of Eq. (3) and a 2-

stage explicit Euler method for the diffusive part and

the forcing term. This results in

u1 = un +∆t

(
ν
∂2un

∂x2
+Qn

)
− ∆t

2
un
∂un

∂x
, (6)

un+1 = un +∆t

(
ν
∂2u1
∂x2

+Q1 − u1
∂u1
∂x

)
, (7)

where u1 denotes the intermediate solution of stage one,

and Q1 is evaluated at tn+
1
2 . This scheme is 2nd order

accurate in time for the non-linear advection term and

1st order for the linear terms.

4.3 Implicit-explicit Runge-Kutta

In this section, we recap the idea behind implicit-explicit

(IMEX) Runge-Kutta methods. For further informa-

tion the reader is referred to e.g. Ascher et al (1997);

Kennedy and Carpenter (2003). The IMEX methods

are based on the idea that terms with different sta-

bility restrictions are treated accordingly. The stiff (lin-

ear) terms are treated implicitly, and the non-stiff (non-

linear) terms are treated explicitly. Following the algo-

rithm of Ascher et al (1997), we use the explicit mid-
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point rule for the non-stiff terms and the implicit Euler

for the stiff terms. Given the equation

du

dt
= f(u) + g(u), with u(t0) = u0, (8)

where f is a linear stiff term, and g is a non-linear term,

discretization in time yields

u1 = un +∆tf(u1) +
∆t

2
g(un) (9)

un+1 = un +∆t(f(u1) + g(u1)), (10)

where we integrate from tn to tn+1 with a time step of

∆t. The implicit treatment of the stiff term in Eq. (9)

ensures that it imposes less stability restrictions on the

time step size for the stiff term; however, it introduces

larger phase and amplitude errors for larger time steps

(see Durran, 2010).

Applying the scheme to the viscous Burgers equa-

tion (see Eq. (3)) and treating the forcing term implic-

itly yields

u1 = un +∆t

(
ν
∂2u1
∂x2

+Q1

)
− ∆t

2
un
∂un

∂x
, (11)

un+1 = un +∆t

(
ν
∂2u1
∂x2

+Q1 − u1
∂u1
∂x

)
, (12)

where Q1 is evaluated at tn+
1
2 .

Using the implicit Euler step in this two stage scheme

leads to an explicit handling of the diffusion in the sec-

ond stage. This yields conditional stability for diffusion

dominated problems. A von Neumann analysis of this

scheme applied to the linearized equation shows a larger

stability region than the fully explicit scheme.

Equation (11) can be written as a definite Helmholtz

problem of the following form(
I−∆tν ∂

2

∂x2

)
u1 = un − ∆t

2
un
∂un

∂x
+∆tQ1, (13)

where I is the identity operator.

4.4 Semi-Lagrangian formulation

Semi-Lagrangian schemes are frequently and success-

fully used in geophysical fluid dynamics as a way to

obtain an increase in the time step size for advection

dominated problems (Staniforth and Côté, 1991), which

inspired this investigation with Parareal. In this sec-

tion, we review the semi-Lagrangian formulation used

for this work. For a comprehensive introduction to semi-

Lagrangian schemes we refer the reader to Bonaventura

(2004); Durran (2010).

The basic idea behind the semi-Lagrangian method

is to use a Lagrangian formulation of the equation with

respect to a fixed Eulerian grid. In the Eulerian frame-

work, an observer at a fixed position observes an en-

tity moving past the observer. The Lagrangian formula-

tion implies an observer which moves with the observed

entity, which means that the computational grid also

moves through space over time. With a semi-Lagrangian

framework, the Lagrangian framework is used for the

particle movement, however, the simulation data is

stored on an Eulerian grid. Values for the particle grids

are then interpolated on the Eulerian grid.

Since with this scheme we resolve the Lagrangian

trajectory, the numerical domain of dependence includes

the physical domain of dependence, which ensures the

fulfillment of a necessary condition for unconditional

stability (independent of the time step size) with re-

spect to the advection term. Therefore, using a stable

trajectory calculation scheme, the time step size will

not be restricted by the CFL stability condition (which

limits both RK and IMEX schemes), but will only be

restricted to accuracy conditions.

