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Abstract To this day, data-driven science is a widely
accepted concept in the digital library (DL) context (Hey
et al. in The fourth paradigm: data-intensive scientific dis-
covery. Microsoft Research, 2009). In the same way, domain
knowledge from information visualization, visual analytics,
and exploratory search has found its way into the DL work-
flow. This trend is expected to continue, considering future
DLchallenges such as content-based access to newdocument
types, visual search, and exploration for information land-
scapes, or big data in general. To cope with these challenges,
DL actors need to collaborate with external specialists from
different domains to complement each other and succeed in
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given tasks such as making research data publicly available.
Through these interdisciplinary approaches, the DL ecosys-
tem may contribute to applications focused on data-driven
science and digital scholarship. In this work, we present Vis-
Info (2014) , a web-based digital library system (DLS) with
the goal to provide visual access to time series research data.
Based on an exploratory search (ES) concept (White and
Roth in Synth Lect Inf Concepts Retr Serv 1(1):1–98, 2009),
VisInfo at first provides a content-based overview visualiza-
tion of large amounts of time series research data. Further, the
systemenables the user to define visual queries by example or
by sketch. Finally, VisInfo presents visual-interactive capa-
bility for the exploration of search results. The development
process of VisInfo was based on the user-centered design
principle. Experts from computer science, a scientific digital
library, usability engineering, and scientists from the earth,
and environmental sciences were involved in an interdisci-
plinary approach. We report on comprehensive user studies
in the requirement analysis phase based on paper prototyp-
ing, user interviews, screen casts, and user questionnaires.
Heuristic evaluations and two usability testing rounds were
applied during the system implementation and the deploy-
ment phase and certify measurable improvements for our
DLS. Based on the lessons learned in VisInfo, we suggest a
generalized project workflow that may be applied in related,
prospective approaches.
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1 Introduction

Today, scientific information and knowledge are no longer
solely encoded in text format, such as journal articles or
book chapters. Increasingly, non-textual formats such as
images, audio-visual material, computational models, and
other numerical data sets are considered. For scientists,
this body of non-textual data and information represents
an invaluable source of possibly undiscovered knowledge
if meaningful data subsets can be retrieved from typically
large and heterogeneous research data repositories. The value
of such research data and its (potential) benefit to society
are widely accepted [17]. Time series data is an important
research data type originating, e.g., in climate research, med-
ical treatment, etc. However, besides the size and the het-
erogeneity, the time-varying behavior adds another level of
complexity to this type of research data [34]. Today, a vari-
ety of research data repositories exist. DLs can support the
access to and re-use of this valuable type of research data.

Historic scientific discoveries based on experimental, the-
oretical, and computational science paradigms were always
the subject of library service support. In times of data-
intensive science (also called the fourth paradigm in scientific
discovery [26]), the role of DLs may be more important than
ever. Part of themission of a library of science and technology
is to support scientists with methods that allow them to effec-
tively use the available body of knowledge. This includes
search and retrieval methods as well as exploration methods
that also consider the non-textual data content. Further, it
includes providing indexing and citation methods for future
reference. To support scientists effectively, these DL func-
tionalities should be adopted to their specific workflows (see
Deelman et al. [19] for a characterization of scientific work-
flows). For example, the definition of similarity for the under-
lying data content, the calculation of features for retrieval,
or the incorporation of aggregation techniques for large
data collections have to meet the specific requirements of
scientists.

While query-response technologies (as used in classical
web search engines) typically act as lookup tools for fact
retrieval and known-item search, ES goes beyond that: it
aims to support scientific investigation and discovery, e.g.,
by revealing interesting facets of knowledge that scientists
had not seen and considered before. Learning and decision-
making are aspects that need to be involved in the informa-
tion seeking process, especially for the content of complex
data types such as time series research data. The success
of ES tools depends on their visual-interactive capabilities.

Important components include the visual overviewof the data
content, the visual query definition, and the visual represen-
tation of retrieved items [68]. Visual overviews of the content
can help scientists to explore large collections of time series
research data. Visual-interactive query definitions based on
examples or sketches of time series curves can help to make
the search processmore intuitive. Enhanced visual result rep-
resentations can serve as an exploration space for applying
facets or for gaining new and potentially unexpected knowl-
edge. However, many scientists still perform at least part of
their work using general purpose tools—most notably, Excel
[29,64]. User-centered design approaches may help to raise
the trust in new innovative technologies that address the dis-
cussed challenges.

We introduce VisInfo, a web-based, exploratory search
system for time series research data. Our contribution is as
follows: (1) we present our user-centered design approach,
which was executed following a distinct design study
methodology. We chose a user-centered approach to sup-
port the scientific workflow of our users in the best possible
way, and raise the users’ trust [29,64]. We included the users
from the beginning of the design process that started with a
domain and problem characterization, followed by an itera-
tive development phase, and ended with the presentation of
theweb-basedVisInfo system. The processwas conducted as
a collaborative effort between data collectors, data curators,
digital librarians, digital library users, and computer scien-
tists. (2) Furthermore, we present the result of this process,
VisInfo DLS, that enables the content-based access to time
series research data collected by the Baseline Surface Radia-
tion Network (BSRN). Scientists can explore large data col-
lections with a content-based overview visualization (Visual
Catalog). Moreover, they are enabled to define queries of
the time series content visual-interactively by example and
by sketch. The Result View allows for the exploration of
retrieved data subsets in detail. Different perspectives thus
allow for an analysis of interesting relations hidden in (a)
the time series data content, (b) the geo-location of respec-
tive measurements on earth, and (c) measurement period in a
calendar-based view. (3) In addition, we present the results of
different evaluation strategies iteratively conducted with dig-
ital library users. A use case and the results of the conducted
evaluations reveal that the final VisInfo prototype is both
usable and useful. (4) Finally, we review the lessons learned
within the project and contribute a generalized project work-
flow description, that may help related visualization research
efforts within the DL context.

2 Related work

In the following, we review initiatives in the field of DL
to support scientific work with research data. Further-
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more, we highlight ES approaches for time oriented data.
Finally, we report on user-centered design practices from
the perspectives of DL, information visualization, and visual
analytics.

2.1 Scholarly support for research data

In this work, we treat research data as a special document
type to be provided by a DL. Examples for data-driven
research domains are physics, chemistry, medicine, biol-
ogy, or earth observation, just to name a few. Facilitat-
ing the access to research data leads to both special bene-
fits and challenges for scholarship and DL use. This espe-
cially applies for the type of data content considered in
this approach (time series data), e.g., arising from mea-
surements in a variety of research domains. Additionally,
metadata attached to the research data documents play an
important role. Examples ofmetadata include secondary data
about test conditions, or geo-locations of scientific mea-
surements. Many research domains differ in the nature of
their research data, their conventions about data use and
re-use, and their applied methods [17]. A classification of
different types of research data is presented by Kehrer and
Hauser [33], with an emphasis on visualization and visual
data analysis. The process of passing research data through
different phases is often referred to as the data-life-cycle
[3,13,17]. The typical phases are data creation, data process-
ing, data analysis, data preservation, data access, and data
re-use. The VisInfo approach is primarily targeted towards
the phases of data analysis, data access, and data re-use,
and aims at tackling respective challenges related to search
[13,24,40], and exploration [3,25,68] tasks (see Sect. 2.2 for
more details).

