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Abstract

This paper presents methods used to perform discrete adjoint gradi-
ent evaluations for linear stress and vibration analysis. The methods are
implemented within the framework of a discrete adjoint structural solver
being developed for multidisciplinary adjoint optimizations of turboma-
chinery components. The code is differentiated using the algorithmic dif-
ferentiation (AD) tool CoDiPack in tandem with manual treatment of the
iterative solvers.

Stress analysis leads to a linear system of equations that is typically
solved by an iterative solver (e.g. GMRES). To ensure accuracy, the ad-
joint problem is formulated as a new linear system of equations to be
solved.

Vibration analysis results in a generalized eigenvalue problem that is
also typically solved by an interative solver. The adjoint problem takes
out the generalized eigenvalue solve and replaces it by one outer product
per eigenfrequency, leading to significantly cheap eigenfrequency gradients
for vibration analysis.

1 Introduction

State of the art adjoint optimization methods in the field of turbomachinery
focus mainly on aerodynamic cost functions and constraints [26, 13, 25]. While
such optimization methods can produce an aerodynamically optimized shape,
the structural requirements may not be met. These are usually evaluated a
posteriori rather than within the optimization process, leading to several re-
iterations in practice. In order to take structural constraints into account and
reduce design iterations, a multidisciplinary adjoint optimization framework for
turbomachinery is introduced in section 2. To realize this, a discrete adjoint
structural solver that is equipped to meet the needs of turbomachinery design
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is required.

Stress and vibration analyses play a significant role in evaluating the struc-
tural requirements of turbomachinery components. These components undergo
high rotational speeds in operation, which can lead to large centrifugal forces
and structural deformations. As a result of these deformations, the structural
stresses increase and need to be kept under the specified safety limit. Addition-
ally, unsteady pressure forces from the surrounding fluid contribute to undesired
vibrations that can lead to structural failure. Evaluating the maximum von
Mises stress in a static stress analysis and the eigenfrequencies using a vibration
analysis, provides engineers with vital information to design structurally feasi-
ble components. For gradient-based optimization methods, the sensitivities of
stress and vibrational quantities of interest with respect to design parameters
are required. To compute the required sensitivites efficiently, an adjoint struc-
tural solver that offers stress and vibration analysis has been developed. While
recent works [14, 9] have differentiated structural solvers for multidiscplinary
optimizations (MDOs) using a more analytical approach, this work focuses on
the efficient use of algorithmic differentiation (AD). The discrete adjoint imple-
mentations of the linear stress and vibration analysis are discussed in sections
3 and 4, respectively.

While the gradients of the stiffness and mass matrices can be derived analyti-
cally, one of the advantages of using AD for code differentiation is that additional
code contributions are automatically differentiated. By using an object-oriented
design approach, this provides a maintainable code base for future contributions.
In section 5, an example is shown where additional contributions for composite
material applications to the primal code are automatically differentiated and
gradients for material design parameters can be easily obtained.

2 Multidisciplinary Adjoint Optimization

Performing an optimization in a single discipline, such as aerodynamics, neglects
crucial constraints imposed by other disciplines, such as structural mechanics.
Ideally, the structural constraints are considered during the optimization pro-
cedure, such that the resulting shape is aerodynamically optimized and satisfies
the structural constraints. This section will briefly motivate the use of gradient-
based optimization methods using adjoints and discuss what is required for a
multidisciplinary adjoint framework.

Gradient-free optimization methods have been applied successfully in tur-
bomachinery [17, 24, 16, 22, 10]. The methods are non-intrusive and one only
needs to evaluate the cost function. Unfortunately, these methods suffer from
the curse of dimensionality. This means that the cost of performing a gradient-
free optimization is dependent on the size of the design space m, which can
be significantly large. Convergence often requires a large amount of function



evaluations. Gradient-based methods, on the other hand, use the gradient of
the cost function J(x) € R with respect to the design € R™,
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to converge towards an optimum with less iterations. However, these methods
only converge towards the global optimum if the problem is convex and com-
puting the sensitivities can be cumbersome.