Burgers’ equation can be written within a Lagrangian

framework using the concept of total or material deriva-

tives,

du(t,x(t))

dt
=
∂u

∂t
+ ẋ(t)

(
∂u

∂x

)
=
∂u

∂t
+ u

∂u

∂x
, (14)

where d
dt denotes the total derivative and the velocity

ẋ(t) = u(t,x(t)). Therefore, the Lagrangian formula-

tion of Burgers’ equation reads

du

dt
= ν

∂2u

∂x2
+Q. (15)

For a backward Euler time integration we get

u(tn+1,x(tn+1))− u(tn,x(tn))

∆t

= ν
∂2u

∂x2
(tn+1,x(tn+1)) +Q(tn+1,x(tn+1)). (16)

The velocity for time step tn+1 is stored at grid

points defined as x(tn+1). The set of grid points de-

fined at time tn+1 are commonly denoted as the arrival

points xa. The key point now is to estimate x(tn+1/2)

and x(tn), which are called midpoints xm and departure

points xd, respectively. These points can be obtained by

solving the Lagrangian trajectory ODE

dx(t)

dt
= u(t,x(t)), (17)

which when integrated within (tn, tn+1) results in

xa − xd =

∫ tn+1

tn

u(t,x(t)) dt. (18)

Discretizing the integral with the midpoint rule yields

xa − xd = u(tn+1/2,xm)∆t. (19)



6 A. Schmitt et al.

Next, the required velocity at a future intermedi-

ate step u(tn+1/2,xm) can be computed by extrapola-

tion. Choosing this extrapolation carefully is important

in order to avoid possible instabilities of the scheme

(see Durran, 2010). We choose the stable extrapolation

two-time-level scheme (SETTLS) proposed by Hortal

(2002), which calculates the velocity using information

from a previous time step tn−1 as

u(tn+1/2,xm) ≈ ∆t

2
(2u(tn,xd)−u(tn−1,xd)+u(tn,xa)).

(20)

Joining Eq. (20) and Eq. (19) one obtains a non-linear

implicit equation for the unknown xd, which can be

solved with an iterative scheme (index k) as

xk+1
d = xa −

∆t

2
(2u(tn,xkd)− u(tn−1,xkd) + u(tn,xa))

(21)

with initial guess x0d = xa.

We adopt a stopping criterion of maximum absolute

distance between departure points obtained from two

iterations of ε = 10−8 with a maximum of 10 iterations.

Generally, the maximum number of iterations is not

reached, since only a few iterations are typically enough

to obtain the departure points very accurately. Within

the iterative procedure, it is required to calculate the

velocity at non-grid points. These values are obtained

through 2nd order bilinear interpolation with respect to

the nearest grid points (Staniforth and Côté, 1991).

Denoting (·)∗ as the value of a field interpolated to

its respective departure points we can write the itera-

tion as

xk+1
d = xa −

∆t

2
u(tn)− ∆t

2
(2u(tn)− u(tn−1))∗. (22)

Using the same notation, but now ignoring the sub-

script a, we can apply the semi-Lagrangian formulation

to the discrete Burgers equation (Eq. (16)) resulting in

un+1 = un∗ +∆tν∇2un+1 +∆tQn+1. (23)

Reformulating Eq. (23), and ignoring the forcing, leaves

us with(
I− ν∆t∇2

)
un+1 = un∗ , (24)

which is again a definite Helmholtz problem (like Eq. (13)).

This notation also shows that it is possible to solve

the semi-Lagrangian formulation in two steps. First,

the departure points need to be estimated, and the ve-

locity at the current time step must be interpolated to

these points. Next, these interpolated values are used in

U0
0 ← U0

−1 ← Ũ0
0 ← u0

for n = 1 to N do
U0
∗ = SL

(
U0
n−1, U0

n−2

)
Ũ0
n ← C

(
U0
∗

)
U0
n ← Ũ0

n

end

while |Uk
n −Uk−1

n | > ε ∃n do
Uk

0 ← Uk
−1 ← u0

for n = 1 to N do

Ûk−1
n ← F

(
Uk−1
n−1

)
// Parallel step

end
for n = 1 to N do

Uk
∗ = SL

(
Uk
n−1, Uk

n−2

)
Ũk
n ← C

(
Uk
∗

)
// Predict

Uk
n ← Ũk

n + Ûk−1
n − Ũk−1

n // Correct

end

end

Algorithm 2 Pseudo code of the SL-Parareal algo-

rithm, where the semi-Lagrangian formulation with

SETTLS is used as the coarse solver. Parts added to

the standard algorithm are underlined. U denotes

the solution of the algorithm, Ũ denotes the solu-

tion of the coarse solver and Û denotes the solution

of the fine solver. The superscript k stands for the

Parareal iteration, the index n for the time step and

the index ∗ for the evaluation at the departure point.