Focusing on the user- and task-centered perspective,
we highlight the relation of VisInfo to scientific work-
flows and scientific workflow systems. A (scientific) work-
flow is a high-level specification of steps (and dependen-
cies in between) to accomplish a specific goal in a data-
centered working environment [19,39]. Each step repre-
sents the execution of a combinational unit, such as run-
ning a program, submitting a query to a database, sub-
mitting a job to a compute cloud or grid, or invoking
a service over the web to use a remote source [26,29].
One of the most challenging goals in the workflow con-
struction phase is the user-centered development of a data
processing pipeline. Typical challenges are based on the
complexity of (time series) data [34], the involvement of
different stakeholders (including data scientists) [18], and
the construction of data-centered workflows with appro-
priate algorithmic routines in the correct order and with
the correct parameter values. Regarding the latter, we
refer to the survey of Knowledge Discovery in Databases
(KDD) [21], or to basic research in visual analytics [34].

Other challenges related to analysis workflows for research
data concern, data management, and data transformation
[39], the visualization [23], and advanced search interfaces
[25].

As a DLS prototype, VisInfo incorporates research data
warehouses (data repositories) as the targeted data source
to facilitate data access and data re-use. While not being
limited to a particular repository, VisInfo currently accesses
thousands of (time series) data sets of the PANGAEA repos-
itory [48], a publisher for earth and environmental science
data. A variety of research data repositories exists, such
as, for example, the Sloan Digital Sky Survey (SDSS) [57]
for physics and astronomy research data. Surveys of scien-
tific publications, (open) data publications (e.g., Elsevier)1,
and scientific data repositories are presented by Marcial et
al. [41], and Costas et al. [17]. Finally, we highlight the
beneficial means of open data initiatives [63] and meta-
data standards [14] for this work, increasing the demand for
(visual) accessibility functions by scientists working with
such data.

2.2 Exploratory search in time series data

While a variety of DL approaches for textual access to
research data exist [20,47,48,61], the number of DL
approaches for non-textual access to research data is com-
paratively small. However, research fields like information
visualization [16], visual analytics [34] and ES [40,68] con-
centrate on challenges like enhanced exploration and search
interfaces for research data. Kehrer and Hauser compare
approaches from an information visualization perspective
[33].A reviewonworks for visualizing climate change data is
presented in [46]. In exploratory analysis scenarios, cluster-
ing approaches are often applied to group large research data.
Based on such aggregation techniques, global overviews of
the complete data set can be provided, also known as content
summaries. Promising examples exist for geo-science [1],
earth observation [8,55], energy consumption [66], human
motion analysis [11], or cancer research [10]. A metadata-
based clustering approach is presented in [65]. In [8,9], and
[10], clustering was used to gain insight into interesting rela-
tionships between the data content and metadata associated
to the research data content. Visual query definition concepts
for time series data are reviewed in [5], a comprehensive sur-
vey for the visualization of time series is presented in [2].
Research data-based approaches on multivariate data chang-
ing over time are presented in [12,62] considering event data
or climate data. From this review of the related work, to
the best of our knowledge, combined approaches combin-
ing research data with content-based visual search in the DL
context are scarce.

1 http://www.elsevier.de/.

http://www.elsevier.de/
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2.3 User-centered design in digital libraries

In the early 1990s, usability concepts andmethodsmadehuge
progress and also found their way into web-based applica-
tions. Shackel’s work from 1991 can be seen as one of the
cornerstones of this time [59]. Concepts and models such as
iterative test and development cycles [43], heuristic evalua-
tions [45], or cognitive-walkthroughs [37] were introduced.
A comprehensive overview of these approaches is provided
by John [32]. In 2000, Saracevic reviewed usability evalua-
tion efforts in the DL context [54]. He confirmed a lack of
evaluation methodologies in DL, and suggested a conceptual
framework for DL evaluation. An early formal evaluation
during the DL development process was done by Hill in the
Alexandria DL Project (ADL) [27]. In the following, usabil-
ity models and concepts were examined and adapted to the
DL context [30,31]. In 2005, Reeves published a comprehen-
sive guide on evaluation of DL [50]. Some of the latest out-
comes of usability evaluation for DL include the Greenstone
User and Developer Survey [60]. In 2010, Yuan et al. carried
out a usability evaluation to examine differences in users’
experiences between an informationvisualization systemand
a text information retrieval system [69]. Their final results
indicate that visualization techniques help to improve the
representation and organization of information in retrieval
systems. The discussion and adoption of usability evalua-
tion in the information visualization context can be found in
[4,49]. Hoerber [28] surveyed user evaluation methods for
visual web search interfaces. Their model already includes
several development iterations followed by distinct evalu-
ation methods. A generalization of the design and valida-
tion of visualization techniques is introduced by Munzner
[42]. In her nested model, she clearly defines four nested
layers: domain problem and data characterization; opera-
tion and data type abstraction; visual encoding and inter-
action design; and the algorithm design. In our approach,
we adapted this method to the DL context. Finally, Sedl-
mair et al. fit these concepts into a process describing design
study methodologies in general [58]. The authors highlight
the importance of characterizing the relevant stakeholders
and collaborating closely with these during the entire design
process.

3 The VisInfo concept

A wide-spread method, which scientists across many fields
employ, is to create visual representations of the data they
have generated. Often, it is effective for humans to intu-
itively assess the essence of a data set that is plotted [16].
Graphical methods of analysis, optimization, problem solv-
ing, and design have been used for centuries. Further, there
is the notion of designing displays that deliberately show

chart- and visual-based representations of numerical val-
ues, rather than tables of numbers. That is because for a
human, it is easier to intuitively gauge the position of point-
ers than to actively read digits and have to mentally process
them, given the limitations of the short-term working mem-
ory [16]. In a similar way, the essence of a curve is often
grasped more easily than a series of numbers. Or to quote
Henry Hubbard: “There is a magic in graphs. The profile
of a curve reveals in a flash a whole situation—the life
history of an epidemic, a panic, or an era of prosperity.
The curve informs the mind, awakens the imagination, con-
vinces.”

This notion is at the heart of the VisInfo approach.
For this reason, the focus lies on visual analysis of curve
shapes. At the Alfred Wegener Institute (AWI) in Bremer-
haven, Germany, scientists have developed and employed
tools to collect and plot data, enabling them to intuitively
process and visually analyze the data set, which shows the
importance of graphic representations. For this reason, a
related data collection of the Baseline Surface RadiationNet-
work (BSRN) [6] has been chosen for a first prototypical
application.

In the following, we recall the basic concepts of our previ-
ous work, which formed the basis for the VisInfo prototype.

