
This is a preprint of an article accepted for publication (in 2016) in: 
International Journal on Digital Libraries, Special Issue: Extending, Mapping and Focusing the CIDOC CRM

Noname manuscript No.
(will be inserted by the editor)

X3ML Mapping Framework for Information Integration in
Cultural Heritage and beyond

Yannis Marketakis · Nikos Minadakis · Haridimos Kondylakis ·

Konstantina Konsolaki · Georgios Samaritakis · Maria Theodoridou ·

Giorgos Flouris · Martin Doerr

Received: date / Accepted: date

Abstract The aggregation of heterogeneous data from
different institutions in cultural heritage and e-science

has the potential to create rich data resources useful for

a range of different purposes, from research to educa-

tion and public interests. In this paper, we present the

X3ML framework, a framework for information integra-
tion that handles effectively and efficiently the steps in-

volved in schema mapping, Uniform Resource Identifier

(URI) definition and generation, data transformation,

provision and aggregation. The framework is based on
the X3ML mapping definition language for describing

both schema mappings and URI generation policies and

has a lot of advantages when compared to other rele-

vant frameworks. We describe the architecture of the

framework as well as details on the various available
components. Usability aspects are discussed and per-

formance metrics are demonstrated. The high impact

of our work is verified via the increasing number of in-

ternational projects that adopt and use this framework.

1 Introduction

Managing heterogeneous data is a challenge for cultural

heritage institutions, such as archives, libraries, and

museums, but equally for research institutes of descrip-
tive sciences such as earth sciences [51], biodiversity [61,

60], clinical studies and e-Health [47,46]. These institu-

tions host and maintain various collections with hetero-

geneous material, usually stored in relational databases

and often described by different metadata schemata.
For exploiting this wealth of data and handling these

metadata as a unified set is vital in many applications,

Institute of Computer Science, FORTH-ICS, Greece
E-mail: {marketak, minadakn, kondylak, konsolak, samarita,
maria, fgeo, martin}@ics.forth.gr

including information retrieval, data integration [43],
data migration [45] and creating rich domain-specific

applications. In this direction, complex query and in-

tegration mechanisms have to be designed and imple-

mented to enable uniform access to heterogeneous and

autonomous data sources [44].

In order to allow data transformation and aggre-

gation, it is required to produce mappings, to relate

equivalent concepts or relationships from the source

schemata to the aggregation schema, i.e. the target
schema, in a way that facts described in terms of the

source schema can automatically be translated into de-

scriptions in terms of the target schema (also known as

the “enterprise model” [28]). This is the mapping defini-

tion process and the output of this task is the mapping,
i.e., a collection of mapping rules.

In this paper we describe the X3ML mapping

framework designed to support information integration

for resource discovery. In such a scenario, alternative
knowledge violating cardinality constraints is equally

relevant for resource discovery search. Thus, the cur-

rent version of the framework does not take into account

cardinality constraints or other rules in the target side.

It guarantees only strict inheritance and subsumption
and does not enforce any other constraints.

The framework is able to support the data aggre-

gation process by providing mechanisms of data trans-

formation and URI generation. Mappings are specified

using the X3ML mapping definition language, a declar-
ative, human readable language that supports the cog-

nitive process of a mapping. Unlike XSLT, that is in-

tended to be comprehensible only by IT technicians, the

X3ML mapping definition language can be understood
by non-technical people as well. Thus, a domain expert

is capable of both verifying the semantics, and read-

ing and validating the schema matching. This model



2 Yannis Marketakis et al.

carefully distinguishes between mapping activities car-

ried out by the domain experts, who know and provide

the data, and from the IT technicians, who actually

implement data translation and integration solutions.

X3ML mapping framework serves as an interface be-
tween them.

Usually, schema matching is used to describe the

process of identifying that two different concepts are

semantically related. This allows the definition of the
appropriate mappings that are being used as input for

the transformation process. However, a common prob-

lem is that the IT experts do not fully understand the

semantics of the schema matching and the domain ex-

perts do not understand how to use the technical so-
lutions. For this reason, in our approach the schema

matching and the URI generation processes are sepa-

rated. The schema matching can be fully performed by

the domain expert and the URI generation by the IT
expert, therefore solving the bottleneck that requires

the IT expert to fully understand the mapping. Fur-

thermore, this approach keeps the schema mappings

between different systems harmonized since their def-

initions do not change, in contrast to the URIs that
may change between different institutions and are in-

dependent of the semantics. Our approach completely

separates the definition of the schema matching from

the actual execution. This is important because differ-
ent processes might have different life-cycles; in par-

ticular the schema matching definition has a different

life-cycle compared to the URI generation process. The

former is subject to more sparse changes compared to

the latter.

In this paper, we extend our previous work in the

area [52] in many ways. First, we present more infor-

mation and details on the background, the related work

and the X3ML mapping framework. Although in our

past work we focused on only one of the components
(particularly the X3ML Engine component), in this

paper we present in detail the framework as a whole

and describe all its relevant components; just indica-

tively the key components of the framework are: (a)
Mapping Memory Manager , (b) 3M Editor , and

(c) X3ML Engine, however there are also additional

components that are described in detail in Section 4.

In addition, in this paper we demonstrate the feasibil-

ity of our solution out of various project experiences.
More specifically, we describe how the proposed frame-

work has been exploited for supporting the mapping

and transformation of several archives and databases

from various (even heterogeneous) domains, to CIDOC
CRM [35] and its extensions [34]. Finally, we discuss

the usability aspects of some of these components and

demonstrate our current advances in the area.

In the sequel we use the following terminology: (a)

we refer to the X3ML mapping framework as the X3ML

framework, and (b) we refer to the X3ML mapping def-

inition language simply as X3ML.

The remainder of this paper is organized as follows:
Section 2 discusses the related work, whereas Section 3

presents the background for understanding the context

of the X3ML. Section 4 presents the overall architecture

of the X3ML framework providing more details on the
individual components. Section 5 presents experiences

on using the X3ML framework demonstrating the feasi-

bility of our solution and the great advantages gained.

Finally, Section 6 concludes this paper and discusses

the future directions of our work.

2 Related Work

In the latest years an active field of research is focused

on mapping relational databases (RDB) to RDF, since
the majority of data currently published on the web are

still stored in relational databases with local schemata

and local identifiers. Bridging the conceptual gap be-

tween the relational model and RDF is the key to make
the data available as linked data, materializing the vi-

sion of Semantic Web [24].

One approach towards this direction is the Direct

Mapping [23,41] which maps automatically relational

tables to classes, and attributes of tables to properties
using an RDF vocabulary. The URIs of the instances

and the classes are automatically generated based on

the RDB schema and data. One implementation that

exploits Direct Mapping is SquirrelRDF [12]. This ap-
proach is based on mapping discovery, and URI gen-

eration is tied to the implementation of the system.

This limits the ways to generate and use URIs, mak-

ing therefore difficult the support of complex structures

and information integration.
Besides Direct Mapping, there are also XML-based

solutions such as D2R MAP [26] which is a declarative

language for describing mappings between relational

databases and OWL/RDFS ontologies. D2R MAP is
extended by eD2R [21] to map databases that are not

in first normal form and by D2RQ [27], which is for-

mally defined by an RDFS schema. The mappings are

based on SQL queries that extract records from the

RDB and transformation functions that can be applied
to the extracted values.

Another XML-based approach, focusing on expres-

sivity, is R2O [22] which is able to cope with complex

mapping cases where one model is richer than the other.
For that sake, Virtuoso RDF Views [7] are created,

exposing RDBs, using a declarative meta schema lan-

guage for defining the mapping of SQL data to RDF



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 3

vocabularies. Triplify [20], on the other hand, maps

HTTP-URI requests onto RDB queries and translates

the resulting relations into RDF statements.

R2RML [31] is a mapping language proposed by

W3C in order to standardize RDB to RDF mappings.

There exist already several implementations [9] and
R2RML is lately extended by RML [33] to simultane-

ously support different mapping sources into RDF. Sim-

ilar to the previous solutions is the Relational.OWL [32]

which is a representation format for mapping relational

models to OWL full ontologies.