the right-hand-side of the Helmholtz problem, which is

solved with the aid of an accurate and efficient spectral

solver.

All interpolations at the departure points are done

with 4th order accuracy (bicubic interpolation), which

combined with the bilinear interpolation of the veloci-

ties ensures an overall 2nd order accurate scheme with

respect to advection (see Peixoto and Barros, 2014).

5 Communication patterns in Parareal with SL

The 2nd order semi-Lagrangian scheme, see Section 4.4,

poses either additional requirements on the communi-

cation of Parareal with additional interfaces required,

or an increase in memory used. Since this plays an im-

portant role for future parallel implementations and ef-

ficiency, we discuss this in more detail.

Expanding the standard Parareal algorithm (Alg. 1)

with the two steps used for solving the semi-Lagrangian

scheme leads to the SL-Parareal Algorithm 2, where all

changes are underlined. Here, we see the additional ve-

locity Uk
∗ at the departure points necessary for the

semi-Lagrangian formulation. Depending on whether

Parareal communication is realized on a shared or dis-
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~Uk
1

~Uk
2

~Uk
3

· · ·

T1 T2 T3 T4

~Uk
1

~Uk
2

Fig. 1 Sketch of the communication pattern for the

prediction and correction step (as boxes) of the dis-

tributed memory Parareal algorithm in iterations k

with the semi-Lagrangian formulation applied to the

coarse solver. The time slices are denoted by Tn =

[tn−1, tn]. Arrows show the communication of the ve-

locity Uk
n (solid: standard Parareal; dashed: additional

for SL-Parareal)

tributed memory system, different ways exist to handle

this additional velocity at the departure points.

1. In a shared memory or partitioned global address

space (PGAS) Parareal environment the velocity

Uk
∗ can be stored as a new variable and can be made

directly accessible with a pointer.

2. In a distributed memory Parareal environment ad-

ditional communication is necessary, as described

below.

Even though the code used for this work is only se-

rial, the realization is done in a fashion which resem-

bles the communication on distributed memory sys-

tems. Here, we target the investigation of parallel-in-

time algorithms for large systems.

In our implementation each time slice has its in-

dependent memory areas. For the standard Parareal
algorithm, we send the result of time slice Tn−1 =

[tn−2, tn−1] as initial condition to time slice Tn = [tn−1,

tn]. The SL-Parareal scheme requires additionally send-

ing the result of time slice Tn−2 = [tn−3, tn−2]. Due to

overwriting Uk
n−1 with Uk

∗ in time slice Tn−1 to reduce

memory consumption the data is received from Tn−2.

A sketch for the new data dependencies, which shows

the additionally required communication, is shown in

Figure 1. Here, the communication during the serial pre-

diction-correction step is indicated by the arrows. The

dashed red arrows visualize the additional communi-

cation necessary for the 2nd order SL-Parareal scheme

used in this work.

6 Numerical experiments

We conducted various numerical experiments which ex-

ploit different challenges for the Burgers equations. First,

we describe our benchmarking test cases followed by a

stability study of serial time stepping for the numerical

methods presented in Section 4. This is followed by an

examination of these different methods in combination

with the Parareal algorithm.

For the sake of reproducibility, we have published

the source code for all aforementioned methods in the

repository (Schreiber et al, 2017) of the SWEET devel-

opment.

6.1 Benchmarks

The test cases are based on Kooij et al (2017) and mimic

turbulent fluid flows at high Reynolds numbers modeled

through multiple length scales.

Both benchmarks are based on the method of man-

ufactured solutions. This means we define a solution
u(x, t) to calculate the source term Q of Equation (3),

followed by using the calculated source term and the

initial condition u(x, t0) in the solver. The analytical

solution is then used for error comparisons. The bench-

marks have in common that they are carried out on the

space-time domain (x, t) ∈ [0, 1]2.