3.1 Focus and adopted similarity notion

We first started to map out how the goal of visual and
content-based search in research data could be operational-
ized. The domain of research data is huge, and, together
with our project partners, we decided to restrict our-
selves to time series research data. An initial workshop
held together with domain experts from the PANGAEA
data library [48] operated at AWI revealed that among
the many different research interests in earth observation
science, time series are a ubiquitous data type, the sup-
port of which is expected to benefit a larger user com-
munity. As a core DL functionality, we decided to imple-
ment content-based visual search support to help scientists
explore and retrieve data of interest. Content-based simi-
larity is a multifaceted problem and appropriate similarity
notions depend highly on the type of application, includ-
ing partial similarity, and similarity across different levels of
resolution, including agreement of measurement parameters
[22,38].

In our initially proposed concept [5], we chose to start
with a simple, robust similarity measure. We partitioned all
time series of a PANGAEA test repository to segments of
one day length each. The resulting curve shapes were named
curve patterns in our retrieval system. Finally, the Euclidean
distance function was applied, to define the similarity of the
time series patterns.
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Fig. 1 Key functionalities of our initial concept for visual search and
analysis in time series data included (a) sketch-based querying and
(b) a cluster-based overview. Further analytical support can be pro-

vided based on these key elements, including (c) combined content-
and metadata-based layouts, or (d) highlighting of interesting correla-
tions of clusters with metadata

3.2 Visual search and exploration facilities

Our initial concept supported two data access methods:
content-based visual querying and visual browsing. Visual
search is based on the query-by-sketch principle. By means
of an interactive sketch interface, users can define a curve
pattern in which they are interested (Fig. 1a illustrates this
concept). The system computes a set of top n results of the
most similar time series and displays these in a sorted list.
Visual browsing allows a bird’s-eye perspective on the entire
set of time series. The Self-Organizing Map method (SOM)
[36] is applied on the set of curve patterns and produces a 2D
grid of cluster prototypes, representing distinct time series
patterns in the given data. As a specific feature of the SOM,
the output can be directly visualized as a content summary
solution, which we call ‘Visual Catalog’ (see Fig. 1b). By the
nature of SOMs, the patterns in the Visual Catalog are sorted
based on their similarity. This ensures topology preservation
of the providedmapmetaphor.With theVisual Catalog, users
can browse and drill down for specific clusters of interest.
Bundles of data elements can be visualized with blue opac-
ity bands [56] . It is also possible to select a curve pattern in
the Visual Catalog for search (query-by-example). Further
basic functionality includes the filtering of metadata items
and the highlighting of the correspondence to the clusters or
content-based search results.

3.3 Analytical facilities

In our work, we focused on the question as to which extent
digital data repositories can or should support analytical tasks
of the end users. To most scientific users, retrieving time
series data of interest is not the end, but the start of further
research. In previous work, we therefore also explored which
analytical services could be added to the basic search and
exploration approach described above. Ideally, such analysis
functionality should a) be efficient to implement on top of the
basic system and b) be of value to a large number of users.We
earlier considered two such analytical services. For one, we
devised a schema for combined content-based andmetadata-
based visualization [8]. This schema allows the user to select
a metadata attribute. As an example, consider the selection
of the creator attribute. For each instance of this attribute,
a Visual Catalog is enriched with a highlighting of the data
items provided by the given creator. Glyphs of the catalog
for each creator are then shown in a layout, which represents
the similarity between each creator by distance in the layout
(illustrated in Fig. 1c). Thereby, users can compare the simi-
larity between data level and metadata level, potentially find-
ing interesting cross-relationships between both data aspects.
A second analytical service relates to the identification of
strong correlations between clusters of time series and fre-
quent metadata items [9]. For example, consider the set of
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Fig. 2 The VisInfo architecture

locations at which the member time series within a given
cluster of time series have been measured. Then, the pres-
ence of a high number of identical location attributes within
a cluster may be of interest, as it relates to a robust clus-
ter of measurements. Technically, we compute the degree of
unimodality of the histogram over metadata for a given clus-
ter, and identified the most unimodal metadata elements (see
Fig. 1d).

4 Domain and problem characterization

The conceptual focus of this research effort lies on the simi-
larity notion of research data and the visual search and explo-
ration facilities realizing visual access to this data. As is typi-
cal in design studies, the design process startedwith a domain
and problem characterization, with respect to the VisInfo
concept presented in the previous section. First, we iden-
tified the stakeholders relevant for the application domain,
and accordingly, for our user-centered design process (Sect.
4.1). Then, we identified domain challenges in collaboration
with the identified stakeholders (Sect. 4.2).

4.1 Relevant stakeholders in the design process

Inspired by the stakeholder characterization presented in the
DELOS digital library reference model [15] , we identified
five different stakeholder types: data collector, data curator,
digital librarian, computer scientist, and digital library user.
Representatives of these stakeholders were included in the
design process. In the following, the stakeholders are char-
acterized, and their input for the design process is presented.

The data collectors are gathering the data, which is later
used to create and validate scientific hypotheses. Thereby,
the data type is defined. In our approach, the data collec-
tors are earth observation scientists of the Baseline Surface

Radiation Network (BSRN). The data consists of time series
measurements, e.g., several physical parameters of radiation,
temperature, etc. An excerpt of the BSRN data set [6] com-
prising all measurements of the BSRN is used as the basis of
our search and retrieval system. The size of the data set is 25
Gigabytes in ASCII format. For more information about the
data set, we refer to our concept paper [5], where a subset is
used and described in detail.

The data curators have to ensure that the data pro-
vided by the data collectors are persistently stored in a
data repository in a standardized format. Moreover, they
enable the citability of data sets through digital object iden-
tifiers (DOIs) [14]. In our approach, the hosts of the PAN-
GAEA portal [48] play the role of the data curators. They
provide access to most of the data collected within the
BSRN.The data is stored in a specific format—“ISO-8859-1:
ISO Western - PANGAEA default” — that consists of tab-
separated text files comprising time series measurements of
one month and associated metadata. Each file has an own
DOI (Fig. 2).

The digital librarians in our approach are representatives
of the German National Library of Science and Technology
(TIB). Their main goal is to provide their users a content-
based search and retrieval system for time series research
data. Their main focus is on the ease of use of the system,
since due to its innovative nature caused by the implied para-
digm shift [26], any additional barrier could potentially cause
the user turn away from the system before even fully assess-
ing its possibilities.Moreover, the digital librarians requested
to work from early on with real data to discuss early demon-
strators with real users. To support this, a quick import of
new data sets into the system was also requested by the dig-
ital librarians.

The computer scientists are the developers of the DLS.
To enable the visual access to content-based information,
experts from the field of data analysis and information visu-
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Fig. 3 Visual-interactive query
definition

Fig. 4 User-centered design process: domain and problem characterization

alization are needed to cover this role. In our approach, com-
puter scientists from the Technical University Darmstadt and
the Fraunhofer Institute for Computer Graphics Research
represent this stakeholder.

The digital library user is the end user of our DLS. In our
approach, earth observation scientists represent this stake-
holder. They basically cover two roles in our approach: data
collectors and digital library users. Thus, digital library users
fulfill the role of the domain expert known from design study
methodology [58].

In addition to these implicit requirements on the VisInfo
system given through the addressed domain, the stakeholders
involved, and the selected data set, we also identified chal-
lenges in the domain in collaboration with potential users
of our system in a distinct process. From these challenges,
explicit requirements on our system may be extracted. In the
following section, this process is described in detail.