Besides approaches that try to map relational data,
there are other approaches which try to map CSV files

to RDF. For example XLWrap’s mapping language [49]

provides conversions from CSV and spreadsheets to

RDF data model. Mapping Master’s M2 [53] converts
data from spreadsheets into OWL statements and Vert-

ere [15] is a conversion tool based on a templating mech-

anism. Each line results in one or more RDF resources,

while each column value can result in one or more

triples about this resource. TaRQL [13] is used also for
the same purpose. Other tools that provide mappings

from XML to RDF lead to mappings in the syntac-

tic level rather on the semantic level and fail to pro-

vide solutions applicable to broader domains. There are
tools in this category that are based on XSLT (Krextor

[48], AstroGrid-D [2]), on XPATH (Tripliser [14]) and

XQUERY (XSPARQL [25]) and tools that are based on

algorithms (GRDDL [30]) that provide links between

data and RDF. Finally, there are existing tools that
provide mappings from several formats to RDF. Tools

in this category include Datalift [55], The DataTank

[3], OpenRefine [8], RDFizers [10], Virtuoso Sponger

[16]. A fundamental problem when using highly expres-
sive languages such as XSLT is the fact, that even the

programmer himself has difficulties to understand the

mapping logic. The only way to verify the mapping is

testing its output behaviour.

Other approaches exploit mapping technologies to

publish their data as linked data. For example the
Smithsonian American Art Museum1 used KARMA

[58] to publish their data as linked data, a tool try-

ing to automate the mapping process and allowing the

users to adjust the generated mappings. However, there

is still no clear distinction on the work of the domain
and the IT experts, which perplexes the whole work-

flow. KARMA uses R2RML model inheriting the issue

of tight coupling between the schema matching and the

URI generation.

One work with similar goals to our approach is the

SIP Creator [11], created for Europeana2 in 2009 to

1 http://americanart.si.edu/
2 http://www.europeana.eu/

bring together more than 150 different sources.Whereas

it only dealt with flat formats at the beginning, it was

later expanded to handle hierarchical formats as out-

put, however only in XML. Motivated by the goal of

transparency, the mapping file format created by the
SIP Creator was seen to come closer to the structure

that was required for generic mapping, since it appeared

in an easy-to-comprehend, human readable XML for-

mat with the source and target paths clearly identified.
However it combined interactive schema matching re-

solving not formally structured elements (they call it

“syntax normalization”), on the basis of the Groovy

[4] programming language. Groovy however, as a pro-

gramming language cannot be used or understood by a
domain expert.

Most of the described approaches tightly couple the

URI generation and the schema matching processes and

lack general conditions where mapping is dependent on

particular data values, or data structures, limiting the
ways that the URIs can be constructed and making it

impossible to select other forms of URIs to be gener-

ated. The latter may frequently be required in order

to adapt transformed data to different targets, such as

Linked Open Data (LOD), or to look-up the identi-
fiers used in the target system. Furthermore, in the de-

scribed works there is no distinction between IT and

domain experts, so the IT experts are assumed to be

responsible for the entire process. This is reflected in
the complexity and lack of user-friendliness of the em-

ployed mapping languages, even if some easy parts of

the mapping are done graphically. Furthermore, IT ex-

perts cannot easily understand the domain semantics

they are dealing with and URI generation is still based
on a sort of unique key generation from data, as in Re-

lational Database Management Systems (RDBMS).

All these different approaches prove that there is

no standard model to support mapping of data sources

other than relational, the technologies used are too
complex to be used by the domain experts and the

whole workflow is not well-defined. Compared to these

approaches our work:

(a) uses a simple model for defining the mappings in

a way that is comprehensible and readable by the

domain experts,
(b) is generic because the mapping definitions are not

tied to the implementation of the data transforma-

tion engine,

(c) supports incremental changes of source and target
schema,

(d) supports customized URI generation policies, and

(e) promotes the collaborative work of experts with dif-

ferent roles on the mapping process.



4 Yannis Marketakis et al.

Model/ Language/ Specification Software Platform/ Tool

Relational-based

Direct Mapping [23]
R2RML [31]
RML [33]
Relational.OWL [32]

Squirrel RDF [12]
RDB2RDF [9]
Virtuoso RDF Views [7]
Triplify [20]
D2RQ [27]

XML-based

D2R Map [26]
eD2R [21]
R2O [22]
GRDDL [30]

Krextor [48]
AstroGrid-D [2]
Tripliser [14]
XSPARQL [25]

CSV-based XLWrap [49]
Master’s M2 [53]
Vertere [15]
TaRQL [13]

multiple

DataLift (DB, CSV, XML, GML, etc.) [55]
The DataTank (CSV, XLS, XML, JSON, etc.) [3]
OpenRefine (CSV, XML, JSON, RDF. etc.) [8]
RDFizer (many) [10]
Virtuoso Sponger (many) [16]
KARMA (DB, CSV, JSON, XML, XLS) [58]

Table 1 A categorization of the related works

Table 1 shows the related approaches, categorized

with respect to the different source types.

3 Background

Our work has been based on two main pillars: (a) the

Synergy Reference Model, that describes the best prac-

tices for the data provisioning and aggregation pro-

cesses and (b) the X3ML mapping definition language

(or simply X3ML), for describing the mappings per se.

Below we will describe them in detail.

3.1 Synergy Reference Model

The Synergy Reference Model (for short SRM) which

is an initiative of the CIDOC CRM Special Interest

Group3, is a reference model for a better practice of

data provisioning and aggregation processes, primarily
in the cultural heritage sector, but also for e-science.

It is based on experience and evaluation of national

and international information integration projects. It

defines a consistent set of business processes, user roles,
generic software components and open interfaces that

form a harmonious whole. Currently a draft version of

the model is available online4, still being evolved and

enriched. The goal of SRM is to: (a) describe the provi-

sion of data between providers and aggregators includ-
ing associated data mapping components, (b) address

the lack of functionality in current models (i.e., OAIS

[50]), (c) incorporate the necessary knowledge and in-

put needed from providers to create quality sustain-

3 http://www.cidoc-crm.org/who_we_are.html
4 http://www.cidoc-crm.org/docs/SRM_v1.4.pdf

able aggregations and, (d) define a modular architec-

ture that can be developed and optimized by different

developers with minimal inter-dependencies and with-

out hindering integrated UI development for the differ-

ent user roles involved.

SRM aims at identifying, supporting or managing

the processes needed to be executed or maintained be-

tween a provider (the source) and an aggregator (the

target) institution. It supports the management of data
between source and target models and the delivery of

transformed data at defined times, including updates.

This includes a mapping definition, i.e., specification

of the parameters for the data transformation process,

such that complete sets of data records can automat-
ically be transformed. A high level view of the data

provisioning process is shown in Fig. 1.

In more details, the main steps of the data provi-

sioning workflow are:

– Schema matching: source and target schema ex-

perts (a.k.a the domain experts) define a schema

matching which is documented in a schema match-
ing definition file. This file should be human and ma-

chine readable and it is the ultimate communication

means on the semantic correctness of the mapping.

– Instance generation specification: in this step

the URI generation and datatype conversion policies
are defined for each instance of a target schema class

referred to in the matching. In this step only IT

experts are involved and domain experts have no

interest or knowledge about it.
– Terminology mapping: the terminology map-

pings between source and target data/terms are de-

fined. Providers may use anything from intuitive



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 5

Mapping Manager

Researcher/User

transfer & transformation

consistency check

update

Aggregator InstitutionProvider Institution

update update

data changes / quality improvements

Data Provisioning flow

Fig. 1 The data provisioning process

lists of uncontrolled terms up to highly structured

third party thesauri.

– Transformation: once the mapping definition has

been finalized (and all syntax errors are resolved)

the data needs to be transformed, producing a set
of valid target records. The transformation process

itself may run completely automatically. In the case

where any issues arise, the aggregator can resolve

them on a temporary or permanent basis but it is
also possible that these records are sent back to the

provider for further analysis and resolution.

– Ingestion: once records are transformed, an auto-

mated translation for source terms using a terminol-

ogy map follows. The transformed records will then
be ingested into the target system.

– Change detection: after the ingestion of the

records all changes that may affect the consistency

of provider and aggregator data are monitored.
SRM foresees a series of distinct update processes

in all partner sites and is the only framework at the

moment which takes the maintenance into account.

3.2 X3ML Mapping Definition Language

X3ML is an XML based language which describes

schema mappings in such a way that they can be collab-

oratively created and discussed by experts. X3ML was
designed on the basis of work that started in FORTH in

2006 [42] and emphasizes on establishing a standardized

mapping description which lends itself to collaboration

and the building of a mapping memory to accumulate
knowledge and experience. It was adapted primarily to

be more aligned with the DRY principle [59] (avoiding

repetition) and to be more explicit in its contract with

the URI generation process. X3ML separates schema

mapping from the concern of generating proper URIs

so that different expertise can be applied to these two

very different responsibilities.

Schema matching is performed by domain experts

who need to be concerned only with the correct inter-
pretation of the source schema. The structure of X3ML

is quite easy to understand consisting of: (a) a header

that contains basic information (e.g. title, description,

contact persons, the source and target schemata, sam-
ple records etc.), and (b) a series of mappings each

containing a domain (the main entity that is being

mapped) and a number of links which consist of a path

and a range. Each link describes the relation (path) of

the domain entity to the corresponding range entity.