We next describe parameters, which are specific to

the Parareal studies. The maximum absolute difference

(in space, for all times) between two Parareal iterations

is used to evaluate the convergence of the Parareal al-

gorithm, and a tolerance of tol = 10−8 is used as a stop-

ping criterion. The Parareal studies are executed with

a time discretization of ∆T = 10−2 and ∆t = 10−6 for

the coarse and fine solver, respectively. Such large ra-

tios ∆T/∆t are typically more challenging. Each coarse

time step represents one time slice leading to a total

number of NT = 100 time slices in the time interval

[0, 1].

For Parareal we use IMEX as the fine solver and one

of the three time stepping methods (RK, IMEX, SL) as

the coarse solver. We refer to the different combinations

by their coarse solver. IMEX was chosen as the fine

integrator for all experiments as it provides 2nd order

accuracy in time at smaller cost compared to the SL

scheme, and the stability constraints on ∆t are smaller

compared to RK.

6.1.1 B1: Sinusoidal waves

For our first benchmark (B1) the defined solution

u(t,x) = sin(2πx) sin(2πt)+
1

k
sin(2πkx) sin(2πkt) (25)

consists of a sum of two sinusoidal waves, where k de-

notes an arbitrary frequency. We fix the frequency to

k = 3. A visual representation of the solution over the

computational domain is given in Figure 2.
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0
0.5

1 0

0.5

1−1

0

1

x
t

u

Fig. 2 Analytical solution u of benchmark B1 over the

computational domain (x, t) ∈ [0, 1]2

We use this benchmark for both a serial and a Para-

real study. Therefore, we split B1 further in two sub-

cases:

(a) For the serial study, used to investigate the stability

of the time stepping schemes, we use the discretiza-

tion of the spatial domain with N ∈ [42, 85, 170]

spectral modes, corresponding to a spatial discreti-

zation width of ∆x = [1/64, 1/128, 1/256], and the

time domain with step sizes of ∆t ∈ [10−4, 10−3,

10−2]. For the viscosity we study the values ν ∈
{0, 10−5, 10−4, . . . , 1}.

(b) In the Parareal study, used to analyze the coarse

propagators in a parameter region found by (a), we

use N = 170 spectral modes in space, which corre-

sponds to a spatial discretization width of ∆x =

1/256. The viscosity is chosen from the set ν ∈
{n× 10−3|n = 1, 2, ..., 10}.

6.1.2 B2: Transport of a wave over time

The second benchmark (B2) is based on the smoothed

saw-tooth function used in Kooij et al (2017), which is

described by the finite series

u(t,x) =
1

2

kmax∑
k=1

sin(2πkx− πkt+ πk)Φ(k, ε), (26)

with

Φ(k, ε) =
ε

sinh( 1
2επk)

(27)

being a smoothing function used to suppress the am-

plitudes of high wave numbers. The parameters in this

work are set to kmax = 3 and ε = 0.1. This choice re-

sults in a transport of a wave over time (see Figure 3).

The spatial domain is discretized with N = 170 spec-

tral modes (spatial discretization width ∆x = 1/256).

The studies are conducted with viscosities of ν ∈ {n×
10−4,n× 10−3|n = 1, 2, ..., 10}.

0
0.5

1 0

0.5

1−0.4

0

0.4

x
t

u

Fig. 3 Analytical solution u of benchmark B2 over the

computational domain (x, t) ∈ [0, 1]2

Table 2 Results of the serial time stepping stability

study with the RK, IMEX and SL scheme for all param-

eter combinations. Checkmarks indicate a stable calcu-

lation and unstable calculations are indicated with ’X’.