4.2 Relevant challenges in the application domain

To understand and characterize the problems and challenges
in our application domain, we worked in close collaboration
with our potential users, the earth observation scientists, from
the very beginning. The definition of explicit challenges to
be tackled by the VisInfo system was supported through a
5-step process (Fig. 4).

As a first step, we developed paper prototypes and
showed them to the users to demonstrate our general idea
of exploratory content-based search. We then gathered first
feedback from the users through informal interviews. We
learned that for all users the general idea was inspiring. Still,
it was difficult for them to adapt the concept of searching in
the data content, since this possibility was not given before.
As a second step, a desktop prototype was developed. The
core functionality of this system has been described in Sect.
3. Basically, the users could define queries by sketch or exam-
ple, they could activate filters on the metadata, and finally,
they could look updetails of the searched patterns in the result
list. The prototype was introduced to the users via a screen-
cast. Finally, we evaluated the feedback of 19 earth observa-
tion scientists from the BSRN for our interpretation of the
domain and their challenges. In the following, we describe
the main challenges identified in the described process.

(1) Varying similarity notions: To support content-based
search in time series research data, a definition of similarity
has to be provided. Depending on the tasks and the users, the
interpretation of similarity may vary. In some cases, absolute
values of the measurements have to be compared (e.g., to
distinguish arctic from desert regions). In some cases, simi-
larity has to be defined via the relative shapes of curves (e.g.,
to identify similar trends). Summarizing, the similarity of
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absolute values as well as curve shapes need to be consid-
ered.

(2) Different time intervals: For the earth observation sci-
entists within our stakeholder group, the time series to be
compared should have the same length (e.g., one day, etc.).
However, different lengths may be of importance for their
work. The most important time intervals for a curve shape
identified were years, days, and hours. Years and days reflect
periodicities of natural phenomena. In reconciliation with an
expert at the Alfred-Wegener Institute, we decided to focus
on daily curve shapes as fixed time interval called patterns in
our retrieval system.

(3) Relevant Parameters: For our specific user group, the
most relevant physical parameter in the BSRN environment
is the shortwave downward radiation (SWD). Thismeasure is
relevant for climate research, especially for giving statements
about cloud occurrences. Although the parameter tempera-
ture is not of the highest relevance for the earth observation
scientists, it was considered to be important for demonstra-
tion purposes to scientists from other domains.

(4) Visual overview: To provide a visual overview of the
entire data set is a very important challenge to be addressed
in order to support data exploration. The concept of a Visual
Catalog showing the underlying data in one view was pre-
sented to the users via the desktop prototype. They reported
the lack and the importance of such an instrument.

(5) Different query modalities: Another challenge
described by the users was the support of different modalities
to formulate a query. Both concepts, query-by-example and
query-by-sketch, were considered relevant for their work.
Moreover, including the metadata in the query formulation
was important for the users.

(6) Flexibility of scientific process: As another outcome of
our domain characterization, most of the users emphasized
the need for flexibility in their work with time series data.
As mentioned before, possible usage scenarios always vary
with respect to time interval lengths, physical parameters,
similarity measures, etc., based on the task and user at hand.

In summary, the concept presented via the initial desk-
top prototype, integrating content-based and metadata-based
search, addressed many challenges expressed by the earth
observation scientists.

5 The web-based VisInfo prototype

VisInfo [67] is a web-based DLS for the ES of time series
research data collections based on visual access. Interested
readers are invited to test VisInfo by following this link.2

2 http://demo.vis-info.info/.

Now, we first describe the results of the data abstraction
phase and highlight the non-visual functionality. Second, we
present the visual-interactive capability of VisInfo, as a result
of the iterative development phase. In three subsections, we
show different visual-interactive views for the content sum-
mary, the visual query definition, and the search result analy-
sis. Furthermore, we illustrate a use case of a real-world ES
scenario conducted together with domain experts within the
development phase. The aim of the use case is to showcase
the hypothesis generation and validation process, and thus, to
assess the usefulness ofVisInfo. Finally, performance aspects
of the system are discussed.

5.1 Data abstraction and non-visual capabilities

The system architecture of VisInfo is structured in an admin-
istration and an application section (see Fig. 2). One data-
centered goal of the administrative section is the construc-
tion of scientific workflows in a collaborative effort between
data collectors, data curators, digital librarians and computer
scientists. To cope with the heterogeneity of different time
series research data sources, we provide a general internal
time series data structure. The varieties of different time
series properties are well characterized in the book of Aigner
et al. [2], which served as a guideline for the development
of the time series data structure used here. An extension of
the DataCite metadata kernel [14] was used for the defin-
ition and storage of associated metadata. We analyzed the
metadata corpus to find the most relevant metadata prop-
erties to be applied for faceted search (see Sect. 5.4). On
the one hand, data collectors and librarians were asked for
relevant metadata properties. Qualified metadata attributes
include the contributing scientist, the measurement location
on earth, and the climate and surface type (also see Fig. 12).
On the other hand, the computer scientists analyzed the rele-
vance of availablemetadata properties in two research efforts
[8,9]. They identified interesting relations between the daily
patterns and the season attribute, which was added to the
facet list, respectively..

The data-centered workflow of VisInfo is shown in Fig. 7.
On the basis of the general time series data structure contain-
ing the raw input data, a variety of transformations need to
be applied on the time series content. The provided routines
help, e.g., to (a) establish consistent data quality, (b)make the
time series equidistant, (c) remove outliers, or (d) normalize
the value domain. Time series descriptors transform the time
series data into the feature space. For the VisInfo prototype,
the Piecewise Aggregation Approximation (PAA) [35] and
the Perceptual Important Points (PIP) [70] descriptor were
finally applied for the workflow execution [7]. The result-
ing features are utilized to facilitate both the content-based
retrieval and the data aggregation. Thus, a meaningful def-
inition of time series similarity on the basis of the domain

http://demo.vis-info.info/


45

Fig. 5 Visual Catalog. An overview of 125,000 daily temperature curves. Each of the 80 cells represents about 1,500 daily curve patterns of the
data set (see small blue numbers)

experts was of key importance for the usefulness of the Vis-
Info system. One of the most important insights gained in the
domain characterization phase was the variety of different
notions of time series similarity depending on the interest of
the domain experts (cf. Sect. 4.2). To copewith this challenge,
we developed the data preprocessing workflow in a modu-
lar way. A visual-interactive toolkit served as a platform for
the domain experts and the data scientists for the definition
of meaningful workflows, both for time series preprocessing
and time series similarity. See [7] for the technical details
of the four similarity scenarios provided in VisInfo. With the
VisInfo web prototype, users can choose between the content
of daily curve patterns in shortwave downward radiation or
temperaturemeasurements.Moreover, based on an inquiry of
the domain experts, the curve patterns of the measurements
can be compared by absolute values, or by relative curve
progression (based on an additional normalization). Alterna-
tively discussed, similarity scenarios considered variations,
e.g., in the time duration of a pattern (yearly instead of daily),
in the choice of alternative measurements (CO2, hPa, etc.),
or in the choice of distance measures for feature compar-
ison (dynamic time warping [53] instead of the Euclidean
distance).