The basic mapping scheme and the XML represen-
tation of an X3ML mapping is shown in Fig. 2. Each

domain-path-range of the source schema is mapped in-

dividually to the target schema and can be seen as self-

explanatory, context independent proposition. As it is
evident from the figure, X3ML mappings allow the def-

inition of rich structures by adding intermediate nodes,

even if the source relations are much simpler. An X3ML

structure consists of:

– the mapping between the source domain and the

target domain

– the mapping between the source range and the tar-
get range

– the proper source path

– the proper target path

– the mapping between source path and target path.

Below we will describe the main concepts of the

X3ML mapping definition language.

Info and Comment : since X3ML is intended to

bridge the gap between human authors and machines,
it has to allow textual comments to be placed in the

mapping specification. This is intended for describing

alternatives to be discussed between experts and for

harmonizing parallel mappings between providers. For
this purpose the info and the comment elements have

been defined in the mapping specification. These blocks

contain relevant information for humans to understand

the specific mappings and can also contain useful prove-

nance information recorded automatically by the tools
used to manage the X3ML files, such as the date of

creation or the author of the mapping file.

Mapping : each mapping element consists of a do-

main element and a number of links. It is quite com-

mon to have a single domain mapping and some range
mappings, so by using this particular format for map-

pings, the single domain mapping doesn’t have to be

declared again. This is an ergonomic choice good for



6 Yannis Marketakis et al.

<x3ml version=“0.1” sourceType=“XPATH”>

<info/>

<namespaces/>

<mappings>

<mapping>

<domain>

<source_node/>

<target_node/>

</domain>

<link>

<path>

<source_relation/>

<target_relation/>

</path>

<range>

<source_node/>

<target_node/>

</path>

</link>

<link/>

. . . 

</mapping>

<mapping/>

. . . 

</mappings>

<comments/>

</x3ml>

Target Range

Target Domain

Source
Path

Source Domain

Source Range

Target 
Path

Intermediate Node Constant Node

maps to

maps to

Intermediate Node
…

Constant Node

Fig. 2 The structure and the XML representation of an X3ML mapping

tree-dominated source schemata or sets of relational ta-

bles, which helps user orientation. It further provides an
intuitive default local scope to define that the same in-

stance of a class in a mapping rule appears as domain

value in multiple target propositions.

Domain : the domain element is used to specify the

mappings between a source (source node) entity (ta-

ble, class, non-leaf element) that can be regarded as
domain of a source proposition and an equivalent tar-

get (target node) entity. The source node provides

information on how to navigate to the source record

and in case of XML it is an XPATH expression. The
target node defines an entity element that will lead

to the generation of resource URIs or datatype values

for the output graph. It may also contain if conditions

(described below) upon which the mapping depends on.

Link : inside the link element there is a path element. It

allows mapping a source relation from the above defined
source domain to a target relation to the above defined

target domain. The path element must be followed by

a range element, which is used to map the source and

the target entities that are the equivalent range of the

respective paths. The target relation might contain if

conditions as well. A source / target range pair may

reappear as a subsequent domain in an X3ML mapping.

Conditional : the conditional expressions in X3ML

mapping definition language can check for existence,

equality and narrowness of values. They are expressed

in the form of if statements and they can be combined
into boolean expressions.

Intermediate node: sometimes a path in the source

schema needs to be further analyzed to a sequence of

paths in the output with respect to the target schema.

For this reason the user can define the generation of an

intermediate node (or intermediate entity).

Additional : regularly constant properties and entities

are needed to be added to a target entity, either from

background knowledge or in order to characterize the

meaning of a classification by the source schema rather

than by data. For instance, a database about museum
objects may not mention at all the museum as current

keeper. A table “coin” may be mapped to “physical

object”, but each instance of “coin” must have the type

“coin”. For that purpose, an additional element can be
used, containing the entity which will be attached to

the target entity, the relationship describing the link,

and the respective constant values.

Variables: sometimes it is necessary to generate an

instance in X3ML only once in the scope of a given
domain entity, and then re-use it in a number of links

of this domain. This is most frequently the case for

intermediate target nodes. For example, a description

of a museum object may re-use the same production

event for mapping its “creator” link and its “date” link.
In these cases, an entity can be assigned to a variable.

Join operator: sometimes it is required to combine

values from different tables in the source and produce

new values in the output. This is the definition of the

relational join operation. X3ML contains a specific op-
erator for support (n-ary) join operation between dif-

ferent tables. The operator that is used is ‘==’ and is

being used inside a link element. More specifically it is

being expressed inside the path element and expresses
the equality of the value of the left-hand side (its table

is the one defined the in the domain of the correspond-

ing mapping) with the value of the right-hand side (its



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 7

Target Range:
Literal

Target Domain:
E22 Man-Made Object

P43 has 
dimension

Source 
Path

Source Domain:
Coin

Source Range:
WEIGHT

P90 has 
value

Target
Path

Intermediate Node:
E54 Dimension

Constant Node:
E58 Measurement 

Unit
P91 has unit

P2 has type

Constant Node:
E55 Type

weight

gr

maps to

maps to

Fig. 3 Mapping relational data to CIDOC CRM

table is the one defined on the range of the correspond-
ing link).

Instance generation policy : the definition of the

URI generation policy follows the schema matching and

is performed usually by an IT expert who must ensure

that the generated URIs match certain criteria such
as consistency and uniqueness. A set of predefined URI

generators (UUIDs, literals) and templates are available

but any URI generating function can be implemented

and incorporated in the system. In the X3ML definition,
the target domain and range contain the functions that

generate URIs or literals.

Fig. 3 shows how a simple relational database entry

that specifies the weight of a coin is mapped and ex-

pressed with respect to the CIDOC CRM schema [35].
The mapping of this example can be found online5.

4 The X3ML Mapping Framework

The X3ML framework consists of a set of software com-
ponents that assist the data provisioning process for in-

formation integration. A diagram presenting these com-

ponents and the flow of data among them is shown in

Fig. 4.

The process starts with the Provider Institution and
is completed at the Aggregator Institution, when all

records are transformed to the target format and are

ingested to the target system.

Starting from the Provider Institution, the Syntax

Normalizer can be used to normalize the provider’s

records. It exploits local syntax rules and produces

a new provider schema definition, called Effective

Provider Schema. Normalization is quite often needed

in date fields or in fields that contain concatenated in-
formation. For example, in the source schema the field:

5 http://www.ics.forth.gr/isl/OEAWcoins-Published

<Acquisition>

bequeathed; 1936-07-07; Young, Arthur W.

</Acquisition>

contains information about the actor, the date and the

type of an acquisition and needs to be normalized be-

fore it is actually mapped to the target schema. In this

example the Effective Provider Schema will be:

<Acquisition>

<AcqType>bequeathed</AcqType>

<AcqDate>1936-07-07</AcqDate>

<AcqActor>Young, Arthur W.</AcqActor>

</Acquisition>

The next step of the provisioning process is the def-

inition of the mappings. The X3ML framework pro-

vides various components that assist the experts to

complete this time consuming and error prone task.
One of these is the Mapping Memory Manager

(for short 3M ). 3M is a managing system suitable for

handling the mapping files. It offers a variety of ac-

tions that help both provider and target schema ex-
perts manage their files and also communicates with

another component, called 3M Editor. 3M Editor is

an application suite that helps the experts complete

the mapping definition process. The first step of the

mapping definition is the schema matching. Provider
schema experts with target schema experts, exploit the

Schema Matcher component, in order to define a

schema matching which is documented in a Schema

Matching Definition. The Source Schema Validator

and the Target Schema Validator components as-

sist the experts in selecting the valid paths with respect

to the corresponding schemata, preventing them from

making mistakes, while the Source Schema Visual-

izer and the Target Schema Visualizer assist users
navigating through all source and target elements. The

matching process is also supported by the Mapping

Suggester , which makes use of “mapping memories”

of similar cases as they are collected and cached from
the user community.

The next step is the specification of the instance

generation rules that define the URI generation pol-

icy for each target class. This task is accomplished

by the Instance Generator Rule Builder , which
complements the Schema Matching Definition with the

instance generation policies, producing the Mapping

Definition (which is also called X3ML file). Both the

Schema Matching Definition and the Mapping Defi-
nition may be viewed with the Schema Mapping

Viewer . The files are stored to the Mapping Memory,

which is an XML database.



