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Abstract

Biodiversity information systems (BISs) involve all kinds of heterogeneous data, which in-
clude ecological and geographical features. However, available information systems offer very
limited support for managing such data in an integrated fashion, and integration is often based
on geographic coordinates alone. Furthermore, such systems do not fully support image con-
tent management (e.g., photos of landscapes or living organisms), a requirement of many BIS
end-users. In order to meet their needs, these users - e.g., biologists, environmental experts -
often have to alternate between distinct biodiversity and image information systems to combine
information extracted from them. This cumbersome operational procedure is forced on users by
lack of interoperability among these systems. This hampers the addition of new data sources,
as well as cooperation among scientists. The approach provided in this paper to meet these
issues is based on taking advantage of advances in Digital Library (DL) innovations to integrate
networked collections of heterogeneous data. It focuses on creating the basis for a biodiversity
information system under the digital library perspective, combining new techniques of content-
based image retrieval and database query processing mechanisms. This approach solves the
problem of system switching, and provides users with a flexible platform from which to tailor a
BIS to their needs.

1 Introduction

Environmental changes have emerged as an important question in the global agenda. In order to

support the design of policies for environmental management and ecosystem balance, it is necessary



to get an accurate view of existing conditions, and to understand the complex changes that occur
at all levels in the planet. One essential step to creating appropriate scenarios is to collect relevant
data about the environment, and to develop information systems to manage and derive knowledge
from these data. These systems must furthermore combine newly gathered data with historical
and legacy information (e.g., from distinct kinds of archives) under homogeneous management.

A wide variety of environmental information systems - EISs - ([18, 12]) is being developed to
answer this demand. However, they can seldom meet all end-user requirements: not only are the
data sources involved very disparate, and hard to integrate, but user needs (and, indeed, users)
cover a very broad spectrum. Therefore, scientists concerned with environmental issues must seek
support from a large set of EIS, as well as from other systems. This, of course, brings about
all kinds of interoperability problems due to system mismatch, data diversity, and variety of user
profiles.

One good example of such problems appears in the context of biodiversity, where expert end-
users must contend with at least two kinds of unrelated systems: Biodiversity Information Systems
(BIS) and image information systems. The latter are software that allow users to manage images’
content (e.g., patterns, color, texture). In the biodiversity context, they are adopted by scientists
for their image archives and to help them identify species.

A BIS (e.g., [3, 4, 1]) is an environmental information system that manages huge sets of geo-
graphic data as well as large databases concerning species (e.g., natural history collections, field
observation records, experimental data). Geo-related data concern all kinds of geophysical infor-
mation, provided both by ground surveys and by remote sensing. Most biodiversity information
systems are concerned with determining the spatial distribution of one or more living species, and
the spatio-temporal correlations and trends of these distributions. This requires combining data
on species (when and where they are observed, by whom and how) with geographic data that
characterize the ecosystems where the species are observed. Besides being heterogeneous in nature
(encompassing flora and fauna and the geophysical description of their habitats), these data also
are heterogeneous in other aspects — such as spatio-temporal granularity or storage format. An
example of a standard spatial query in a biodiversity system is “Show the areas in Brazil where
the plant species Acacia polyphylla has been observed”.

Drawings and photos of species also may be used in this context. They are stored apart in
the system’s data files, and treated as auxiliary documentation, being usually retrieved by species’
name. Generally, images are accessed only via textual (metadata) queries, without support for
content-based image retrieval, e.g., “Show all photos of plant species Acacia polyphylla’.

If, on the other hand, a scientist starts from incomplete pictorial information — e.g., just a photo
of a plant leaf — he/she will have to resort to an image information system to request “Retrieve
all database images containing plants whose leaves are shaped like those in the photo”. Once
likely candidates are identified, the scientist then can continue work by turning to a BIS. Complex
biodiversity queries may actually require switching several times across systems.

The goal of the research presented in this paper is to combine research on image processing,



databases, and digital libraries to provide biodiversity researchers with a BIS that provides seamless
integration of queries involving both image content and textual data. In such a context, users will
just need to provide an image as input (e.g., the photo of a plant leaf) and request the system
to “Show the areas in Brazil where the plant species Acacia polyphylla coexists with plants whose
leaves are shaped like those in the photo”.