An important functional component of VisInfo is the data
aggregation strategy. The overall goal of the data aggrega-

tion is to provide a content-based overview (content sum-
mary) of potentially large research data repositories. Visual
content summaries, in turn, facilitate exploration capability,
and enable querying by example (see the visual-interactive
sections). We chose the Self-organizing Maps clustering
algorithm (SOM) [36] (see Sect. 3.2) on the basis of the
PAA feature vector to provide a content-based overview.
For the construction of the SOM clustering step in the
workflow, we applied visual analytics techniques presented
by [56].

In the following, we demonstrate the SOM-based content
summary and other visual-interactive capabilities of VisInfo
to show the applicability as a DLS and as a research support
tool for time series research data. The provided figures of
the different aspects of the VisInfo system are all based on a
temperature measurements scenario.

5.2 Visual overview of large research data collections

The initial step in the ES process is getting an overview of the
important aspects of the provided data collection. This helps
to get the ‘big picture’ of the data set. Further, it enables the
user to define appropriate queries [40,68]. The SOM-based
Visual Catalog in Fig. 5 provides a global overview of the
complete data content by showing the most prominent daily
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Fig. 6 Details on demand of a single cell in the Visual Catalog (cf. Fig. 5). The most similar patterns are shown. The red temperature pattern can
also be used for query-by-example

temperature measurement patterns as black lines in different
cells. Each cell represents a number of similar curve patters
(a cluster) of the data set. This number is indicated at the
upper left of each cell.

We start the use case by recalling Fig. 5. The overview
visualization represents 125,000 daily temperature curves in
a single visualization, distributed in the 8x10 cells. For exam-
ple, the upper left cell represents 1,391 daily temperature
curves of the data set. A relative use case scenario is chosen,
so that the relative temperature curve within one day can be
observed. At the left of the Visual Catalog, all curves show a
daily temperature progressionwith lowvalues in themorning
and in the evening, as well as a peak at noon. As expected,
this daily pattern corresponds to the most prominent sun-
dependent temperature progression on earth as approved by
the domain experts. However, other (rather unexpected) daily
temperature measurements are available in the data set like,
e.g., linear upward trends at the lower right or linear down-
ward trends at the upper right of the Visual Catalog. The
scientists confirm that such trends most often occur at polar
areas where the influence of the sun is markedly weaker than
in other regions on earth. This is a first example of how Vis-
Info supports learning of intrinsic properties of the search
space and enables digital library users to focus on interesting
subsets of a research data set.

Another step in the ES process relates to the information
drill downwhen an interesting data aspectwas identified [16].
In our use case, we decide to drill down in the search space
to a cell with 1,719 curve patterns, as highlighted in Fig.
5. By clicking on the cell, detailed information is provided
in an enlarged display as shown in Fig. 6. Here, a number
of similar temperature patterns can be explored. Black lines
indicate temperature measurements of the data set and the
red line shows the representative for the particular cell (the
cluster centroid). In this example, most curve patterns have
their minimum at hour 2 and their maximum at hour 13.
Drivingquestionsmaybewhere on earth thesemeasurements
have been taken, or which scientists were responsible for
the respective measurement stations. In the following, we
describe how the explored data content can be used for the
query definition.

5.3 Visual query definition

VisInfo provides visual-interactive means for the query defi-
nition to enable efficient and effective retrieval. The basic
Search Interface is shown in Fig. 8. In the upper part,
a description for the visual-interactive query definition is
given. The user can define a query in the Sketch Editor and
additionally apply filters on the metadata. An overview of all
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Fig. 7 Data-centered workflow.
Time series raw data are
processed and transformed to
feature vectors. The two feature
vectors are utilized in four
different transformations

Fig. 8 Search Interface. Users can either start the sketch editor or recall an earlier search result. Both reloading recently defined queries and search
results is possible

types of visual-interactive query definition is shown in Fig.
3. In the lower part of the Search Interface, the query his-
tory is provided. The users can review the queries executed
in a previous search and view the corresponding results. By
clicking the ‘Start Editor’ button, the user is forwarded to
the Sketch Editor (see Fig. 9). Users can load one of the cell
patterns of the Visual Catalog into the Sketch Editor as the
basis for content-based search (query-by-example), or define

a new query by hand in the Sketch Editor (query-by-sketch).
The modification of an example pattern in the Sketch Editor
is also possible.

In the use case example, the cell pattern discussed in the
previous section is loaded into the Sketch Editor, as can be
seen in Fig. 9. In this particular case, we did not refine the
visual querywith the sketching capability but used the loaded
pattern directly as a query by example. Before executing the
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Fig. 9 Sketch Editor for the creation and modification of content-based queries. In this example, the user loaded an example curve pattern from
the Visual Catalog (cf. Fig. 6)

query, the search space can be reduced by additional filters
applied on the metadata. For example, if a user only wants
to search for data sets between the years 2000 and 2002, the
Time Filter in Fig. 10 can be applied. Additionally, a Geo
Filter is provided (Fig. 11 illustrates). Finally, the remaining
metadata properties can be filtered in theMetadata Filter (see
Fig. 12). When the user is satisfied with the specified curve
to be searched and the filters on the metadata, the search can
be executed.

5.4 Visual search result analysis

The visual presentation of the search results defines a sec-
ond exploration space. The retrieved results are shown in the
list-based Result View as shown in Fig. 13. At this point, the
PIP feature vector (cf. Fig. 7) comes into play. The feature
vector serves as the basis for the detailed visual represen-
tation of the (raw) time series content at the center of the
display. The content of the BSRN data set [6] consists of
monthly measurements, visually encoded as blue line charts.
The daily patterns retrieved with the query of Fig. 9 are high-
lighted with red background colors. At the right of the Result
View, additional metadata are shown and external references
such as the DOI URL. At the bottom, the user can press
the “find more” button to extend the search result, and thus,

expand the result exploration space and increase the recall of
the retrieved instances. Besides the list-based visualization
of the search result, the Geo View tab arranges the retrieved
documents by their geo-reference in a map-based view (see
Fig. 14). Coming back to the use case, it can be seen that all
geo-locations of the retrievedmeasurements are located (a) at
the northern hemisphere and (b) at latitudes between 35◦ and
50◦. Findings such as these may serve as an interesting start-
ing point for the digital library users’ in-depth analysis based
on a new hypothesis. Finally, the Time View (see Fig. 15)
visually represents the temporal information of the retrieved
documents in a matrix-based calendar view. In the use case,
the search result space was extended to the 50 most similar
patterns. It is interesting that all daily patterns of the search
result were measured in the summer period. Thus, the result
exploration reveals a relation of the retrieved daily pattern to
the seasonal occurrence within a year. The three complemen-
tary perspectives of the result set (Result View, Geo View,
andMap View) help in gaining a deeper understanding of the
data, and facilitate the identification of interesting relations.
For example, the shape query defined in Fig. 9 seems to have
a significant geographical and temporal relation, which could
be a starting point for new scientific investigation.