8 Yannis Marketakis et al.

Provider Institution

Aggregator Institution

Provider Schema 

Definition Raw Metadata

Normalized Provider 

Metadata

Mapping Memory

Aggregator Format 

Records

Syntax Normalizer

Effective Provider 

Schema

Target Schema 

Validator
Source Schema 

Validator

Schema 

Matcher
Source Schema 

Visualizer
Target Schema 

Visualizer

Mapping 

Definition

Schema Matching 

Definition

Instance 

Generation 

Rule Builder

Schema Mapping 

Viewer

Target Schema 

Definition

3M Editor

Mapping Validation 

Report

Source To Target URI 

Association Table

X3ML EngineMapping Memory 

Manager (3M)

Mapping 

Suggester

Source Analyzer

Field Statistics

Target AnalyzerAggregator Statistics 

Report

Fig. 4 The X3ML Flow Network



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 9

Afterwards, the mapping definition and the normal-

ized input from the provider, are given as input to the

X3ML Engine component which is responsible for

transforming the records to the aggregator format, so

that they can be ingested to the Aggregator Institution.

The components of the X3ML framework have been

designed with respect to the following design principles:

– Collaborative Mapping Memory. The X3ML map-

ping descriptions must lend themselves to being

stored and handled by collaborative tools, as well

as potentially written by hand. This was the mo-
tivation for choosing a simple syntax in XML, and

one which does not depend on implicit knowledge.

– Facilitating Instance Matching. This involves ex-

tracting semantic information with the intent of

generating correct instance URIs.
– Transparency. The most important feature of X3ML

framework is its generic application to mapping cre-

ation and execution and hopefully its longevity. The

cleaner the core design of the framework and X3ML
specication, and the clearer its documentation, the

more readily it will get traction and become the ba-

sis for future mappings.

– Re-use of Standards and Technologies. The best way

to build a new software module is to carefully choose
its dependencies, and keeping them as small as pos-

sible. Building on top of proven technologies is the

quickest way to a dependable result.

In the following subsections, we will describe these
components in more detail.

4.1 Syntax Normalizer

The Syntax Normalizer component is responsible for

converting all data structures that are necessary for the
transformation into a standard form. The reason for

converting them, is because data transformation com-

ponents can deal with a limited set of standard data

structures.

In many cases the local syntax rules of the provider

can be so complicated, or even non-deterministic, that

it is often more effective to use a set of custom filtering
rules, that resolve one structural feature at a time, and

verify it with the source schema experts. For instance,

if italics are used to tag a particular kind of field, it is

better to convert first all italics to XML tags, so that
the semantics of the field will be properly preserved and

transformed.

To this end, the Syntax Normalizer component con-

tains the necessary filters for converting the input data

structures properly. Currently three different syntax

normalization filters have been implemented. The func-

tionality and the design of the filters were based on ac-

tual requirements coming from the users of the X3ML

framework.

The first filter normalizes the syntax of an XML
file by rearranging its structure in order to fix syntax

issues, so that it becomes compliant with the concepts

of a semantic model. The second filter assists the users

inspecting the values of specific elements in an XML file
and update specific values while preserving the original

ones. The third filter’s main functionality is to split the

values of an element, to create sub-elements and assign

these values to them.

The following example shows an element events con-
taining various dates, actors, and places:

<events>

<date>2014-11-23</date>

<date>2015-01-15</date>

<actor>James</actor>

<actor>Bob</actor>

<place>Greece</place>

<place>Italy</place>

</events>

In the above example clearly the sequence of the
elements is important; practically there are two dif-

ferent events with the corresponding date, actor and

place. Therefore, the Syntax Normalizer component re-

constructs this block and produces the normalized one,

which is shown below:

<events>

<event>

<date>2014-11-23</date>

<actor>James</actor>

<place>Greece</place>

</event>

<event>

<date>2015-01-15</date>

<actor>Bob</actor>

<place>Italy</place>

</event>

</events>

4.2 Mapping Memory Manager (3M)

3M is a tool for managing mapping definition files. It
provides a number of administrative actions that assist

the experts to manage their mapping definition files.

It is available online6 and is free to use. Users are re-

quested to register online in order to obtain a username

6 http://www.ics.forth.gr/isl/3M/



10 Yannis Marketakis et al.

and password. Using these credentials users can login

and see all the available mappings. Although all the

mappings are visible to all users, each user is allowed

to edit only his own mappings and the mappings he has

access rights to do so. Users can also create a new map-
ping file, by giving a title and selecting one or more

of the proposed target schemata. The newly created

mapping file can be further edited with the 3M Editor

(described in the subsequent section). Since the number
of mappings can become quite big, several actions (such

as searching, filtering and sorting) are provided. More-

over, users are able to export their mappings for offline

use, import mapping files, make versions of a specific

mapping file, delete it, make a copy and also give rights
to other users to edit their own file.

4.3 3M Editor

The 3M Editor component is a web application suite

containing several software sub-components and ex-

ploits several external services. It is available online7

and its main functionality is to assist users during the
mapping definition process, using a human-friendly user

interface and a set of sub-components that either sug-

gest or validate the user input.

The user interface of the 3M editor is tabular and
resembles modern web browsers. The rationale for this

design is to allow users quickly familiarize with the edi-

tor and navigate instantly through the offered options.

The main task of the editor is to support the creation of

a complete X3ML file and check how the actual source
data are mapped to the defined target output.

To create a complete X3ML file the user has to fill

in two different categories of resources:

– Informational resources: they contain some gen-

eral information about the mapping and its creators,

the source, the target schema and the correspond-
ing namespaces. Additionally, they might contain

examples about the source or target records or even

a generator policy file (we discuss them in detail

§4.7).
– Mapping resources: they contain information

about the mappings themselves. Users are facili-

tated with the definition of the mappings using

a set of supporting sub-components. A core sub-

component is the Schema Matcher, which supports
the definition of mappings. To define them, users

are working with a tabular format of the mappings.

We use this design since we found out that most

users were accustomed to maintaining mappings of
their own in spreadsheets. Thus each mapping is

7 Through the 3M component

represented as a table. Fig. 5 shows an actual exam-

ple. The header of the table represents the domain

of the mapping, and the rows represent the links.

Since each link contains two elements; one path and

one range, the rows are double in size and contain
both these elements. The columns of the table are

used to separate the expression in the source schema

(i.e., the Provider’s schema), from the expression in

the target schema (i.e., the Aggregator’s schema),
as well as conditional expressions or comments (for

humans).

Although the creation of an X3ML file is the main

functionality performed by the 3M Editor, it provides

also the following:

– constructs a graphical visualization of the map-

pings, for facilitating non-experienced users un-

derstanding the mappings, and quickly inspecting
them. An indicative screenshot of the produced

graph is shown in Fig. 6.

– executes the X3ML engine (described later in §4.7)

and inspect how source records will be transformed
with respect to the defined mappings. More specif-

ically, users can upload their source records and

a generator policy file (described below in §4.3.4)

and select the target records format. This will allow

transforming the source records by exploiting the
X3ML engine component.

– configures various options to better suit the individ-

ual mapping needs; for example user may change

view options or enable/disable sub-components.

4.3.1 Schema Matcher

The Schema Matcher is the core sub-component of the

3M Editor. It allows the user defining a schema match-

ing expressed in X3ML language, in an intuitive and

user friendly way. Users can define meaningful match-
ing definitions, that preserve the semantics of the source

records, by adding the appropriate information.

The user adds information about the mapping and

declares a source schema and one or more target
schemata with their namespaces. The title and the tar-

get schemata (accompanied by their namespaces) may

have already been filled by 3M (described in §4.2) when

creating the mapping file. In addition, the user can also
upload files that are going to be used as source or target

schemata, example source or target records and a gen-

erator policy file. The uploaded files are then parsed,

analyzed and used by the corresponding components.

The component performs its functionality on an in-

teractive manner; at any given moment, the user can

switch from view mode (that uses the Schema Maping



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 11

Fig. 5 Specifying and inspecting mappings using 3M Editor

Fig. 6 3M Editor graph Tab

Viewer component - described in §4.3.5) to edit mode,

for inspecting how the mapping process is progressing.

Furthermore if the users are familiar with the X3ML

language syntax, there is even a raw XML mode.

4.3.2 Source Schema Visualizer

The Source Schema Visualizer component is responsi-
ble for assisting users in selecting the appropriate source

path for the definition of the mapping. This component

replaces the input fields with select boxes that contain

values from the source records, so that users can se-

lect the values instead of writing them explicitly. The
component analyzes the structure of the source schema

and “proposes” values to the user, to avoid mistakes in

writing the XPATH expressions. It is evident that the

source schema file, or the source records should be up-
loaded beforehand. The component can be activated or

deactivated through the 3M Editor component. An in-

dicative screenshot of the component is shown at Fig.

7. The source schema that is being exploited in this

example is LIDO [29].