The least intrusive way of approximating the gradient (1) is to use the finite
differences (FD) method. However, the cost is dependent on the number of input
variables m, costing 2m - cost(J) when using a second order approximation.
Here cost(J) refers to the computational cost of evaluating the primal model
J(x). As the size of the design space increases, computing the gradients may
become infeasible. The adjoint approach, which was first applied in aerodynamic
optimization by Pironneau [19], followed by Jameson [7, 6], offers an efficient
alternative for computing the gradients. Evaluating the adjoint model

oJ(x)" -
) (2)

with J = 1 computes the gradient (1) at a cost dependent on the number of
outputs, rather than the number of inputs. The bar notation .J denotes an
adjoint variable. Typically the number of outputs in an optimization is much
lower than the number of inputs. Thus, the adjoint method is superior in terms
of computational cost. Moreover, being independent of the number of inputs
gives engineers a broader design space to work with.

:E:

Two approaches can be taken to implement the adjoint model. The con-
tinuous adjoint approach [8] involves deriving a continuous adjoint model, then
discretizing it to solve numerically. This results in computing the gradients of
the continuous problem. The discrete adjoint approach [15], on the other hand,
derives an adjoint model from the discretized system of equations, and com-
putes the gradients of the discretized problem. The source code transformation
method algorithmic differentiation (AD) [4, 18], sometimes referred to as auto-
matic differentiaton, can be used to generate the adjoint model of an existing
code. Several AD tools are available and are listed on the AD community’s web
page www.autodiff.org. In this work, the discrete adjoint approach is taken
using the AD tool CoDiPack [20].

In the context of AD, evaluating the adjoint model (2) is also referred to
as reverse mode and may be used interchangeably in this text. AD can also
be used to differentiate a primal model J(x) in forward mode using the chain
rule of differentiation. This paper will concentrate on using AD to implement
the adjoint, or reverse mode. For a more detailed description of algorithmic
differentiation, the reader is referred to e.g. [4, 18].



In addition to the gradients (1), one requires gradients of constraints with
respect to design parameters to formulate a gradient-based multidisciplinary op-
timization problem. For turbomachinery applications, structural constraints are
of particular interest. Previous development efforts of implementing the struc-
tural constraints into this multidsciplinary optimization framework include an
adjoint CAD transformation for cold-to-hot deformations [21]. To complement
this, the gradients of structural quantities of interest, such as the maximum
von Mises stress and eigenfrequencies, with respect to design parameters are re-
quired. The discrete adjoint models that compute these gradients are the focus
of this paper. They are introduced in the next sections 3 and 4.

3 Discrete Adjoint Linear Stress Analysis

The structural linear stress analysis is used to assess the structural integrity
based on given forces. In the case of turbomachinery, relevant forces are com-
posed primarily of the centrifugal forces due to high rotational speeds. Addition-
ally, pressure forces from the surrounding fluid may be considered as well. The
structural solver discussed in this paper is discretized using the finite element
method (FEM). For a detailed discussion on the FEM approach for structural
applications, the interested reader is referred to [2].

3.1 Linear Stress Equations

Using the weak formulation of the balance of momentum, the finite element
formulation for linear stress analysis can be derived [2] as

Ku + Mii = b, (3)

with the stiffness matrix K € R™*™ mass matrix M € R™*™ load vector
b € R™, and displacements u € R™. For a static linear stress analysis, M4 = 0.
One is left with a linear system of the form

K(z)u = b(x), (4)

where the stiffness matrix and the load vector depend on the design variables
x € R™. The linear system is solved for the displacements which are then used
to compute a structural cost function, such as the maximum von Mises stress
Omaz(w) € R. Note that the maximum is computed using a continuous function,
e.g. the Kreisselmeier-Steinhauser function [11]

Omaz = KS(0) = —% In <Z e""”) (5)

or the p-norm

1
Omaz = |ollp = (lo1|P +|o2|? + -+ |on]P)7 . (6)
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Figure 1: Linear stress analysis algorithm breakdown. Primal(l) and adjoint(r)

For the inclusion of structural constraints in a gradient-based multidisciplinary
optimization, the sensitivities
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have to be computed.

3.2 Adjoint Implementation

The implementation of the discrete adjoint linear stress analysis can be broken
down into a three-step algorithm (figure 1). First, the linear system is assembled
by computing the stiffness matrix K and the load vector b. Then, the linear
system is solved for the displacement field u. Finally, the displacement results
are used to evaluate the cost function o,,,,. Note that here the mentioned cost
function is 0,42, yet this can actually be any cost function that is dependent
on the displacements u.