∆t = 10−4 ∆t = 10−3 ∆t = 10−2

R
K

ν\N 42 85 170

0 X X X

10−4 X X X

10−3 X X X

10−2 X X X

10−1 X X X

1 X X X

ν\N 42 85 170

0 X X X

10−4 X X X

10−3 X X X

10−2 X X X

10−1 X X X

1 X X X

ν\N 42 85 170

0 X X X

10−4 X X X

10−3 X X X

10−2 X X X

10−1 X X X

1 X X X

IM
E

X

ν\N 42 85 170

0 X X X

10−4 X X X

10−3 X X X

10−2 X X X

10−1 X X X
1 X X X

ν\N 42 85 170

0 X X X

10−4 X X X

10−3 X X X

10−2 X X X

10−1 X X X
1 X X X

ν\N 42 85 170

0 X X X

10−4 X X X

10−3 X X X

10−2 X X X

10−1 X X X

1 X X X

S
L all stable all stable all stable

6.2 Stability study of serial time stepping

We start with a stability study considering the settings

of Benchmark B1 in order to get a general idea of time

step limits for each scheme described in Section 4. These

studies also illustrate the time step limitations, which

motivate the development of parallel-in-time methods.

The results are given in Table 2. Parameter combina-

tions which lead to a stable computation are marked

with a check mark. Unstable computations are indi-

cated by ’X’.

The results for the fully explicit RK scheme are

shown in the first row of tables. For all of the three

time step sizes, we see instabilities for diffusion domi-

nated problems. Only with the coarsest time step size

can an unstable behavior be observed in the advection

dominated parameter region (small viscosities).



A numerical study of a semi-Lagrangian Parareal method applied to the viscous Burgers equation 9

Comparing these results with the results given in

the second row of tables, corresponding to the IMEX

scheme, we see the impact of treating the diffusive stiff-

ness with an implicit time discretization, hence reduc-

ing the stability restrictions of this term. Therefore, we

see fewer parameter combinations which are unstable in

the diffusion dominated region. Since the explicit dis-

cretization of the advective part is the same as with the

RK scheme, we get the same stability behavior in the

advective region.

All parameter combinations with the SL formula-

tion lead to a stable computation, so it is only con-

strained by its accuracy. This shows the potential of the

SL formulation as a coarse time stepper for parallel-in-

time schemes, as larger coarse time steps are possible.

As SL schemes accurately handle advection, this is also

particularly relevant for advection dominated problems.

6.3 Parareal B1: Sinusoidal Waves

In this section, we apply the Parareal algorithm to the

first benchmark case (B1) described in Section 6.1.

First, we compare the three different time stepping

scheme combinations within the Parareal algorithm at

a moderate viscosity. Second, we investigate IMEX and

SL in greater depth to examine a wider range of viscosi-

ties and the behavior with advection dominated flows.

Finally, we take a look at the influence of the time step

size of the coarse solver on the convergence behavior of

the Parareal algorithm.

6.3.1 Comparison of the time stepping schemes

We compare the coarse solvers RK, IMEX, and SL with

respect to their stability within the Parareal algorithm.

The settings of B1 are applied with the exception that

we use only a fixed viscosity of ν = 10−2.

In Figure 4 the maximal absolute error of the spatial

domain between the numerical and analytical solution

εmax = max(|u − u|) is plotted over the time domain

for the first four Parareal iterations. Additionally, εmax

calculated with the fine time stepping scheme in serial

is plotted with a dashed line.

Figure 4a shows in each iteration a diverging be-

havior of the coarse solver RK after a few time slices,

which propagates into the solution. This is expected be-

cause RK is not stable for the parameter set of B1, see

Section 6.2. For this reason we skip RK in all further

calculations. Even though, the coarse solver diverges

within each iteration of the Parareal algorithm, the al-

gorithm converges finally after k = 100 iterations. This

is exactly the number of time slices and, therefore, the

maximum expected number of iterations (Baffico et al,

0 20 40 60 80 100
10−9

10−4

101

Coarse time step

ε
m

ax

FRK

k = 1
k = 2
k = 3
k = 4

(a) F : IMEX, C: RK

0 20 40 60 80 100
10−9

10−4

101

Coarse time step

ε
m

ax

FIMEX

k = 1
k = 2
k = 3
k = 4

(b) F : IMEX, C: IMEX

0 20 40 60 80 100
10−9

10−4

101

Coarse time step

ε
m

ax

FSL

FIMEX

k = 1
k = 2
k = 3
k = 4

(c) F : IMEX, C: SL

Fig. 4 Maximal absolute error between numerical and

analytical solution εmax = max(|u − u|) plotted over

the time domain for combinations of the fine F solver

IMEX and three different coarse C solvers of the Para-

real algorithm. Given are the errors for the first four

Parareal iterations k and the error of F

2002), since the fine solver has passed through all slices

as a serial algorithm.