Fig. 7 Selecting values from the source schema (LIDO) using
Source Schema Visualizer



12 Yannis Marketakis et al.

4.3.3 Target Schema Visualizer

The Target Schema Visualizer is a software component

for assisting users in selecting the appropriate target

paths. When there are no target schema files available,

users have to fill in the target paths using text input

fields. If at least one target schema file is available, users
can exploit this component for selecting the appropriate

concepts (i.e., classes) from the target schema for their

mappings.

The visualizer is activated after a target schema
has been uploaded and validated. For the latter the

Target Schema Validator sub-component is being ex-

ploited (described in more detail in §4.4). Fig. 8 shows

an indicative screenshot of the Target Schema Visual-

izer. The available options that are shown are classes
of the target schema; in this case the target schema is

CIDOC CRM.

Fig. 8 Selecting values from the target schema (CIDOC
CRM) using the Target Schema Visualizer

4.3.4 Instance Generation Rule Builder

After the creation of the Schema Matching Definition,

the specification for the instances generation is defined.
This is accomplished using the Instance Generation

Rule Builder software component. The user interface is

similar to the Schema Matcher component (described

in §4.3.1). However, users can only edit details about

the instance and value generators.
The component uses templates for specifying how a

URI or a label will be created and they can be exploited

throughout the mapping. The generator templates are

defined separately and linked to the actual mapping, in
order to be used by the generators for producing the

actual identifier or label. Each target entity must have

only one instance generator and any number of label

generators. Generators use their names as identifiers,

therefore the same generator can be exploited for many

different target entities. There are some generators al-

ready built-in in the X3ML framework, however more

user-defined generators can be defined. A more detailed
discussion about generators can be found in the sequel

(in §4.7).

Figure 9 shows an indicative example; the upper

part defines how the URIs for instances of the class

E41 Appellation will be assigned, while the lower part

defines how the corresponding labels will be created
(e.g., rdfs:label).

Fig. 9 Instance Generation Rule Builder

4.3.5 Schema Mapping Viewer

Schema Mapping Viewer is a sub-component used to in-

spect X3ML files. There are multiple interaction modes:

– View mode: This mode shows the mappings us-

ing a human understandable representation. More

specifically, it uses a tabular format where each

mapping is modeled as a different mapping, the
header of the table represents the domain of the

mapping, and the rows represent the links. This is

the default mode for showing the mappings and is

also used to present the publicly available mappings
with respect to CIDOC CRM8.

– Raw XMLmode: X3ML is presented as raw XML.

It may be the entire X3ML file or specific subtrees.

This mode is intended to be used from users who

are familiar with the syntax of the X3ML.
– Graph view mode: X3ML is presented as a graph

(shown in Fig. 6). This mode is intended for users

non-experienced with the X3ML, or for quickly get-

ting an overview of the defined mappings.

8 http://www.ics.forth.gr/isl/3M-PublishedMappings/



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 13

4.4 Source Schema and Target Schema Validators

The Source Schema Validator is an external tool used to

validate and traverse the source schemata and produce

all possible XPATH expressions. The identified expres-

sions are given as input to the Source Schema Visualizer

for “proposing” them to the user. The supported source
schemata may be in XSD or XML schema format.

The Target Schema Validator is a tool used to an-

alyze the target schemata and to produce valid op-

tions according to previous user selections. The target
schemata may be in RDFS, RDF, OWL, XSD or XML

format. It consists of a set of engines for validating the

schema based on their format. Currently the following

Target Schema Validator engines are implemented:

– using XML structure: It works with RDFS or

RDF schema files. The engine is based on queries

evaluated over the RDFS schemata stored in an

XML database. Schemata have to be well formed
XML files containing certain tags (rdfs:Class,

rdf:Property, rdfs:domain etc.). The results are

sorted and grouped by schema file.

– using semantic reasoner9: It works with RDFS, RDF
or OWL schema files. The engine is based on Jena10,

and exploits also inference on the schema.

– Using XML analysis: It works with XSD or XML

schema files. The engine produces XPATH expres-

sions as result.

4.5 Source and Target Analyzers

The Source and Target Analyzers are two components
under development that aim to provide information re-

garding the coverage of the source and target schemata

respectively.

The Source Analyzer contains three different met-

rics related to the source schema. The first metric dis-
plays the percentage coverage of parent elements, while

the second counts only the leaves of the source schema

that exist in the mapping. Finally, the third metric cal-

culates the total coverage of the source schema.

The Target Analyzer allows users to explore the tar-

get schema, offering an effective schema analysis. The

metrics are divided into two categories:

– Direct

– Ancestors / Descendants

At the category of Direct metrics each node is a sepa-
rate element. Three different rates are provided, about

9 https://github.com/isl/Reasoner
10 https://jena.apache.org/

classes, properties and resources. An element is consid-

ered to be covered only if it is mentioned in the mapping

directly. On the other hand, the category of Ancestors

/ Descendants provides the same rates (classes, prop-

erties and resources), but it is differentiated on how
the covered elements are calculated. An element is con-

sidered to be covered, if at least one ancestor or the

element itself is referred in the mapping.

4.6 Mapping Suggester

The Mapping Suggester [57] is a software component
under development used to suggest mappings to the

user. These suggestions make use of “mapping memo-

ries” of similar cases collected from the user commu-

nity and are recalculated with each new mapping de-
cision. The user can either accept or reject the sugges-

tion. When the user creates a new mapping file, the

Mapping Suggester runs a schema matching with the

source schema they provide and the existing mapped

source schemata in the mapping memory. The corre-
spondences/crosswalks found during the schema match-

ing, are used by the mapping suggester in order to sug-

gest mappings to the user.

4.7 The X3ML Engine

The X3ML Engine realizes the transformation of the
source records to the target format. The engine takes

as input the source data (currently in the form of an

XML document), the description of the mappings in

the X3ML mapping definition file and the URI gen-

eration policy file and is responsible for transforming
the source document into a valid RDF document which

corresponds to the input XML file, with respect to the

given mappings and policy.

Fig. 10 depicts the main subcomponents of the

X3ML engine. The Input Reader component is respon-

sible for reading the input data (currently we support
XML documents, however as we describe in Section 6

more formats will be supported in the future using the

proper extensions). The X3ML Parser component is re-

sponsible for reading and manipulating the X3ML map-
ping definitions. The component RDF Writer outputs

the transformed data into RDF format. The Instance

Generator component produces the URIs and the labels

based on the descriptions that exist in the mappings

and finally the Controller component coordinates the
entire process.

One of the most important tasks of the X3ML en-

gine is the generation of values. Values can be either lit-

eral values or identifiers for resources (i.e., URIs). The



14 Yannis Marketakis et al.

Fig. 10 The main components of X3ML Engine

generation of values is being handled by the Instance-

Generator component. In general this component sup-

ports the generation of: (a) instances and (b) labels. For

each entity there must exist one instance generator

and any number of subsequent label generator blocks
in the corresponding mapping definition file.

The following block shows a template for defining

an instance generator.

<instance_generator name="[gen-name]">

<arg name="[arg-name]" type="[arg-type]">

[arg-value]

</arg>

...

</instance_generator>

This type of generator is responsible for constructing

an identifier for a resource. Each instance generator

should be assigned a name, and associated with a list of

arguments. The arguments are being exploited to pro-
vide the text segments that are required for construct-

ing an identifier. Each argument has a name, which

should be unique in the context of the generator, and

a type and value pair. The type determines how the

value of the argument will be used; there are 3 different
options for the type:

1. constant. In this case the value of the argument

should be used as it is defined. This type is used

when we want to assign constant values to the gen-
erated identifiers.

2. xpath. In this case the value of the argument is an

XPATH expression, that should be evaluated with

the given input. The result of the XPATH expres-

sion will be used for the generation of the identifier.
This type is used when it is required to exploit data

from the input file in the generated identifiers.

3. position. In this case the value of the argument is

ignored and the index position of the corresponding
source node, within its context, is being used.

The X3ML engine provides the default implementation

for producing URIs and UUIDs.

The following block shows the configuration of a

label generator.

<label_generator name="[gen-name]">

<arg name="[arg-name]" type="[arg-type]">

[arg-value]

</arg>

<arg name="language" type="constant">

[language-code]

</arg>

...

</label_generator>

Each label generator has a name and a list of ar-

guments (that are similar in spirit with the arguments

that are defined for the instance generator). One ex-

tra argument that is being exploited is the argument
for defining the language tag of the generated value. If

it is empty then it is implied that the generated value

will not have it (i.e., in the case of number values).

The X3ML engine provides default implementations for
producing literal values in the form of rdfs:label and

skos:prefLabel and constant values.