In addition to the three different views of the search result
presentation, metadata facets can be applied to reduce the
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Fig. 10 Time Filter (cutout from the Search Interface). Line-based search space filter to the years of 2000, 2001 and 2002. Column-based and
mutual filter definitions are also possible

Fig. 11 Geo Filter (cutout from the Search Interface). The user has selected only measurements from North America to be considered for search
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Fig. 12 Metadata Filter (cutout from the Search Interface). Reduction of search space to documents from four creators

Fig. 13 Result View. Search result visualization including metadata facets (left), list-based visualization of the data content (center), and respective
metadata (right). The result set corresponds to the the query of Fig. 9
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Fig. 14 Geo View. The majority of the retrieved documents are measured in the Northern hemisphere

result space. Since a content-based ES in thousands of search
patterns typically retrieves large amounts of relevant items
[68], the user is able to choose relevant metadata facets to
filter relevant items. A decision was made in favor of ‘Loca-
tion’, ‘Year’, ‘Month’, ‘Season’ and ‘Surface Type’. These
metadata properties are shown in the left of the Result View
in a faceted search view (see Fig. 13).

After the search result exploration and a potential infor-
mation gain, the user can redefine the query and start another
search. Concluding the search process, the user can fol-
low external links to the data warehouses to download the
retrieved data sets.

5.5 Performance aspects

Since the VisInfo demonstrator is based on web technology,
limitations in the communication bandwidth between server
and client needed to be considered. The technical challenge
to provide efficient search in hundred thousands of daily pat-
terns was solved by a descriptor (a compact and yet pre-
cise representation) of the raw time series data. The PAA
descriptor compresses the data by more than 98% [7]. An
additional search index makes the search engine capable of
real-time retrieval for up to 1,000,000 feature vectors. The
index is computed via a clustering-based data aggregation

that enables search result calculations with nearest neighbor
queries in under one second. The increase in speed com-
pared to a sequential scan search algorithm is measured at
1,250% on average. We calibrated the index in such a way
that the search result matches the search in more than 99.9%
of all searches. The SOM-based visual data aggregation (the
Visual Catalog) also helps to keep data communication at
a manageable scale. Based on the ability of pre-calculation,
the scalability of the data aggregation concept is independent
of the size of the data set. Instead of loading large amounts
of daily patterns, only the information for the visual rep-
resentation of Visual Catalog is transferred initially. Rele-
vant data content is transferred only with a detail-on-demand
interaction or a query execution. The visual representation of
the raw data content of the search result was another chal-
lenge to overcome. Here, the PIP algorithm reduces the num-
ber of timestamps in the raw data from about 44,000 per
monthly measurement to a PIP feature vector of less than
2,000 timestamps [7]. This results in a compression rate of
more than 95%.

6 Evaluation

Applying a user-centered design approach, the VisInfo sys-
tem was analyzed and subsequently improved based on the
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Fig. 15 Time View. The majority of the retrieved documents contain data measured in the summer period (middle set)

Fig. 16 Developoment phase of the VisInfo web prototype. Different stakeholders were involved in the iterative process

results of several evaluation rounds. An overview of this iter-
ative design process is shown in Fig. 16.

As a first step, the initial web prototype (V0) was tested by
a usability expert using heuristic evaluation methods. Based
on the results, the prototype was improved by the computer
scientists, resulting in the secondversionwebprototype (V1).
As further evaluation steps, two usability testing rounds with
domain experts were conducted by the digital librarians and
the usability expert, leading to the further evolved web proto-
type (V2) and the final web prototype, respectively. The tests
were conductedwith scientists of the earth and environmental
sciences as the main target group. Therefore, representative
user tasks were identified, and tasks for both usability tests
were designed. Both performance and preference data were
collected during the usability tests. Performance data were
analyzed quantitatively (time, success rate) and qualitatively

(observation of user behavior, reactions). The same applies
to preference data (quantitatively: perceived difficulty of the
task; qualitatively: user comments). The identified usability
problems were ranked by severity.

6.1 Heuristic evaluation

In a heuristic evaluation, a small number of evaluators, ideally
usability experts, examine the interface and judge its compli-
ance with recognized usability principles (the “heuristics”).
Nielsen et al. stated, that 3–5 usability experts can usually
identify up to 75% of all usability problems in a design [44].
For the first heuristic evaluation of the web prototype (V0),
a discussion of the involved stakeholders was conducted, led
by a usability expert.
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Table 1 Tasks and their instruction text

Task Task instruction

Task 1 Please browse through the given patterns and choose one
that you are interested in. Pull up the “distance color map”
for this pattern.

Task 2 Use the chosen pattern from Task 1 as query input and load
it into the Sketch Editor of the Search Interface. Start the
search.

Task 3 Please start a search with your own query input: Draw your
own curve. Use the filters to make sure you only receive
results from locations in Antarctica, North- and
South-America. Look at the results using the Map View.

Task 4 Look at the results of the last task. Please refine the results
further so that only results from one country (of your own
choice) are shown.

As a result, the usability expert conjectured that the user
would have no orientation within the system, because of
unclear differentiation between interfaces for search, brows-
ing, and search result visualization. As a consequence, the
developers improved the web prototype with the objective of
clear interface separations.

Since the first evaluation resulted in significantly altered
interfaces and interactions, a second heuristic evaluation was
conducted as a cognitivewalkthrough. The user behaviorwas
anticipated by a usability expert. After the first web prototype
(V0) was implemented with a strong focus on functionality
design, the next prototype (V1), after the heuristic evaluation,
resulted in an improved, more intuitive user interface and
interaction design anticipating common web behavior.

6.2 Usability testing

The usability tests were conducted with scientists from the
earth and environmental sciences in two rounds, the first at
the ‘BSRN Scientific Review and Workshop’ at Potsdam,
Germany, and the second at the ‘Alfred-Wegener Institute’
in Bremerhaven, Germany. The scientists were asked to per-
form four tasks. The detailed task instructions can be seen in
Table 1.

Task 1 addressed all major functionalities available for the
cells of the Visual Catalog (exploration). Task 2 addressed
the cell patterns that can be used as search input in the Search
Interface (query-by-example). Task 3 covered the Sketch
Editor, and therefore the concept of the visual search by
drawing a curve for defining a query (query-by-sketch). Task
4 assessed the usability of the Result View and the possibil-
ities to refine the search by using facets (result exploration).
The tasks covered the most important visual encodings and
the interaction designs of the VisInfo application. During
the task execution, the think-aloud method was applied, to
gather qualitative feedback from the participants while they
were interacting with the web interface.

Table 2 Usability expert: task time and success definition

Success Task Time Value

Success without any difficulties under 4 minutes 3

Success with difficulties under 4 minutes 2

Partial failure 4 – 8 minutes 1

Failure > 8 minutes 0

Three metrics were gathered for each of the tasks. Firstly,
the task completion time described the time needed by the
test participant to complete a task. Secondly, the task suc-
cess rate was observed by the test facilitator, the definition
is shown in Table 2. Thirdly, the difficulty level of each task
was collected by the facilitator, based on the subjective pref-
erence of the test candidates. The scale of difficulty ranged
from -3 (very difficult) to + 3 (very easy). To capture a notion
of the system’s usefulness, the test participants were asked to
comment on whether the general concept of VisInfo is adapt-
able to their own research questions and whether they would
recommend VisInfo to colleagues.