In comparison to RK, the coarse solver IMEX shows

a good approximation of the solution already in the

first Parareal iteration, see Figure 4b. Further iterations

show a fast convergence for the first 23 time slices to the

error of the fine solver on the order of εmax = O(10−7).

For the other time slices the error increases in each iter-

ation resulting from a divergent behavior of the coarse
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0 20 40 60 80 100
10−9

10−4
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Coarse time step

ε
m

ax

ν = 0.001

ν = 0.002

ν = 0.004

ν = 0.006

ν = 0.008

ν = 0.01

(a) k = 1, C=IMEX, F=IMEX
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10−4

101

Coarse time step

ε
m

ax

ν = 0.001

ν = 0.002

ν = 0.004

ν = 0.006

ν = 0.008

ν = 0.01

(b) k = 2, C=IMEX, F=IMEX

0 20 40 60 80 100
10−9

10−4

101

Coarse time step

ε
m

ax

ν = 0.001

ν = 0.002

ν = 0.004

ν = 0.006

ν = 0.008

ν = 0.01

(c) k = 40, C=IMEX, F=IMEX

0 20 40 60 80 100
10−9

10−4

101

Coarse time step

ε
m

ax

ν = 0.001

ν = 0.002

ν = 0.004

ν = 0.006

ν = 0.008

ν = 0.01

(d) k = 80, C=IMEX, F=IMEX

Fig. 5 Maximal absolute error between numerical and analytical solution εmax = max(|u − u|) plotted over the

time domain for the first four Parareal iterations k. Fine F and coarse C solver of the used Parareal algorithm is

IMEX. Given are the errors for chosen viscosities of the set ν ∈ {n× 10−3|n = 1, 2, ..., 10}

solver. This shows that stable coarse and fine solvers

do not ensure stability over all Parareal iterations. The

Parareal algorithm converges to the serial fine solution

within the pre-set tolerance after k = 100 Parareal it-

erations, as expected.
Finally, Fig. 4c shows the results for SL. In contrast

to both previous coarse solvers SL is stable over the

whole time domain for each iteration. Due to this we

can see a fast convergence to the serial fine solution

uniformly over the whole time domain. After just four

iterations the error is visually nearly indistinguishable

from the error of the serial fine solution. The preset tol-

erance of the Parareal algorithm leads to fulfilling the

convergence criterion after k = 9 iterations. Addition-

ally, we have included the serial fine solution of the SL

scheme (dash-dotted) to underline the motivation for

the choice of IMEX as the fine time stepping scheme

of the Parareal algorithm. The large error of the SL

method is caused due to its dependency on its spatial

discretization errors, which are not of spectral accuracy.

6.3.2 Influence of the SL on the advective problem

We investigate the influence of the semi-Lagrangian for-

mulation on the convergence behavior of the Parareal

algorithm applied to advective problems. To reach this

goal we now use the set of viscosities described in bench-

mark B1.

In Figure 5 the error εmax is shown against the time

domain for some of the viscosities ν. In the case of

IMEX we show iterations 1, 2, 40 and 80 of the Para-

real algorithm. We can observe a stable behavior of the

coarse solver for ν ≥ 0.002 in the first Parareal iter-

ation. The second iteration shows increasing errors for

all ν with already unstable behavior of the coarse solver

for ν ≥ 0.008. None of these calculations shows a rapid

convergence with Parareal, as k ≥ 97 iterations are nec-

essary to reach the desired tolerance. Iterations 40 and

80 show how the solution of the fine solver is propagated

one time slice per iteration.