The adjoint model has a similar three step form, only in reverse (figure 1).
Seeding the adjoint model

T
8Umaw

T = B O maz (8)

with 42 = 1 and performing a reverse run will compute the sensitivities
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However, a black-box differentiation using AD would involve differentiating
through the iterative linear solver of step 2 in figure 1. This could result in
a significantly high memory consumption and computational cost proportional
to the number of iterations. Additionally, the same number of iterations and
the same basis for the Krylov subspace used by the primal linear solver would
be used to compute the derivatives. At that point, the adjoint variables may not
actually be converged and inaccurate derivatives would be propagated through
the calculation.

Alternatively, the adjoint of the linear system can be treated explicitly as
described in [23]. This method would result in the equations

E = K_TT_L, Ki,j = —’U,jbi (9)

for the adjoints of K and b. Due to the symmetric positive definite structure
of the stiffness matrix for linear stress analyses, an additional simplification can
be made such that

Kb=u. (10)

As a result, computing the adjoints of step 2 involves an additional linear system
solve with the same matrix K. Recording the operations of the iterative linear
solver with AD is no longer necessary. The vector w comes from the adjoint of
the cost function evaluation (step 1 of figure 1), which is differentiated using
AD. After K and b have been computed using (9), they are plugged into the
adjoint linear system assembly (step 3 of figure 1) to compute .

3.3 Accuracy and Performance Results

To assess the accuracy of the discussed adjoint formulation, the gradient (7) is
computed using a rotating cantilever beam test case with 270 degrees of free-
dom (figure 2). The beam has fixed boundaries on the left hand edge (figure 2)
and concentrated loads on the opposite edge, where the displacements are most
prominent. The sensitivities are visualized in figure 3 and plotted in figure 4.
The gradient computed using the adjoint method is in good agreement with the
gradient computed using finite differences and a forward AD differentiation.

An axial fan geometry, which has been used as a baseline for an optimization
in [1], is used to perform run time and memory consumption tests. Run time
and memory consumption results using the axial fan test case are shown in
table 1. The results reflect the computational effort and memory requirements
for computing the gradient (7). A small test case with approximately 30,000
degrees of freedom and a larger test case with approximately 200, 000 degrees of
freedom (figure 5) are compared, using the RealReverse AD type of CoDiPack.
The resulting sensitivities are shown in figure 6. The larger test case shows
better run time and memory ratios, reaching a computational run time of around
2.1 times the primal run time. This reflects the fact that two linear systems
are solved using the same matrix K and solving the linear system accounts for



Figure 2: Rotating cantilever beam with displacement vectors
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Figure 3: Rotating cantilever beam with sensitivities |a”a$| € R
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Figure 4: Comparison of |2%mez| € R using finite differences (FD), reverse
AD, and forward AD

Degrees of Freedom, Tape | =~ 30k, RR | = 200k, RR | ~ 200k, RRI
relative run time 25 xT 21 xT 2.8 x T
relative peak memory 7.7Tx M 6.4 x M 5.8 x M

Table 1: Axial fan run time and memory consumption results for gradient eval-
uation d"é;}‘” using the adjoint linear stress analysis. RR: RealReverse, RRI:
RealReverselIndex. T run time of primal. M: peak memory of primal

the majority of the run time, as is show in figure 7. Note that here the same
numerical set up is used to solve both linear systems. The results also show
that the RealReverseIndex AD type of CoDiPack offers a lower peak memory
consumption at the expense of a higher computational effort.

4 Discrete Adjoint Vibration Analysis
A free vibration analysis starts with equation (3) in unloaded form:
Ku+Mi=0 (11)

With a proposed solution of _
u = upe“rt (12)

a generalized eigenvalue problem of the form

Kuy, = w; Muy, (13)



Figure 5: Axial fan mesh with displacement vectors

is obtained. Defining A\ := w,%, the problem can be formulated as
(K(x) — MM (x)) u,, = 0. (14)

Ak is the k-th eigenfrequency and uy the k-th eigenvector. The vibration anal-
ysis recycles the same stiffness matrix K from the linear stress analysis, but
requires an additional matrix, the mass matrix M € R™*"™. Note that K and
M are symmetric, i.e.