During usability testing round 1 in Potsdam, 21 scientists
were recruited to test the VisInfo web prototype (V1, see
Fig. 16), 19 scientists completed the test. The quantitative
results based on the metrics mentioned above can be seen in
Fig. 17. Regarding the task completion time in the first usabil-
ity testing round, task 2 (covering the Search Interface) was
solved quickest, while task 3 (concerning the Sketch Edi-
tor) was the longest-lasting task on average. The same result
was identified with the task success rates and the difficulty
level. Task 1 uncovered problems regarding the interface of
the Visual Catalog. The applied colormap concept caused
confusion since it was an unknown term for 10 participants
(53%). Therefore, the colormap was removed in the follow-
ing implementation phase. In task 2, most severities dealt
with the problem that users were unsure how to use a cell
pattern of the Visual Catalog as an example query and how
it could be loaded into the Sketch Editor. Fig. 18 shows the
preliminary version of the Sketch Editor, red exclamation
marks indicate the severities of task 3. With this version of
the Sketch Editor, the users were unsure how to draw a curve
pattern. Task 4 revealed that the concept of faceting was new
to many users. It became clear that the facet design was not
intuitive.

The reflection of usability testing round 1 yielded a total of
19 usability problems. Together with frequency, their sever-
ity rating and their suggested solutions, the problems were
reported to the developers of the web prototype. Moreover,
the qualitative feedback of the scientists regarding the use-
fulness was considered.

The usability tests of the second round were conducted
with the web prototype (V2) at the Alfred-Wegener Institute
in Bremerhaven, Germany, with a total of six scientists. The



54

00:00 01:00 02:00 03:00 04:00 05:00 06:00 -3 -2 -1 0 1 2 3

100%

 Task 1

 Task 2

 Task 3

 Task 4

 Task 1

 Task 2

 Task 3

 Task 4

0%

20%

40%

60%

80%

Task 1 Task 2 Task 3 Task 4

Fig. 17 Metrics gathered for the task quality assessment in the usability testing rounds

Fig. 18 The VisInfo Sketch Editor with marked usability problems

same test setup as in round 1 was utilized, except for the
obsolete task 1. The quantitative results of the second test-
ing round can also be seen in Fig. 17. In this round, nearly
all tasks were completed within the 4 minute time range.
Ten remaining problems have been identified in the second
usability testing round. These problems were again rated by
severity and frequency of occurrence. On the basis of the
result of usability testing round 2, the computer scientists
developed the final VisInfo web prototype.

6.3 Summary of usability testing

Themost striking difference between the twousability testing
rounds was that in round 2, no participant had a ‘failure’
(completion time > 8 minutes per task) with respect to the
task success rate. This clearly underlines the improvement of
the interface design since round 1. The left chart of Fig. 17

illustrates the improvement of the task success rates of each
individual task between the two evaluation rounds.

In the severity ratings the occurrence of ‘usability catastro-
phes’ identified by more then 50% of the users dropped from
4 to 1. As shown at the task completion chart at the center of
thefigure, the average timeper task decreased substantially as
well. As an example, the task completion time for task 4 was
reduced to less than 50%. The right chart of Fig. 17 illustrates
that the users’ subjective difficulty estimation of the system
was lower in round 2 than it had been in round 1. Since task 1
was excluded from the second round, task 2 became the entry
task of the experimental setup. Thismight explain the slightly
increased subjective difficulty experienced for task 2. Task 3
and especially task 4, however, show a significant improve-
ment of the difficulty level, indicating an overall increase
of the system’s ease of use. With an overall success rate of
83%, we verified that “70 percent of participants can meet
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established successful completion criteria” [51] and there-
fore verified the usability, robustness, and intuitiveness of
VisInfo. The system’s usefulness is reflected by the recom-
mendation rate. While in round 1 68% of the participants
would recommend VisInfo to their colleagues, the recom-
mendation rate increased to 83% in round 2. Final comments
of the users indicate the generalizability of the system’s use-
fulness. One user stated: “From what I did before, where I
dealt with discharge curves, that [VisInfo] would have been
really interesting to compare discharge curves and then see if
there is similarity and maybe what kind of reason lies behind
these similarities.“

6.4 Field study

After addressing the remaining usability problems derived
fromusability testing round 2,wemade theVisInfo prototype
available for the public use. Moreover, we contacted BSRN
scientists, the targeted digital library users of VisInfo, and
invited them to follow an introductive screencast. Then, we
asked the scientists to “play” with the VisInfo prototype,
and provided a questionnaire to gather feedback. The goal of
this attempt was to measure the acceptance of the provided
system, and the potential usefulness for the users’ dailywork.
The qualitative feedback showed that scientists confirmed
that the proposed system supported their research interest.
The usability, the robustness, and the trust in the system was
rated highly positive by the participants. However, one major
flaw of the system seemed to be the innovative type of the
implemented concepts. As with many innovative systems,
it will take some time for the users to reflect about the new
possibilities such a system offers. This is also one outcome of
the questionnaire, with one user stating: “Can greatly help in
retrieving data based on relatively fuzzy criteria. Explaining
this search would then be a major challenge. Challenges also
lie in making the research reproducible.” We want to quote
the gratifying feedback of a user appreciating the new system
and rephrasing the advantage of VisInfo in her own words:

“If I can see time series of radiation before downloading
them, I can easier find out if the station can be used for val-
idation. This is better instead of downloading all the data
before, process it, and then throw some stations out.”

7 Discussion of the approach

We next discuss our approach by a set of lessons learned,
methodological aspects, and future research challenges.

7.1 Lessons learned

Trust. The applicability of our innovative search method
within the domain of earth observation scientist was contro-

versely discussed. Informal interviews with our users, the
earth observation scientists, in the domain characterization
phase have shown that bringing visual analytics capabili-
ties into their domain is of great value for their work. It is
widely recognized that for data-driven scientific discovery,
new analytical solutions are expected that realize content-
based search in large collaborative DLs in future. However,
many scientists prefer to analyze primarily their own data,
or data they receive from colleague scientists they trust. As
a result, the merits of an effective re-usage of ‘third-party’
research data have to be further emphasized. The introduc-
tion of a data curation process certainly helps to establish trust
in the data collection, e.g., regarding quality, completeness,
precision, etc. Moreover, using advanced visualization capa-
bility was seen in a bipolar way by some scientists. On the
one hand, it was recognized that visual overviews can greatly
enhance screening and comparison tasks. On the other hand,
scientists were questioning the precision of the visual repre-
sentations of the data. Overview visualizations work by pro-
viding abstractions and aggregations, which by their nature
incur a loss of detail information. A lesson learned from that
is to strongly focus on tightly integrated detail-on-demand
views which provide accurate, high-resolution visual repre-
sentations to further increase the trust in visually presented
data.