The InstanceGenerator component is configured

through an XML file (which is given as input in the

X3ML engine). When URIs are to be generated on the
basis of source record content, it is wise to leverage ex-

isting standards and re-use the associated implementa-

tions. For the template-based URI generation, the RFC

6570 [40] standard is available and is used. Whenever
the required URIs or labels cannot be generated by the

default generators, the simple templates, or the URI

templates, it is always possible to insert a special gen-

erator in the form of a class implementing the Instance-

Generator component interfaces.
The X3ML engine keeps an association table for the

produced “values”. This practically means that when-

ever a new “value” is being created (either a URI,

UUID, or literal) the exact XPATH from the source
file is associated with the generated value. The con-

tents of this association table can also be exported in

XML format, and can be exploited from the user as



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 15

a quick overview of the generated values for particular

resources of the source.

4.8 Implementation Details and Software Licenses

The X3ML framework has been implemented in JAVA
respecting the principles that were described in §3.2.

The Web application components of the framework

have been designed and implemented following a three-

tier architecture [37]. More specifically it comprises the

following layers:

– Data tier: data is stored in an XML database.

For the implementation of the Mapping Memory we

have used eXist DB11.

– Logic tier: server code is implemented using J2EE.
Whenever it was required we re-used existing and

widely-adopted libraries. An indicative list contains:

XStream12 and jOOX13 for parsing XML-based doc-

uments, and Handy URI Templates14 to support the
generation of valid URIs.

– Presentation tier: client code is implemented

using web standards such as HTML515, CSS316,

Javascript and well-known libraries and frameworks
such as jQuery17, AngularJS18, and Bootstrap19.

All the components of the X3ML framework have

been developed as open source components. However,

since they have been developed in the context of dif-
ferent EU projects, they are published under different

open source licenses. More specifically, the 3M and 3M

Editor components have been released under the Euro-

pean Union Public License20 whereas the X3ML engine

has been released under the Apache 2 license21.
Furthermore, the source code of the X3ML frame-

work has been deposited in a free and open repository.

The source code and the complete documentation of

the components are available from the following links:

– https://github.com/isl/

Mapping-Memory-Manager

– https://github.com/isl/3MEditor

– https://github.com/isl/x3ml

11 http://http://exist-db.org/exist/apps/homepage/

index.html
12 http://x-stream.github.io/
13 https://github.com/jOOQ/jOOX
14 https://github.com/damnhandy/Handy-URI-Templates
15 http://www.w3.org/TR/html5/
16 http://www.w3schools.com/css/css3_intro.asp
17 https://jquery.com/
18 https://angularjs.org/
19 http://getbootstrap.com/
20 https://joinup.ec.europa.eu/community/eupl/og_

page/eupl
21 http://www.apache.org/licenses/LICENSE-2.0

5 Exploitation and Evaluation

The X3ML framework has been validated, evaluated

and widely used by several projects. Below we first de-
scribe our experiences from using the X3ML framework

in several EU projects (in §5.1), and then discuss about

the evaluation results (in §5.2).

5.1 X3ML exploitation in EU Projects

The ResearchSpace project22 - a collaboration of the

British Museum, the Rijkmuseum, Oxford e-Research

Centre, Yale Center for British Art (YCBA) and others-
is developing a collaborative environment for human-

ities and cultural heritage research. The project has

been using the X3ML framework for the mapping and

transformation of their data using CIDOC-CRM as the

target schema. A significant part of the British Mu-
seum and Rijksmuseum collection data have been trans-

formed to CRM and integrated in ResearchSpace, show-

ing the great value of the X3ML engine for transforming

big amounts of real, heterogeneous cultural data.

Furthermore, the ResearchSpace project organized

the CIDOC CRM Mapping workshop for humanities
scholars and cultural heritage professionals, first at Yale

University (USA) in August 2015, and then at Oxford

University (UK) in October 2015. The workshop aimed

to help professionals develop skills and understand data
mapping techniques using CIDOC CRM. The partici-

pation exceeded the available positions (30 participants

in Yale and 20 in Oxford), showing great interest in

our approach and the potential of high impact of our

work. Just indicatively the workshops attended well-
known institutions in the area of cultural heritage do-

main, like GETTY museum23, Canadian Heritage24,

Yale25, Frick26 and others. The feedback we received

from the two workshops was very positive27 and it is
very promising to see that, after attending the work-

shops, several institutions started mapping their data,

an attempt continuing to date.

Another project using and exploiting our framework

is the ARIADNE project [1]. The project initiated sev-

eral mapping activities using the X3ML framework,

to convert existing schemata of archaeological data to

22 http://www.researchspace.org/
23 http://www.getty.edu/museum/
24 http://www.pch.gc.ca/eng/1266037002102
25 http://www.yale.edu/
26 http://www.frick.org/
27 Some feedback from the USA workshop as pub-
lished in the call of the UK workshop can be found
at http://www.researchspace.org/home/project-updates/

cidoccrmmappingworkshopatoxforduniversity



16 Yannis Marketakis et al.

CIDOC-CRM and its extension suite. Using the X3ML

framework, ARIADNE intended to promote an open

sharing of data in the archaeology sector, supporting

effectively and efficiently all involved tasks. One of the

tasks carried out in the context of ARIADNE project
was to develop an integrated scenario where several ro-

man coin databases are being mapped and transformed

to the common CIDOC CRM schema through X3ML

and finally integrated in a semantic repository. So far,
five archives have been integrated:

1. a set of 72 numismatic records from the dFMRÖ

archive[18], an online MySQL database of the Nu-

mismatic Research Group of the Austrian Academy
of Sciences,

2. a set of 1670 numismatic records coming from the

Cambridge Fitzwilliam Museum archive28,

3. a set of 630 records coming from the Archaeological

Superintendence of Rome29 database,
4. a set of 517 coins of the Pergamon project from the

Arachne object database30 of the German Archaeo-

logical Institute,

5. the collections of MuseiDItalia, the digital library
integrated in CulturaItalia with 25000 records al-

ready in CIDOC-CRM form.

The details of this integration use case are described in

detail in [38]. This use case played an important role
during the development of the X3ML framework both

as a testbed and as a requirements provider. Further-

more, Vast-Lab31 have been using the framework for

mapping the Italian archaeological documentation sys-
tem to CIDOC CRM [39].

The PARTHENOS project32 aims at strengthen-

ing the cohesion of research in the broad sector of

Linguistic Studies, Humanities, Cultural Heritage, His-

tory, Archaeology and related fields through a thematic
cluster of European Research Infrastructures, integrat-

ing initiatives, e-infrastructures and other world-class

infrastructures, and building bridges between differ-

ent, though tightly interrelated, fields. PARTHENOS
is committed to CRM-based integration and decided to

use X3ML framework in order to support mappings,

proving again its wide applicability and value. Towards

this direction, X3ML framework has been integrated

in the gCube infrastructure [56], and is publicly avail-
able33.

In addition, X3ML has been used for mappings

of the Europeana Data Model[36] and LIDO[29] to

28 http://www.fitzmuseum.cam.ac.uk
29 http://archeoroma.beniculturali.it/en
30 http://arachne.uni-koeln.de/drupal/
31 http://vast-lab.org
32 http://www.parthenos-project.eu/
33 http://mapping-d-parthenos.d4science.org/3M/

CIDOC CRM whereas VRE4EIC [17] will use the

X3ML framework in order to support mappings to

CERIF [19]. Moreover, the ITN-DCH project [5] has

also initiated mapping activities using X3ML such as

the mapping of the MayaArch3D database34.

X3ML has also been exploited in the biodiversity

domain, in the context of the Lifewatch Greece project
[6]. More specifically, it has been used for describing

the mappings of data from the biodiversity domain that

were derived from various relational databases, as well

as from CSV files, and were transformed into instances

of the CIDOC CRM and its extensions for the biodiver-
sity domain [60,61]. The aggregated records were then

used for for supporting the discovery of datasets and

the scientific research processes related to biodiversity

domain.

All these diverse cases show an ever increasing inter-

est in the X3ML framework and prove the effectiveness

of our approach in real world cases. Figure 11 illus-
trates the different domains (rectangles) and the vari-

ous projects (circles) where X3ML framework has been

exploited.

�������

����	
��
�	��

�������

��������


�������
�����	���

�
����

���������	���
���
��������

�����������������

������������ �
��
����
�������
�

Fig. 11 The current exploitation of X3ML framework from
various projects

5.2 Performance Evaluation

Apart from the evaluation over real institutions (serving

real needs), we wanted to evaluate how efficient is the

framework as the input grows. Therefore, we decided

to evaluate the performance of the X3ML engine, since
it is the component that requires the most computa-

tional resources. For the evaluation35 we used an XML

34 http://www.mayaarch3d.org
35 The experiments were carried out on a PC with an Intel
i7 processor, 8GB RAM, running Windows 7 32 bit.