K=KT M=M"T, (15)

and the eigenvectors can be normalized such that
ul Muy, = 1. (16)

The system (14) can be solved using an iterative eigenvalue solver and the
process can be broken down into a two-step algorithm (figure 8). The gradient
of interest in this case is

Ok

3_13€R s (17)

where up to roughly twenty eigenfrequencies are usually of interest.

4.1 Tangent Model

The tangent model of the vibration analysis is required to derive the adjoint
model and will be introduced in this section. One starts by differentiating the
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Figure 7: Run time breakdown of primal and adjoint linear stress analysis using
axial fan test case
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Figure 8: Vibration analysis algorithm breakdown. Primal(l) and adjoint(r)

generalized eigenvalue system (14) by z;:

O(K — A\ M) duy
_ K — M\ M =0 18
. ug + ( k )axi (18)
- — —= — K — A\ M = 1
o2 U oz, Muy, — Mg 92, U + ( Ak ) o, 0 ( 9)
Left multiplying the result by u} gives
oK O oM Ouy,

The definition of the eigenvalue problem (14), symmetry of K and M (15), and
mass normalization (16) are used to simplify further to

oK Ok oM ouy,
u{a—xluk ~ e, ul Muy, —u{)\ka—xiuk +ul (K — M\ M) i 0, (21)

-1 =0

which results in BK o aM

k

Finally, this is rearranged to

O 7 [ OK oM
= - : 2

8.1‘,‘ Yk (81‘, k 83?1) Wk ( 3)

Given that the eigenvector uy, eigenfrequency Mg, and the gradients %, %

have been computed, the eigenfrequency sensitivity (24) can be directly evalu-
ated.

11



4.2 Adjoint Model

Previous work done by Lee [12] shows an adjoint formulation of the general-
ized eigenvalue problem, where an augmented response function was used to
construct the adjoint equations. The method boils down to solving a linear
system of equations for the adjoint variables and plugging them into the dif-
ferentiated response function to compute the sensitivities (17). However, the
gradients of the mass and stiffness matrices with respect to the design vari-
ables are still required to complete the equation. Dhondt et al. [3] computed
the sensitivities via a symbolic approach as well by direct differentiation of the
generalized eigenvalue problem. However, they used a perturbed stiffness and
mass matrix to complete the equation, which led to numerically sensitive results.

The method presented in this paper uses a different approach and focuses
more on the adjoint method by algorithmic differentiation, which will yield al-
gorithmically exact gradients of the stiffness and mass matrices. While the
majority of the discrete problem can be handled directly with AD, the iterative
solver of the generalized eigenvalue problem has to be handled separately. It is
well understood how this needs to be done for linear systems ([23] and section
3.2 of this paper), but not yet for generalized eigenvalue problems. This is pre-
sented in this section.

The adjoint model of the vibration analysis
r=—— A (25)

is seeded with A\, = 1 to compute the sensitivities of each eigenfrequency of
interest. The adjoint implementation (figure 8) involves a black-box AD dif-
ferentation of the assembly (step 2). As was the case for the linear stress anal-
ysis, one would want to avoid differentiating through an iterative solver for the
generalized eigenvalue problem of (14). A similar approach can also be used
to compute the adjoints K and M. Consider the generalized eigenvalue system

solver as a function
A = /\k(K, M) (26)

that takes matrices K and M as input arguments and outputs the eigenfre-
quency Ag. The following dot product relationship [18, 4] between the tangent
and adjoint models holds:

<K,f(> n <M,M> - <A,€7xk> . (27)
Plugging in the tangent model (24) yields
(KR )+ (M, 00) = (wf (K = M) wi, A ) (28)

<K,f(> n <M,M> - @gmk, xk> n <—/\kuZMuk, xk> . (29)

12



In index notation, this can be expressed as

Z KHK” + Z MHM” = 5\k Z K’ijuk,iuk_j + *S\k>\k Z Mijuk,iukyj . (30)

,J ,J 0,J 4,J

R1 R2 R1 R2

From relationship R1, an expression for the adjoint stiffness matrix K;; can be
deduced:

Z Kijkij = j\k Z Kijukﬂ-u;m (31)
() 4,J
Kij = j\kuk,iuk,j (32)

Similarly, an expression for the adjoint mass matrix is found using relationship
R2:

Z MijMij = _;\k)\k Z Mijukﬂ-ukﬂ» (33)
4,J i,
M;j = = NeApug vy = —ApKij (34)

After having solved for the eigenfrequency A and eigenvector uy, adjoint equa-
tions (32) and (34) can be seeded with A\, = 1. The adjoints K and M are
then plugged into step 2 of figure 8, the adjoint system assembly, to finally com-
pute the gradient (25). Note that unlike the adjoint linear solver, no additional
eigenvalue systems have to be solved and the adjoints can even be evaluated
explicitly.