Our previous work in this direction has concentrated on image metadata, and image processing
and analysis techniques for extracting appropriate descriptors from species’ images [9, 10, 11], with
a prototype implemented. Our present focus is to combine these with digital library (DL) facilities.

To this purpose, we present a generic digital library architecture for managing heterogeneous
data on living beings and their ecosystems. These data involve not only textual and location
features, but also images of these beings and of their environments. A key notion considered is
that of DL component, a specially designed software module that encapsulates specific functionality,
thereby supporting modularity, flexibility, and reuse in constructing DL infrastructure. Due to
its DL component-based design, this architecture circumvents the interoperability and system-
switching problems discussed. To illustrate this architecture, it has been instantiated to support
the creation of a BIS for fish species.

The main contributions of this paper are the following: (a) a generic architecture for managing
heterogeneous collections, based on digital library components, to access heterogeneous biodiversity
data sources (text and images), that allows combining text-based and content-based queries in a
seamless way; and (b) a new component, for content-based image search, integrated into that
architecture.

The rest of this paper is organized as follows. Section 2 characterizes the proposed architecture,
including its search components. Section 3 describes preliminary experiments conducted to validate
the architecture. Section 4 briefly comments on related research. Section 5 presents conclusions

and summarizes ongoing and future work.

2 Architecture

This paper proposes a generic architecture for managing heterogeneous biodiversity data in an
integrated fashion. The starting point for the solution is the assumption that the source data are
stored in a network of heterogeneous collections organized in a digital library. For interoperability
and performance reasons, data are primarily accessed via their descriptors. This architecture takes

into account two kinds of collections: image-related database and domain-specific database.

2.1 Main Modules

Figure 1 shows the digital library architecture proposed for managing these heterogeneous collec-
tions. This architecture includes a set of search services (service providers) which are executed over

heterogeneous data collections (data providers).
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Figure 1: System Architecture.

This architecture has been implemented by using a set of digital library components which have
been developed at Virginia Tech. It uses the Open Archives Initiative (OAI) protocol [25, 21] as a
basis for interoperability. OAI is an HT'TP- and XML-based protocol for metadata harvesting. It
supports digital library interoperability via a two-party model. At one end, data providers use the
OALI protocol to publish structured data and metadata, in various forms. At the other end, service
providers use the OAI protocol to harvest the metadata from data providers, to process it, and to
add value in the form of services.

The main modules interact as follows. The original data sources are stored in image and
domain-specific (e.g., ecosystem) databases. These collections must be pre-processed in order to
generate their respective (open) archives (arrows labeled 1 in Figure 1): the Image Archive for the
image collection and Domain-Specific Archive for the domain-specific collection. Archives contain
metadata and image descriptors, which speed up retrieval of the original data sources. This process
is performed by batch programs that convert the original data sources into XML files. XML Data
Provider Components (XDPC) are used to publish these XML files as OAI archives (arrows 2),
so that these XML files can be accessed through OAI requests (arrows 3). An archive and its
respective data provider can be seen as a complex data provider component. The complex data

provider for the image collection is named Image Data Provider Component (IDPC). The Domain-



Specific Data Pro-vider Component (DSDPC) is the complex data provider for the domain-specific
collection.

Search components process queries against these archives. Queries are specified in terms of
HTTP requests (arrows 4). A Content-Based Image Search Component (CBISC) handles image
content descriptors. A Metadata-Based Search Component (MBSC) handles both image metadata
and domain-specific information.

These search components are activated by the Combiner Component (CombinerC). The Com-
biner receives a query as input (arrow 5), dispatches this query to the search components, combines
their results in a suitable way, and then returns a final answer to the interface layer (arrow 6).

The interface layer is not discussed in this paper. An initial effort to provide users with se-
mantically meaningful result presentations in CBIR systems is described in [37]. The following is

a description of the other modules.

2.2 Data Providers

The Image Data Provider Component (IDPC) and the Domain-Specific Data Provider Component
(DSDPC) are complex components responsible for managing archives by using OAI-compliant XML
data providers.