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 17

input and a X3ML mapping example coming from the

ARIADNE project as a base to produce synthetic data

that was provided as input to the X3ML engine. Three

X3ML mapping files were created containing 10, 100

and 1000 mappings and 4 XML input files containing
10, 100, 1000 and 10000 records respectively. Fig. 12

depicts the evaluation results. We can observe that the

overall time depends on both the number of mappings

and the size of the input. More specifically, the time
required for data transformation is approximately one

second when the size of the input is low (10 records),

even if the mappings are many (from 10 to 1000). As

the size of the input increases however, the overall time

that is required increases as well. Note, that the total
number of output records is the total number of input

records multiplied by the number of mappings (i.e., 10

input records with 10 mappings will produce 100 out-

put records). Concluding, we can see that the execution
time is affected equally by the number of the mappings

and the records, and it is related with the number of

the links that are created during the transformation

process.

100

1000

10000

100000

1000000

10000000

10 Records 100 Records 1000 Records 10000 Records

X3ML engine execution time (msec)

10 Mappings 100 Mappings 1000 Mappings

Fig. 12 X3ML Engine Evaluation Results

6 Conclusions and Future Work

6.1 Discussion

This paper presented a novel framework for the man-

agement of the core processes needed to create, main-

tain and manage mapping relationships between dif-

ferent data sources. We described the X3ML frame-
work and its building blocks for describing both schema

mappings and URI generation policies, as well as tools

for managing, editing, visualizing and executing those

mappings. Our framework supports the mapping defi-
nition and transformation process and the generation

of URIs and values, and is characterized by usability,

scalability and ease of learning.

We demonstrated some of our experiences on us-

ing the aforementioned framework and discussed the

evaluation of some of the related components. Finally,

we demonstrated some of our experiences on using the

aforementioned framework for mapping and transform-
ing data from heterogeneous sources to CIDOC CRM

and its extensions in various projects. To the best of

our knowledge, the X3ML framework is the most com-

plete mapping framework existing today with many
tools supporting all different tasks involved.

6.2 Future Work

There are many directions that we are currently explor-
ing or plan to work on in the immediate future. First

of all, as already discussed, most of the components are

under continuous development and testing. More specif-

ically we are working on making the X3ML framework

more generic and scalable.
Moreover, an important future effort will be the con-

sideration of alternative types of sources (at least for

the X3ML Engine component). As already described in

§4.7, the current version of the X3ML Engine requires
the source records to be expressed as an XML docu-

ment, but our plan is to extend it to support other

types of input, such as, in particular, RDF input. This

requires several modifications in the design and imple-

mentation of the engine. More importantly, the basic
construct that we use for reading the source data will

be an RDF model (e.g., Jena, Sesame), so instead of

XPATH queries the SPARQL [54] language will be used

for querying. Furthermore, the Instance Generator com-
ponent should be able to carry the URIs from the source

records to the target records if needed.

One apparent advantage of this approach is that the

framework will support input and output of the same

format. This sparked the light to investigate another
direction: that of invertible X3ML mappings. In an in-

vertible X3ML mapping, one can identify in a unique

manner (and consequently regenerate) the data in the

source dataset that led to the creation of each piece of
data in the target dataset. Based on this idea, we can

formalize the notion of invertibility by trying to identify

how X3ML maps the source data to the target data.

Invertibility requires regenerating both the data,

and the URIs. For the latter, the association table
(that was mentioned earlier in §4.7) can be used to

support this functionality. The former is more difficult

and consists in determining the triple(s) in the source

dataset that contributed in the generation a given (set
of) triple(s) in the target dataset. Note that it is not al-

ways possible to determine that; in some cases, a triple

in the target dataset can be (potentially) generated by



18 Yannis Marketakis et al.

two (or more) different sets of triples in the source

dataset, therefore the source cannot be uniquely de-

termined. Defining necessary and sufficient conditions

for invertibility, and identifying the inverse X3ML map-

ping (when one exists), is ongoing work; a preliminary
discussion appears in [52].

Solving the basic problem of invertibility will also
allow addressing more complex problems that are in-

teresting from the curator’s point of view, such as:

1. Given a set of target records that have been derived

from a set of source records using the appropriate

X3ML mappings, and some updates that are applied

over the target records, how can one propagate the
necessary changes back to the source records?

2. Consider an integrated target dataset, that has been

aggregated from the application of multiple sets of

X3ML mappings upon multiple source records. Sup-
pose that the aggregation of information from the

different records allows the inference of additional

information, not present in (or inferrable by) any of

the source records. How can this inferred informa-

tion be propagated back to the source records, and
how can one determine the sources that will get each

new information?

Finally as the number of mappings grow, it is be-

coming important to categorize them for assisting users

finding easily the desired mappings within the 3M com-

ponent. Apart from the search and filter functionali-
ties that are already available, we plan to support also

a categorization of mappings with respect to different

thematic categories.

Acknowledgements

This work was partially supported by the following

projects: ARIADNE (FP7 Research Infrastructures,

2013-2017), PARTHENOS (H2020 Research Infrastruc-

tures, 2015-2019), BlueBRIDGE (H2020 Research In-
frastructures, 2015-2018), and VRE4EIC (H2020 Re-

search Infrastructures, 2015-2018). The authors would

also like to thank Nikos Anyfantis for working with the

Source and Target Analyzer components, and Korina
Doerr for designing the user interfaces of the X3ML

framework.

References

1. ARIADNE - Advanced Research Infrastructure for Ar-
chaeological Dataset Networking in Europe, FP7 Re-
search Infrastructures, 2013-2017. http://www.ariadne-
infrastructure.eu/.

2. AstroGrid-D: A Transformation from XML to
RDF via XSLT. http://www.gac-grid.de/project-
products/Software/ XML2RDF.html (accessed on
December 2015).

3. DataTank: Transform datasets into a RESTful API.
http://thedatatank.com/ (accessed on December 2015).

4. Groovy: A multi-faceted language for the Java plat-
form. http://www.groovy-lang.org/ (accessed on Decem-
ber 2015).

5. ITN-DCH, Initial Training Network for Digital Cultural
Heritage, 2013-2017. http://www.itn-dch.eu/.

6. LifeWatch Greece - National Strategic Reference Frame-
work, 2012-2015. https://www.lifewatchgreece.eu/.

7. Openlink Software: Mapping Relational
Data to RDF with Virtuoso’s RDF Views.
http://virtuoso.openlinksw.com/whitepapers/relational
%20rdf%20views%20mapping.html (accessed on Decem-
ber 2015).

8. OpenRefine. http://openrefine.org/ (accessed on Decem-
ber 2015).

9. RDB2RDF Implementations.
http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations
(accessed on December 2015).

10. RDFizers. http://wiki.opensemanticframework.org/index.php/
RDFizers (accessed on December 2015).

11. Sip Creator. https://github.com/delving/delving/tree/
master/sip-creator (accessed on December 2015).

12. SquirrelRDF. http://jena.sourceforge.net/SquirrelRDF/
(accessed on December 2015).

13. Tarql: SPARQL for Tables.
https://github.com/tarql/tarql (accessed on December
2015).

14. Tripliser. http://daverog.github.io/tripliser/ (accessed
on December 2015).

15. Vertere RDF. https://github.com/knudmoeller/Vertere-
RDF (accessed on December 2015).

16. Virtuoso Sponger. http://virtuoso.openlinksw.com/
dataspace/doc/dav/wiki/Main/VirtSponger (accessed
on December 2015).

17. VRE4EIC - A Europe-wide Interoperable Virtual Re-
search Environment to Empower Multidisciplinary Re-
search Communities and Accelerate Innovation and Col-
laboration, H2020 Research Infrastructures 2015-2018.
http://www.vre4eic.eu/.

18. dFMRÖ - digitale Fundmünzen der Römischen
Zeit in Österreich. Available from:
http://www.oeaw.ac.at/antike/index.php?id=358,
2007.

19. A. Asserson, K. G. Jeffery, and A. Lopatenko. CERIF:
past, present and future: an overview. euroCRIS, 2002.

20. S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and
D. Aumueller. Triplify: light-weight linked data publi-
cation from relational databases. In Proceedings of the
18th international conference on World wide web, pages
621–630. ACM, 2009.

21. J. Barrasa, O. Corcho, and A. Gómez-Pérez. Fund finder:
A case study of database-to-ontology mapping. In Se-
mantic Integration Workshop, page 9. Citeseer, 2003.

22. J. Barrasa Rodŕıguez, Ó. Corcho, and A. Gómez-Pérez.
R2O, an extensible and semantically based database-to-
ontology mapping language. 2004.