Studies for SL are provided in Figure 6. Here, only

the first two iterations are visualized since a sufficient

approximation to the solution is already obtained. First

of all, we observe a stable behavior for the coarse solver

with all examined viscosities. The SL scheme stably

solves the advection part without bounds on the CFL

number independent of possible (large) errors in the

velocity caused by the large time step size used in the

coarse propagator. Also, the velocities and trajectories
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0 20 40 60 80 100
10−9

10−4

101

Coarse time step
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ν = 0.001
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ν = 0.004

ν = 0.006

ν = 0.008

ν = 0.01

(a) k = 1, C=SL, F=IMEX
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10−9

10−4
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Coarse time step

ε
m
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ν = 0.001

ν = 0.002

ν = 0.004

ν = 0.006

ν = 0.008

ν = 0.01

(b) k = 2, C=SL, F=IMEX

Fig. 6 Maximal absolute error between numerical and analytical solution εmax = max(|u − u|) plotted over the

time domain for the first four Parareal iterations k. Fine F and coarse C solver of the used Parareal algorithm are

IMEX and SL respectively. Given are the errors for chosen viscosities of the set ν ∈ {n× 10−3|n = 1, 2, ..., 10}

are calculated using averaged (interpolated) velocities,

which smooths out near-grid scale velocity variations,

which are usually responsible for instabilities (Durran,

2010). On the other hand, the IMEX scheme is very

sensitive to velocity variations, especially for very small

viscosities, since no smoothing is used. When large time

steps are used in Parareal, large errors in velocity are

expected, particularly at the end of the time frame.

Such errors may cause the CFL number bounds to be

violated, and, therefore, the solutions do not contain

the information of their domain of dependence. This

can naturally drive the numerical solution away from

the expected one.

We also notice in Figure 7, where the total error of

the space-time domain is plotted over the first three
iterations, an equally fast convergence for all different

viscosities from iteration one to two. Between iteration

two and three the error for the calculations with the

larger viscosities is reduced less than for the smaller

viscosities, in the end leading to one additional itera-

tion needed for convergence for ν = 0.01. For all SL

experiments performed in the test case the algorithm

converged within k ≤ 9 iterations, which corroborates

the statement made in Section 6.2 that a SL formulation

has potential as an efficient coarse solver (fast conver-

gence and cheap compared to the fine time stepper) for

parallel-in-time methods.

Additionally, we want to mention that the Parareal

algorithm converges to the fine solution with SL for

even smaller viscosities up to ν = 0. The number of it-

erations until convergence increases gradually with de-

creasing viscosities. Convergence is reached with k = 12

Parareal iterations for ν = 0.0001, k = 16 iterations

with ν = 0.00005 and k = 23 iterations with ν = 0.

1 2 3

10−5

10−4

10−3

k

ε
to

t
ν = 0.001

ν = 0.002

ν = 0.004

ν = 0.006

ν = 0.008

ν = 0.01

Fig. 7 Total error εtot of the space-time domain of each

iteration k of the Parareal algorithm plotted over it-

erations 1, 2, and 3 for chosen viscosities of the set

ν ∈ {n × 10−3|n = 1, 2, ..., 10}. Fine F and coarse C
solver are IMEX and SL respectively

6.3.3 Influence of the coarse time step size on the

convergence of Parareal

In this section, we study the influence of the coarse

time step size ∆T on the convergence of the Parareal

algorithm.

For this study, we use benchmark B1 with the fol-

lowing changes: we focus on the two viscosities ν =

{0.005, 0.01} and vary the time step size of the coarse

solver ∆T = 1/2i×10−2 for i ∈ [0, ..., 3]. For the coarse

solvers of the Parareal algorithm we use IMEX and SL.

The number of iterations needed for convergence for

the Parareal algorithm is listed in Table 3 for all com-

binations of viscosities and time step sizes. Based on

Sec. 6.3.2, we know that the IMEX coarse solver leads

to divergent behavior for ∆T = 1× 10−2, which results

in the high number of iterations to converge. This is also

the explanation for the 32 iterations with ν = 0.01 and

∆T = 5 × 10−3. The reduced number of iterations for
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Table 3 Number of iterations to convergence of the

Parareal algorithm with F=IMEX and C as noted in

the table for two different viscosities and four different

time step sizes of the coarse solver applied to B1. The

fine time step size is fixed to ∆t = 10−6.

ν ∆T C: IMEX C: SL
0.005 1× 10−2 99 8
0.005 5× 10−3 5 6
0.005 2.5× 10−3 4 4
0.005 1.25× 10−3 3 4
0.01 1× 10−2 100 9
0.01 5× 10−3 32 6
0.01 2.5× 10−3 4 5
0.01 1.25× 10−3 3 4

this case is caused by the unstable behavior appearing

at a later iteration. All other results show no instabili-

ties of the solvers during all iterations.