Archives: In this paper, the term “archive” is used to denote a repository of well-structured
stored information; these repositories contain sets of XML files. Two different archives are foreseen
in the proposed architecture: Image Archive and Domain-Specific Archive. The Image Archive
comprises image metadata and image content descriptors (feature vectors), while the Domain-
Specific Archive concerns metadata related to a specific domain.

XML Data Provider Component (XDPC): XMLFile [38, 34] is an OAl-based component
which is being used as the XML Data Provider in the proposed architecture. Basically, XMLFile
is a Perl module that creates an OAl-compliant repository (data provider) to publish a system of
XML files as an OAT archive. Its layout and configuration provides a clean separation between the

data provider engine, the configuration data, and the data being published.

2.3 Search Components

The proposed architecture uses two different search components: a metadata based search compo-

nent called ESSEX (Section 2.3.1) and a content-based image search component (Section 2.3.2).

2.3.1 Metadata-Based Search Component (MBSC)

The ESSEX search engine [13] is being used as our metadata-based search component. ESSEX is
a componentized vector-space search engine optimized for digital libraries. ESSEX acts as the core
portion of an Open Digital Library (ODL [34]) search component, answering requests transmitted
through an extended OAI (XOAI) protocol. ESSEX was primarily developed for the CITIDEL
(Computing and Information Technology Interactive Digital Educational Library) project [7], and
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now also is being used in the PlanetMath project [27]. In ESSEX, all information is indexed
in “chunks” associated with field names, where chunks may correspond to XML elements in a
metadata record. Its high speed is the result of both keeping index structures in memory and using

a background daemon model based on socket communication with the DL application.

2.3.2 Content-Based Image Search Component (CBISC)

The CBISC is a new search component we created to support queries based on image content.
This component can be used for building special image information systems called Content-Based
Image Retrieval (CBIR) systems. These systems can be characterized as follows: assume that we
have an image database containing a large number of images. Given a user-defined query pattern
(e.g., a query image), retrieve a list of the images from the database which are most “similar” to
the query pattern according to the image content (i.e., the objects represented therein and their
properties, such as shape, color, and texture).

A typical CBIR solution requires construction of image descriptors, which are characterized
by: (i) an ezxtraction algorithm to encode image features into a feature vector; and (ii) a similarity
measure (distance metric) to compute the similarity between features of two images by computing
the distance between the corresponding vectors. The similarity measure is a matching function,
often based on the Euclidean distance, that gives the degree of similarity for a given pair of images
represented by their feature vectors. Usually, the degree of similarity between two images is defined

as an inverse function of the distance metric, that is, the larger the distance value, the less similar

the images.
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Figure 2: CBISC architecture.

Figure 2 shows an overview of our CBISC component. It receives as input an HT'TP request
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(arrow labeled 1 in Figure 2) which specifies a query in terms of the query pattern (query image),
chosen descriptor, and kind of query (see Section 2.3.3). The CBISC starts processing a query by
extracting a feature vector from the query image (module labeled A in Figure 2). This extraction
process requires validating the proposed query against the CBISC configuration file (arrow 2) and
searching for the appropriate Extraction Algorithm in the Descriptor Library (arrow 3). In the
following, the query image feature vector is used to rank the database images according to their
similarity (based on a metric distance) to the query image (module B). This step relies on either
performing a Distance Computation Algorithm (arrow 5) taking into account the feature vectors of
all images in the database (arrow 7), or using an appropriate index structure (arrow 6). Images
are indexed in the CBISC according to their feature vectors by using the M-tree [6] index structure
to speed up retrieval and distance computation. The M-Tree Library in Figure 2 is a repository of
M-Trees. Finally, the most similar images are ranked (module C) and the CBISC returns an XML
file containing this ranked list (arrow 9).

The following sections present the kinds of queries CBISC supports (Section 2.3.3) and the
steps necessary to configure and install the CBISC (Section 2.3.4).