23. T. Berners-Lee. Relational databases on the semantic
web. 2013.

24. T. Berners-Lee, J. Hendler, O. Lassila, et al. The seman-
tic web. Scientific american, 284(5):28–37, 2001.



X3ML Mapping Framework for Information Integration in Cultural Heritage and beyond 19

25. S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and
A. Polleres. Mapping between RDF and XML with
XSPARQL. Journal on Data Semantics, 1(3):147–185,
2012.

26. C. Bizer. D2R MAP - a database to RDF mapping lan-
guage. WWW (Posters), 2003.

27. C. Bizer and A. Seaborne. D2RQ - treating non-RDF
databases as virtual RDF graphs. In Proceedings of the
3rd international semantic web conference (ISWC2004),
volume 2004. Citeseer Hiroshima, 2004.

28. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi,
and R. Rosati. Description logic framework for informa-
tion integration. In KR, pages 2–13, 1998.

29. E. Coburn, R. Light, G. McKenna, R. Stein, and
A. Vitzthum. LIDO-lightweight information describing
objects version 1.0. ICOM International Committee of
Museums, 2010.

30. D. Connolly et al. Gleaning resource descriptions from
dialects of languages (GRDDL). W3C, W3C Recommen-
dation, 11, 2007.

31. S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to
RDF mapping language. 2012.

32. C. P. de Laborda and S. Conrad. Relational.OWL: a data
and schema representation format based on OWL. In
Proceedings of the 2nd Asia-Pacific conference on Con-
ceptual modelling-Volume 43, pages 89–96. Australian
Computer Society, Inc., 2005.

33. A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh,
E. Mannens, and R. Van de Walle. RML: a generic
language for integrated RDF mappings of heterogeneous
data. In Proceedings of the 7th Workshop on Linked Data
on the Web (LDOW2014), Seoul, Korea, 2014.

34. M. Doerr. CIDOC-CRM family of models.
http://www.ics.forth.gr/isl/CRMext.

35. M. Doerr. The CIDOC conceptual reference module:
an ontological approach to semantic interoperability of
metadata. AI magazine, 24(3):75, 2003.

36. M. Doerr, S. Gradmann, S. Hennicke, A. Isaac, C. Megh-
ini, and H. van de Sompel. The europeana data model
(EDM). In World Library and Information Congress:
76th IFLA general conference and assembly, pages 10–
15, 2010.

37. W. W. Eckerson. Three tier client/server architec-
tures: achieving scalability, performance, and efficiency
in client/server applications. Open Information Systems,
3(20):46–50, 1995.

38. A. Felicetti, P. Gerth, C. Meghini, and M. Theodori-
dou. Integrating heterogeneous coin datasets in the con-
text of archaeological research. Workshop for Extend-
ing, Mapping and Focusing the CRM - co-located with
TPDL’2015, September 2015.

39. A. Felicetti, T. Scarselli, M. Mancinelli, and F. Nic-
colucci. Mapping ICCD archaeological data to CIDOC-
CRM: the RA schema. A Mapping of CIDOC CRM
Events to German Wordnet for Event Detection in
Texts, page 11, 2013.

40. J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, and
D. Orchard. RFC 6570: URI template. Internet Engi-
neering Task Force (IETF) Request for Comments, 2012.

41. M. Hert, G. Reif, and H. C. Gall. A comparison of RDB-
to-RDF mapping languages. In Proceedings of the 7th In-
ternational Conference on Semantic Systems, pages 25–
32. ACM, 2011.

42. H. Kondylakis, M. Doerr, and D. Plexousakis. Mapping
language for information integration. Technical Report
ICS-FORTH, 385, 2006.

43. H. Kondylakis, G. Flouris, and D. Plexousakis. Ontol-
ogy and schema evolution in data integration: Review
and assessment. In On the Move to Meaningful Internet
Systems: OTM 2009, Confederated International Con-
ferences, CoopIS, DOA, IS, and ODBASE 2009, Vilam-
oura, Portugal, November 1-6, 2009, Proceedings, Part
II, pages 932–947, 2009.

44. H. Kondylakis and D. Plexousakis. Exelixis: evolving
ontology-based data integration system. In Proceedings
of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2011, Athens, Greece, June
12-16, 2011, pages 1283–1286, 2011.

45. H. Kondylakis and D. Plexousakis. Ontology evolution:
Assisting query migration. In Conceptual Modeling - 31st
International Conference ER 2012, Florence, Italy, Oc-
tober 15-18, 2012. Proceedings, pages 331–344, 2012.

46. H. Kondylakis, D. Plexousakis, V. Hrgovcic, R. Woitsch,
M. Premm, and M. Schüle. Agents, models and se-
mantic integration in support of personal ehealth knowl-
edge spaces. In Web Information Systems Engineering
- WISE 2014 - 15th International Conference, Thessa-
loniki, Greece, October 12-14, 2014, Proceedings, Part I,
pages 496–511, 2014.

47. H. Kondylakis, E. G. Spanakis, S. Sfakianakis,
V. Sakkalis, M. Tsiknakis, K. Marias, X. Zhao, H. Yu,
and F. Dong. Digital patient: Personalized and trans-
lational data management through the myhealthavatar
EU project. In 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society,
EMBC 2015, Milan, Italy, August 25-29, 2015, pages
1397–1400, 2015.

48. C. Lange. Krextor-an extensible framework for contribut-
ing content math to the web of data. In Intelligent Com-
puter Mathematics, pages 304–306. Springer, 2011.

49. A. Langegger and W. Wöß. XLWrap–querying and inte-
grating arbitrary spreadsheets with SPARQL. Springer,
2009.

50. B. Lavoie. Meeting the challenges of digital preservation:
The oais reference model. OCLC Newsletter, 243:26–30,
2000.

51. Y. Marketakis, Y. Tzitzikas, C. Tona, M. Argenti,
F. Marelli, M. Albani, R. Guarino, B. Polsinelli, and
R. Bitto. On harmonizing earth science policies, seman-
tics, metadata and ontologies. Ensuring the Long-Term
Preservation and Value Adding to Scientific and Techni-
cal Data (PV’2013), November 2013.

52. N. Minadakis, Y. Marketakis, H. Kondylakis, G. Flouris,
M. Theodoridou, M. Doerr, and G. de Jong. X3ML
framework: An effective suite for supporting data map-
pings. Workshop for Extending, Mapping and Focusing
the CRM - co-located with TPDL’2015, September 2015.

53. M. J. O’Connor, C. Halaschek-Wiener, and M. A. Musen.
Mapping master: A flexible approach for mapping spread-
sheets to OWL. In The Semantic Web–ISWC 2010,
pages 194–208. Springer, 2010.

54. E. Prud’Hommeaux, A. Seaborne, et al. Sparql query
language for rdf. W3C recommendation, 15, 2008.

55. F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, S. Vil-
lata, B. Bucher, F. Hamdi, L. Bihanic, G. Képéklian,
F. Cotton, et al. Enabling linked data publication with
the datalift platform. In Proc. AAAI workshop on se-
mantic cities, pages No–pagination, 2012.

56. F. Simeoni, L. Candela, G. Kakaletris, M. Sibeko,
P. Pagano, G. Papanikos, P. Polydoras, Y. Ioannidis,
D. Aarvaag, and F. Crestani. A grid-based infrastruc-
ture for distributed retrieval. Springer, 2007.



20 Yannis Marketakis et al.

57. O. Smyrnaki. Design and implementation of a semi-
automatic tool for mapping source schemas to target
ontologies. Master’s thesis, University of Crete, Voutes
Campus, 70013 Heraklion, 2013.

58. P. Szekely, C. A. Knoblock, F. Yang, X. Zhu, E. E. Fink,
R. Allen, and G. Goodlander. Connecting the smithso-
nian american art museum to the linked data cloud. In
The Semantic Web: Semantics and Big Data, pages 593–
607. Springer, 2013.

59. D. Thomas and A. Hunt. Orthogonality and the DRY
principle, 2010.

60. Y. Tzitzikas, C. Allocca, C. Bekiari, Y. Marketakis,
P. Fafalios, M. Doerr, N. Minadakis, T. Patkos, and
L. Candela. Integrating heterogeneous and distributed
information about marine species through a top level on-
tology. In Metadata and Semantics Research, pages 289–
301. Springer, 2013.

61. Y. Tzitzikas, C. Allocca, C. Bekiari, Y. Marketakis,
P. Fafalios, M. Doerr, N. Minadakis, T. Patkos, and
L. Candella. Unifying heterogeneous and distributed in-
formation about marine species through the top level on-
tology MarineTLO. Program: electronic library and in-
formation systems, 50(1), 2015.