Similarity Notion. In discussions with the users of our
system, we identified a variety of analytical tasks that may
be performed with the underlying research data. This had an
impact on the question what the scientists wanted to search
for. Still, we learned that scientists are often not entirely sure
abouthow to formally define the respective similarity for their
search. The similarity definitions introduced in our approach
present a starting point for this. As scientists pointed out,
they ideally want to have many different similarity defini-
tions at hand, and compare the search results they obtain,
to decide upon the most appropriate similarity function. Yet
our assumption is that overloading the search systemwith too
many parameters (e.g., similarity search parameters) would
detriment the usability and make the learning process more
complicated.

Usability. Since the system is the first of its kind in the
considered user domain, a user with no prior exposure to
visual search may face a barrier to entry before she can use
the system effectively. Thus, one of the lessons learned is
that the usability of the system needs to be well grounded.
Looking back, an even more integrative approach, especially
in the early design stages, would have been desirable. A les-
son learned for future projects is to make early assessment of
usability aspects mandatory. An assessment of usability con-
siderations from the very beginning of the project, to reduce
the users’ familiarization efforts with the final product, is
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especially important in the development of innovative search
concepts.

Evaluation Methods. However, it appears that it is not
always possible to anticipate every usability barrier in
advance for users working with unknown systems. Choos-
ing appropriate evaluation methodologies in the course of
the implementation phase was important. Based on the iter-
ative evaluation strategy, most usability barriers could be
identified and subsequently overcome. In comparison to ear-
lier deployed versions, the final prototype was significantly
improved in terms of guiding the users through the analytical
workflow. The conduction of a heuristic evaluation and two
usability testing rounds has proven to be useful. The collected
qualitative and quantitative feedback helped to improve the
system.

In summary, we feel that the project provided our entire
team with a range of valuable lessons learned that will influ-
ence and enhance future work in many aspects.

7.2 Generalized project workflow description

In the following, we describe our best practice for projects
with the goal to provide content-based visual access to
research data. Although we try to generalize our method, we
want to emphasize that we do not claim to provide a general
methodology for visualization projects in the DL domain.
However, we think that sharing our experiences from the
VisInfo project will contribute to the DL domain, and a gen-
eralized workflow description might help later visualization
projects build successful visual-interactiveDLSs. Still, a gen-
eral methodology for visual interfaces to DLs remains future
work.

Each research project starts with a high-level goal. In con-
trast to standard software engineering projects starting with
a requirements document by the customer and a functional
specification by the developer, the goal of a research project is
often not described very precisely, since the objectives are not
necessarily fixed at the beginning of the project. For example,
the VisInfo project started with the goal to build a DLS to
provide visual access to research data. In this statement two
terms had to be described in more detail: visual access and
research data. These terms are connected to questions that, in
general, fit to every visual DLS: (1) what is being searched
for, and (2) how will this search be realized.

Considering (1), we started with characterizing the appli-
cation domain and specifying the actors within this domain,
respectively. In Sect. 4.1, we already defined general stake-
holders in the DL context: data collector, data curator, digital
librarian, computer scientist, and DL user. For each role, at
least one representative should be added to the project con-
sortium, or the advisory board. From our experience, it is of
great value to have a direct connection to each of these stake-

holderswhendesigning theDLS.As anext step, if not already
given, a data collection should be defined. It is helpful if the
data structure will not change during the project life time.
However, the experience in VisInfo showed that the devel-
opment of a general data model provides beneficial means
when heterogeneous data sources or varying data standards
are to be incorporated. Finally, the data structure has to be
analyzed with the help of the interdisciplinary team: divide
data into metadata and content data, identify most important
metadata features, analyze possible features to be searched
for in content data, etc. After this step, the question what is
being searched for should be answered. This determination
also might change over the project life time.

To answer question (2), we recommend to start with an
initial design prototype. This can be realized with different
techniques, from a paper prototype to a software prototype
acting on a subset of the data collection. This is a crucial
part of the design process, since users with no experience
in visualization somehow need to get a feeling what visual
search and exploration can contribute to the respective DLS.
Be aware of this classical “chicken-and-egg” dilemma origi-
nating from knowledge gaps between different stakeholders
[52]: on one hand, it is difficult for the computer scientist
to provide a prototype without well-defined user require-
ments derived from domain knowledge. On the other hand,
users will have difficulties in defining requirements without
any visual inspiration derived from expertise in visualiza-
tion designs. An early design prototype may be the basis for
an enhanced requirement analysis process, e.g., by conduct-
ing observational user studies, interviews, questionnaires, or
other forms of visual prototype communication. The results
of this requirement analysis are the basis of the first imple-
mentation cycle, which is concluded with first usability, use-
fulness, and performance tests. The first version of the DLS
should then be refined in further cycles until the test results
satisfy digital librarians as the host of the developed system.

7.3 Future research challenges

In this project, we have established a first operational, web-
based prototype for ES in time series research data, proposed
for working with large data repositories. The four considered
similarity notions are merely a first step which need to be
extended to support further use case scenarios. The system
still resembles only one part of the larger ideas of Labora-
tory InformationManagement Systems (LIMS) [26]. Among
others, we identify the following research challenges:

– Advanced search interfaces should go beyond query-
by-sketch or -example, but allow scientists to formulate
hypotheses in other useful and appropriate ways. Exam-
ples are the specification of correlations, or lags in time
and space, helping to discover interesting data sets.
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– A deeper integration of the content-based search with
published research papers. Techniques fromNatural Lan-
guage Processing could be used to automatically link tex-
tual descriptions extracted from research papers to phe-
nomena observed in the raw data, possibly enhanced by
cross-referencing the DOIs.

– We currently see a lack of collaborative aspects. The
visual search system could be extended to an annota-
tion, rating and referencing scheme and improve the
exchange of data among researchers. This may include
recommender functionality which correlates with, e.g.,
user profiles, or search sessions.

8 Conclusion

We presented the web-based VisInfo prototype, a digital
library system for time series research data. Based on an
overview visualization, large collections of research data are
presented to the user in an exploratory manner. To support
efficient retrieval, VisInfo supports the visual-interactive def-
inition of content-based queries by sketch, or by example.
Additional metadata-based filters may be applied. The visual
search result presentation sheds light on the retrieved data
via different views, including a geographical visualization, a
calendar-based visualization, and a visual representation of
the time series data content itself.

The development process of VisInfo was performed in
terms of the user-centered design principle. We report on a
collaborative approach between data collectors, data cura-
tors, digital librarians, computer scientists, usability experts
and earth observation scientists, from our targeted user
domain. The domain and problem characterization phase
was conducted including paper prototyping, user interviews,
screen casts and user questionnaires. The system implemen-
tation phase was accompanied by three evaluation phases
which helped to iteratively improve the system. In particular,
an heuristic evaluation and two usability testing rounds with
expert users were conducted that helped to improve VisInfo,
to result in an intuitive and usable digital library system.

Finally, we discussed lessons learned and reported on best
practices for projects with the goal to create advanced visual
interfaces for digital libraries incorporating information visu-
alization and visual analytics capability. We think that this
comparatively new type of digital library system approach
with interdisciplinary participation can benefit from reflec-
tions on potential pitfalls and best practices.
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