2.3.3 CBISC Requests

Our CBISC ODL component is an OAl-like search component which aims at supporting queries
on image content. As in the OAI protocol [25, 21], queries are given by way of HT'TP requests.
However, we generalize to have an extended OAI (XOAI) protocol for image search, that fits into
the ODL framework [35]. As is typical with XOAI protocols, this request specifies the Internet
host of the HTTP server and gives a list of key-value pairs. Two different requests (“verbs”) are

supported by this image search component:

1. ListDescriptors: This verb is used to retrieve the list of image descriptors supported by

our CBISC. No arguments are required for this verb.

2. GetImages: This verb is used to retrieve a set of images by taking into account their
contents. Required arguments specify the query image, the descriptor to be used, and the

kind of query. The CBISC supports two kinds of queries:

e in a K-nearest neighbor query (KNNQ@), the user specifies the number £ of images to be

retrieved closest to the query pattern; and

e in a range query (R@), the user defines a search radius r to retrieve all database images

whose distance to the query pattern is less than r.

The responses to these verbs are encoded in XML.

2.3.4 CBISC Installation

The CBISC installation is performed by the so-called CBISC Designer, shown in Figure 2. This

process requires three preliminary phases: Image Descriptor Identification, Feature Vector Extrac-
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tion, and CBISC XML Configuration.

e Image Descriptor Identification

The identification of appropriate image descriptors (used in extraction and distance compu-
tation algorithms) requires experts to perform a set of off-line experiments. The experimental
results are analyzed to evaluate image descriptors in terms of efficiency and effectiveness for

a given collection of images.

Descriptors are typically domain and usage-dependent. Thus, a given image can be associated
with very many descriptors. Many CBIR methods only support a fixed set of descriptors.

CBISC, instead, allows progressive extension of the descriptor base.

e Feature Vectors Extraction

Once suitable descriptors have been identified, their extraction algorithms are executed, gen-
erating a set of XML files containing the feature vectors for each image. Again, this step is
performed off-line. Figure 3 presents an XML schema for the feature vector information. Ba-
sically, a feature vector XML file contains information related to the image name, descriptor
name, type of feature vector (1D or 2D curve), the feature vectors themselves represented in
terms of a curve (double vectors), and their location. A feature vector can be accessed either
locally or remotely. In the former case, the CBISC can access directly these files (arrow 7 in
Figure 1). In the latter, they are accessed via the Image Data Provider Component (arrow 3

in Figure 1).
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Figure 3: Feature vector XML schema.

One of the most important features of the CBIS(C'is its flexibility in supporting different kinds
of image descriptors. Firstly, the CBISC can be configured to perform queries involving dif-
ferent image properties (color, texture or shape). In this case, it is just required that the

extraction algorithm defined in an image descriptor generates a feature vector XML file as
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specified in Figure 3. Secondly, the CBISC supports extraction algorithms which create either
1D or 2D feature vectors. 1D feature vectors can be generated by, for example, image descrip-
tors like the Color Histogram [36] and the Contour Multiscale Fractal Dimension [10] shape
descriptor. 2D feature vectors can be extracted by, for example, the Contour Saliences [11]

or the Curvature Scale Space [23] shape descriptors.

Figure 4 presents an example of a feature vector XML file. In this case, the feature vectors
were obtained by applying the image descriptor “Contour Multiscale Fractal Dimension” [10]
on image “fish0.pgm”. Note that this feature vector is encoded in a 1D curve.