A reduction of ∆T leads to a reduction of the num-

ber of iterations to converge of the Parareal algorithm.

This matches with the theory of Gander and Hairer

(2014). An exception is the reduction from ∆T = 2.5×
10−3 to ∆T = 1.25×10−3, which does not lead to a re-

duction in the number of iterations with the SL coarse

solver. A reason for this can be found in the coarse

time step size, which does not lead to a reduction in

the error of the coarse solver due to SL depending also

on the spatial grid size. Reducing the spatial grid size

from ∆x = 1/256 to ∆x = 1/512 reduces the error of

the coarse solver indicating dominating errors from the

2nd order spatial interpolation of the SL scheme.

The results show the advantage of the SL formu-

lation for the cases where IMEX has no guarantee of

stability over the whole Parareal algorithm. In these

cases the additional computation and communication

of the SL formulation lead to a large decrease in itera-

tions to converge compared to using IMEX as a coarse

solver.

6.4 Parareal B2: Transport of a wave over time

We continue with results of benchmark B2 with a focus

on the required number of iterations to converge.

From Figure 8, we can see computations with a vis-

cosity ν ≥ 0.0003 converging within k ≤ 5 iterations

for both coarse solvers (IMEX and SL). With IMEX

one iteration fewer is needed between ν = 0.0003 and

ν = 0.001. This can again be explained by the fact that

the SL solver is also influenced by the spatial discreti-

zation, and, therefore, the error of the coarse solver has

an additional bound preventing it from a better initial

guess for the fine solver.

0.0001 0.001 0.01
0

30

60

90

ν

k

CIMEX

CSL

Fig. 8 Parareal iterations k needed for convergence

of the algorithm plotted against the viscosities ν for

benchmark B2 with IMEX as the fine solver and IMEX

and SL as the coarse solver

The fast convergence of these calculations can be at-

tributed to a stable behavior of the solvers in all Para-

real iterations. The IMEX coarse solver is more stable

with B2 than with B1, because the maximal velocity is

smaller for B2, which can be seen by comparing Fig. 2

and Fig. 3.

For the two smallest viscosities we observe a dras-

tic increase in iterations to convergence with IMEX

whereas the algorithm with SL still converges within

k = 4 iterations. The increase results again from in-

stabilities of the coarse solver within the Parareal iter-

ations. This shows once more the potential of the SL

formulation as a coarse solver for parallel-in-time meth-

ods with advection dominated problems.

7 Conclusion

In this work, we have shown the potential of the semi-

Lagrangian formulation as a coarse solver for parallel-

in-time methods using the Parareal method applied to

the viscous Burgers equation.

Since our focus was on the benefits of the semi-

Lagrangian formulation as a coarse solver for advection

dominated problems, we investigated two benchmarks

with different characteristics based on manufactured so-

lutions in the region of small viscosities.

We compared the semi-Lagrangian method in com-

bination with an implicit Euler (SL) to an explicit (RK)

and an implicit-explicit (IMEX) Runge-Kutta method

for the coarse solver. The fine solver was chosen to be

the IMEX method. The RK method was not stable as

a coarse solver for the investigated cases and, therefore,

did not lead to any speed up regarding the number of

iterations to convergence. With the considered bench-

marks, we found that for parameter combinations with

both IMEX and SL turned out to be stable as the coarse

solver all Parareal calculations need a similar number
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of iterations to convergence. Since SL is computation-

ally more expensive and needs additional communica-

tion, the method of choice in these cases is IMEX. In

all parameter combinations examined where the IMEX

method was unstable as a coarse solver the SL method

is the method of choice as it needs far fewer iterations

to convergence due to its stable behavior.

The stability of SL makes a larger range of vis-

cosities suitable to the Parareal method compared to

IMEX. Continuously decreasing the viscosity also leads

to an increasing number of iterations for SL. We were

able to show a convergence with potential for speed up

even for a viscosity of ν = 0.

Since our implementation of the Parareal algorithm

is run serially, we can only show the potential of the SL

formulation based on number of iterations needed for

convergence. In further work it has to be investigated

how large the speed up actually is considering the addi-

tional computation and communication necessary with

SL.
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