4.3 Accuracy and Performance Results

The accuracy of the adjoint vibration analysis is assessed by computing the
gradient (17) with the same cantilever beam test case as in section 3.3. The
accuracy results are shown in figure 9. The gradients computed using the ad-
joint implementation show an excellent accordance with the finite differences
and forward AD computed gradients.

A run time comparison of the primal versus adjoint implementations was
made using the larger axial fan test case described in section 3.3. The results
of the run time breakdown are shown in figure 11. Note that in this case only
the assembly of the mass matrix M is measured, since the stiffness matrix K
from the linear stress analysis can be reused. Nearly the entire computational
effort (99.5%) of the primal run is due to the iterative eigenvalue solver. Not
needing to differentiate through this expensive function allows more efficient
adjoint runs. Ten eigenfrequencies and their respective gradients are computed
for the run time breakdown. This means that the timing results are for ten
adjoint evaluations, each amounting to approximately 1% of the considered run
time.

13
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5 Differentiation of Further Contributions

In addition to the node coordinates @, which mainly serve the purpose of shape
design parameters, alternative design parameters may be of interest as well.
For instance, in the case of composite material applications based on first-order
shear deformation theory (FSDT), the lamination parameters V € R! can be
used to manipulate the material properties [5]. Gradients with respect to the
lamination parameters could e.g. be used for material optimization problems.
The design space could thus be extended as

x* = (x,V) e R (35)

As a result, the stiffness and mass matrix computations are now defined to be
dependent on the extended design space

K = K(z*), M := M(z"), (36)

such that the adjoint vibration analysis as described in section 4 produces gra-
dients with respect to node coordinates, as well as lamination parameters

OAg
L eR™, 2 R 37
o (37)

This is mainly achieved by using an object-oriented design approach in the
implementation of composite material capabilities into the code of the vibra-
tion solver. The subclass CompositeElement, a child of class Element (fig 12),
defines the construction of the stiffness and mass matrices using lamination

15
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Figure 12: IsotropicElement and CompositeElement defined as subclasses of
Element

parameters V. The algorithmically differentiated portion of the code was im-
plemented for the parent class Element, enabling the introduction of additional
element classes without additional AD differentiation. As a result, the com-
posite element subclass and its matrix construction functions are automatically
differentiated, which ensures maintainability of the differentiated code for future
contributions.

Using a flat plate composite material test case (fig 13), the eigenfrequency
gradients with respect to lamination parameters % were computed. A com-
parison of adjoint-computed gradients with FD and forward AD in figure 14
show a positive agreement.

6 Conclusion

This paper presented the methods used for a discrete adjoint gradient evalu-
ation for linear stress and vibration analysis within the context of a discrete
adjoint structural solver for turbomachinery applications. The adjoint linear
stress analysis involves solving an additional linear system to avoid the black-
box algorithmic differentiation of an iterative linear solver. Performance tests
show that computing the sensitivities using the adjoint implementation costs as
little as approximately 2.1 times the primal run time with 6.4 times the mem-
ory consumption, or 2.8 times the primal run time with 5.8 times the memory
consumption.

The adjoint vibration analysis uses a similar approach to compute the ad-
joints of the generalized eigenvalue problem explicitly, without the need of solv-
ing any additional eigenvalue systems. Performance tests have shown that one
reverse evaluation of this adjoint implementation costs about 1% of the forward
run time. The accuracy test results for linear stress and vibration analysis show
a good agreement of sensitivities computed using finite differences, forward AD,
and adjoint, i.e. reverse, AD.

16



Figure 13: Flat plate free vibration test case showing mode 4 displacements
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With an AD differentiated code base, additional code contributions are au-
tomatically differentiated. As a result, eigenfrequency gradients with respect
to composite material design parameters could be directly computed and the
sensitivities correlate with the accuracy previously shown.

Further work would include extending the linear stress analysis to a nonlinear
stress analysis, and a pre-loaded vibration analysis.
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