<?xml version="1.0" encoding="UTF-8"?>
—<feature_vector:Feature_Vector xmins:feature_vector="http://feathers.dlib.vt.edu/~rtorres/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://feathers.dlib.vt.edu/~rtorres/
http://feathers.dlib.vt.edu/~rtorres/feature_vector.xsd">
<feature_vector::lmageName>fish0.pgm</feature_vector:ImageName>
<feature_vector:DescriptorName> ContourMSFractalDimension <feature_vector:DescriptorName>
<feature_vector: Type> 1 <feature_vector:Type>
—<feature_vector:Curve>
<feature_vector:Nelements> 25 <feature_vector:Nelements>
—<feature_vector:CurvelD>
—<feature_vector:X>
<feature_vector:value> 0.95105259594482394192 <feature_vector:value>
<feature_vector:value> 0.98551214588154611995 <feature_vector:value>
<feature_vector:value> 1.00415492765507829986 <feature_vector:value>
<feature_vector:value> 1.00931032237937512441 <feature_vector:value>
<feature_vector:value> 1.00583781572741104426 <feature_vector:value>
<feature_vector:value> 0.99965178734378001835 <feature_vector:value>
<feature_vector:value> 0.99641700001218280747 <feature_vector:value>
<feature_vector:value> 1.00053413846216399108 <feature_vector:value>
<feature_vector:value> 1.01448051045546439042 <feature_vector:value>
<feature_vector:value> 1.03852447143279436048 <feature_vector:value>
<feature_vector:value> 1.07079326852664902248 <feature_vector:value>
<feature_vector:value> 1.10764282015553083838 <feature_vector:value>
<feature_vector:value> 1.14425445370911771370 <feature_vector:value>
<feature_vector:value> 1.17536781601217832360 <feature_vector:value>
<feature_vector:value> 1.19605104931866845774 <feature_vector:value>
<feature_vector:value> 1.20240888953449820420 <feature_vector:value>
<feature_vector:value> 1.19213659320168563482 <feature_vector:value>
<feature_vector:value> 1.16484253548940630552 <feature_vector:value>
<feature_vector:value> 1.12208494304478412218 <feature_vector:value>
<feature_vector:value> 1.06709853303495583177 <feature_vector:value>
<feature_vector:value> 1.00422482309135441270 <feature_vector:value>
<feature_vector:value> 0.93810555611087775851 <feature_vector:value>
<feature_vector:value> 0.87275204902189629230 <feature_vector:value>
<feature_vector:value> 0.81066432563100665476 <feature_vector:value>
<feature_vector:value> 0.75224263059381879515 <feature_vector:value>
</feature_vector:X>
</feature_vector:CurvelD>
</[feature_vector:Curve>
</feature vector:Feature Vector>

Figure 4: Example of a feature vector XML file.

e CBISC XML Configuration
Once the feature vector XML files have been created, the CBISC can be configured. Basically,

this process concerns the creation of a configuration XML file describing which descriptors
are available and the image database related to this component. Figure 5 shows the XML
schema that defines the CBISC Configuration XML file. DescriptorInformation includes a
list of descriptors that are supported by the CBISC. Each descriptor is given in terms of
its: name, extraction algorithm, distance computation algorithm, related feature vector size,
and location of corresponding feature vector files. Image database information includes the

number of images and their location.

A list of predefined descriptors (extraction and distance computation algorithms) is available
in the CBISC Configuration Tool allowing a quick CBIS(C instantiation for a new image collec-

tion. Examples include new shape descriptors like the Contour Multiscale Fractal Dimension
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and Shape Saliences, Beam Angle Statistics - BAS) [9, 10, 11, 2] and color descriptors, such
as the BIC [33], and the Color Histogram [36]. Common metrics like L1 and L2 (Euclidean

distance) also are supported.

DescriptorName

ExtractionAlgorithm [
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Figure 5: XML schema for the CBISC Configuration file.

Figure 6 presents a screen shot showing the CBISC Configuration Tool developed to support

CBISC designers in the configuration process.
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Figure 6: CBISC Configuration Tool screen shot.
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After the above preliminary steps are performed, the CBISC Designer is able to install the
CBISC. This task also is supported by the CBISC Configuration Tool. Basically, this process is

related to copying feature vectors and algorithms (extraction and distance computation algorithm)
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either from local directories or from remote sites (by using OAI requests) to CBISC main directories.
Both the feature vector and algorithms location are defined in the configuration step.

In fact, the CBISC flexibility also relies on the support of both locally and remotely defined
feature vectors and algorithms. In this sense, a CBISC Designer is able to configure a CBISC,
even without having previous knowledge about the algorithms (descriptors) code. This ease in
configuration, and the DL component philosophy, allow BIS designers to easily combine distinct
kinds of query features into the system, thereby creating user-tailored BIS for the same underlying

archive base.

2.4 The Combiner Component

The Combiner component is responsible for combining three different kinds of evidences: content-
based retrieved images, image metadata, and domain-specific metadata. Basically, it receives as
input a specification in terms of a query pattern (query image) and/or query terms, forwards these
queries to the appropriate search component (CBISC and/or ESSEX), combines the obtained
results (weighted sets) by using an appropriate combination scheme, and returns a ranked list
containing the “most” similar objects matching the original specification.

The combiner component has been implemented using search modules found in the Java MAR-
IAN system [17]. MARIAN is an indexing, search, and retrieval system optimized for digital
libraries which has been developed at Virginia Tech. Its search module is based on mapping ab-
stract object descriptions to weighted sets of objects. In this case, the weight of each object in the
set serves as a measure of how well that object matches the description.

Given a collection of weighted sets, different searching approaches can be used in the MARIAN
system to combine them. The most commonly used types of combination include the maximiza-
tion union and the summative union. The maximization union keeps only the maximum value of
weighted objects that occur in incoming sets. The summative approach, on the other hand, calcu-
lates an average of the sums of incoming object sets. Other weighting schemes such as Euclidean
distance or sum-of-squares also can be used.

Consider for example, a biodiversity information system which manages fish descriptions (im-
ages and textual information). An example of a query might start by providing an image as input
(e.g., a photo of an observed fish) and then asking the system to “Retrieve all database images
obtained from ‘Randall’s tank photos’ containing fish with contour shaped like that in the photo,

2”9

and that are found in the ‘Amazon basin”’. This query deals with three different kinds of evidence:
content-based image descriptors (image containing objects shaped like that in the input photo),
image metadata (images from “Randall’s tank photos”), and domain-specific metadata (species
from “Amazon basin”).

Given that query, the combiner component proceeds as follows:

1. Parse the original query. This process identifies which search component will be activated

and its parameters;

11



2. Dispatch the query image to the CBISC module;

3. Dispatch the expression “Randall’s tank photos” to the ESSEX search engine which manages

image metadata;

4. Dispatch the term “Amazon basin” to the ESSEX search engine that manages domain-specific

metadata;

5. Each search engine returns a weighted set containing records which match their respective

queries.
6. These weighted sets are combined, by using, for example, the summative union approach;

7. An XML file containing the final answer is returned to the interface layer.

3 Experiments

As an illustration of how this generic architecture can be instantiated, we have implemented a
Biodiversity Information System concerning fish species. The image data consists of fish photos,
and the domain-specific data concerns fish and associated habitat descriptions. With this system,

we have carried out experiments to demonstrate the utility of our approach.

3.1 Data Sources

The fish related data were obtained from FishBase [15], an information system available on CD-
ROMs, as well as on-line at www.fishbase.org/search.cfm. FishBase covers over 25,000 species of fish
from all over the world, including data about taxonomic classification, common names, population
dynamics, fish morphology, metabolism, diet composition, trophic levels, food consumption, and
predators.

A subset of these data, including 131 species and 159 images, was used in this work. The

following sections describe the archives managed in this biodiversity information system.

3.1.1 Domain-Specific Archive

The domain-specific archive contains biodiversity metadata on fish and their ecosystems. It includes
data about fish taxonomic classification (species, genus, family, and order names), common names,
synonyms, ecological features (food items, diet remarks, etc.), morphological descriptions (sexual

attributes, type of mouth, type of teeth, etc.) and a list of occurrences around the world.

3.1.2 Image Archive

The image archive contains metadata on fish images, and image descriptors. The main challenge of

processing the images has been finding appropriate descriptors for the images, since species’ photos
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are not “well behaved”, because they are often taken using live (moving) species instead of more
controlled specimens (that are dead and preserved). Therefore, photos that must be used present
many irregularities — such as shape distortions — not found in more traditional image databases
(e.g., landscapes or artwork). These distortions complicate content-based retrieval. This required a
preprocessing step consisting of: image segmentation, reducing image noise, and image binarization.

Current experiments configured the CBISC to use the Beam Angle Statistics (BAS) [2] shape
descriptor.

The image metadata includes the picture name, the related species code (fish ID), the image
format, the color type, the picture type, when the picture was obtained, the author name, when
the picture data was entered into the FishBase database, general comments, and last modification

date (concerning the image).

3.2 Experimental Setup

The experiments were intended to evaluate the effectiveness of performance achieved through the
combined use of visual and textual features. In this case, we considered each available image as
a query image. All images which depict fish belonging to the same species were grouped into
the same relevant set. The average number of images in the relevant sets was 1.02. In order
to simulate the presence of users, textual search terms were defined randomly for each query. A
random attribute was determined, and then a random textual term was extracted from it. This
process was performed for both image metadata and domain-specific descriptions.

Two different combination strategies was evaluated: the mazimization union and the summative

union (see Section 2.4). Only the best results are presented in Section 3.3.

3.3 Results

Figure 7 shows the precision versus recall graphs concerning the use of textual evidence considering:
only image metadata (curve named ESSEX (IM) in Figure 7), only domain-specific information
(curve ESSEX (DS)), the combination of the textual evidence using the maximization union strat-
egy (curve ESSEX (IM + DS) MaxUnion), and finally the combination of textual evidence now
using the summative union approach (curve ESSEX (IM + DS) SumUnion). Note that both
combination-based curves present the best results for recall values less than 0.9. From this point,
all curves present a similar behavior. The summative union related curve is better than maximiza-
tion union one until recall is equal to 0.8. From this point, this situation is slightly inverted. Note
also the low values found for precision. This behavior is due to the low number of elements in the
relevant sets.

Figure 8 shows the Precision versus Recall graphs for queries involving the CBISC. Seven differ-
ent kinds of queries are evaluated: queries considering only the CBISC search engine (curve named
CBISC - BAS in Figure 8), the combination of queries on image content and textual informa-
tion using the maximization union strategy (curves CBISC + ESSEX (IM) MaxUnion, CBISC +
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Figure 7: Precision versus Recall curves for text based queries.

ESSEX (DS) MaxzUnion and CBISC + ESSEX (IM + DS) MazUnion for image metadata, domain-
specific information, and both together, respectively), and the same combination, now using the
summative union strategy (curves CBISC + ESSEX (IM) SumUnion, CBISC + ESSEX (DS)
SumUnion, and CBISC + ESSEX (IM + DS) SumUnion. Note that the queries which used the
summative union approach yield the best results. In fact, the best result (curve CBISC + ESSEX
(IM + DS) SumUnion) concerns the combination of the three available sources of evidence, using
summative-based method. The combination strategies involving the maximization union strategy
only presents a better behavior than the curve which considers the use of CBISC separately, for

recall values between 0.90 and 0.95.
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Figure 8: Precision versus Recall curves for queries involving the CBISC.
The better performance of the summative union method with the three sources further validates

our assumption that a combination of several and heterogeneous sources of evidence provides

enhanced performance, since in this method each source contributes to some degree to the final
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score, while in the maximization union method only the evidence with the highest score is kept in

the final result set.

4 Related Work

The research described in this paper differs from related research in the sense that it takes advantage
of tailored DL protocols to seamlessly combine textual and content-based retrieval for biodiversity
applications. There are some other DL initiatives for the same domain. One example concerns
floristic digital libraries (FDL) [29, 28, 30]. These are distributed virtual spaces comprising botan-
ical data repositories and a variety of services offered to library patrons to facilitate the use and
extension of existing knowledge about plants. FDL uses an agent-based infrastructure to manage
information about taxonomic keys, distribution maps, illustrations, and treatments (morphological
descriptions). Content-based retrieval, however, is not supported.

Another example is the Taiwanese digital museum of butterflies, an initiative of National Chi-
Nan University and the National Museum of Natural Center [19]. This digital library contains
6 modules: XML-based information organization of digitized butterfly collections, content-based
image retrieval of butterflies, a synchronized multimedia exhibition, compositional FAQ, interac-
tive games of an butterfly ecosystem, and on-line courseware on butterflies. Even though XML
documents describing butterfly species are indexed and retrieved by a search engine, this digital
library does not support queries that combine image content and textual data.

DL efforts that deal with images appear in other domains. An example is the work of Zhu et
al. [41], which presents a content-based image retrieval digital library that supports geographical
image retrieval. The system manages airplane photos which can be retrieved through texture
descriptors. Key goals of the Alexandria Digital Library ADL [32] and its successor (the Alexandria
Digital Earth Prototype System (ADEPT) [20]) are to build a distributed digital library accessible
over the Internet for geographically referenced materials including maps, satellite images, etc.,
along with their associated metadata. The ADL system applied image-processing techniques to
achieve content(texture)-based access to satellite images. Both initiatives, however, have limited
support for queries simultaneously involving image content properties and textual data.

In the video retrieval domain, Christel et al. [5] extract geographic references from videos aiming
at improving access to the Informedia Digital Video Library. The available video retrieval process
is based on date (when), word occurrences (what), and the location information (where), extracted
from the narrative and from the text regions in the video segments. Interactive maps are used to
display places discussed in a video segment. The user can interact with these maps through toolbar
icons that enable zooming in and out, panning, accessing details relevant to the video content, and
selecting search areas. Content-based video retrieval is not supported.

Different strategies have been proposed, aiming at supporting the combination of textual infor-
mation and visual content in the image retrieval proccess [22, 24, 39, 40, 31]. Refs. [31, 39] combine

textual information with visual contents by using Latent Semantic Indexing (LSI) and Singular
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Value Decomposition (SVD) to support image retrivel on the WWW. The combination strategy
of Nakagawa et al. [24] is based on clustering image objects according to their visual features and
mapping the created clusters into related words determined by psychological studies. A different
approach is presented in [40]. In this system, the unification of keywords and feature contents
is based on a seamless joint querying and relevance feedback scheme. Keyword annotations for
each image are converted into a vector which expresses the probability of a determined keyword
appearing for a given image. An algorithm for the learning of word similarities during a relevance
feedback process also is presented. Finally, Lu et al. [22] propose a strategy based on semantic
networks and relevance feedback to deduce and utilize the images’ content for retrieval.

The aforementioned solutions either are too complex [31, 39] to be easily configured for a new
domain, or rely on search process techniques (relevance feedback, word similarity learning, content
semantic definitions) [24, 40, 22], which are not available in the proposed architecture. Note that,
new combination strategies easily can be adopted in the proposed architecture. New combiners

just have to follow the HTTP-based communication protocol presented here.

5 Conclusions

Interoperability has been a central research area in the digital library domain [26]. The OAI protocol
has been used to promote interoperability solutions for different digital libraries initiatives [21, 16].
Following this trend, this paper presented an OAl-based generic digital library architecture for
integrated management of image descriptors and textual information. The solution proposed is
based on using DL components which are mostly new or recently developed. This architecture is
easily extensible, and provides users a considerable degree of flexibility in data management. To
illustrate our claim that this architecture can be applied to several domains, this paper describes
its application in building a biodiversity information system on fish species. This solution solves
many current problems in this kind of system, allowing handling of images and textual information
in an integrated fashion.

A new Content-Based Image Search Component was presented that supports queries on image
collections. Since this component is based on the OAI principles, it provides an easy-to-install
search engine to query images by content. It can be readily tailored for a particular collection by a
trained designer, who carries out a clearly defined set of pilot experiments. It supports the use of
different image descriptors (metric and non-metric; color, texture and shape descriptors; with 1D
or 2D feature vectors), which can be chosen from the pilot experiment, and then easily combined to
yield improved effectiveness. Besides, it encapsulates a multidimensional index structure to speed
up the search process, that also can be easily configured for different image collections.

In order to validate the proposed architecture, we performed experiments concerning the combi-
nation of textual and image content information. Preliminary results show that when both textual
and visual information are used in the image retrieval process, results are, in general, better than

those achievable using only visual or textual information. Furthermore, on average, better results
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were found by using the summative union combination strategy.

Ongoing work concerns the instantiation of the proposed architecture in other domains. For
instance, we are trying to combine queries on image content with textual description in the arche-
ology domain [14]. In this case, the image collection comprises photos of archaeological artifacts
and the domain-specific collection corresponds to both archaeological site information and artifact
descriptions. Future work includes performing user experiments to evaluate the different combina-
tion strategies which can be used by the Combiner Component. We also intend to evaluate other
image descriptors [36, 33, 10, 23] in the combination process. New combination strategies based

on belief networks [8] will be investigated too.
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